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Abstract

Most tasks in natural language processing can

be cast into question answering (QA) problems

over language input. We introduce the dynamic

memory network (DMN), a neural network ar-

chitecture which processes input sequences and

questions, forms episodic memories, and gener-

ates relevant answers. Questions trigger an itera-

tive attention process which allows the model to

condition its attention on the inputs and the result

of previous iterations. These results are then rea-

soned over in a hierarchical recurrent sequence

model to generate answers. The DMN can be

trained end-to-end and obtains state-of-the-art

results on several types of tasks and datasets:

question answering (Facebook’s bAbI dataset),

text classification for sentiment analysis (Stan-

ford Sentiment Treebank) and sequence model-

ing for part-of-speech tagging (WSJ-PTB). The

training for these different tasks relies exclu-

sively on trained word vector representations and

input-question-answer triplets.

1. Introduction

Question answering (QA) is a complex natural language

processing task which requires an understanding of the

meaning of a text and the ability to reason over relevant

facts. Most, if not all, tasks in natural language process-

ing can be cast as a question answering problem: high

level tasks like machine translation (What is the transla-

tion into French?); sequence modeling tasks like named en-

tity recognition (Passos et al., 2014) (NER) (What are the

named entity tags in this sentence?) or part-of-speech tag-

ging (POS) (What are the part-of-speech tags?); classifica-
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I: Jane went to the hallway.

I: Mary walked to the bathroom.

I: Sandra went to the garden.

I: Daniel went back to the garden.

I: Sandra took the milk there.

Q: Where is the milk?

A: garden

I: It started boring, but then it got interesting.

Q: What’s the sentiment?

A: positive

Q: POS tags?

A: PRP VBD JJ , CC RB PRP VBD JJ .

Figure 1. Example inputs and questions, together with answers

generated by a dynamic memory network trained on the corre-

sponding task. In sequence modeling tasks, an answer mechanism

is triggered at each input word instead of only at the end.

tion problems like sentiment analysis (Socher et al., 2013)

(What is the sentiment?); even multi-sentence joint clas-

sification problems like coreference resolution (Who does

”their” refer to?).

We propose the Dynamic Memory Network (DMN), a neu-

ral network based framework for general question answer-

ing tasks that is trained using raw input-question-answer

triplets. Generally, it can solve sequence tagging tasks,

classification problems, sequence-to-sequence tasks and

question answering tasks that require transitive reasoning.

The DMN first computes a representation for all inputs and

the question. The question representation then triggers an

iterative attention process that searches the inputs and re-

trieves relevant facts. The DMN memory module then rea-

sons over retrieved facts and provides a vector representa-

tion of all relevant information to an answer module which

generates the answer.

Fig. 1 provides examples of inputs, questions and answers

for tasks that are evaluated in this paper and for which a

DMN achieves a new level of state-of-the-art performance.
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2. Dynamic Memory Networks

We now give an overview of the modules that make up the

DMN. We then examine each module in detail and give

intuitions about its formulation. A high-level illustration of

the DMN is shown in Fig. 2.1.

Input Module: The input module encodes raw text inputs

from the task into distributed vector representations. In this

paper, we focus on natural language related problems. In

these cases, the input may be a sentence, a long story, a

movie review, a news article, or several Wikipedia articles.

Question Module: Like the input module, the question

module encodes the question of the task into a distributed

vector representation. For example, in the case of question

answering, the question may be a sentence such as Where

did the author first fly?. The representation is fed into the

episodic memory module, and forms the basis, or initial

state, upon which the episodic memory module iterates.

Episodic Memory Module: Given a collection of in-

put representations, the episodic memory module chooses

which parts of the inputs to focus on through the attention

mechanism. It then produces a ”memory” vector represen-

tation taking into account the question as well as the pre-

vious memory. Each iteration provides the module with

newly relevant information about the input. In other words,

the module has the ability to retrieve new information, in

the form of input representations, which were thought to

be irrelevant in previous iterations.

Answer Module: The answer module generates an answer

from the final memory vector of the memory module.

A detailed visualization of these modules is shown in Fig.3.

2.1. Input Module

In natural language processing problems, the input is a se-

quence of TI words w1, . . . , wTI
. One way to encode the

input sequence is via a recurrent neural network (Elman,

1991). Word embeddings are given as inputs to the recur-

rent network. At each time step t, the network updates its

hidden state ht = RNN(L[wt], ht−1), where L is the em-

bedding matrix and wt is the word index of the tth word of

the input sequence.

In cases where the input sequence is a single sentence, the

input module outputs the hidden states of the recurrent net-

work. In cases where the input sequence is a list of sen-

tences, we concatenate the sentences into a long list of word

tokens, inserting after each sentence an end-of-sentence to-

ken. The hidden states at each of the end-of-sentence to-

kens are then the final representations of the input mod-

ule. In subsequent sections, we denote the output of the

input module as the sequence of TC fact representations c,

whereby ct denotes the tth element in the output sequence

Figure 2. Overview of DMN modules. Communication between

them is indicated by arrows and uses vector representations.

Questions trigger gates which allow vectors for certain inputs to

be given to the episodic memory module. The final state of the

episodic memory is the input to the answer module.

of the input module. Note that in the case where the input

is a single sentence, TC = TI . That is, the number of out-

put representations is equal to the number of words in the

sentence. In the case where the input is a list of sentences,

TC is equal the number of sentences.

Choice of recurrent network: In our experiments, we use

a gated recurrent network (GRU) (Cho et al., 2014a; Chung

et al., 2014). We also explored the more complex LSTM

(Hochreiter & Schmidhuber, 1997) but it performed sim-

ilarly and is more computationally expensive. Both work

much better than the standard tanh RNN and we postulate

that the main strength comes from having gates that allow

the model to suffer less from the vanishing gradient prob-

lem (Hochreiter & Schmidhuber, 1997). Assume each time

step t has an input xt and a hidden state ht. The internal

mechanics of the GRU is defined as:

zt = σ
(

W (z)xt + U (z)ht−1 + b(z)
)

(1)

rt = σ
(

W (r)xt + U (r)ht−1 + b(r)
)

(2)

h̃t = tanh
(

Wxt + rt ◦ Uht−1 + b(h)
)

(3)

ht = zt ◦ ht−1 + (1− zt) ◦ h̃t (4)

where ◦ is an element-wise product, W (z),W (r),W ∈
R

nH×nI and U (z), U (r), U ∈ R
nH×nH . The dimensions

n are hyperparameters. We abbreviate the above computa-

tion with ht = GRU(xt, ht−1).

2.2. Question Module

Similar to the input sequence, the question is also most

commonly given as a sequence of words in natural lan-

guage processing problems. As before, we encode the

question via a recurrent neural network. Given a question
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Figure 3. Real example of an input list of sentences and the attention gates that are triggered by a specific question from the bAbI tasks

(Weston et al., 2015a). Gate values git are shown above the corresponding vectors. The gates change with each search over inputs. We

do not draw connections for gates that are close to zero. Note that the second iteration has wrongly placed some weight in sentence 2,

which makes some intuitive sense, as sentence 2 is another place John had been.

of TQ words, hidden states for the question encoder at time

t is given by qt = GRU(L[wQ
t ], qt−1), L represents the

word embedding matrix as in the previous section and w
Q
t

represents the word index of the tth word in the question.

We share the word embedding matrix across the input mod-

ule and the question module. Unlike the input module, the

question module produces as output the final hidden state

of the recurrent network encoder: q = qTQ
.

2.3. Episodic Memory Module

In its general form, the episodic memory module is com-

prised of an internal memory, an attention mechanism and

a recurrent network to update its memory. During each it-

eration, the attention mechanism attends over the fact rep-

resentations c by using a gating function (described below)

while taking into consideration the question representation

q and the previous memory mi−1 to produce an episode ei.

The episode is then used, alongside the previous mem-

ories mi−1, to update the episodic memory mi =
GRU(ei,mi−1). The initial state of this GRU is initialized

to the question vector itself: m0 = q. For some tasks, it

is beneficial for episodic memory module to take multiple

passes over the input. After TM passes, the final memory

mTM is given to the answer module.

Need for Multiple Episodes: The iterative nature of this

module allows it to attend to different inputs during each

pass. It also allows for a type of transitive inference, since

the first pass may uncover the need to retrieve additional

facts. For instance, in the example in Fig. 3, we are asked

Where is the football? In the first iteration, the model ought

attend to sentence 7 (John put down the football.), as the

question asks about the football. Only once the model sees

that John is relevant can it reason that the second iteration

should retrieve where John was. Similarly, a second pass

may help for sentiment analysis as we show in the experi-

ments section below.

Attention Mechanism: In our work, we use a gating func-

tion as our attention mechanism. For each pass i, the

mechanism takes as input a candidate fact ct, a previ-

ous memory mi−1, and the question q to compute a gate:

git = G(ct,m
i−1, q).

The scoring function G takes as input the feature set

z(c,m, q) and produces a scalar score. We first define a

large feature vector that captures a variety of similarities

between input, memory and question vectors: z(c,m, q) =

[

c,m, q, c ◦ q, c ◦m, |c− q|, |c−m|, cTW (b)q, cTW (b)m
]

,

(5)

where ◦ is the element-wise product. The function

G is a simple two-layer feed forward neural network

G(c,m, q) =

σ
(

W (2) tanh
(

W (1)z(c,m, q) + b(1)
)

+ b(2)
)

. (6)
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Some datasets, such as Facebook’s bAbI dataset, spec-

ify which facts are important for a given question. In

those cases, the attention mechanism of the G function can

be trained in a supervised fashion with a standard cross-

entropy cost function.

Memory Update Mechanism: To compute the episode for

pass i, we employ a modified GRU over the sequence of the

inputs c1, . . . , cTC
, weighted by the gates gi. The episode

vector that is given to the answer module is the final state

of the GRU. The equation to update the hidden states of the

GRU at time t and the equation to compute the episode are,

respectively:

hi
t = gitGRU(ct, h

i
t−1) + (1− git)h

i
t−1 (7)

ei = hi
TC

(8)

Criteria for Stopping: The episodic memory module also

has a signal to stop iterating over inputs. To achieve this,

we append a special end-of-passes representation to the in-

put, and stop the iterative attention process if this represen-

tation is chosen by the gate function. For datasets without

explicit supervision, we set a maximum number of itera-

tions. The whole module is end-to-end differentiable.

2.4. Answer Module

The answer module generates an answer given a vector.

Depending on the type of task, the answer module is ei-

ther triggered once at the end of the episodic memory or at

each time step.

We employ another GRU whose initial state is initialized to

the last memory a0 = mTM . At each timestep, it takes as

input the question q, last hidden state at−1, as well as the

previously predicted output yt−1.

yt = softmax(W (a)at) (9)

at = GRU([yt−1, q], at−1), (10)

where we concatenate the last generated word and the ques-

tion vector as the input at each time step. The output is

trained with the cross-entropy error classification of the

correct sequence appended with a special end-of-sequence

token.

In the sequence modeling task, we wish to label each word

in the original sequence. To this end, the DMN is run in

the same way as above over the input words. For word t,

we replace Eq. 8 with ei = hi
t. Note that the gates for the

first pass will be the same for each word, as the question

is the same. This allows for speed-up in implementation

by computing these gates only once. However, gates for

subsequent passes will be different, as the episodes are dif-

ferent.

2.5. Training

Training is cast as a supervised classification problem to

minimize cross-entropy error of the answer sequence. For

datasets with gate supervision, such as bAbI, we add the

cross-entropy error of the gates into the overall cost. Be-

cause all modules communicate over vector representations

and various types of differentiable and deep neural net-

works with gates, the entire DMN model can be trained

via backpropagation and gradient descent.

3. Related Work

Given the many shoulders on which this paper is standing

and the many applications to which our model is applied, it

is impossible to do related fields justice.

Deep Learning: There are several deep learning models

that have been applied to many different tasks in NLP.

For instance, recursive neural networks have been used for

parsing (Socher et al., 2011), sentiment analysis (Socher

et al., 2013), paraphrase detection (Socher et al., 2011) and

question answering (Iyyer et al., 2014) and logical infer-

ence (Bowman et al., 2014), among other tasks. However,

because they lack the memory and question modules, a sin-

gle model cannot solve as many varied tasks, nor tasks that

require transitive reasoning over multiple sentences. An-

other commonly used model is the chain-structured recur-

rent neural network of the kind we employ above. Recur-

rent neural networks have been successfully used in lan-

guage modeling (Mikolov & Zweig, 2012), speech recog-

nition, and sentence generation from images (Karpathy &

Fei-Fei, 2015). Also relevant is the sequence-to-sequence

model used for machine translation by Sutskever et al.

(Sutskever et al., 2014). This model uses two extremely

large and deep LSTMs to encode a sentence in one lan-

guage and then decode the sentence in another language.

This sequence-to-sequence model is a special case of the

DMN without a question and without episodic memory.

Instead it maps an input sequence directly to an answer se-

quence.

Attention and Memory: The second line of work that

is very relevant to DMNs is that of attention and mem-

ory in deep learning. Attention mechanisms are generally

useful and can improve image classification (Stollenga &

J. Masci, 2014), automatic image captioning (Xu et al.,

2015) and machine translation (Cho et al., 2014b; Bah-

danau et al., 2014). Neural Turing machines use memory

to solve algorithmic problems such as list sorting (Graves

et al., 2014). The work of recent months by Weston et

al. on memory networks (Weston et al., 2015b) focuses

on adding a memory component for natural language ques-

tion answering. They have an input (I) and response (R)

component and their generalization (G) and output feature
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map (O) components have some functional overlap with

our episodic memory. However, the Memory Network can-

not be applied to the same variety of NLP tasks since it

processes sentences independently and not via a sequence

model. It requires bag of n-gram vector features as well

as a separate feature that captures whether a sentence came

before another one.

Various other neural memory or attention architectures

have recently been proposed for algorithmic problems

(Joulin & Mikolov, 2015; Kaiser & Sutskever, 2015), cap-

tion generation for images (Malinowski & Fritz, 2014;

Chen & Zitnick, 2014), visual question answering (Yang

et al., 2015) or other NLP problems and datasets (Hermann

et al., 2015).

In contrast, the DMN employs neural sequence models for

input representation, attention, and response mechanisms,

thereby naturally capturing position and temporality. As a

result, the DMN is directly applicable to a broader range

of applications without feature engineering. We compare

directly to Memory Networks on the bAbI dataset (Weston

et al., 2015a).

NLP Applications: The DMN is a general model which

we apply to several NLP problems. We compare to what,

to the best of our knowledge, is the current state-of-the-art

method for each task.

There are many different approaches to question answer-

ing: some build large knowledge bases (KBs) with open in-

formation extraction systems (Yates et al., 2007), some use

neural networks, dependency trees and KBs (Bordes et al.,

2012), others only sentences (Iyyer et al., 2014). A lot of

other approaches exist. When QA systems do not produce

the right answer, it is often unclear if it is because they

do not have access to the facts, cannot reason over them

or have never seen this type of question or phenomenon.

Most QA dataset only have a few hundred questions and

answers but require complex reasoning. They can hence

not be solved by models that have to learn purely from ex-

amples. While synthetic datasets (Weston et al., 2015a)

have problems and can often be solved easily with manual

feature engineering, they let us disentangle failure modes

of models and understand necessary QA capabilities. They

are useful for analyzing models that attempt to learn every-

thing and do not rely on external features like coreference,

POS, parsing, logical rules, etc. The DMN is such a model.

Another related model by Andreas et al. (2016) combines

neural and logical reasoning for question answering over

knowledge bases and visual question answering.

Sentiment analysis is a very useful classification task and

recently the Stanford Sentiment Treebank (Socher et al.,

2013) has become a standard benchmark dataset. Kim

(Kim, 2014) reports the previous state-of-the-art result

based on a convolutional neural network that uses multi-

ple word vector representations. The previous best model

for part-of-speech tagging on the Wall Street Journal sec-

tion of the Penn Tree Bank (Marcus et al., 1993) was So-

gaard (Søgaard, 2011) who used a semisupervised nearest

neighbor approach. We also directly compare to paragraph

vectors by (Le & Mikolov., 2014).

Neuroscience: The episodic memory in humans stores

specific experiences in their spatial and temporal context.

For instance, it might contain the first memory somebody

has of flying a hang glider. Eichenbaum and Cohen have ar-

gued that episodic memories represent a form of relation-

ship (i.e., relations between spatial, sensory and temporal

information) and that the hippocampus is responsible for

general relational learning (Eichenbaum & Cohen, 2004).

Interestingly, it also appears that the hippocampus is active

during transitive inference (Heckers et al., 2004), and dis-

ruption of the hippocampus impairs this ability (Dusek &

Eichenbaum, 1997).

The episodic memory module in the DMN is inspired by

these findings. It retrieves specific temporal states that

are related to or triggered by a question. Furthermore,

we found that the GRU in this module was able to do

some transitive inference over the simple facts in the bAbI

dataset. This module also has similarities to the Temporal

Context Model (Howard & Kahana, 2002) and its Bayesian

extensions (Socher et al., 2009) which were developed to

analyze human behavior in word recall experiments.

4. Experiments

We include experiments on question answering, part-of-

speech tagging, and sentiment analysis. The model is

trained independently for each problem, while the archi-

tecture remains the same except for the answer module and

input fact subsampling (words vs sentences). The answer

module, as described in Section 2.4, is triggered either once

at the end or for each token.

For all datasets we used either the official train, devel-

opment, test splits or if no development set was defined,

we used 10% of the training set for development. Hyper-

parameter tuning and model selection (with early stopping)

is done on the development set. The DMN is trained via

backpropagation and Adam (Kingma & Ba, 2014). We

employ L2 regularization, and dropout on the word em-

beddings. Word vectors are pre-trained using GloVe (Pen-

nington et al., 2014).

4.1. Question Answering

The Facebook bAbI dataset is a synthetic dataset for test-

ing a model’s ability to retrieve facts and reason over them.

Each task tests a different skill that a question answering
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Task MemNN DMN

1: Single Supporting Fact 100 100

2: Two Supporting Facts 100 98.2

3: Three Supporting Facts 100 95.2

4: Two Argument Relations 100 100

5: Three Argument Relations 98 99.3

6: Yes/No Questions 100 100

7: Counting 85 96.9

8: Lists/Sets 91 96.5

9: Simple Negation 100 100

10: Indefinite Knowledge 98 97.5

11: Basic Coreference 100 99.9

12: Conjunction 100 100

13: Compound Coreference 100 99.8

14: Time Reasoning 99 100

15: Basic Deduction 100 100

16: Basic Induction 100 99.4

17: Positional Reasoning 65 59.6

18: Size Reasoning 95 95.3

19: Path Finding 36 34.5

20: Agent’s Motivations 100 100

Mean Accuracy (%) 93.3 93.6

Table 1. Test accuracies on the bAbI dataset. MemNN numbers

taken from Weston et al. (Weston et al., 2015a). The DMN passes

(accuracy > 95%) 18 tasks, whereas the MemNN passes 16.

model ought to have, such as coreference resolution, de-

duction, and induction. Showing an ability exists here is

not sufficient to conclude a model would also exhibit it on

real world text data. It is, however, a necessary condition.

Training on the bAbI dataset uses the following objective

function: J = αECE(Gates) + βECE(Answers), where

ECE is the standard cross-entropy cost and α and β are hy-

perparameters. In practice, we begin training with α set to

1 and β set to 0, and then later switch β to 1 while keep-

ing α at 1. As described in Section 2.1, the input module

outputs fact representations by taking the encoder hidden

states at time steps corresponding to the end-of-sentence to-

kens. The gate supervision aims to select one sentence per

pass; thus, we also experimented with modifying Eq. 8 to

a simple softmax instead of a GRU. Here, we compute the

final episode vector via: ei =
∑T

t=1 softmax(git)ct, where

softmax(git) =
exp(gi

t)∑
T
j=1

exp(gi
j
)
, and git here is the value of

the gate before the sigmoid. This setting achieves better re-

sults, likely because the softmax encourages sparsity and is

better suited to picking one sentence at a time.

We list results in Table 1. The DMN does worse than

the Memory Network, which we refer to from here on as

MemNN, on tasks 2 and 3, both tasks with long input se-

quences. We suspect that this is due to the recurrent input

sequence model having trouble modeling very long inputs.

Task Binary Fine-grained

MV-RNN 82.9 44.4

RNTN 85.4 45.7

DCNN 86.8 48.5

PVec 87.8 48.7

CNN-MC 88.1 47.4

DRNN 86.6 49.8

CT-LSTM 88.0 51.0

DMN 88.6 52.1

Table 2. Test accuracies for sentiment analysis on the Stanford

Sentiment Treebank. MV-RNN and RNTN: Socher et al. (2013).

DCNN: Kalchbrenner et al. (2014). PVec: Le & Mikolov. (2014).

CNN-MC: Kim (2014). DRNN: Irsoy & Cardie (2015), 2014.

CT-LSTM: Tai et al. (2015)

The MemNN does not suffer from this problem as it views

each sentence separately. The power of the episodic mem-

ory module is evident in tasks 7 and 8, where the DMN

outperforms the MemNN. Both tasks require the model to

iteratively retrieve facts and store them in a representation

that slowly incorporates more of the relevant information

of the input sequence. Both models do poorly on tasks 17

and 19, though the MemNN does better. We suspect this

is due to the MemNN using n-gram vectors and sequence

position features.

4.2. Text Classification: Sentiment Analysis

The Stanford Sentiment Treebank (SST) (Socher et al.,

2013) is a popular dataset for sentiment classification. It

provides phrase-level fine-grained labels, and comes with a

train/development/test split. We present results on two for-

mats: fine-grained root prediction, where all full sentences

(root nodes) of the test set are to be classified as either very

negative, negative, neutral, positive, or very positive, and

binary root prediction, where all non-neutral full sentences

of the test set are to be classified as either positive or neg-

ative. To train the model, we use all full sentences as well

as subsample 50% of phrase-level labels every epoch. Dur-

ing evaluation, the model is only evaluated on the full sen-

tences (root setup). In binary classification, neutral phrases

are removed from the dataset. The DMN achieves state-of-

the-art accuracy on the binary classification task, as well as

on the fine-grained classification task.

In all experiments, the DMN was trained with GRU se-

quence models. It is easy to replace the GRU sequence

model with any of the models listed above, as well as in-

corporate tree structure in the retrieval process.

4.3. Sequence Tagging: Part-of-Speech Tagging

Part-of-speech tagging is traditionally modeled as a se-

quence tagging problem: every word in a sentence is to
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Model Acc (%)

SVMTool 97.15

Sogaard 97.27

Suzuki et al. 97.40

Spoustova et al. 97.44

SCNN 97.50

DMN 97.56

Table 3. Test accuracies on WSJ-PTB

be classified into its part-of-speech class (see Fig. 1). We

evaluate on the standard Wall Street Journal dataset (Mar-

cus et al., 1993). We use the standard splits of sections

0-18 for training, 19-21 for development and 22-24 for test

sets (Søgaard, 2011). Since this is a word level tagging

task, DMN memories are classified at each time step corre-

sponding to each word. This is described in detail in Sec-

tion 2.4’s discussion of sequence modeling.

We compare the DMN with the results in (Søgaard, 2011).

The DMN achieves state-of-the-art accuracy with a single

model, reaching a development set accuracy of 97.5. En-

sembling the top 4 development models, the DMN gets to

97.58 dev and 97.56 test accuracies, achieving a slightly

higher new state-of-the-art (Table 3).

4.4. Quantitative Analysis of Episodic Memory Module

The main novelty of the DMN architecture is in its episodic

memory module. Hence, we analyze how important the

episodic memory module is for NLP tasks and in particular

how the number of passes over the input affect accuracy.

Table 4 shows the accuracies on a subset of bAbI tasks as

well as on the Stanford Sentiment Treebank. We note that

for several of the hard reasoning tasks, multiple passes over

the inputs are crucial to achieving high performance. For

sentiment the differences are smaller. However, two passes

outperform a single pass or zero passes. In the latter case,

there is no episodic memory at all and outputs are passed

directly from the input module to the answer module. We

note that, especially complicated examples are more of-

ten correctly classified with 2 passes but many examples

in sentiment contain only simple sentiment words and no

negation or misleading expressions. Hence the need to have

a complicated architecture for them is small. The same is

true for POS tagging. Here, differences in accuracy are less

than 0.1 between different numbers of passes.

Next, we show that the additional correct classifications are

hard examples with mixed positive/negative vocabulary.

4.5. Qualitative Analysis of Episodic Memory Module

Apart from a quantitative analysis, we also show qualita-

tively what happens to the attention during multiple passes.

Max

passes
task 3

three-facts

task 7

count

task 8

lists/sets

sentiment

(fine grain)

0 pass 0 48.8 33.6 50.0

1 pass 0 48.8 54.0 51.5

2 pass 16.7 49.1 55.6 52.1

3 pass 64.7 83.4 83.4 50.1

5 pass 95.2 96.9 96.5 N/A

Table 4. Effectiveness of episodic memory module across tasks.

Each row shows the final accuracy in term of percentages with

a different maximum limit for the number of passes the episodic

memory module can take. Note that for the 0-pass DMN, the

network essential reduces to the output of the attention module.

We present specific examples from the experiments to illus-

trate that the iterative nature of the episodic memory mod-

ule enables the model to focus on relevant parts of the input.

For instance, Table 5 shows an example of what the DMN

focuses on during each pass of a three-iteration scan on a

question from the bAbI dataset.

We also evaluate the episodic memory module for senti-

ment analysis. Given that the DMN performs well with

both one iteration and two iterations, we study test exam-

ples where the one-iteration DMN is incorrect and the two-

episode DMN is correct. Looking at the sentences in Fig. 4

and 5, we make the following observations:

1. The attention of the two-iteration DMN is generally

much more focused compared to that of the one-

iteration DMN. We believe this is due to the fact that

with fewer iterations over the input, the hidden states

of the input module encoder have to capture more of

the content of adjacent time steps. Hence, the atten-

tion mechanism cannot only focus on a few key time

steps. Instead, it needs to pass all necessary informa-

tion to the answer module from a single pass.

2. During the second iteration of the two-iteration DMN,

the attention becomes significantly more focused on

relevant key words and less attention is paid to strong

sentiment words that lose their sentiment in context.

This is exemplified by the sentence in Fig. 5 that in-

cludes the very positive word ”best.” In the first iter-

ation, the word ”best” dominates the attention scores

(darker color means larger score). However, once its

context, ”is best described”, is clear, its relevance is

diminished and ”lukewarm” becomes more important.

We conclude that the ability of the episodic memory mod-

ule to perform multiple passes over the data is beneficial. It

provides significant benefits on harder bAbI tasks, which

require reasoning over several pieces of information or

transitive reasoning. Increasing the number of passes also

slightly improves the performance on sentiment analysis,
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Question: Where was Mary before the Bedroom?
Answer: Cinema.

Facts Episode 1 Episode 2 Episode 3

Yesterday Julie traveled to the school.
Yesterday Marie went to the cinema.
This morning Julie traveled to the kitchen.
Bill went back to the cinema yesterday.
Mary went to the bedroom this morning.
Julie went back to the bedroom this afternoon.
[done reading]

Table 5. An example of what the DMN focuses on during each episode on a real query in the bAbI task. Darker colors mean that the

attention weight is higher.

Figure 4. Attention weights for sentiment examples that were

only labeled correctly by a DMN with two episodes. The y-axis

shows the episode number. This sentence demonstrates a case

where the ability to iterate allows the DMN to sharply focus on

relevant words.

though the difference is not as significant. We did not at-

tempt more iterations for sentiment analysis as the model

struggles with overfitting with three passes.

5. Conclusion

The DMN model is a potentially general architecture for a

variety of NLP applications, including classification, ques-

tion answering and sequence modeling. A single architec-

ture is a first step towards a single joint model for multi-

Figure 5. These sentence demonstrate cases where initially posi-

tive words lost their importance after the entire sentence context

became clear either through a contrastive conjunction (”but”) or a

modified action ”best described.”

ple NLP problems. The DMN is trained end-to-end with

one, albeit complex, objective function. Future work can

explore ways to scale the model with larger inputs, which

could be done by running an information retrieval system

to filter the most relevant inputs before running the DMN,

or by using a hierarchical attention module. Future work

will also explore additional tasks, larger multi-task models

and multimodal inputs and questions.
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