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Abstract— We present the ASKALON environment whose
goal is to simplify the development and execution of workflow
applications on the Grid. ASKALON is centered around a set
of high-level services for transparent and effective Grid access,
including a Scheduler for optimized mapping of workflows onto
the Grid, an Enactment Engine for reliable application execution,
a Resource Manager covering both computers and application
components, and a Performance Prediction service based on
training phase and statistical methods. A sophisticated XML-
based programming interface that shields the user from the
Grid middleware details allows the high-level composition of
workflow applications. ASKALON is used to develop and port
scientific applications as workflows in the Austrian Grid project.
We present experimental results using two real-world scientific
applications to demonstrate the effectiveness of our approach.

I. INTRODUCTION

A computational Grid is a set of hardware and software

resources that provide seamless, dependable, and pervasive

access to high-end computational capabilities. Resources on

the Grid are usually geographically distributed and commonly

belong to different administrative domains. While Grid in-

frastructures can provide massive compute and data storage

power, it is still an art to effectively harness the power of

Grid computing. Most existing Grid application development

environments provide the application developer with a non-

transparent Grid. Commonly application developers are ex-

plicitly involved in tedious tasks such as selecting software

components deployed on specific sites, mapping applications

onto the Grid, or selecting appropriate computers for their

applications. Moreover, many programming interfaces are ei-

ther implementation technology specific (e.g. based on Web

services [23]) or force the application developer to program

at a low-level middleware abstraction (e.g. start task, transfer

data [2], [15]). In this paper we describe the ASKALON Grid

application development and computing environment whose

final goal is to provide an invisible Grid to the application

developers.

In ASKALON (see Fig. 1), the user composes Grid work-

flow applications at a high-level of abstraction using an XML-

based language (AGWL) that shields the application developer

from the Grid. The AGWL representation of a workflow is

then given to the middleware services (run-time system) for

scheduling and reliable execution.

ASKALON provides the following set of middleware ser-

vices that support the execution of scientific workflows on

Fig. 1. The ASKALON architecture.

the Grid. The Resource Manager service is responsible for

negotiation, reservation, and allocation of resources, as well

as automatic deployment of services required to execute Grid

applications. The Enactment Engine service targets reliable

and fault tolerant execution of workflows through techniques

such as checkpointing, migration, restart, retry, and replication.

Performance analysis [24] supports automatic instrumentation

and bottleneck detection (e.g. excessive synchronization, com-

munication, load imbalance, inefficiency, or non-scalability)

within Grid workflow executions. The Performance Prediction

service currently focuses on estimating execution times of

workflow activities through training phase and statistical meth-

ods using the Performance analysis service. The Scheduler

is a service that determines effective mappings of single or

multiple workflow applications onto the Grid using graph-

based heuristics and optimization algorithms on top of the

Performance Prediction and Resource Manager services. Ad-

ditionally, the Scheduler aims to provide Quality of Service

(QoS) by dynamically adjusting the optimized static schedules

to meet the dynamic nature of Grid infrastructures through

execution contract monitoring [18].

Due to space limitations we limit the scope of this paper to a

set of distinguishing new features of ASKALON. Descriptions

of other parts can be found at [10].

This paper is organized as follows. In the next section

we describe the programming interface of ASKALON. In

Sections III – VI we introduce the main middleware services:

the Scheduler, the Enactment Engine, the Resource Manager,



and the Performance Prediction service. Section VII presents

experimental results involving two real-world Grid workflow

applications. Related work is summarized in Section VIII. In

Section IX we conclude the paper with an outlook to the future

work.

II. GRID WORKFLOW COMPOSITION WITH AGWL

In contrast to related work [2], [8], [23], [21], [6],

ASKALON enables the description of workflow applications

at a high-level of abstraction that shields the user from the

middleware complexity and dynamic nature of the Grid.

We designed the XML-based Abstract Grid Workflow Lan-

guage (AGWL) [11] for composing a workflow application

from atomic units of work called activities interconnected

through control flow and data flow dependencies. Activities

are represented at two abstract levels: activity types and

activity deployments. An activity type is a simplified abstract

description of functions or semantics of an activity, whereas

an activity deployment (not seen at the level of AGWL but

resolved by the underlying Resource Manager – see Section V)

refers to an executable or a deployed Web service and de-

scribes how they can be accessed and executed on the Grid.

In contrast to most existing work, AGWL is not

bound to any implementation technology such as Web ser-

vices. The control-flow constructs include sequences, Di-

rected Acyclic Graphs (dag), for, forEach, while and

do-while loops, if and switch constructs, as well

as more advanced constructs such as parallel activi-

ties, parallelFor and parallelForEach loops, and

collection iterators. In order to modularize and reuse

workflows, so called sub-workflows can be defined and in-

voked. Basic data flow is specified by connecting input and

output ports between activities, while more advanced data flow

constructs include access to abstract data repositories.

Optionally, the user can specify properties and

constraints for activities and data flow dependencies that

provide functional and non-functional information to the run-

time system for optimization and steering of the Grid workflow

execution. Properties define additional information about ac-

tivities or data links, such as computational or communication

complexity, or semantic description of workflow activities.

Constraints define additional requirements or contracts to be

fulfilled by the run-time system that executes the workflow

application, such as the minimum memory necessary for an

activity execution, or the minimum bandwidth required on a

data flow link.

The AGWL representation of a workflow serves as input to

the ASKALON run-time middleware services (see Fig. 1).

III. SCHEDULER

The Scheduler service prepares a workflow application for

execution on the Grid. It processes the workflow specification

described in AGWL, converts it to an executable form, and

maps it onto the available Grid resources.

The scheduling process starts when the Enactment Engine

sends a scheduling request with a workflow description. The
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Fig. 2. The Scheduler architecture.

workflow consists of nodes representing activity types con-

nected through control and data flow dependencies, as well

as overall workflow input and output data. The Scheduler

uses the Resource Manager (see Section V) to retrieve the

current status of the Grid resources and to determine available

activity deployments that correspond to the workflow activity

types. In addition, the queries submitted by the Scheduler

to the Resource Manager can contain constraints that must

be honored, such as processor type, minimum clock rate, or

operating system. The Performance Prediction service supplies

predicted activity execution times and data transfer times

required by the performance-driven scheduling algorithms.

The Scheduler consists of three main components, as il-

lustrated in Fig. 2: workflow converter, scheduling engine,

and event generator, which we describe in more detail in the

following.

The workflow converter resolves all the ambiguities and

transforms sophisticated workflow graphs into simple Directed

Acyclic Graphs (DAGs – usually through loop unrolling) on

which existing graph scheduling algorithms can be applied.

Many transformations are based on assumptions which may

change during the execution. Assumptions are made for condi-

tions (e.g. while, if, switch) and parameters (e.g. number

of parallel loop iterations) that cannot be evaluated statically

before the execution begins. Transformations based on correct

assumptions can imply substantial performance benefits, par-

ticularly if a strong imbalance in the workflow is predicted

(see Section VII). Incorrect assumptions require appropriate

run-time adjustments such as undoing existing optimizations

and rescheduling based on the new Grid information available.

The scheduling engine is responsible for the actual mapping

of a converted workflow onto the Grid. It is based on a

modular architecture, where different DAG-based scheduling

heuristics can be used interchangeably. The algorithms with

varying accuracy and complexity are based on different metrics

as optimization goals. We have currently incorporated three

scheduling algorithms: Heterogeneous Earliest Finish Time

(HEFT) [26], a genetic algorithm [18], and a ”myopic” just-

in-time algorithm acting like a resource broker, similar to

the Condor matchmaking mechanism used by DAGMan [6].

All algorithms receive as input two matrices representing the

predicted execution time of every activity instance on each

compute architecture, respectively the predicted transfer time



of each data dependency link on every Grid site interconnec-

tion network, and deliver a Grid schedule.

After the initial scheduling, the workflow is executed based

on the current mapping until the execution finishes or any

interrupting event occurs. The event generator module uses

the Performance analysis service to monitor the workflow

execution and detect whether any of the initial assumptions,

also called execution contracts, has been violated. Execution

contracts that we are currently monitor include structural

assumptions made by the workflow converter, external load

on processors, processors no longer available, congested in-

terconnection networks, or new Grid sites available. In case

of a contract violation, the Scheduler sends a rescheduling

event to the Enactment Engine, which generates and returns to

the Scheduler a new workflow based on the current execution

status (by excluding the completed activities and including the

ones that need to be re-executed). We have formally presented

this approach in detail in [18].

IV. ENACTMENT ENGINE

The Enactment Engine is the central service of the

ASKALON middleware responsible for executing a workflow

application based on the Grid mapping decided by the Sched-

uler. The main tasks performed by the Enactment Engine is

to coordinate the workflow execution according to the con-

trol flow constructs (i.e. sequence, if, switch, while,

for, dag, parallel, parallelFor) and to effectively

resolve the data flow dependencies (e.g. activity arguments,

I/O file staging, high bandwidth third-party transfers, access

to databases) specified by the application developer in AGWL.

Among the novel features, the Enactment Engine provides

flexible management of large collections of intermediate data

generated by hundreds of parallel activities that are typical to

scientific workflows (see Fig. 4). Additionally, it provides a

mechanism to automatically track data dependencies between

activities and performs static and run-time workflow opti-

mizations, including archiving and compressing of multiple

files to be transferred between two Grid sites, or merging

multiple activities to reduce the job submission and polling

for termination overheads.

The Enactment Engine provides fault tolerance at three

levels of abstraction:

1) activity-level through retry and replication;

2) control flow-level using light-weight workflow check-

pointing and migration (described later in this section);

3) workflow-level based on alternative task, workflow-level

redundancy, and workflow-level checkpointing.

Checkpointing and recovery are fundamental techniques

for saving the application state during normal execution and

restoring the saved state after a failure to reduce the amount

of lost work. The Enactment Engine provides two types of

checkpointing mechanisms described in the following.

Light-weight workflow checkpointing saves the workflow

state and URL references to intermediate data (together with

additional semantics that characterize the physical URLs) at

customizable execution time intervals. The light-weight check-

point is very fast because it does not back-up the intermediate

data. The disadvantage is that the intermediate data remains

stored on possibly unsecured and volatile file systems. Light-

weight workflow checkpointing is typically used for immediate

recovery during one workflow execution.

Workflow-level checkpointing saves the workflow state and

the intermediate data at the point when the checkpoint is

taken. The advantage of the workflow-level checkpointing is

that it completely saves backup copies of the intermediate

data into a checkpoint database, such that the execution can

restored and resumed at any time and from any Grid location.

The disadvantage is that the checkpointing overhead grows

significantly for large intermediate data.

Let W = (AS, CF, DF ) represent a Grid workflow

application, where AS denotes the set of activities of

the workflow, CF = {(Afrom, Ato) | Afrom, Ato ∈ AS}
represents the set of control flow dependencies, and

DF = {(Afrom, Ato, Data)| Afrom, Ato ∈ AS} the data

flow dependencies, where Data denotes the workflow

intermediate data, usually instantiated by a set of files and

parameters. Let State : AS → {Executed, Unexecuted}
denote the execution state function of an activity. We formally

define a workflow checkpoint as a set of tuples:

CKPTW = {(A, State(A), Data) | ∀ A, Afrom ∈ AS ∧

State(A) = Unexecuted ∧ State(Afrom) = Executed ∧

(Afrom, A, Data) ∈ DF}.

As we can notice, there are two possible options for the

checkpointed state of an executing activity for which we

propose three solutions:

1) We let the job run and regard the activity as Unexecuted;

2) We wait for the activity to terminate and set the state to

Executed, if the execution was successful. Otherwise,

we set the state to Unexecuted. Both solutions are

not obviously perfect, therefore, we propose a third

compromise option that uses the predicted execution

time of the job, as follows:

3) Delay the checkpoint for a significantly shorter amount

of time CD and compute the state of an activity A using

the following formula:

State(A) =

{

Unexecuted, PTA − CD ≥ ETA;
Executed, PTA − CD < ETA,

where PTA is the predicted execution time of the

activity A as reported by the Performance Prediction

service and ETA is the elapsed execution time of the

activity from the beginning until the current time. This

solution reduces the checkpoint overhead and lets the

checkpoint complete within a shorter time frame.

V. RESOURCE MANAGER

Resource management is a key concern for the imple-

mentation of an effective Grid middleware and for shielding

application developers from its low-level details. The Resource



Manager renders the boundaries of Grid resource management

and brokerage and provides Grid resource discovery, advanced

reservation and virtual organization-wide authorization along

with a dynamic registration framework for the Grid activi-

ties [19], [20]. The Resource Manager covers both physical

resources, including processors, storage devices, and network

interconnections, as well as logical resources comprising

Grid/Web services and executables.

Based on Scheduler requests, the Resource Manager dis-

covers resources or software activities, performs user autho-

rization to verify resource accessibility, optionally makes a

reservation, and returns the result. The result could be a list

of resources along with their specifications, a list of software

components, or a reservation ticket, depending on the request

type. In case of a failure, a Resource Manager can interact

with other Resource Managers distributed in the Grid to

recursively discover and allocate required resources. Moreover,

the Resource Manager monitors the allocated resources and

propagates exceptional situations to the client. The Resource

Manager can also work as a co-allocation manager.

Grid resource discovery and matching is performed based

on the constraints provided by the Scheduler in the form of a

resource request (see Section III). The Resource Manager can

be configured with one or more Monitoring and Discovery

Services (MDS) [12] (of Globus versions 2 and 4) and the

Network Weather Service (NWS) [25].

Advanced reservation of the Grid resources (including com-

puters and software components) based on the constraints

provided by the resource requester is a distinguishing feature

of the Resource Manager. The Scheduler can negotiate for

reservation based on time, cost, and QoS models. The essential

attributes of a reservation include resource contact information,

time frame, and resource requester and provider constraints.

The acquisition of reserved resources by the Enactment Engine

is only possible by providing a valid user credential based on

which the reservation was made, or a valid reservation ticket.

The Resource Manager also provides a distributed frame-

work for dynamic registration, automatic deployment, and on-

demand provision of workflow activities. Automatic deploy-

ment is performed based on Autoconf / AutoBuild [3] and

Expect [9] tools. The framework provides an effective mapping

between high-level application descriptions (activity types) and

actual installations (activity deployments) on specific Grid

sites. Activity types are described in a hierarchy of abstract and

concrete types. Concrete types may have activity deployments

which are shielded from the Grid application developer. Fig. 3

illustrates a real-world example of a concrete activity type

called POVray [17] which inherits generic rendering and

imaging types. The activity type POVray has two activity

deployments: a legacy executable povray and a Web Services

Resource Framework (WSRF) [13]-compliant service called

WS-POVray, both visible only internally to the registration

framework. The registration framework performs on-demand

installation of these activity deployments and maps them

automatically to the activity types, thus shields the Grid from

the application developers.

Fig. 3. Activity type hierarchy and type to deployment mapping.

VI. PERFORMANCE PREDICTION

ASKALON provides a service for predicting the time re-

quired by activity executions and data transfers. Predicting the

execution time of an activity on a given computer depends on

various factors, like the problem size. While there exist several

proposals for the execution time estimation problem, the most

general form is statistical prediction based on historical data

which relies on past measurements for different input param-

eter values on different Grid computers. Furthermore, such

techniques are generic and do not need any direct knowledge

of the internals of an algorithm or computer.

ASKALON employs active history-based predictions by

introducing a training phase for each workflow application.

Initially, all activity types are selected which usually represent

a fraction of the total number of activity instances (i.e. number

of activity executions) of a scientific workflow. For each

activity type, different parameter combinations on different

Grid computers are tested (usually all in parallel to minimize

the duration of the training phase) and the execution times

are stored in a performance database. This technique has the

advantage that the quality of the data stored is improved

compared to the passive prediction methods. In the latter

case, the lack of measurements must be compensated by

additional interpolation. To further minimize the training phase

overhead, we divide it in two phases. The first phase finds

the minimum number of measurements for each parameter

value (i.e. minimizing the introduced error according to some

threshold criterion) that are needed for an accurate prediction

on a specific computer. In the second phase, we measure the

execution time on all the available computer architectures on

the Grid with the reduced number of measurements.



(a) The WIEN2k workflow. (b) The Invmod workflow.
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(c) Large unbalanced Invmod workflow.

Fig. 4. Real-world workflow applications.

VII. EXPERIMENTS

We have implemented the ASKALON services described in

this paper on top of the Globus toolkit [12] as the underlying

infrastructure. Furthermore, ASKALON is used as the main

application development and computing environment in the

Austrian Grid project [1]. In this section we demonstrate

several experiments that evaluate the Performance Prediction

service, the Scheduler, the Enactment Engine, and the Re-

source Manager of ASKALON. Our experiments are centered

around two real-world applications, executed on a subset of

the Austrian Grid testbed depicted in Table I.

Site # CPU GHz Job Manager Location

altix1.jku 16 Itanium 2 1.6 Fork Linz
gescher.vcpc 16 Pentium 4 3 PBS Vienna
altix1.uibk 16 Itanium 2 1.6 Fork Innsbruck
schafberg 16 Itanium 2 1.6 Fork Salzburg

agrid1 10 Pentium 4 1.8 PBS Innsbruck
arch19 10 Pentium 4 1.8 PBS Innsbruck

TABLE I

THE AUSTRIAN GRID TESTBED.

Firstly, WIEN2k is a program package for performing elec-

tronic structure calculations of solids using density functional

theory, based on the full-potential (linearized) augmented

plane-wave ((L)APW) and local orbital (lo) method [4]. We

have ported the WIEN2k application onto the Grid by split-

ting the monolithic code into several course-grain activities

coordinated in a workflow (see Fig. 4(a)). The LAPW1 and

LAPW2 activities can be solved in parallel by a fixed number

of so-called k-points. A final activity converged applied

on several output files tests whether the problem convergence

criterion is fulfilled. The number of recursive loops is statically

unknown.

Secondly, Invmod is a hydrological application for river

modeling which has been designed for inverse modeling

calibration of the WaSiM-ETH program [22]. Invmod has two

levels of nested parallelism with variable number of inner

loop iterations that depends on the actual convergence of the

optimization process (see Fig. 4(b)). Fig. 5 gives a sample

excerpt from the Invmod AGWL representation.

<agwl name="invmod"

<dataIn name="nRuns" type="xs:integer" />

<dataIn name="isFinish" type="xs:boolean" />

<activity name="DeterParas" type="...">

<dataIn name="nRunsIn" source="invmod/nRuns" />

<dataOut name="numRuns" />

<dataOut name="numParas" />

</activity>

<parallelFor name="parallelFor1">

<loopCounter name="index" from="1"

to="DeterParas/numRuns"/>

<loopBody>

<activity name="WasimA" ... />

<while name="whileLoop">

<dataIn name="finish"

source="invmod/isFinish"

loopSource="WasimB2C/isFinish" />

<condition> finish != true </condition>

<loopBody>

<parallelFor name="parallelFor2" .../>

<activity name="WasimB2C" ... >

<dataOut name="isFinish" />

</activity>

</loopBody>

<dataOut name="dataTarball" ... />

</while>

<activity name="WasimD" ... />

</loopBody>

<dataOut name="dataTarball" type="collection"

source="WasimD/wasimDOutput" />

</parallelFor>

<activity name="FindBest" ... />

<dataOut name="result" .../>

</agwl>

Fig. 5. Invmod AGWL Excerpt



A. Prediction Service

We illustrate the applicability of our prediction approach

for the WIEN2k application. We chose LAPW1 in our example

because it is computationally the most expensive activity type.

The problem size and the execution time of all WIEN2k

activities are influenced by one parameter called KMAX which

represents the number of plane waves used (i.e. the size

of the matrix to be diagonalized). We ran LAPW1 with a

KMAX parameter range between 5.0 and 8.5. We show in

Fig. 6(a) the execution times for a parameter step of size

0.1 and 0.5 on some of the computer architectures from

our Grid environment. We choose the minimum value from

10 different executions for each parameter value to obtain

a lower bound for the execution times. The plots in this

figure demonstrate that a reduction to one fifth of the original

number of experiments through interpolation hardly changes

the measured execution time. We thus can provide predictions

at much smaller costs.

Our actual research concentrates on simple heuristics for

minimizing the number of measurements needed. These

heuristics are influenced by an error criterion that, for example,

should drop below some threshold for providing reasonable

accurate predictions.

The measured execution times are obtained in a training

phase, stored in a database, and used for statistical predic-

tions. Currently, we use polynomial fitting (of degree five)

to obtain a model for our prediction. This model is used

when the Scheduler asks for estimated execution times of a

specific activity deployment (i.e. activity type plus computer

architecture) with a specific parameter value (e.g. LAPW1 with

parameter 8.2). Fig. 6(b) tries to answer an interesting question

about how the reduced number of experiments influences the

polynomial fitting process. From this example we can see that

the reduced number of measurements does not harm the model

building process and delivers results similar to the original

measurements. We will investigate in the future the ability to

predict beyond the training phase range. At present we base

our prediction on a useful maximal parameter range.

For data transfer predictions we use an approximation

technique. From the training phase we know the size of the

output data that is produced by an activity. If this output is

the input to another activity scheduled on a different Grid

site, we use the data size and the actual available bandwidth

between the involved sites measured using NWS [25] to

approximate the transfer time. We realized from our test runs

that this procedure of prediction is not very accurate. Due to

different heterogeneous overheads (e.g. Grid middleware, NFS

overhead, multiple parallel connections with different transfer

times), the network transfer time prediction is a very difficult

problem. Currently, we are using pessimistic assumptions that

force the Scheduler to perform Grid mappings with good data

locality (e.g. LAPW1 and LAPW2 k-points in Fig. 4(a) that have

a considerable data dependency). Therefore, future research

will investigate more elaborated techniques for data transfer

time prediction.
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Fig. 6. Performance prediction experiments.

B. Scheduling

For testing the Scheduler, we examined the WIEN2k and

Invmod applications which represent two different classes

of workflows considering the balance between the parallel

branches. We considered a WIEN2k workflow with one itera-

tion of the outermost loop, and 250 parallel activities in each of

the two parallel sections (see Fig. 4(a)). The Invmod workflow

represents a class of strongly unbalanced workflows, where

some of the parallel iterations are considerably longer than the

others. Fig. 4(c) displays a sample Invmod workflow generated

by the workflow converter using a loop unrolling transfor-

mation (based on static speculative assumptions), where one

parallel iteration is significantly longer than the other 99
iterations. The goal of our experiments was to compare three

different heuristic algorithms supported by the Scheduler: the

HEFT algorithm [26], a genetic algorithm [18], and a simple

myopic algorithm similar to a resource broker such as the Con-

dor DAGMan [6]. We also compared a full-graph scheduling

strategy (i.e. schedule all the workflow activities in advance)

against a workflow partitioning approach which resembles the

one applied in the Pegasus project [7]. Partitioning means the

division of a workflow into a set of sub-workflows (usually of

a certain depth that is decided ad-hoc), that are executed in

sequence. We performed the partitioning with various depths

(i.e. 3, 10, 20 and 30) in different experiments to observe the

difference in the results obtained.

The results depicted in Fig. 7 show that optimization algo-

rithms such as HEFT and genetic search produce substantially



(a) WIEN2k execution time. (b) Invmod execution time. (c) WIEN2k scheduling time.

Fig. 7. Scheduling experimental results.

better schedules than the myopic matchmaking. HEFT is also

superior to the genetic algorithm, since it is a workflow-

specific heuristic highly suited to heterogeneous environments

such as the Grid. The full-graph scheduling approach produces

better results than the workflow partitioning strategy [7], the

most obvious case being the strongly unbalanced Invmod

workflow (see Fig. 7(b)). We can also notice that the genetic

algorithm meta-heuristic executes two orders of magnitude

longer than the others (see Fig. 7(c)).

C. Enactment Engine

In this section we present experimental results that evaluate

the performance of the Enactment Engine for reliable execu-

tion of the WIEN2k workflow using the optimized mapping

delivered by the Scheduler.

We have first investigated the scalability of a relatively mod-

est problem (100 parallel k-points) by incrementally increasing

the Grid size from one to six distributed Grid sites (see

Table I. Fig. 8(a) shows that this modest WIEN2k problem size

manages to scale until three distributed Grid sites because of

a network bottleneck on the fourth Itanium site (i.e. schafberg

in Salzburg).

The distributed Grid-wide execution, the interaction with the

ASKALON middleware services, as well as the fault tolerance

mechanisms applied during the distributed execution, represent

sources of performance overheads (losses) that delay the

overall completion time of Grid applications. We configured

the Enactment Engine to perform a light-weight checkpoint

after each main phase of the WIEN2k execution: LAPW0,

LAPW1, and LAPW2. In Fig. 8(b) and 8(c) we illustrate the

performance overhead breakdown for one Grid site and two

Grid site executions, which we describe in the following based

on the importance of each overhead.

The data transfer overhead represented by third party

(GridFTP [12]) file transfers naturally increases with the

number of Grid sites, especially when the fourth Itanium site

is added. The overhead due to load imbalance upon synchro-

nization (see activity LAPW2 FERMI in Fig. 4(a)) increases

with the number of sites, mainly because of heterogeneity.

We define the load imbalance as the difference between the

maximum and the average termination time of the activities

in a workflow parallel section (e.g. LAPW1 and LAPW2 in

Fig. 4(a)). The rest of the overheads are so small that we

aggregate them as other overheads in Fig. 8(a). The workflow

preparation overhead for creating workflow-level directory

structures, as well as other global environment set-up tasks

required by legacy applications, obviously increases with the

number of Grid sites. The job preparation overhead (i.e.

the time required to uncompress data archives or create job

specific remote directory structures), in contrast, decreases

with the number of Grid sites, since more activity instances

can be executed in parallel. In case of smaller number of Grid

sites, some parallel activity instances have to be serialized (to

avoid processor sharing), which explains the high job prepa-

ration overhead (e.g. for one Grid site). The Grid middleware

overhead, including the interaction with the Scheduler and the

Resource Manager, remains relatively constant since it is done

once using the same algorithms for every individual execution.

The overhead due to checkpointing is negligible.

Fig. 8(d) compares the overheads of the light-weight work-

flow checkpointing and the workflow-level checkpointing for

a centralized and a distributed checkpoint database. The over-

head of the light-weight workflow checkpointing is very low

and relatively constant, since it only stores the workflow state

and URL references to the intermediate data. The overhead of

the centralized workflow-level checkpointing increases with

the number of Grid sites due to a larger intermediate data

volume to be transferred to the checkpoint database. For a

distributed checkpoint database, the workflow-level check-

pointing overhead is much lower, since using a local repository

on every site where the intermediate data is residing eliminates

the wide area network transfers.

Fig. 8(e) presents the checkpoint gains obtained for a

single site workflow execution. We define the gain as the

difference between the timestamp when the last checkpoint

is performed minus the timestamp of the previous checkpoint.

The biggest gains are obtained after checkpointing the parallel

regions LAPW1 and LAPW2. The gain for the workflow-level

checkpointing is lower, since it subtracts the time required to

copy the intermediate data to the checkpoint database.

Fig. 8(f) shows that the size of the data checkpointed at the

workflow level is bigger than the overall size of intermediate
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Fig. 8. Enactment Engine experimental results.

data transferred for a small number of Grid sites (up to three,

when scalability is achieved). Beyond four Grid sites, the size

of the intermediate data exceeds the workflow-level check-

point data size. The data size of the light-weight workflow

checkpoint is insignificant.

D. Resource Manager

In this section we present experiences on using the Resource

Manager for allocation of resources and automatic deployment

of workflow activities.

When serving a resource allocation request from the Sched-

uler, the Resource Manager performs four operations in a

single transaction: discovery, authorization, allocation, and

acquisition. All these operations introduce an overhead to the

workflow execution, as already presented in Section VII-C. In

the following, we further study and breakdown this overhead

by benchmarking a series of requests which vary both the

total number of required resources and their attributes. We

measure the time for each request by starting a timer in

the client program immediately before invoking the Resource

Manager and stopping it upon the successful acquisition of the

resource ensemble. The result of this experiment depicted in

Fig. 9(a) shows that allocation is the most expensive overhead,

which increases with the number of resources, as it involves

negotiation for advanced reservation.

One of the important feature of the Resource Manager is

the automatic deployment of software activities, implemented

either as legacy applications or as WSRF services. We have

evaluated this feature and calibrated the deployment overheads

for two real world scientific applications (i.e. WIEN2k and

Invmod), as well as a sample WSRF service (i.e. Counter). We

have used two methods to perform the automatic deployment:

1) Globus, using the GridFTP protocol [12] to remotely

transfer and the Globus Resource Allocation Manager

(GRAM) [12] to remotely deploy the code;

2) Expect, by programmatically acquiring local shell on a

target site and automatizing the installation [20].

Table II illustrates the overheads associated with different

deployment operations. The communication overhead depends

on the size of the installation files and is generally lower than

the deployment overhead introduced by the code compilation.

The registration of a new activity type and its deployments

imply reasonable costs. The Expect-based deployment is more

efficient than Globus because it accesses sites using built-in

system shells.

We have also studied the scalability of the registration

framework on one, three, and seven Grid site configurations,

by enabling and disabling the caching of activity types and

deployments on local sites for faster future access. Fig. 9(b)

shows the response time per request for a list of deployments

associated with an activity type. The deployment entries are

equally distributed on all involved sites. We can observe

that there is a significant improvement in performance by

increasing number of sites and also by enabling the caching.



0.5

1

2

4

8

1 2 4 8 16 32

T
im

e 
(S

ec
)

No. of Nodes (Grid sites)

Discovery
Authorization

Allocation
Acquisition

(a) Resource Manager overhead breakdown.

16

32

64

128

256

512

1024

2048

4096

8192

4 8 16 32 64 128 256 512

R
es

po
ns

e 
tim

e 
(m

s)

Number of deployments

1 Site (Cache Enabled)
1 Site

3 Sites
7 Sites

16

32

64

128

256

512

1024

2048

4096

8192

4 8 16 32 64 128 256 512

R
es

po
ns

e 
tim

e 
(m

s)

Number of deployments

1 Site (Cache Enabled)
1 Site

3 Sites
7 Sites

(b) Response time per activity deployment request with
caching on one Grid site and without caching on one, three
and seven Grid sites.

Fig. 9. Resource Manager experimental results.

Method Operation / Overhead WIEN2k Invmod Counter

Expect

Activity type registration 633 632 665
Communication 1,667 1,381 1,279

Installation / deployment 8,068 27,776 29,843
Deployment registration 700 695 697

Expect overhead 2,100 2,100 2,100
Total overhead 11,068 30,484 32,484

Globus

Activity type registration 633 632 665
Communication 5,600 2,500 2,400

Installation / deployment 18,068 49,700 39,756
Deployment registration 700 695 697

Globus overhead 9,800 9,900 9,800
Total overhead 25,001 53,527 43,518

TABLE II

TIME SPENT IN DIFFERENT DEPLOYMENT OPERATIONS (MILLISECONDS).

VIII. RELATED WORK

DAGMan [6] is a centralized meta-scheduler for Condor

jobs organized in a directed acyclic graph. Important control

flow constructs such as branches and loops are missing.

Scheduling is done through matchmaking with no advanced

optimization. Fault tolerance is addressed through rescue

DAG, automatically generated whenever an activity instance

fails. The ASKALON checkpointing, in contrast, addresses

also the case when the Enactment Engine itself crashes.

Pegasus [7] uses DAGMan as enactment engine, enhanced

with data derivation techniques that simplify the workflow

at run-time based on data availability. Pegasus provides a

workflow partitioning approach, which is problematic for

strongly unbalanced workflows like our Invmod application.

Research results report simulation-based scheduling using a

weighted Min-min heuristic.

Triana [21] uses the Grid Application Toolkit interface to

the Grid through Web services. It misses compact mechanisms

for expressing large parallel loops. Scheduling is done just-in-

time with no optimizations or performance estimates.

ICENI [15] contains low-level enactment engine-specific

constructs such as start and stop in the workflow defi-

nition. Scheduling is done using random, best of n-random,

simulated annealing, and game theory algorithms.

Taverna’s [16] workflow language called SCUFL is also

limited to DAGs. Scheduling is done just-in-time, while fault

tolerance is addressed at activity-level through retries and

alternate resources.

The GridAnt [2] centralized workflow engine extends the

Ant commodity tool for controlling the application build-

ing processes in Java with low-level constructs such as

grid-copy and grid-execute. Scheduling is done man-

ually and fault tolerance is not addressed.

The GrADS project [14] restricts workflows to a DAG

model and does not propose any workflow specification lan-

guage. The architecture is centralized and does not consider

any service-oriented Grid technology. Scheduling is done us-

ing Min-min, Max-min, and Sufferage algorithms traditionally

used for independent tasks, which are less appropriate for

workflows with large control flow depths and data flow depen-

dencies. Like in ASKALON, performance prediction models

are derived from historical executions based on processor

operations and memory access patterns.

UNICORE [8] provides a graphical composition of directed

graph-based workflows. It does not support parallel loop

constructs. Scheduling is user-directed (manual) and fault

tolerance is not addressed.

The workflow management in Gridbus [5] provides an

XML-based workflow language, oriented towards parametriza-

tion and QoS requirements. No branches and loops are sup-

ported. The scheduler provides just-in-time mappings using

Grid economy mechanisms. Fault tolerance is limited to

activity-level using replication.

ASKALON differs in several aspects compared to the

above mentioned related projects. AGWL allows a scalable

specification of large numbers of parallel activities, typical

to scientific workflows, by using compact parallel loops. The

Enactment Engine effectively handles large data collections

generated by large-scale control and data flow constructs.

Additionally, it provides two levels of workflow checkpointing

for restoring and resuming the execution in case of failures of



the engine itself. The HEFT and genetic search algorithms

implemented by the ASKALON Scheduler are, to the best of

our knowledge, not addressed by any of the related projects.

ASKALON proposes novel architectural feature based on a

clear separation between the Scheduler and the Resource

Manager which covers both physical and logical resources and

provides brokerage, constraint-based advanced reservations,

and activity type to deployment mappings.

IX. CONCLUSIONS

In this paper we presented the ASKALON application de-

velopment and computing environment. The new contributions

of this work are centered around several integrated run-time

middleware services.

In contrast to many existing systems, ASKALON supports

a programming interface that shields the application developer

from the low-level middleware technologies with the goal of

providing an invisible Grid. Our Scheduler supports HEFT

and genetic search as optimization algorithms which perform

significantly better than a pure resource broker, in particular

in the case of unbalanced workflows. The Scheduler signif-

icantly benefits from a Performance Prediction service that

provides expected execution times based on a training phase

and statistical methods. The Enactment Engine efficiently

handles large collections of data dependencies produced by

hundreds of parallel activities specific to scientific workflows.

We have demonstrated significant performance gains through

two checkpointing methods for saving and restoring the exe-

cution of Grid workflows upon engine and application failures.

A separate Resource Manager, which covers both physical

resources and workflow activities, renders the boundaries of

resource brokerage, virtual organization-wide authorization,

advanced reservation, and provides mechanisms for Grid re-

source discovery, selection, and allocation along with resource

requester and provider interaction.

We have demonstrated the integrated use of the ASKALON

services for two real-world scientific workflows executed in the

Austrian Grid infrastructure. Our future work will focus on

further optimization of workflow executions to increase their

scalability on the Grid, scheduling based on QoS parameters

to be negotiated between the Scheduler and the Resource

Manager, and automatic bottleneck detection and steering

based on on-line performance analysis.
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