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Abstract

We propose a method for visual question answering

which combines an internal representation of the content of

an image with information extracted from a general knowl-

edge base to answer a broad range of image-based ques-

tions. This allows more complex questions to be answered

using the predominant neural network-based approach than

has previously been possible. It particularly allows ques-

tions to be asked about the contents of an image, even when

the image itself does not contain the whole answer. The

method constructs a textual representation of the semantic

content of an image, and merges it with textual informa-

tion sourced from a knowledge base, to develop a deeper

understanding of the scene viewed. Priming a recurrent

neural network with this combined information, and the

submitted question, leads to a very flexible visual question

answering approach. We are specifically able to answer

questions posed in natural language, that refer to informa-

tion not contained in the image. We demonstrate the effec-

tiveness of our model on two publicly available datasets,

Toronto COCO-QA [23] and VQA [1] and show that it pro-

duces the best reported results in both cases.

1. Introduction

Visual question answering (VQA) is distinct from many

problems in Computer Vision because the question to be

answered is not determined until run time [1]. In more tra-

ditional problems such as segmentation or detection, the

single question to be answered by an algorithm is prede-

termined, and only the image changes. In visual question

answering, in contrast, the form that the question will take

is unknown, as is the set of operations required to answer it.

In this sense it more closely reflects the challenge of general

image interpretation.

VQA typically requires processing both visual informa-

tion (the image) and textual information (the question and

answer). One approach to Vision-to-Language problems,

Internal Textual Representation: 
A group of people enjoying a sunny day at the beach with
umbrellas in the sand.
External Knowledge: 
An umbrella is a canopy designed to protect against rain or
sunlight. Larger umbrellas are often used as points of shade on a
sunny beach. A beach is a landform along the coast of an ocean.
It usually consists of loose particles, such as sand….
Question Answering:
Q: Why do they have umbrellas? A : Shade.

Attributes:
umbrella
beach
sunny
day
people
sand
laying
blue
green
mountain

Figure 1. A real case of question answering based on an inter-

nal textual representation and external knowledge. All of the at-

tributes, textual representation, knowledge and answer are pro-

duced by our VQA model. Underlined words indicate the infor-

mation required to answer the question.

such as VQA and image captioning, which interrelate vi-

sual and textual information is based on a direct method

pioneered in machine language translation [7, 26]. This di-

rect approach develops an encoding of the input text using

a Recurrent Neural Network (RNN) and passes it to another

RNN for decoding.

The Vision-to-Language version of this direct transla-

tion approach uses a Convolutional Neural Network (CNN)

to encode the image, and an RNN to encode and gener-

ate text. This approach has been well studied. The im-

age captioning methods developed in [9, 14, 21, 28, 32],

for example, learn a mapping from images to text using

CNNs trained on object recognition, and word embeddings

trained on large scale text corpora. Visual question answer-
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ing is a significantly more complex problem than image

captioning, not least because it requires accessing informa-

tion not present in the image. This may be common sense,

or specific knowledge about the image subject. For exam-

ple, given an image, such as Figure 1, showing ‘a group

of people enjoying a sunny day at the beach with umbrel-

las’, if one asks a question ‘why do they have umbrellas?’,

to answer this question, the machine must not only detect

the scene ‘beach’, but must know that ‘umbrellas are of-

ten used as points of shade on a sunny beach’. Recently,

Antol et al. [1] also have suggested that VQA is a more

“AI-complete” task since it requires multimodal knowledge

beyond a single sub-domain. Our proposed system finally

gives the right answer ‘shade’ for the above real example.

Large-scale Knowledge Bases (KBs), such as Free-

base [4] and DBpedia [2], have been used successfully in

several natural language Question Answering (QA) sys-

tems [3, 10]. However, VQA systems exploiting KBs are

still relatively rare. Gao et al. [11] and Malinowski et

al. [20] do not use a KB at all. Zhu et al. [33] do use a

KB, but it is created specifically for the purpose, and con-

sequently contains a small amount of very specific, largely

image-focused, information. This in turn means that only a

specific set of questions may be asked of the system, and the

query generation approach taken mandates a very particular

question form. The method that we propose here, in con-

trast, is applicable to general (even publicly created) KBs,

and admits general questions.

In this work, we fuse an automatically generated descrip-

tion of an image with information extracted from an exter-

nal KB to provide an answer to a general question about

the image (See Figure 2). The image description takes the

form of a set of captions, and the external knowledge is text-

based information mined from a Knowledge Base. Given

an image-question pair, a CNN is first employed to predict

a set of attributes of the image. The attributes cover a wide

range of high-level concepts, including objects, scenes, ac-

tions, modifiers and so on. A state-of-the-art image caption-

ing model [30] is applied to generate a series of captions

based on the attributes. We then use the detected attributes

to extract relevant information from the KB. Specifically,

for each of the top-5 attributes detected in the image we

generate a query which may be applied to a Resource De-

scription Framework (RDF) KB, such as DBpedia. RDF

is the standard format for large KBs, of which there are

many. The queries are specified using Semantic Protocol

And RDF Query Language (SPARQL). We encode the para-

graphs extracted from the KB using Doc2Vec [15], which

maps paragraphs into a fixed-length feature representation.

The encoded attributes, captions, and KB information are

then input to an LSTM which is trained so as to maximise

the likelihood of the ground truth answers in a training set.

The approach we propose here combines the generality

of information that using a KB allows with the generality of

question that the LSTM allows. In addition, it achieves an

accuracy of 69.73% on the Toronto COCO-QA, while the

latest state-of-the-art is 55.92%. We also produce the best

results on the VQA evaluation server (which does not pub-

lish ground truth answers for its test set), which is 59.44%.

2. Related Work

Malinowski et al. [18] were among the first to study the

VQA problem. They proposed a method that combines se-

mantic parsing and image segmentation with a Bayesian ap-

proach to sample from nearest neighbors in the training set.

This approach requires human defined predicates, which are

inevitably dataset-specific. This approach is also very de-

pendent on the accuracy of the image segmentation algo-

rithm and on the estimated image depth information. Tu

et al. [27] built a query answering system based on a joint

parse graph from text and videos. Geman et al. [12] pro-

posed an automatic ‘query generator’ that was trained on

annotated images and produced a sequence of binary ques-

tions from any given test image. Each of these approaches

places significant limitations on the form of question that

can be answered.

Most recently, inspired by the significant progress

achieved using deep neural network models in both com-

puter vision and natural language processing, an architec-

ture which combines a CNN and RNN to learn the mapping

from images to sentences has become the dominant trend.

Both Gao et al. [11] and Malinowski et al. [20] used RNNs

to encode the question and output the answer. Whereas Gao

et al. [11] used two networks, a separate encoder and de-

coder, Malinowski et al. [20] used a single network for both

encoding and decoding. Ren et al. [23] focused on ques-

tions with a single-word answer and formulated the task as

a classification problem using an LSTM. A single-word an-

swer dataset COCO-QA was published with [23]. Ma et al.

[17] used CNNs to both extract image features and sentence

features, and fused the features together with another mul-

timodal CNN. Antol et al. [1] proposed a large-scale open-

ended VQA dataset based on COCO, which is called VQA.

They also provided several baseline methods which com-

bined both image features (CNN extracted) and question

features (LSTM extracted) to obtain a single embedding and

further built a MLP (Multi-Layer Perceptron) to obtain a

distribution over answers. Our framework also exploits both

CNNs and RNNs, but in contrast to preceding approaches

which use only image features extracted from a CNN in an-

swering a question, we employ multiple sources, including

image content, generated image captions and mined exter-

nal knowledge, to feed to an RNN to answer questions.

The quality of the information in the KB is one of the

primary issues in this approach to VQA. The problem is

that KBs constructed by analysing Wikipedia and similar
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Figure 2. Our proposed framework: given an image, a CNN is first applied to produce the attribute-based representation Vatt(I). The

internal textual representation is made up of image captions generated based on the image-attributes. The hidden state of the caption-

LSTM after it has generated the last word in each caption is used as its vector representation. These vectors are then aggregated as Vcap(I)
with average-pooling. The external knowledge is mined from the KB (in this case DBpedia) and the responses encoded by Doc2Vec, which

produces a vector Vknow(I). The 3 vectors V are combined into a single representation of scene content, which is input to the VQA LSTM

model which interprets the question and generates an answer.

are patchy and inconsistent at best, and hand-curated KBs

are inevitably very topic specific. Using visually-sourced

information is a promising approach to solving this prob-

lem [16, 24], but has a way to go before it might be usefully

applied within our approach. Thus, although our SPARQL

and RDF driven approach can incorporate any information

that might be extracted from a KB, the limitations of the ex-

isting available KBs mean that the text descriptions of the

detected attributes is all that can be usefully extracted.

Zhu et al. [33], in contrast used a hand-crafted KB pri-

marily containing image-related information such as cate-

gory labels, attribute labels and affordance labels, but also

some quantities relating to their specific question format

such as GPS coordinates and similar. The questions in that

system are phrased in the DBMS query language, and are

thus tightly coupled to the nature of the hand-crafted KB.

This represents a significant restriction on the form of ques-

tion that might be asked, but has the significant advantage

that the DBMS is able to respond decisively as to whether

it has the information required to answer the question. In-

stead of building a problem-specific KB, we use a pre-built

large-scale KB (DBpedia [2]) from which we extract in-

formation using a standard RDF query language. DBpedia

has been created by extracting structured information from

Wikipedia, and is thus significantly larger and more general

than a hand-crafted KB. Rather than having a user to pose

their question in a formal query language, our VQA sys-

tem is able to encode questions written in natural language

automatically. This is achieved without manually specified

formalization, but rather depends on processing a suitable

training set. The result is a model which is very general in

the forms of question that it will accept.

3. Extracting, Encoding, and Merging

The key differentiator of our approach is that it is able

to usefully combine image information with that extracted

from a KB, within the LSTM framework. The novelty lies

in the fact that this is achieved by representing both of these

disparate forms of information as text before combining

them. Figure 2 summarises how this is achieved. We now

describe each step in more details.

3.1. Attributebased Image Representation

Our first task is to describe the image content in terms

of a set of attributes. Each attribute in our vocabulary is

extracted from captions from MS COCO [5], a large-scale

image-captioning dataset. An attribute can be any part of

speech, including object names (nouns), motions (verbs)

or properties (adjectives). Because MS COCO captions

are created by humans, attributes derived from captions are

likely to represent image features that are of particular sig-

nificance to humans, and are thus likely to be the subject of

image-based questions.

We formalize attribute prediction as a multi-label classi-

fication problem. To address the issue that some attributes

may only apply to image sub-regions, we follow Wei et

al. [29] to design a region-based multi-label classification

framework that takes an arbitrary number of sub-region pro-

posals as input. A shared CNN is connected with each pro-

posal, and the CNN outputs from different proposals are
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Top 5 Attributes:
players, catch, bat, baseball, swing

Generated Captions:
A baseball player swing a bat at a ball.
A baseball player holding a bat on a field.
A baseball player swinging a bat on a field.
A baseball player is swinging a bat at a ball.
A batter catcher and umpire during a baseball game.
Top 5 Attributes:
field, two, tree, grass, giraffe

Generated Captions :
Two giraffes are standing in a grassy field.
A couple of giraffe standing next to each other.
Two giraffes standing next to each other in a field.
A couple of giraffe standing next to each other on a
lush green field.

Top 5 Attributes:
pizza, bottle, sitting, table, beer

Generated Captions :
A large pizza sitting on top of a table.
A pizza sitting on top of a white plate.
A pizza sitting on top of a table next to a beer.
A pizza sitting on top of a table next to a bottle of
beer.

Figure 3. Examples of predicted attributes and generated captions.

aggregated with max pooling to produce the final prediction

over the attribute vocabulary.

To initialize the attribute prediction model, we use the

powerful VggNet-16 [25] pre-trained on the ImageNet [8].

The shared CNN is then fine-tuned on the multi-label

dataset, the MS COCO image-attribute training data [30].

The output of the last fully-connected layer is fed into a c-

way softmax which produces a probability distribution over

the c class labels. The c represents the attribute vocabulary

size, which here is 256. The fine-tuning learning rates of the

last two fully connect layers are initialized to 0.001 and the

prediction layer is initialized to 0.01. All the other layers

are fixed. We execute 40 epochs in total and decrease the

learning rate to one tenth of the current rate for each layer

after 10 epochs. The momentum is set to 0.9. The dropout

rate is set to 0.5. Then, we use Multiscale Combinatorial

Grouping (MCG) [22] for the proposal generation. Finally,

a cross hypothesis max-pooling is applied to integrate the

outputs into a single prediction vector Vatt(I).

3.2. Captionbased Image Representation

Currently the most successful approach to image cap-

tioning [6, 9, 14, 21, 28] is to attach a CNN to an RNN

to learn the mapping from images to sentences directly.

Wu et al. [30] proposed to feed a high-level attribute-based

representation to an LSTM to generate captions, instead

of directly using CNN-extracted features. This method

produces promising results on the major public captioning

challenge [5] and accepts our attributes prediction vector

Vatt(I) as the input. We thus use this approach to generate

5 different captions (using beam search) that constitute the

internal textual representation for a given image.

The hidden state vector of the caption-LSTM after it

has generated the last word in each caption is used to rep-

resent its content. Average-pooling is applied over the 5

hidden-state vectors, to obtain a 512-d vector Vcap(I) for

the image I . The caption-LSTM is trained on the human-

generated captions from the MS COCO training set, which

means that the resulting model is focused on the types of im-

age content that humans are most interested in describing.

Figure 3 shows some examples of the predicted attributes

and generated captions.

3.3. Relating to the Knowledge Base

The external data source that we use here is DBpedia [2].

As a source of general background information, although

any such KB could equally be applied, DBpedia is a struc-

tured database of information extracted from Wikipedia.

The whole DBpedia dataset describes 4.58 million entities,

of which 4.22 million are classified in a consistent ontol-

ogy. The data can be accessed using an SQL-like query

language for RDF called SPARQL. Given an image and

its predicted attributes, we use the top-5 most strongly pre-

dicted attributes1 to generate DBpedia queries. Inspecting

the database shows that the ‘comment’ field is the most gen-

erally informative about an attribute, as it contains a general

text description of it. We therefore retrieve the comment

text for each query term. The KB+SPARQL combination

is very general, however, and could be applied to problem

specific KBs, or a database of common sense information,

and can even perform basic inference over RDF. Figure 4

shows an example of the query language and returned text.

The domestic dog is a furry, carnivorous member of the canidae
family, mammal class. Domestic dogs are commonly known as "man's
best friend". The dog was the first domesticated animal and has been
widely kept as a working, hunting, and pet companion. It is estimated
there are between 700 million and one billion domestic dogs, making
them the most abundant member of order Carnivora.

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
sparql SELECT DISTINCT ?comment WHERE {
?entry rdfs: label “Dog"@en.
?entry rdfs: comment ?comment.

}

Figure 4. An example of SPARQL query language for the attribute

‘dog’. The mined text-based knowledge are shown below.

Since the text returned by the SPARQL query is typi-

cally much longer than the captions generated in the sec-

tion 3.2, we turn to Doc2Vec [15] to extract the semantic

meanings. Doc2Vec, also known as Paragraph Vector, is

an unsupervised algorithm that learns fixed-length feature

representations from variable-length pieces of texts, such as

1We only use the top-5 attributes to query the KB because, based on

the observation of training data, an image typically contains 5-8 attributes.

We also tested with top-10, but no improvements were observed.
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sentences, paragraphs, and documents. Le et al. [15] proved

that it can capture the semantics of paragraphs. A Doc2Vec

model is trained to predict words in the document given the

context words. We collect 100,000 documents from DB-

pedia to train a model with vector size 500. To obtain the

knowledge vector Vknow(I) for image I , we combine the

5 returned paragraphs in to a single large paragraph, before

extracting semantic features using our Doc2Vec model.

4. A VQA Model with Multiple Inputs

We propose to train a VQA model by maximizing the

probability of the correct answer given the image and ques-

tion. We want our VQA model to be able to generate mul-

tiple word answers, so we formulate the answering pro-

cess as a word sequence generation procedure. Let Q =
{q1, ..., qn} represents the sequence of words in a question,

and A = {a1, ..., al} the answer sequence, where n and

l are the length of question and answer, respectively. The

log-likelihood of the generated answer can be written as:

log p(A|I,Q) =
l∑

t=1

log p(at|a1:t−1, I, Q) (1)

where p(at|a1:t−1, I, Q) is the probability of generating at
given image information I , question Q and previous words

a1:t−1. We employ an encoder LSTM [13] to take the se-

mantic information from image I and the question Q, while

using a decoder LSTM to generate the answer. Weights are

shared between the encoder and decoder LSTM.

In the training phase, the question Q and answer A are

concatenated as {q1, ..., qn, a1, ..., al, al+1}, where al+1 is

a special END token. Each word is represented as a one-hot

vector of dimension equal to the size of the word dictionary.

The training procedure is as follows: at time step t = 0, we

set the LSTM input:

xinitial = [WeaVatt(I),WecVcap(I),WekVknow(I)] (2)

where Wea, Wec, Wek are learnable embedding weights for

the vector representation of attributes, captions and external

knowledge, respectively. In practice, all these embedding

weights are learned jointly. Given the randomly initialized

hidden state, the encoder LSTM feeds forward to produce

hidden state h0 which encodes all of the input information.

From t = 1 to t = n, we set xt = Wesqt and the hid-

den state ht−1 is given by the previous step, where Wes is

the learnable word embedding weights. The decoder LSTM

runs from time step n+1 to l+1. Specifically, at time step

t = n + 1, the LSTM layer takes the input xn+1 = Wesa1
and the hidden state hn corresponding to the last word of the

question, where a1 is the start word of the answer. The hid-

den state hn thus encodes all available information about

the image and the question. The probability distribution

pt+1 over all answer words in the vocabulary is then com-

puted by the LSTM feed-forward process. Finally, for the

final step, when al+1 represents the last word of the answer,

the target label is set to the END token.

Our training objective is to learn parameters Wea, Wec,

Wek, Wes and all the parameters in the LSTM by minimiz-

ing the following cost function:

C = −
1

N

N∑

i=1

log p(A(i)|I,Q) + λθ · ||θ||22 (3)

= −
1

N

N∑

i=1

l(i)+1∑

j=1

log pj(a
(i)
j ) + λθ · ||θ||22 (4)

where N is the number of training examples, and n(i) and

l(i) are the length of question and answer respectively for

the i-th training example. Let pt(a
(i)
t ) correspond to the

activation of the Softmax layer in the LSTM model for the

i-th input and θ represent the model parameters. Note that

λθ · ||θ||22 is a regularization term.

5. Experiments

We evaluate our model on two recent publicly avail-

able visual question answering datasets, both based on MS

COCO images. The Toronto COCO-QA Dataset [23] con-

tains 78,736 training and 38,948 testing examples, which

are generated from 117,684 images. There are four types

of questions, relating to the object, number, color and lo-

cation, all constructed so as to have a single-word answer.

All of the question-answer pairs in this dataset are automat-

ically converted from human-sourced image descriptions.

Another benchmarked dataset is VQA [1], which is a much

larger dataset and contains 614,163 questions and 6,141,630

answers based on 204,721 MS COCO images. This dataset

provides a surprising variety of question types, including

“What is...’, “How Many” and even “Why...”. The ground

truth answers were generated by 10 human subjects and can

be single word or sentences. The data train/val split follows

the COCO official split, which contains 82,783 training im-

ages and 40,504 validation images, each has 3 questions

and 10 answers. We randomly choose 5000 images from

the validation set as our val set, with the remainder test-

ing. The human ground truth answers for the actual VQA

test split are not available publicly and only can be evalu-

ated via the VQA evaluation server. Hence, we also apply

our final model on a test split and report the overall accu-

racy. Table 1 displays some dataset statistics. We did not

test on the DAQUAR dataset [19] as it is an order of mag-

nitude smaller than the datasets mentioned above, and thus

too small to train our system, and to test its generality.

5.1. Implementation Details

To train the VQA model with multiple inputs in the

Section 4, we use Stochastic gradient Descent (SGD) with
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Toronto COCO-QA VQA

# Images 117,684 204,721

# Questions 117,684 614,163

# Question Types 4 more than 20

# Ans per Que 1 10

# Words per Ans 1 1 or multiple

Table 1. Some statistics about the Toronto COCO-QA Dataset [23]

and VQA dataset [1].

mini-batches of 100 image-QA pairs. The attributes, inter-

nal textual representation, external knowledge embedding

size, word embedding size and hidden state size are all 256

in all experiments. The learning rate is set to 0.001 and clip

gradients is 5. The dropout rate is set to 0.5.

5.2. Results on Toronto COCOQA

Metrics Following [17, 23], the accuracy value (the pro-

portion of correctly answered test questions), and the Wu-

Palmer similarity (WUPS) [31] are used to measure perfor-

mance. The WUPS calculates the similarity between two

words based on the similarity between their common sub-

sequence in the taxonomy tree. If the similarity between

two words is greater than a threshold then the candidate an-

swer is considered to be right. We report on thresholds 0.9

and 0.0, following [17, 23].

Evaluations To illustrate the effectiveness of our model,

we provide a baseline and several state-of-the-art results on

the Toronto COCO-QA dataset. The Baseline method is

implemented simply by connecting a CNN to an LSTM.

The CNN is a pre-trained (on ImageNet) VggNet model

from which we extract the coefficients of the last fully

connected layer. We also implement a baseline model

VggNet+ft-LSTM, which applies a VggNet that has been

fine-tuned on the COCO dataset, based on the task of

image-attributes classification. We also present results from

a series of cut down versions of our approach for com-

parison. Att-LSTM uses only the semantic level attribute

representation Vatt as the LSTM input. To evaluate the

Toronto COCO-QA Acc(%) WUPS@0.9 WUPS@0.0

GUESS[23] 6.65 17.42 73.44

VIS+BOW[23] 55.92 66.78 88.99

VIS+LSTM[23] 53.31 63.91 88.25

2-VIS+BLSTM[23] 55.09 65.34 88.64

Ma et al.[17] 54.94 65.36 88.58

Baseline

VggNet-LSTM 50.73 60.37 87.48

VggNet+ft-LSTM 58.34 67.32 89.13

Our-Proposal

Att-LSTM 61.38 71.15 91.58

Att+Cap-LSTM 69.02 76.20 92.38

Att+Know-LSTM 63.07 72.22 90.84

Cap+Know-LSTM 64.31 73.31 90.01

Att+Cap+Know-LSTM 69.73 77.14 92.50

Table 2. Accuracy, WUPS metrics compared to other state-of-the-

art methods and our baseline on Toronto COCO-QA dataset.

COCO-QA Object Number Color Location

GUESS 2.11 35.84 13.87 8.93

VIS+BOW 58.66 44.10 51.96 49.39

VIS+LSTM 56.53 46.10 45.87 45.52

2-VIS+BLSTM 58.17 44.79 49.53 47.34

Baseline

VggNet-LSTM 53.71 45.37 36.23 46.37

VggNet+ft-LSTM 61.67 50.04 52.16 54.40

Our-Proposal

Att-LSTM 63.92 51.83 57.29 54.84

Att+Cap-LSTM 71.30 69.98 61.50 60.98

Att+Know-LSTM 64.57 54.37 62.79 56.98

Cap+Know-LSTM 65.61 55.13 62.02 57.28

Att+Cap+Know-LSTM 71.45 75.33 64.09 60.98

Table 3. Toronto COCO-QA accuracy (%) per category.

contribution of the internal textual representation and ex-

ternal knowledge for the question answering, we feed the

image caption representation Vcap and knowledge repre-

sentation Vknow with the Vatt separately, producing two

models, Att+Cap-LSTM and Att+Know-LSTM. We also

tested the Cap+Know-LSTM, for the experiment com-

pleteness. Our final model is the Att+Cap+Know-LSTM,

which combines all the available information.

GUESS [23] simply selects the modal answer from the

training set for each of 4 question types (the modal answers

are ‘cat’, ‘two’, ‘white’, and ‘room’). VIS+BOW [23] per-

forms multinomial logistic regression based on image fea-

tures and a BOW vector obtained by summing all the word

vectors of the question. VIS+LSTM [23] has one LSTM to

encode the image and question, while 2-VIS+BLSTM [23]

has two image feature inputs, at the start and the end. Ma et

al. [17] encode both images and questions with a CNN.

Table 2 reports the results. All of our proposed models

outperform the Baseline and all of the competing state-of-

the-art methods. Our final model Att+Cap+Know-LSTM

achieves the best results. It surpasses the baseline by nearly

20% and outperforms the previous state-of-the-art methods

by around 15%. Att+Cap-LSTM clearly improves the re-

sults over the Att-LSTM model. This proves that internal

textual representation plays a significant role in the VQA

task. The Att+Know-LSTM model does not perform as

well as Att+Cap-LSTM , which suggests that the infor-

mation extracted from captions is more valuable than that

extracted from the KB. Cap+Know-LSTM also performs

better than Att+Know-LSTM. This is not surprising be-

cause the Toronto COCO-QA questions were generated au-

tomatically from the MS COCO captions, and thus the fact

that they can be answered by training on the captions is to

be expected. This generation process also leads to ques-

tions which require little external information to answer.

The comparison on the Toronto COCO-QA thus provides

an important benchmark against related methods, but does

not really test the ability of our method to incorporate extra

information. It is thus interesting that the additional exter-

nal information provides any benefit at all.
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Our-Baseline Our Proposal

Question VggNet Att Att+Cap Att+Know Cap+Know A+C+K

Type + + + + + +

LSTM LSTM LSTM LSTM LSTM LSTM

what is 21.41 34.63 42.21 37.11 35.58 42.52

what colour 29.96 39.07 48.65 39.68 40.62 48.86

what kind 24.15 41.22 47.93 46.16 44.04 48.05

what are 23.05 38.87 47.13 41.13 39.73 47.21

what type 26.36 41.71 47.98 44.91 44.95 48.11

is the 71.49 73.22 74.63 74.40 73.78 74.70

is this 73.00 75.26 76.08 76.56 74.18 76.14

how many 34.42 39.14 46.61 39.78 44.20 47.38

are 73.51 75.14 76.01 75.75 75.78 76.14

does 76.51 76.71 78.07 76.55 77.17 78.11

where 10.54 21.42 25.92 24.13 16.09 26.00

is there 86.66 87.10 86.82 85.87 85.26 87.01

why 3.04 7.77 9.63 11.88 9.99 13.53

which 31.28 36.60 39.55 37.71 37.86 38.70

do 76.44 75.76 78.18 75.25 74.91 78.42

what does 15.45 19.33 21.80 19.50 19.04 22.16

what time 13.11 15.34 15.44 15.47 15.04 15.34

who 17.07 22.56 25.71 21.23 22.86 25.74

what sport 65.65 91.02 93.96 90.86 91.75 94.20

what animal 27.77 61.39 70.65 63.91 63.26 71.70

what brand 26.73 32.25 33.78 32.44 31.30 34.60

others 44.37 50.23 53.29 52.11 51.20 53.45

Overall 44.93 51.60 55.04 53.79 52.31 55.96

Table 4. Results on the open-answer task for various question types

on VQA validation set. All results are in terms of the evaluation

metric from the VQA evaluation tools. The overall accuracy for

the model of VggNet+ft+LSTM is 50.01. Detailed results of dif-

ferent question types for this model are not shown in the table due

to the limited space.

Table 3 shows the per-category accuracy for different

models. Surprisingly, the counting ability (see question

type ‘Number’) increases when both captions and external

knowledge are included. This may be because some ‘count-

ing’ questions are not framed in terms of the labels used in

the MS COCO captions. Ren et al. also observed similar

cases. In [23] they mentioned that “there was some observ-

able counting ability in very clean images with a single ob-

ject type but the ability was fairly weak when different ob-

ject types are present”. We also find there is a slight increase

for the ‘color’ questions when the KB is used. Indeed, some

questions like ‘What is the color of the stop sign?’ can be

answered directly from the KB, without the visual cue.

5.3. Results on the VQA

Antol et al. in [1] provide the VQA dataset which is in-

tended to support “free-form and open-ended Visual Ques-

tion Answering”. They also provide a metric for measur-

ing performance: min{ # humans that said answer
3 , 1} thus 100%

means that at least 3 of the 10 humans who answered the

question gave the same answer. We have used the provided

evaluation code to produce the results in Table 4.

Evaluation Inspecting Table 4, results on the VQA val-

idation set, we see that the attribute-based Att-LSTM is a

significant improvement over our VggNet+LSTM baseline.

We also evaluate another baseline, the VggNet+ft+LSTM,

which uses the penultimate layer of the attributes prediction

CNN as the input to the LSTM. Its overall accuracy on the

VQA is 50.01, which is still lower than our proposed mod-

els. Adding either image captions or external knowledge

further improves the result. The model Cap+Know pro-

duces overall accuracy 52.31, slightly lower than Att+Know

(53.79). This suggests that the attributes representation

plays a more important role here. Our final model A+C+K-

LSTM produces the best results, outperforming the base-

line VggNet-LSTM by 11% overall.

Figure 5 relates the performance of the various mod-

els on five categories of questions. The ‘object’ cate-

gory is the average of the accuracy of question types start-

ing with ‘what kind/type/sport/animal/brand...’, while the

‘number’ and ‘color’ category corresponds to the question

type ‘how many’ and ‘what color’. The performance com-

parison across categories is of particular interest here be-

cause answering different classes of questions requires dif-

ferent amounts of external knowledge. The ‘Where’ ques-

tions, for instance, require knowledge of potential locations,

and ‘Why’ questions typically require general knowledge

about people’s motivation. ‘Number’ and ‘Color’ questions,

in contrast, can be answered directly. The results show

that for ‘Why’ questions, adding the KB improves perfor-

mance by more than 50% (Att-LSTM achieves 7.77% while

Att+Know-LSTM achieves 11.88%), and that the combined

A+C+K-LSTM achieves 13.53%.
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Figure 5. Performance on five question categories for different

models. The ‘Object’ category is the average accuracy of ques-

tion types starting with ‘what kind/type/sport/animal/brand...’.

Table 5 provides some indicative results, more results

can be found in the supplementary material, including fail-

ure cases.

We have also tested on the VQA test-dev and test-

standard2 consisting of 60,864 and 244,302 questions (for

which ground truth answers are not published) using our fi-

nal A+C+K-LSTM model, and evaluated them on the VQA

evaluation server. Table 6 shows the server reported results.

Antol et al. [1] provide several results for this dataset. In

each case they encode the image with the final hidden layer

from VggNet, and questions are encoded using a BOW rep-

resentation. A softmax neural network classifier with 2 hid-

2http://www.visualqa.org/challenge.html
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What color is the tablecloth? How many people in the photo? What is the red fruit? What are these people doing?

Ours: white 2 apple eating

Vgg+LSTM: red 1 banana playing

Ground Truth: white 2 apple eating

Why are his hands outstretched? Why are the zebras in water? Is the dog standing or laying down? Which sport is this?

Ours: balance drinking laying down baseball

Vgg+LSTM: play water sitting tennis

Ground Truth: balance drinking laying down baseball

Table 5. Some example cases where our final model gives the correct answer while the base line model VggNet-LSTM generates the

wrong answer. All results are from VQA. More results can be found in the supplementary material.

Test-dev Test-standard

All Y/N Num Others All Y/N Num Others

Question [1] 40.09 75.66 36.70 27.14 - - - -

Image [1] 28.13 64.01 0.42 3.77 - - - -

Q+I [1] 52.64 75.55 33.67 37.37 - - - -

LSTM Q [1] 48.76 78.20 35.68 26.59 48.89 78.12 34.94 26.99

LSTM Q+I [1] 53.74 78.94 35.24 36.42 54.06 79.01 35.55 36.80

Human [1] - - - - 83.30 95.77 83.39 72.67

Ours 59.17 81.01 38.42 45.23 59.44 81.07 37.12 45.83

Table 6. VQA Open-Ended evaluation server results for our

method. Accuracies for different answer types and overall per-

formances on test-dev and test-standard datasets are shown.

den layers and 1000 hidden units (dropout 0.5) in each layer

with tanh non-linearity is then trained, the output space of

which is the 1000 most frequent answers in the training set.

They also provide an LSTM model followed by a softmax

layer to generate the answer. Two versions of this approach

are used, one which is given both the question and the im-

age, and one which is given only the question (see [1] for

details). Our final model outperforms the listed approaches

according to the overall accuracy and all answer types.

6. Conclusion

Open-ended visual question answering is an interesting

challenge for computer vision, not least because it repre-

sents a move away from purely image-based analysis and

towards a broader form of artificial visual intelligence. In

this paper we have shown that it is possible to extend the

state-of-the-art RNN-based VQA approach so as to incor-

porate the large volumes of information required to an-

swer general, open-ended, questions about images. The

knowledge bases which are currently available do not con-

tain much of the information which would be beneficial to

this process, but none-the-less can still be used to signifi-

cantly improve performance on questions requiring exter-

nal knowledge (such as ‘Why’ questions). The approach

that we propose is very general, however, and will be ap-

plicable to more informative knowledge bases should they

become available. At the time of writing this paper, our sys-

tem performs the best on two large-scale VQA datasets and

produces promising results on the VQA evaluation server.

Further work includes generating knowledge-base queries

which reflect the content of the question and the image, in

order to extract more specifically related information.

It seems inevitable that successful general visual ques-

tion answering will demand access to a large external

knowledge base. We have shown that this is possible us-

ing the LSTM-based approach, and that it improves perfor-

mance. We hope this might lead the way to a visual question

answering approach which is capable of deeper analysis of

image content, and even common sense.
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