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Abstract. Cryptographic techniques for reasoning about information
leakage have recently been brought to bear on the classical problem of
statistical disclosure control – revealing accurate statistics about a pop-
ulation while preserving the privacy of individuals. This new perspective
has been invaluable in guiding the development of a powerful approach
to private data analysis, founded on precise mathematical definitions,
and yielding algorithms with provable, meaningful, privacy guarantees.

1 Introduction

The problem of statistical disclosure control – revealing accurate statistics about
a population while preserving the privacy of individuals – has a venerable his-
tory. An extensive literature spans multiple disciplines: statistics, theoretical
computer science, security, and databases. In recent years the problem has been
revisited, bringing to the discussion techniques from the cryptographic commu-
nity for defining and reasoning about information leakage. This new perspective
has been invaluable in guiding the development of a powerful approach to private
data analysis, founded on precise mathematical definitions, and yielding algo-
rithms with provable, meaningful, privacy guarantees and, frequently, excellent
accuracy.

Statistical databases may be of two types: non-interactive (the traditional
model) and interactive. In the former, a sanitization of the data is published. All
statistical analysis is carried out on the published, sanitized, data. Sanitization
is a broad concept, and can include summaries, histograms, and even synthetic
databases generated from a model learned from the actual data. The principal
aspect here is the “one-shot” nature of the non-interactive approach: once the
sanitization has been published the original data have no further use; they could
even be destroyed. In contrast, in the interactive model a privacy mechanism sits
between the data and the user. The user interacts with the privacy mechanism,
which may modify the actual query or the query outcome, in order to preserve
privacy.

The division between the models is somewhat artificial; nevertheless, separa-
tion results exist, and it is now clear that the interactive setting is much more
powerful; for example, to obtain statistically meaningful information in the non-
interactive case can provably require a huge database (exponential in the number
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of attributes) [12], which is simply not the case for interactive mechanisms. We
may use the term privacy mechanism for either type of mechanism.

Dinur and Nissim [7] initiated a rigorous study of the interactive model; in
particular, they focused on a class of techniques that Adam and Wortmann,
in their encyclopedic 1989 survey of statistical disclosure control methods, call
output perturbation [1]. Roughly speaking, this means that noise is added to the
output of the query, so a true answer of, say, 4,286, may be reported as 4,266 or
4,300. The degree of distortion, that is, the expected magnitude of the noise, is
an important measure of the utility of the statistical database. Dinur and Nissim
investigated the question of how large the magnitude of the noise must be when
the number of queries is large.

They began with a very simplistic and abstract setting, in which the database
consists of a single Boolean attribute. That is, each row of the database is either
zero or one. A query is a subset of the rows, and the defined true answer to the
query is the sum of the rows in the subset (equivalently, the number of ones in the
specified set of rows). It is helpful to think of the query as a vector x ∈ {0, 1}n,
where n is the number of rows in the database, henceforth denoted DB. The
true answer to the query is x · DB. An output perturbation mechanism adds
noise to the true answer, and returns this sum as the response to the query. We
use the terms true answer to denote the real number of ones in the rows specified
by the query, and response to denote the output of the privacy mechanism.

Dinur and Nissim did not initially explicitly define privacy. Instead they
defined what we will call blatant non-privacy: the ability to reconstruct, say,
99.99%, or, more precisely, n − o(n), entries of a database of n rows (the adver-
sary will not necessarily know which of the reconstructed entries are the correct
ones). They showed that to prevent blatant non-privacy, the magnitude of the
noise added in each response cannot always be small:

1. The magnitude of the noise cannot always be o(n) if the adversary can make
2n queries to the database (in fact, if the error is always within a bound E
then the database can be approximated by a candidate of Hamming distance
at most O(E) from the real database);

2. If the adversary is polynomial time bounded and makes only O(n log2 n)
randomly chosen queries, the magnitude of the noise cannot always be o(

√
n).

These results are independent of the distribution of the noise.
The first result uses brute force to rule out databases that are too far from the

actual database. The second uses linear programming to accomplish the same
task; the result holds with all but negligible probability over the choice of queries.

The Dinur-Nissim setting, while at first blush simplistic, is in fact sufficiently
rich to capture many natural questions. For example, the rows of the database
may be quite complex, but the adversary-user may know enough information
about an individual in the database to uniquely identify his row. In this case
the goal is to prevent the learning of any additional bit of information about the
individual. Of course, even knowing enough to identify a single individual does
not give the adversary the power to identify everyone in the database. However,



20 C. Dwork

careful use of hash functions can handle the “row-naming problem.” Thus, we
may have a scenario in which an adversary reconstructs a close approximation
to the database, in which each row is identified with a set of hash values, and
a “secret bit” is learned for many rows. If the adversary knows (or later learns)
enough about an individual to identify, directly or through elimination, his row
in the database, then the adversary can learn the individual’s secret bit.

“Just Give Me a Noisy Table”. Research statisticians like to “look at the
data.” Indeed, conversations with experts in this field frequently involve pleas
for a “noisy table” that will permit significantly accurate answers to be derived
for computations that are not specified at the outset. The Dinur-Nissim results
say that no “noisy table” can provide very accurate answers to all questions;
otherwise the table could be used to simulate the interactive mechanism, and a
Dinur-Nissim style attack could be mounted against the table. But what about
a table that yields reasonably accurate answers to “most” questions, permitting
some questions to have wildly inaccurate answers? We will see in Section 2
that this relaxation is of little help in protecting privacy. We therefore advocate
switching to an interactive strategy using the techniques of Section 3.

1.1 When n Is Very Large

Dinur and Nissim obtained their negative results while we were thinking about
privacy for enormous databases, in particular, the Hotmail user database of
over n = 100, 000, 000 users. In such a setting, asking n log2 n queries is simply
unreasonable. This suggests the following natural question: suppose the number
of queries is limited, so the attacks above cannot be carried out. For example,
suppose the number of queries is sub-linear in n. Can privacy be preserved by
noise that is, say, always of magnitude o(

√
n)? Since the sampling error for a

property that occurs in a constant fraction of the population is on the order of
Θ(

√
n), this would mean that the noise added for protecting privacy is smaller

than the sampling error.
More generally, let T be an upper bound on the number of queries to be

tolerated. What magnitude noise is sufficient to ensure privacy against T queries?
As we will see, the answer to this question is very satisfactory. In particular, the
magnitude of the noise will depend only on T , and not on n.

To answer our question we must pose it precisely, which means that we must
define privacy, preferably in a way that makes sense for arbitrary databases, and
not just n-bit vector databases. Of course, when the databases are arbitrary the
queries may be more complex than a simple inner product – which may not even
make sense, depending on the data type.

Organization of This Paper. The rest of this paper is organized as follows. Sec-
tion 2 summarizes some recent extensions of the Dinur-Nissim results. Section 3.1
describes a natural definition of a privacy-preserving statistical database, held
as a desideratum for 29 years, and gives some intuition for why it cannot be
achieved. However, just as the negative results of [7] yielded insight into how to
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permit accuracy while ensuring privacy by focusing our attention on “reason-
able” numbers of queries, the counter-example to the natural definition exhibited
flaws in the definition – the wrong question was being asked! The deeper un-
derstanding resulted in a new concept, differential privacy. This is described
in Section 3.2. Finally, a concrete privacy mechanism achieving differential pri-
vacy is presented in Section 3.3, and our question about the magnitude of noise
sufficient to maintain privacy against T queries is answered.

2 Strengthening the Impossibility Results

We1 have recently extended the Dinur-Nissim results in several ways summarized
in Theorem 1. The proof of Part 1 is the “right” version of Dinur-Nissim: it
specifies an explicit set of exactly n queries that always yields blatant non-
privacy. Parts 2-4 consider the case in which there may be some small errors but
also a constant fraction of the errors may be unbounded. The case of unbounded
errors with zero small errors is similar to the situation with error-correcting
codes, when a symbol is either correct (zero error) or incorrect (no assumptions).
We have one result of this type, and several with “mixed” errors.

Theorem 1. In each case below a query is defined by an n-dimensional vector
x, the database is an n-dimensional vector DB, and the true answer is x · DB.
The response is the true answer plus noise. All the results will hold independent
of how the noise is generated, and even if the privacy mechanism knows all
questions in advance.

1. If the noise is restricted to o(
√

n) in every response, then the system is
blatantly non-private against a polynomial time bounded adversary asking
exactly n queries x ∈ {±1}n. More generally, a noise bound of α translates
to reconstruction of n − 9α2 entries. The attack uses Fourier analysis in a
straightforward way.

2. Let ρ be any constant less than 0.239. If the noise is unbounded on up to a
ρ fraction of the responses and restricted to o(

√
n) on the remaining (1 − ρ)

fraction, then the system is blatantly non-private against a polynomial time
bounded adversary asking Θ(n) queries in N (0, 1)n, that is, each query is a
vector of standard normals. More generally, a bound of α on the small noise
yields reconstruction in n − Θ(α2) entries.

3. For any fixed δ > 0, if the noise is unbounded on a (1/2 − δ) fraction of the
queries and restricted to o(

√
n) on the remaining (1/2+ δ) fraction, then the

system is blatantly non-private against
(a) an exponential-time adversary asking only O(n) queries
(b) a polynomial time adversary against a non-interactive solution (eg, a

noisy table) asking only O(n) questions, where the break is in the list-
decoding sense; that is, the adversary can produce a constant-sized list

1 These results were obtained jointly with Frank McSherry, Kunal Talwar, and Sergey
Yekhanin.
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of candidate databases containing at least one that agrees with the true
database in at least n − o(n) entries.

The queries for both parts of this result are randomly chosen vectors x ∈
{±1}n and the attack works with overwhelming probability over the choice
of queries.

4. If the noise is unbounded on up to 1/2− δ of the responses, but is zero in the
remaining 1/2+δ, then the system is blatantly non-private against a polyno-
mial time bounded adversary making O(n) queries with integer coefficients
in the interval [−c, c], where c = c(δ) is a constant that goes to infinity as δ
approaches 0. The attack uses algebraic geometry codes.

In all but Part 4, if the database has Ω(n) ones, then x · DB has expected
magnitude close to

√
n. Thus, even on the queries on which the system gives

“small” error o(
√

n), the magnitude of the error is close to the magnitude of the
answer. And still the system is blatantly non-private.

The attack in Theorem 1.2 is inspired by recent results of Donoho [8, 9] and
Candes, Rudelson, Tao, and Vershynin [4], in which linear programming is used
for compressed sensing and decoding in the presence of errors. Indeed, our query
matrices are exactly the ones studied in [4]. Our result is stronger in two ways: we
tolerate small noise everywhere, and our proof is more direct, yielding a better
decoding bound and a sharp threshold even in the zero small noise case2.

3 Differential Privacy

3.1 Motivation for the Definition

Development of the notion of differential privacy was guided by a different type
of impossibility result than those discussed so far. A classical desideratum for
statistical databases was articulated in [5]:

(Dalenius, 1977) Access to a statistical database should not enable one
to learn anything about an individual that could not be learned without
access3.

This goal cannot be achieved when the database has any utility [10]:

“The obstacle is in auxiliary information, that is, information available
to the adversary other than from access to the statistical database, and
the intuition behind the proof of impossibility is captured by the fol-
lowing example. Suppose one’s exact height were considered a highly

2 In an alternate version of Theorem 1.2 the queries may be randomly chosen vectors
in {±1}n. Unlike the case with Gaussian queries, this alternate version does not
necessarily return the exact database when size of the “small” errors is set to 0
(instead of o(

√
n)).

3 This is analagous to Goldwasser and Micali’s definition of semantic security against
an eavesdropper, which says, roughly, that nothing can be learned about a plaintext
from the ciphertext that could not be learned without seeing the ciphertext [15].
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sensitive piece of information, and that revealing the exact height of an
individual were a privacy breach. Assume that the database yields the
average heights of women of different nationalities. An adversary who has
access to the statistical database and the auxiliary information “Terry
Gross is two inches shorter than the average Lithuanian woman” learns
Terry Gross’ height, while anyone learning only the auxiliary informa-
tion, without access to the average heights, learns relatively little.”

As further noted in [10], the impossibility result applies regardless of whether
or not Terry Gross is in the database. This led to the following, alternative
notion [10, 12]:

Differential Privacy: Access to a statistical database should not enable
one to learn anything about an individual given that her data are in the
database than can be learned when her data are not in the database.

While differential privacy does not rule out a bad disclosure, it assures the indi-
vidual that it will not be the inclusion of her data in the database that causes it,
nor could the disclosure be avoided through any action or inaction on the part
of the user of the database.

3.2 Formal Definition

The privacy mechanism is a randomized algorithm that takes the database as
input and produces an output.

Definition 1. A randomized function K gives ε-differential privacy if for all
data sets D1 and D2 differing on at most one element, and all S ⊆ Range(K),

Pr[K(D1) ∈ S] ≤ exp(ε) × Pr[K(D2) ∈ S] (1)

A mechanism K satisfying this definition ensures a participant that even if she
removed her data from the data set, no outputs (and thus consequences of out-
puts) would become significantly more or less likely. For example, if the database
were to be consulted by an insurance provider before deciding whether or not to
insure Terry Gross, then the presence or absence of Terry Gross in the database
will not significantly affect her chance of receiving coverage.

This definition naturally extends to group privacy as well. If the definition is
satisfied as written, then the inclusion/exclusion of the data of any c participants
yields a factor of exp(εc) (instead of exp(ε)), which may be tolerable for small c.
Since the sine qua non of a statistical database is to teach information about the
population as a whole, it is natural, indeed essential, that the privacy bounds
deteriorate as group size increases.

3.3 Achieving Differential Privacy

We now describe a concrete interactive privacy mechanism achieving ε-differential
privacy (see [12] for a full treatment). The mechanism works by adding appro-
priately chosen random noise to the true answer a = f(X), where f is the query
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function and X is the database. A helpful example to keep in mind is (a vector
of d) queries of the form “How many rows in the database satisfy predicate P?”
where the true answer is a vector of d integers (one per query). It is notewor-
thy that “counting” queries of this type are a very powerful privacy-preserving
interface to the database. For example, it is shown in [3] that many popular
datamining tasks, including principal component analysis, association rules, k-
means clustering, and the ID3 decision tree creation, can be carried out with
excellent accuracy while only using a small number of counting queries.

The magnitude of the noise is chosen as a function of the largest change a
single participant could have on the output to the query function; we refer to
this quantity as the sensitivity of the function.

Definition 2. For f : D → Rd, the L1-sensitivity of f is

Δf = max
D1,D2

‖f(D1) − f(D2)‖1 (2)

for all D1, D2 differing in at most one element.

Note that sensitivity is a property of the function alone, and is independent of
the database. So we may assume that sensitivity is known to the user. For many
types of queries Δf will be quite small. In particular, the counting queries “How
many rows have property P?” have Δf = 1. Our techniques will introduce the
least noise when Δf is small.

The privacy mechanism, denoted Kf for a query function f , computes f(X)
and independently adds noise with a scaled symmetric exponential distribution
with variance σ2 (to be determined in Theorem 2) in each component. This
distribution is described by the density function

Pr[Kf (X) = a] ∝ exp(−‖f(X) − a‖1/σ) (3)

and the mechanism simply adds, to each coordinate of f(X), independently
generated samples of this distribution.

Theorem 2. [10, 12] For f : D → Rd, Kf gives (Δf/σ)-differential privacy.

Proof. Starting from (3), we apply the triangle inequality within the exponent,
yielding for all possible responses r

Pr[Kf (D1) = r] ≤ Pr[Kf (D2) = r] × exp(‖f(D1) − f(D2)‖1/σ) . (4)

The second term in this product is bounded by exp(Δf/σ). Thus (1) holds for
singleton sets S = {a}, and the theorem follows by a union bound.

Theorem 2 describes a relationship between Δf , σ, and the privacy differential.
To achieve ε-differential privacy, it suffices to choose σ ≥ ε/Δf . Significantly,
the theorem holds regardless of any auxiliary information that may be available
to the adversary, and is independent of the computational power of the adver-
sary. Moreover, composition is simple: to handle T adaptively chosen queries of
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respective sensitivities Δf1, . . . , ΔfT it suffices to replace Δf with
∑T

i=1 Δfi in
the noise generation procedure4.

We may now answer our earlier question: What magnitude noise is sufficient to
ensure privacy against T queries? The sensitivity of each query in Theorems 1.1,
1.3, and the ±1 variant of 1.2, is Δf = 1 (and the sensitivity of a query in
Theorem 1.4 is c). The sensitivity of any sequence of T such queries is thus at
most TΔf = T (or Tc = O(T ) for the case of Theorem 1.4), so the answer in
all these cases is O(T/ε).

The situation for Theorem 1.2 is a bit different: there is no upper bound
on |N (0, 1)|, and a sanitizer that rejects Gaussian queries if they exceed any
fixed constant in even one coordinate would be unreasonable. A simple-minded
approach would be to take log2 n to be an upper bound on Δ (and reject any
query vector with L∞ norm exceeding this amount), which yields T log2 n as an
upper bound on the sensitivity of any sequence of T queries. This yields noise
magnitude O(T log2 n/ε). However, we can design a solution that does better.
We do this for the pedagogic value of exhibiting the tightness of the tradeoff
between accuracy (smallness of noise) and privacy.

A series of T queries implicitly defines a T ×n matrix A, where each row of the
matrix corresponds to a single inner product query, and the output is the T × 1
matrix given by A ·DB. To put things in context, Theorem 1.2 discusses blatant
non-privacy when T = Ω(n) and the matrix A is drawn from N (0, 1)T×n; we
are now looking at smaller values of T .

The privacy mechanism will use noise calibrated to sensitivity Δ = 2T . It will
also impose a sensitivity budget of 2T on each row of the database, as we now
explain. Let x be a query vector. For each 1 ≤ i ≤ n the budget for row i is
charged |xi|. More generally, the cost of A to the budget for row i of the database
is the L1 norm of the ith column of A. The privacy mechanism will answer a
query unless is would break the budget of even one row in the database, in which
case the mechanism will answer no further questions. Note that the budget and
the charges against it are all public and are independent of the database, so this
stopping condition reveals nothing about the data.

Since the noise is calibrated for sensitivity 2T and no sensitivity budget of 2T
is exceeded, differential privacy is ensured. We claim that for T ≥ polylog(n),
with overwhelming probability over choice of A, the privacy mechanism will
answer all T questions before shutting down. Note that A contains nT standard
normals, and so with overwhelming probability the maximum magnitude of any
entry will not exceed, say, log2 nT . In the sequel we assume we are in this high
probability case.

Consider random variables X1, . . . , XT , each in [0, log2 nT ]. Let S =
∑T

i=1 Xi.
Hoeffding’s inequality says that

Pr[S − E[S] ≥ tT ] ≤ exp

(

− 2T 2t
∑T

i=1 log4 nT

)

4 There are compelling examples in which it is possible to do much better. The
interested reader is referred to [12].
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We may use this as follows. Since aij is distributed according to a standard
normal, its expected magnitude is

√
2/π. Consider a column j of A, and let

Xi = |aij | for I = 1, . . . , T . By linearity of expectation, E[S] = TE[|N (0, 1)|].
So Hoeffding’s bound says that

Pr[S − T (
√

2/π) ≥ tT ] ≤ exp

(

− 2T 2t
∑T

i=1 log4 nT

)

= exp
(

− 2T t

log4 nT

)

In particular when T ≥ log6(Tn) this is negligible for all t ∈ Ω(1). By a union
bound we see that, as desired, the probability that even one of the n per-row
budgets is exceeded is negligible in n.

The bottom line is that, even in the setting of Theorem 1.2, noise of magnitude
O(T/ε) is sufficient to ensure privacy against T queries.

We remark that a “better” answer appears in the literature [7, 13, 3]. This
is obtained using a slightly weaker, but also reasonable, definition of privacy, in
which, roughly speaking, the mechanism is permitted to fail to deliver full ε-
differential privacy with some small probability δ. Under this relaxed definition
one may employ Gaussian noise rather than symmetric exponential noise. This
leads to noise of magnitude Ω((

√
log 1/δ)

√
T/ε). We prefer the exponential noise

because it “behaves better” under composition and because the guarantee is
absolute (δ = 0).

4 Final Remarks

A Trusted Center. Throughout this paper we have assumed that the data col-
lector and the privacy mechanism are trustworthy. Thus, we are making the
problem as easy as possible, yielding stronger lower bounds and impossibility
results. The literature also studies the setting in which the data contributors do
not trust the data collector to maintain privacy and so first randomize their own
data [14, 2]. Of course, since randomized response is a non-interactive mech-
anism it is subject to the negative conciseness result of [12] mentioned in the
Introduction.

“Our Data, Ourselves”. A different tack was taken in [11], where, using cryp-
tographic techniques for secure function evaluation, the data collector/protector
is replaced by a distributed privacy mechanism.

When Noise Makes no Sense. McSherry and Talwar have initiated an exciting
investigation of differential privacy in cases in which adding noise may not make
sense; for example, the output of a “query,” or in general of any operation on a
set of private inputs, may not be a number. Given an input vector x (playing the
role of a database) and a possible outcome y, assume there is a real-valued utility
function u(x, y) that evaluates the outcome y for the input set x. As an example,
x could be bids for a digital good, y could be a price, and u(x, y) could be the
resulting revenue. This has resulted in the design of approximately-truthful and
collusion-resistant mechanisms with near-optimal revenue. More generally, y can
be a classifer, an expert, or a heuristic.
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