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Abstract 

Despite significant exist ing empir ical work, l i t t le is known about the specific kinds of questions 

programmers ask when evolving a code base. Understanding precisely what information a 

programmer needs about the code base as they work is key to determining how to better 

support the act ivi ty of programming. The goal of this research is to provide an empirical 

foundation for tool design based on an exploration of what programmers need to understand 

about a code base and of how they use tools to discover that information. To this end, we 

undertook two quali tat ive studies of programmers performing change tasks to medium to 

large sized programs. One study involved newcomers working on assigned change tasks to a 

medium-sized code base. T h e other study involved industr ia l programmers working on their 

own change tasks to code wi th which they had experience. T h e focus of our analysis has 

been on what information a programmer needs to know about a code base while performing 

a change task and also on how they go about discovering that information. Based on a 

systematic analysis of the data from these user studies as well as an analysis of the support 

that current programming tools provide for these activities, this research makes four key 

contributions: (1) a catalog of 44 types of questions programmers ask, (2) a categorization 

of those questions into four categories based on the k ind and scope of information needed 

to answer a question, (3) a description of important context for the process of answering 

questions, and (4) a description of support that is missing from current programming tools. 
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Chapter 1 

Introduction 

To better support the activity of programming there has been substantial research on tools 

to make programming more effective (e.g., [6, 23, 40, 62]). Despite this research and despite 

the many commercial and research programming tools developed, programming remains a 

difficult activity. We) believe that tools have not helped as much as they might because 

much of the work on tools is based on intuition or personal experience rather than empirical 

research results. In fact software engineering research papers in general seem at times to 

proceed based on various relatively unsubstantiated assumptions about the support that 

programmers need from their tools or about the challenges with which programmers need 

assistance. For instance, here are several examples of assumptions made without empirical 

backing: "being forced to follow multiple different relationships... results in developers losing 

their context" [87]; "one of the problems most frequently faced in dealing with legacy software 

is the location of the code for a specific feature" [108]; and "in design recovery we need to 

be able to generate a range of views mined from both structural and behavioral information 

about the code" [75]. 

Our intention here is not to claim that these statements are necessarily incorrect, nor is 

it to claim that the tools developed are without value, we simply wish to illustrate that much 

of this work is not guided by empirical data. We also believe that a more solid, empirical 

foundation is possible and that such a foundation would be valuable for tool builders. For 

example, we believe empirical results can produce additional insights beyond intuition and 

allow researchers to address the right problems and to do so in a manner more likely to be 

useful to practitioners. 
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A large body of significant empirical work about programming activities does exist. 

Some of this work has focused on developing models of program comprehension, which are 

descriptions of the process a programmer uses to build an understanding of a software system 

(e.g., [83, 53]). One of the goals of work on program comprehension has been to inform the 

design of programming tools (e.g., [102, 92]). There have also been several studies about how 

programmers perform change tasks including how programmers use tools in that context 

(e.g., [18, 86]). 

Despite this work many open questions remain. For example, what does a programmer 

need to know about a code base when performing a change task to a software system? 

How does a programmer go about finding that information? Although this is of central 

importance to the activity of programming and the design of programming tools, surprisingly 

little is known about the specific questions asked by programmers as they work on realistic 

change tasks, and how they use tools to answer those questions. For example, we are 

aware of only a small amount of existing work that considers in detail the questions that 

programmers ask. While studying programmers performing change tasks, Letovsky observed 

a recurring behavior of programmers asking questions and conjecturing answers and he 

detailed some of those questions [57]. Erdos and Sneed proposed seven kinds of questions 

programmers must answer while performing a change task [17]. This list was based on 

their personal programming experience and includes questions such as where is a particular 

subroutine/procedure invoked? Johnson and Erdem studied questions asked to experts on 

a newsgroup [47]. Similarly, little is known about how programmers answer their questions 

and the role of tools in that process. 

Our aim is to build on this body of existing work with the goal of providing an empirical 

foundation for tool design based on an exploration of what programmers need to understand 

and of how they use tools to discover that information. We focus, in particular, on what 

programmers need to understand about a code base while performing a nontrivial change 

task to a software system. To this end, we undertook two qualitative studies. In each of 

these studies we observed programmers making source changes to medium (20 KLOC) to 

large-sized (over 1 million LOC) code bases. Based on a systematic analysis of the data from 
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these user studies, this dissertation makes four key contributions: (1) a catalog of 44 types 

of questions programmers ask, (2) a categorization of those questions into four categories 

based on the kind and scope of information needed to answer a question, (3) an analysis of 

the process of answering questions which exposed important context for the questions, and 

(4) an analysis of existing tool support for answering questions including a discussion of the 

support that is currently missing from tools. These contributions provide a foundation on 

which to build tools that more effectively support programmers in the process of performing 

a change task, and in particular gaining an understanding of a code base. 

In the remainder of this chapter we present an overview of our studies and our research 

approach (Section 1.1), describe our four key contributions (Section 1.2) and outline the 

contents of this dissertation (Section 1.3). 

1.1 Overv iew of O u r D a t a Col lec t ion and Ana lys i s 

We collected data from two studies: our first study was carried out in a laboratory setting [85] 

and the second study was carried out in an industrial work setting [84]. Both were 

observational studies to which we applied qualitative analysis. The participants in the first 

study (NI... N9) we refer to as newcomers as they were working on a code base that was new 

to them. All nine participants in the first study were computer science graduate students 

with varying amounts of previous development experience, including experience with the 

Java programming language. In this first study, pairs of programmers performed change 

tasks on a moderately sized open-source system assigned by the experimenter. We chose 

to study pairs of programmers because we believed that the discussion between the pair as 

they worked on the change task would allow us to learn what information they were looking 

for and why particular actions were being taken during the task. This study involved twelve 

sessions (1.1... 1.12) with each participant participating in two or three sessions with different 

pairings in each session. 
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The second study entailed 15 sessions (2.1... 2.15) carried out with 16 programmers 

(El.. . E16) in an industrial setting. With one exception, in this study we studied individual 

programmers working alone (rather than in pairs) because that was their normal work 

situation. Participants were observed as they worked on a change task to a software system 

for which they had responsibility. The systems were implemented in a range of languages and 

during the sessions the participants used the tools they would normally use. We asked each 

participant to select the task on which they worked to ensure that the tasks were realistic and 

because we were interested in observing programmers working on a range of change tasks. 

They were asked to think-aloud while working on the task [101]. Through these studies we 

have been able to observe a range of programmers working on a range of change tasks, using 

a range of programming tools. Varying the study situation along these dimensions has been 

deliberate as we believe that a broad look at the process of asking and answering questions 

was needed. 

To structure our data collection and the analysis of our data, we have used a grounded 

theory approach, which is an emergent process intended to support the production of a 

theory that "fits" or "works" to explain a situation of interest [25, 96]. Grounded theory 

analysis revolves around various coding procedures which aim to identify, develop and relate 

the concepts. In this approach, data collection, coding and analysis do not happen strictly 

sequentially, but are overlapping activities. As data is reviewed and compared (a process 

referred to as "constant comparison"), important themes or ideas emerge (i.e., categories) that 

help contribute to an understanding of the situation. As categories emerge, further selective 

sampling can be performed to gather more information, often with a focus on exploring 

variation within those categories. Further analysis aims to organize and understand the 

relationships between the identified categories, possibly producing higher-level categories in 

the process. The aim here is to build rather than test theory and the specific result of this 

process is a theoretical understanding of the situation of interest that is grounded in the data 

collected. 

During the sessions of both studies, including the interview portions of those sessions, 

the experimenter (the author of this dissertation) made field notes. These field notes were 
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later supplemented by transcripts of much of the audio data. Summaries rather than full 

transcripts were made of several portions of our audio data (in particular from the second 

study) that did not relate to our analytic interests. Our coding work proceeded from these 

transcripts, though also with occasional support of the audio data. Three kinds of coding were 

used in our analysis: open coding which involves identifying concepts in the data (as opposed 

to assigning predefined categories), selective coding which focuses on further developing 

identified categories, and theoretical coding which focuses on exploring the relationships 

between categories. Coding was primarily performed by the author of this dissertation, 

however members of the supervisory committee (Gail Murphy, Kris De Voider and Brian 

Fisher) supervised this work. 

Coding of our empirical data proceeded in four major phases, each of which involved 

a relatively detailed review of nearly all data collected to the point in time at which the 

coding was performed. The first phase involved open coding of only the data from the first 

study, and was conducted both during and after that study. The results of this coding are 

summarized in Section 3.2. The goal of this phase was not to achieve saturation, but simply 

to help provide a general understanding of how our participants managed their work and help 

identify central issues for further analysis. Based on this first phase of coding we decided 

to focus our further analysis on our participants' questions and their activities around those 

questions. 

In the second phase, which began before the second study commenced and continued 

during and after that study, we used selective coding to identify the questions asked by our 

participants. This phase also involved "constant comparison" of those questions. In the 

process we found that many of the questions asked were roughly the same, except for minor 

situational differences, so we developed generic versions of the questions, which very slightly 

abstract from the specifics of a particular situation and code base. For example, we observed 

specific comments from session 2.15 including "I am just looking at the data structures here 

trying to figure out how to get to the part I need to get to" [E16] and "to fix it I have to 

somehow get the variable from the field to pass into this function" [E16]. Abstracted versions 

of the questions this participant was asking are What data can we access from this object? 
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and How can data be passed to (or accessed at) this point in the code? (see questions 16 

and 28 discussed i n Chapter 5). 

The questions identified are low-inference representations of our data which have (along 

wi th the transcripts) formed a basis for theoret ical ' coding which focused on further 

comparisons of the questions asked. In the process we found that many of the similarities 

and differences could be understood.in terms of the amount and type of information required 

to answer a given question. Th i s observation became the foundation for a categorization of 

these questions into four categories discussed further in Section 5.1. Dur ing this th i rd phase 

we also selectively coded for activities around answering the identified questions both at the 

part icular question level and at the category level. A final phase of analysis involved a review 

of both the audio data and the transcripts to insure the consistency of our coding. Th is 

also gave us confidence that no significant questions or other insights relative to our analytic 

interests were missed, and that the analysis could stop. 

Beyond the analysis of our empir ical data we have also considered the level of tool support 

for answering questions provided by a wide range of tools, inc luding relevant tools discussed 

in the research literature. T h i s investigation drew on our findings around the questions asked 

and the behavior we observed around answering those questions. T h e goal here was to explore 

the level of support today's tools provide for answering the questions we have identified and 

to increase the generalizability of our results. 

1.2 Overv iew of Cont r ibu t ions 

Based on our systematic analysis of the data collected from the two studies, this research 

makes four key contributions that contribute to an understanding of what programmers need 

to know about a code base and the role tools play in discovering that information. The work 

described in this thesis is covered in two publications [85] and [84]. 

1. A n empir ical ly based catalog of the 44 types of questions asked by the participants 

of the two studies. These are slight abstractions over the many specific questions 

and situations we have observed. These abstractions have allowed us to compare and 
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contrast the questions asked as well as to gather some simple frequency data for those 

questions. Example questions include: Which types is this type a part of? which was 

asked in two different sessions, What in this structure distinguishes these cases? which 

was asked in three different sessions, and Where should this branch be inserted or how 

should this case be handled? which was asked in seven different sessions. Al though not a 

complete list of questions, it illustrates the sheer variety of questions asked and provides 

a basis for an analysis of tool support for answering questions. To our knowledge this 

is the most comprehensive such list published to date. 

2. A categorization of the 44 types of questions into four categories based on the k ind 

of information needed to answer a question: one category groups questions aimed 

at finding in i t i a l focus points, another groups questions that bu i ld on in i t ia l points, 

another groups questions that bui ld a model of connected information, and the final 

category groups questions over one or more models buil t from the previous category. 

A l though other categorizations of the questions are possible, we have selected this 

categorization for three reasons. Fi rs t , the categories show the types and scope of 

information needed to answer the questions. Second, they capture some intuit ive sense 

of the various levels of questions asked. Final ly , the categories make clear various 

kinds of relationships between questions, as well as certain observed challenges around 

answering those questions. 

3. A n analysis of the observed process of asking and answering questions, which provides 

valuable context for the questions we report. We have shown that many of the 

questions asked were closely related. For example, some lower-level questions were 

asked as part of answering higher-level questions. We have shown that the questions 

a part icipant asked often mapped imperfectly to questions that could be answered 

directly using the available tools. For example, at times the questions programmers 

pose using current tools are more general than their intended questions. We have also 

shown that programmers, at times, needed to mentally combine result sets or other 

information from mult iple tools to answer their questions. These results contribute 

7 



to our understanding both about how programmers answer their questions and the 

challenges they face in doing so. 

4. A n analysis of the support existing tools (both industry tools and research tools) provide 

for answering each k ind of question. We consider which questions are well supported 

and which are less well supported. We also generalize this information to demonstrate a 

gap between the support tools provide and that which programmers need. In particular 

we show that programmers need improved support for asking higher-level questions 

and more precise questions, support for maintaining, context and put t ing information 

together, and support for abstracting information and working w i t h subgraphs of source 

code entities and relationships. We hope these results w i l l provide motivat ion and a 

foundation for the design of future programming tools. 

Our analysis has allowed us to consider our data at different levels, each producing 

different insights. We believe that these insights w i l l be of value to both research and tool 

design. To show this, this dissertation also includes a discussion of how tool research and 

design can benefit from our work (i.e., an exploration of the implicat ions of these results). 

1.3 Overv iew of Disser ta t ion Contents 

Chapter 2 (Related Work) 

Chapter 2 compares our research to previous work, including work in the area of program 

comprehension (including, work that has proposed cognition models, efforts to use those 

models to inform tool design and work that analyzes questions asked by programmers) and 

empirical studies of how programmers manage change tasks. 

Chapters 3 and 4 (User Studies) 

Chapters 3 and 4 give setup details (tasks, participants, tools used, etc.) for the two studies we 

performed. T h e laboratory study is described in Chapter 3. The industry study is described 

in Chapter 4. These chapters also discuss some in i t ia l observations from each study. Our 
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in i t ia l observations from the first study are organized around eight key observations and five 

challenges. Our in i t i a l observations from the second study focus on aspects of the situation 

that differ from that of the first study. 

Chapter 5 (Questions in Context) 

The results of our analysis of the data collected from our two studies is presented in Chapter 5. 

Broadly, this presentation is in two parts. The first is in Section 5.1 and presents the 44 types 

of questions along wi th our categorization of these questions into four top-level categories. 

The second is in Section 5.2 and presents context around answering those questions. 

Chapter 6 (Analysis of Tool Support) 

Further analysis of these questions, including a discussion of how well existing industry and 

research tools support a programmer in answering these questions, is presented in Chapter 6. 

Support for each question is rated as full (i.e., well supported), partial (i.e., some support 

but not complete), and minimal (i.e., l i t t le or not tool support) . Chapter 6 also contains an 

overall discussion of the type of tool support that is currently lacking. 

Chapter 7 and 8 (Discussion and Summary) 

Chapter 7 discusses possible implications for our results including making specific suggestions 

for programming tool design. Chapter 7 also contains a discussion of the l imits of our results 

and a discussion of possible future studies that could be used to bu i ld on our work. We 

conclude this dissertation wi th a summary in Chapter 8. 
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C h a p t e r 2 

Related Work 

In this chapter, we discuss a range of work related to our research. For each of these we 

describe the similarities and differences with our work. We cover work in the area of program 

comprehension including cognitive models, efforts to use those theories to inform tool design, 

and studies around the analysis of programmers' questions (see Section 2.1). We also cover 

previous empirical studies that have looked at how programmers use tools and generally how 

they carry out change tasks and other programming activities (see Section 2.2). This coverage 

includes a discussion of studies that use similar research methods. However a discussion of 

particular research tools to support various programming activities is not provided here. 

Instead, a detailed discussion of this work is provided in Chapter 6, where we analyze the 

support a wide range of research and industry tools provide for answering the questions 

programmers ask. 

2.1 P r o g r a m Comprehens ion 

Program comprehension or software understanding is a broad field encompassing a large body 

of work. Some of this work has focused on proposing cognitive models. We discuss this work 

in Section 2.1.1. Other work has attempted to use these models or theories to inform tool 

design. This work is discussed in Section 2.1.2. A third category of work in this area that is 

most closely related to our work, has focused on analyzing the questions programmers ask. 

This work is discussed in Section 2.1.3. 
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2.1.1 Cognitive Models 

A cognitive model describes the cognitive processes and information structures used by 

programmers to form a mental model, which is a programmer's mental representation of 

the program being maintained. Many cognitive models have been proposed, and there are 

both similarities and differences between these models [103]. For example all models rely 

on the programmer's own knowledge, the source code and available documentation [103]. 

Disparities between various comprehension models can be explained in terms of differences 

in experimental factors (programmer characteristics, program characteristics and task 

characteristics) that influence the comprehension process [91]. 

In this section we discuss several key cognitive models organized around three categories: 

top-down program comprehension, bottom-up program comprehension, and models combin-

ing multiple strategies. 

Theories by Brooks [8, 9], Koenemann and Robertson [53], and Soloway and Ehrlich [88] 

are all based on a top-down approach. Brooks' model, for example, proposes that 

programmers comprehend a system by reconstructing knowledge about the domain of the 

program and by working to map that knowledge to the source code. This process starts 

with a hypothesis about the top-level goal of the program which is then refined by forming 

sub-hypotheses. This process then continues recursively (in a depth-first manner) until the 

hypotheses can be verified. Brooks claims that verification depends on beacons in the code, 

which are features that give clues that a particular structure or operation is present. Again, 

experimental support exists for each of these models, however the generalizability of the 

results from the supporting experiments may be limited. 

According to the bottom-up theory of program comprehension, programmers first read 

individual statements in the code and then mentally group those statements into higher-level 

abstractions (capturing control-flow or data-flow, for example). These abstractions are in 

turn aggregated until this recursive process produces a sufficiently high-level understanding 

of the program [83]. This process is sometimes referred to as chunking and is driven by the 

limitations in short term memory [61]. Two theories that propose a bottom-up approach are 

Pennington's model [71] and Shneiderman and Mayer's cognitive framework [82]. Pennington 
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claims that programmers use a bottom-up approach to form two kinds of models. The first 

is the program model , which is a model of the control-flow of the program. The second is the 

situation model, which is a model of the data-flow and functions of the program. Shneiderman 

and Mayer ' s framework considers syntactic knowledge and semantic knowledge separately, 

w i th semantic knowledge being buil t in a bottom-up fashion. E a c h of these proposed models 

are supported by empir ical evidence, although the evidence is based on experiments involving 

small programs. 

L i t t m a n et al. noted that programmers use either a systematic strategy or an as-needed 

strategy [58]. The i r experiments found that programmers need to get both static knowledge 

(structural information) and causal knowledge (information about runtime interactions 

between components) and that using an as-needed approach made the second type of 

information difficult to gain accurately. Letovsky's knowledge-based understanding model 

proposes that programmers work "opportunist ically", using both bottom-up and top-down 

strategies [56, 54]. A core component of this model is a knowledge base that encompasses a 

programmer's expertise and background- knowledge. Soloway et al. also propose a model 

in which programmers use a number of different strategies in the process of t rying to 

understand a program including: inquiry episodes (read, question, conjecture and search 

cycle), systematic strategies (tracing the flow, of the program) and as-needed strategies 

(studying par t icular ly relevant portions of a program) [89]. F ina l ly , von Mayrhauser and 

Vans .propose a model that they cal l the integrated metamodel. T h i s model combines four 

components. Three of these describe the comprehension process: the top-down model (i.e., a 

domain model), the program model (a control-flow abstraction) and the situation model (a 

data-flow and functional abstraction). The fourth component of the integrated metamodel is 

a support ing knowledge base as in Letovsky's model. 

In contrast our work has not focused on proposing new models of program comprehension. 

Nor have we at tempted to validate any of these existing models. Instead we aim to 

complement this work by filling in important details often abstracted away by theories of 

comprehension. To do this we have thoroughly analyzed the information that programmers 
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need to discover. We have also analyzed programmers' behavior around discovering that 

information along w i t h the role that tools play in the answering process. 

2.1.2 Informing Tool Design 

One of the goals of work in the area of program comprehension has been to inform the design 

of programming tools (or better documentation methods [89]) to support a programmer wi th 

various program understanding processes. A s a pr imary goal of our research has also been to 

empir ical ly support the design of programming tools, in this section we discuss several efforts 

in this direction. 

V o n Mayrhauser and Vans ' approach to this is based on their proposed integrated 

metamodel [102]. Specifically they have used their model (and the supporting empirical 

studies) to produce a list of tasks and subtasks programmers need to perform as part of 

understanding a system. For each of these they have suggested associated information needs 

along wi th tool capabilities to support those information needs. For example, a programmer 

bui lding a program model (a task) w i l l need to investigate and revisit code segments (a 

subtask). To do this he or she w i l l need access to previously browsed locations (an information 

need) which could be supported by a tool that provides a history of browsed locations (a tool 

capabil i ty) . 

Storey et al. present a hierarchy of cognitive issues or design elements to be considered 

during the design of a software exploration or visualization tool [92]. The i r framework is based 

on a wide range of program comprehension work and is inspired by a similar framework 

from the domain of hypermedia tools [99]. Elements in this hierarchy represent possible 

design goals (for example, enhance top-down comprehension) w i th the leaves capturing more 

concrete design goals (or features) a tool should have given those higher-level design goals 

(for example, support goal-directed hypothesis-driven comprehension and provide an adequate 

overview of the system architecture at various levels of abstraction). Storey et al. suggest 

that this hierarchy, along wi th an iterative design, implement and evaluate approach to tool 

bui lding can lead to tools that effectively support programmers in exploring code [93]. 
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Work by Walenstein represents a different approach to bridging the gap between cognitive 

models and tool design [105, 104]. His goal is to provide a more solid theoretical grounding 

for the design of programming tools based on program comprehension theories as well as 

other cognitive theories. To this end, Walenstein discusses a theory of cognitive support. 

While a program comprehension theory describes the process of building a mental model, 

a theory of cognitive support describes the mental assistance tools can provide. Walenstein 

claims that such a theory can be used to rationalize tool features in terms of their support 

for cognition. Example principles that support might be based on include: redistribution 

(moving cognitive resources to external artifacts) and perceptual substitution (transforming 

a task into a variant that is cognitively easier). 

Our work takes a different approach to influencing the design of tools. Rather than begin 

with models of cognition or other cognitive theories, we begin with observations about how 

programmers manage a change task and develop an understanding of the associated activities. 

In particular we aim to use qualitative studies to fill in details around the specific questions 

programmers ask and how they use tools to answer those questions. We believe these details 

provide an important connection between program comprehension theories and programming 

tool research and design. 

2.1.3 Analysis of Questions 

Possibly the research that is closest to our work is previous research into the questions 

programmers ask or the information they need to perform their work. Like our work most of 

this research (the work by Erdos and Sneed being the one exception) is based on the analysis 

of qualitative data collected from studies of programmers performing change tasks. 

Letovsky presents observations of programmer activities which he calls inquiries [56, 57]. 

These may involve a programmer asking a question, conjecturing an answer and then possibly 

searching through the code and documentation to verify the answer (i.e., the conjecture). 

Letovsky believes there are five kinds of conjectures (and therefore five kinds of associated 

questions). The first three kinds or categories of conjectures are: why conjectures (questioning 

the role of a piece of code), how conjectures (about the method for accomplishing a goal) and 
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what conjectures (what is a variable or function). The last two categories interact with the 

first three. They are whether conjectures (concerned with whether or not a routine serves a 

given purpose) and discrepancy conjectures (questioning perceived discrepancies). The data 

for Letovsky's taxonomy is from a study of six programmers working on assigned change 

tasks to a very small program (approximately 250 lines of code). In contrast, we aim to 

develop a more comprehensive list of questions and we aim to do this based on much larger 

systems, a range of realistic tasks and in the context of the tools available today. 

Erdos and Sneed suggest, based on their personal experience, that seven questions need 

to be answered for a programmer to maintain a program that is only partially understood: 

(1) where is a particular subroutine/procedure invoked? (2) what are the arguments and 

results of a given function? (3) how does control flow reach a particular location? (4) where 

is a particular variable set, used or queried? (5) where is a particular variable declared? (6) 

where is a particular data object accessed? and (7) what are the inputs and outputs of a 

module? [17]. Note that these are seven specific questions, rather than a number of categories 

as presented by Letovsky. Our work aims to produce a more comprehensive list of questions, 

but based on empirical results from a range of participants. Our work also aims to consider 

higher-level questions than those discussed by Erdos and Sneed. 

Johnson and Erdem extracted and analyzed questions posted to Usenet newsgroups 

[47]. These questions were classified as goal-oriented (requested help to achieve task-specific 

goals), symptom-oriented (why something is going wrong) and system-oriented (requested 

information for identifying system objects or functions). By basing this work on newsgroup 

postings they were looking at questions asked to experts and they point out that "newsgroup 

members may have been reluctant to ask questions that should be answerable by examining 

available code and documentation" [48, page 59]. Our goal has been to identify questions 

asked during such an examination. 

Building on this work, Erdem et al. also analyzed questions from the Usenet study just 

mentioned and questions from a survey of the literature (including the work described above) 

to develop a model of the questions that programmers ask [16]. In their model, a question is 

represented based on its topic (the referenced entity), the question type (one of: verification, 
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identification, procedural, motivat ion, time or location) and the relation type (what sort of 

information is being asked for). Aga in , our a im has been to produce a more comprehensive 

list of questions, including questions at a higher level than those captured in this work. 

Herbsleb and K u w a n a have empirical ly studied questions asked by software designers 

during real design meetings in three organizations [38]. T h e y determined the types of 

questions asked as well as how frequently they were asked. Based on a separate study 

they also present questions asked by programmers concerning software requirements [55]. 

Our approach is s imi lar ly empir ical ly based, however we focus on questions asked while 

performing a change task to a system, rather than questions asked during design meetings 

for a new system or dur ing requirements gathering. 

2.2 Empirical Studies of Change Tasks 

The si tuation of programmers performing change tasks has been studied from a number of 

perspectives. M a n y of these have, at least partially, explored the use of programming tools. 

For example, Storey et al. carried out a user study focused on how program understanding 

tools enhance or change the way that programmers understand programs [95]. In their study 

th i r ty participants used various research tools to solve program understanding tasks on a small 

system. Based on these Storey et al. suggest that tools should support mult iple strategies 

(top-down and bottom-up, for example) and should aim to reduce cognitive overhead during 

program exploration. In contrast to our work, Storey et al.'s work d id not attempt to analyze 

specifically what programmers need to understand. 

M u r p h y et al. report on observations around how programmers are using the Eclipse 

Java Development Environment [67]. These observations are based on usage data from 41 

programmers collected by an Eclipse plugin that monitors a wide range of user actions. 

Observations include the percentage of programmers using the various tools (the Package 

Explorer , the Console and the Search Results V i e w were used by the highest percentage), 

the commands used by the most programmers (Delete, Save and Paste were among those 

used by the most programmers), and which refactoring commands were used by the most 
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programmers (Rename being the most popular). These results should provide important 

information for tool builders on how their tools are being used. We used a similarly 

instrumented version of Eclipse in our first study, which has allowed us to collect some 

of this same type of data. However we have collected data over a much shorter duration 

which limits the conclusions we can draw. Instead we have focused our analysis efforts on 

the qualitative data we have collected. 

More similar to our study are efforts that qualitatively examine the work practices of 

programmers. For example, Flor et al. used distributed cognition to study a single pair of 

programmers performing a straightforward change task [18]. We extend their methods to a 

larger participant pool and a more involved set of change tasks with the goal of more broadly 

understanding the challenges programmers encounter. As another example, Singer et al. 

studied the daily activities of software engineers [86]. We focus more closely on the activities 

directly involved in performing a change task, producing a complementary study at a finer 

scale of analysis. 

Four recent studies have focused on the use of current development environments (as 

do our studies). Robillard et al. characterize how programmers who are successful at 

maintenance tasks typically navigate a code base [77]. Deline et al. report on a formative 

observational study also focusing on navigation [15]. Our study differs from these in 

considering more broadly the process of asking and answering questions, rather than focusing 

exclusively on navigation. Ko et al. report on a study in which Java programmers used the 

Eclipse development environment to work on five maintenance tasks on a small program [51]. 

Their intent was to gather design requirements for a maintenance-oriented development 

environment. Our study differs in focusing on a more realistic situation involving larger code 

bases, and more involved tasks. Our analysis differs in that we aim specifically to understand 

what questions programmers ask and how they answer those questions. De Alwis and Murphy 

report on a field study about how software developers experience disorientation when using 

the Eclipse Java integrated development environment [1]. They analyzed their data using the 

theory of visual momentum [111], identifying three factors that may lead to disorientation: 

the absence of connecting navigation context during program exploration, thrashing between 
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displays to view necessary pieces of code, and the pursuit of sometimes unrelated subtasks. 

In contrast, our analysis has not employed the theory of visual momentum and has focused 

on questions and answers rather than disorientation. 

2.3 Summary 

Our work is related to work in the area of program comprehension. Much of this research has 

focused on proposing and validating cognitive models, that is models of how programmers 

understand programs. Other work has attempted to use those models to inform the design 

of tools. Most closely related to our work in this area are previous efforts around analyzing 

the questions programmers ask as the perform a change task. Our work aims to build on 

this previous work by providing a much more comprehensive list of questions, by analyzing 

programmer behavior around answering those questions and also by analyzing tool support 

for answering questions. Our work is also related to previous work that empirically studies 

how programmers perform change tasks or how programming tools are used. We differ from 

much of this work by studying more realistic situations and by focusing more specifically on 

the process of asking and answering questions. 
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Chapter 3 

Study 1: Laboratory-based 

Investigation 

The first study we carried out was conducted in a laboratory setting. The goal of this study 

was to observe programmers performing significant change tasks using state-of-the-practice 

development tools. Several study design choices were made to make this as realistic as 

possible. Specifically we used: real change tasks, experienced programmers and a non-trivial 

code base (about 60KLOC). The study involved nine participants (all of whom were computer 

science graduate students) and a total of twelve sessions. In each session two participants 

performed an assigned task as a pair working side-by-side at one computer. We chose to 

study pairs of programmers because we believed that the discussion between the pair as 

they worked on the change task would allow us to learn what information they were looking 

for and why particular actions were being taken during the task, similar to earlier efforts 

(e.g., [18] and [63]). During each session an audio recording was made of discussion between 

the pair of participants, a video of the screen was captured, and a log was made automatically 

of the events in Eclipse related to navigation and selection. At the end of the session the 

experimenter (the author of this dissertation), who was present during each session, briefly 

interviewed the participants about their experience. 

In this chapter we present study details for this first study, including: setup (Section 3.1), 

tasks (Section 3.1.1) and participants (Section.3.1.2). We also cover some initial observations 

that resulted from our analysis of the data from this study only. These initial observations 

capture the basic activities we observed organized around eight key observations which are 

summarized in Table 3.3. Examples of these key observations include Goals were initially 
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narrowly focused, but became more broad in scope as programmers struggled to understand 

the system sufficiently to perform the task, (see Observation 2) and Revisiting entities and 

relationships was common, but not always straightforward, (see Observation 8). As described 

earlier (see Section 1.1) we have used a grounded theory approach in analyzing our data. 

The observations presented here are based on the categories we developed as part of trying 

to understand the situation under study and before focusing our analysis more closely on the 

question and answering process. In addition to being interesting in their own right, presenting 

these initial observations provides insights into the way our theoretical understanding of this 

situation has developed as we applied grounded theory analysis. 

We selected complex, non-local changes for our participants to work on. The reason 

for this choice was to make the situation realistic and to gather data about a challenging 

situation, one that would likely benefit from tool support. As expected, the participants in 

this study found the assigned tasks challenging and many participants expressed a feeling of 

having made little progress during a session or specific parts of a session. In this chapter 

we present our initial impressions of the major challenges that the participants faced in 

completing the tasks: gaining a sufficiently broad understanding and ineffective use of tools, 

for example. Results from a more extensive analysis of the data from both studies, including 

further discussion about these challenges, is presented in Chapter 5. 

3.1 Study Setup 

Participants in this study used the Java programming language [28] and the Eclipse Java 

development environment (version 3.0.1), a widely used IDE that we consider representative 

of the state-of-the-practice [43]. A screenshot of Eclipse is shown in Figure 3.1 showing several 

commonly-used views or tools: the package explorer (showing the package, file and class 

structure), the tabbed source code editor, the content outline view (showing the structure 

of the currently open file) and the call hierarchy browser. Other commonly-used views not 

shown in the screenshot include a type hierarchy view, a search results view (showing results 

from both lexical and static analysis based searches), a breakpoint view, a variable view 
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Figure 3.1: A screenshot of the Eclipse Development Environment, with several major tools 

labeled: (A) package explorer, (B) source code editor with tabs, (C) content outline view, 

and (D) call hierarchy browser. 

(showing runtime values of variables in scope while executing an application in debug mode), 

and a launch view (which shows the execution stack, also while in debug mode). 

The study involved twelve sessions (1.1... 1.12). In each session two participants 

performed an assigned task as a pair working side-by-side at one computer. Following the 

terminology of Williams et al. [110], we use the term "driver" for the participant assigned 

to control the mouse and keyboard and "observer" for the participant working with the 

driver. In most sessions, the least experienced programmer was asked to be the driver. This 

choice was intended to encourage the more experienced programmer to be explicit about their 

intentions. The pairings are summarized in Table 3.1. 

In each session, the programming pair was given forty-five minutes to work on a change 

task. Participants were stopped after the forty-five minutes elapsed regardless of how much 

progress had been made. No effort was made to quantify how much of the task had been 
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Session Driver Observer Task 

1.1 N7 N3 484 

1.2 N4 NI 1622 

1.3 N4 N7 1021 

1.4 N6 N4 1622 

1.5 N5 N3 1622 

1.6 N5 N2 1021 

1.7 N3 NI 1622 

1.8 N7 N5 2718 

1.9 N8 N6 2718 

1.10 N8 N2 1622a 

1.11 N9 N2 1622a 

1.12 N9 N6 1622a 

Table 3.1: Session number, driver, observer and assigned task for each session. 

completed. In four of the sessions (sessions 1.4, 1.7, 1.11 and .1.12) participants were asked to 

work on the same task that they had worked on in a previous session, allowing us to gather 

data about later stages of work on the task. An audio recording was made of discussion 

between the pair of participants, a video of the screen was captured, and a log was made 

automatically of the events in Eclipse related to navigation and selection. The experimenter, 

who was present during each session, then briefly interviewed the participants about their 

experience. The interviews were informal and focused on the challenges faced by the pair, 

their strategy, how they felt about their progress and what they would expect to do if they' 

were continuing with the task. An audio recording of the interview was made. 
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3.1.1 Change Tasks 

Table 3.2 describes the change tasks assigned to participants. The tasks were all 

enhancements or bug fixes to the ArgoUML
1

 code base (versions 0.9, 0.13 and 0.16). 

ArgoUML is an open source UML modeling tool implemented in Java. It comprises roughly 

60KLOC. The tasks were complex, completed tasks chosen from ArgoUML's issue-tracking 

system. Table 3.2 also gives an estimate of the number of files that would need to be modified 

to successfully perform the change task. This number is based on the revision history from 

the ArgoUML project and should only be considered approximate because there are likely to 

be multiple ways to complete a change, and at times multiple smaller changes are committed 

at the same time. However, these estimates illustrate that these tasks were based on complex, 

non-local changes, which we selected to make the situation realistic and to gather data about 

a challenging situation, one that would likely benefit from tool support. 

Because of the choice of tasks, we did not expect that the participants would be able to 

complete the tasks in the time allotted, but we believed they would be able to make significant 

progress. Participants were asked to accomplish as much as possible on the one task, but not 

to be concerned if they could not complete the task. In four of the sessions, 1.4, 1.7, 1.11 

and 1.12, participants were asked to work on the same task they had worked on in a previous 

session, allowing us to gather data about later stages of work on the task. Table 3.1 shows 

which tasks were assigned for each session. 

3.1.2 Participants 

Nine programmers (NI.. .N9) participated in our first study. All nine participants are male 

and were computer science graduate students with varying amounts of previous development 

experience, including experience with the Java programming language. Participants NI, N2 

and N3 had five or more years of professional development experience. Participants N4, N5 

and N6 had between two and five years of professional development experience. Participants 

N7, N8 and N9 had no professional development experience, but did have one or more years 

1

http:/ /argouml.t igris .org, last verified August 2006 
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Task Files Description 

484 6 Make the font size for the interface configurable from 

the GUI. 

1021 4 Add drag and drop support for changing association 

ends. 

1622 9 Add property panel support for change, time and 

signal event types. 

1622a 9 Add textual annotation support for change, time and 

signal event types. 

2718 13 Fix a model saving error that occurs after a use case 

with extends relationships is deleted from the model. 

Table 3.2: Study tasks along with an estimate on the number of files needed to be changed 

to perform the task. Numbers refer to IDs in the ArgoUML issue tracking system. Note that 

task 1622a is not an ID from the tracking system, as the task is simply a variation on task 

1622. 
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of programming experience in the context of academic research projects. All participants had 

at least one year of experience using Eclipse for Java development; all except N4 and N9 had 

two or more years. Each participant participated in two or three sessions (see Table 3.1). All 

participants in this study were initially newcomers to the code base used. The participants 

worked on the same code base for each session and may have gained some familiarity with 

the code base over the course of those sessions. 

3.2 Initial Observations 

We begin with a brief summary of the actions we observed participants perform and the 

tools they used. Following this summary we present some initial results from our analysis 

of the data collected in this study. These results are organized around eight observations 

(summarized in Table 3.3). These observations are based on the categories and dimensions 

we identified as being important to the situation under study. The method by which we 

developed these observations is described in more detail in Section 1.1. The description of 

each observation includes supporting data, often in the form of quotes from the recorded 

dialog, as well as comments on related research where possible. In Section 3.2.1 we present 

several observations around our first impressions on the challenges faced by the participants in 

this study. Note that the results presented in this chapter have been published previously [85]. 

The actions we observed may be summarized into five categories: (1) static exploration 

of the source code using a number of different tools, including viewing the source code in 

the editor; (2) setting break points and running the application in debug mode, which allows 

stepping through the execution and inspecting the execution stack and object values; (3) 

making paper notes; (4) making changes to the source code; (5) and reading online API 

documentation. Figure 3.2 shows the specific tools that were used during static exploration 

and debugging activities. The percentages in the figure represent the proportion of logged 

events (ignoring selections in the editor) over all sessions using the given tool. Various 

navigation actions, such as navigate to declaration, account for an additional 11.7% of the 
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1 Goals were often decomposed into sub-goals that could be investigated directly, but 

the sub-goals were not always easy to form. 

2 Goals were initially narrowly focused, but became more broad in scope as 

programmers struggled to understand the system sufficiently to perform the task. 

3 Programmers wrote code early in the change process. 

4 Programmers minimized the amount of code that was investigated in detail. 

5 Exploration activities were of two distinct types: (1) those aimed at finding initial 

focus points and (2) those aimed at building from such points. 

6 Building a complete understanding of the relevant code was difficult. 

7 Programmers' false assumptions about the system were at times left unchecked and 

made progress on the task difficult. 

8 Revisiting entities and relationships was common, but not always straightforward. 

Table 3.3: Summary of key observations. 

logged events and are not shown in the figure. This data indicates that the programmers did 

make use of many of the facilities of the development environment. 

Observation 1: Goals were often decomposed into sub-goals that could be 

investigated directly, but the sub-goals were not always easy to form. 

In all of the sessions, participants decomposed goals (or questions.) into sub-goals that 

could be more directly supported by the tools in the development environment. N4 described 

this process as "trying to take [my] questions and filter those down to something meaningful 

where I could take a next step" [1.3]. As an example of this process, early in 1.10 the 

programmers determined that they needed to understand where in the code call events were 

being parsed. To accomplish this goal, four sub-goals or sub-questions were identified whose 

resolution were relatively directly supported by the development environment. 

1. "Find out where [MCallEventJ gets created" [N8]. The action for this sub-goal was 

a reference search on the specified class; this query returned two results which the 
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Debugging tools 

Breakpoint view (1.2%) | | 

Variables view (4.6%) | | 

Launch view (20.5%) | I 

Tools used for static exploration 

Call Hierarchy (5.2%) | | 

Package explorer (6.6%) | | 

Content outline (10.4%) | | 

Type hierarchy (14.6%) | . I 

Search results view (24.6%) | ' � �� . � � . -. | 

Figure 3.2: A summary of tool usage over all sessions. The percentages represent the 

proportion of recorded events using the given tool. Only those tools that accounted for 

at least 1% of the events are shown. Navigational events accounted for an additional 11.7% 

of the events. 
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participants inspected in the search results view. They decided that "[MFactorylmpl] 

is a good place to start" [N8]. 

2. Find out where the event object creation (MFactorylmpl) is initiated during the parsing 

of text input. From the search view, the programmers opened the createCallEvent 

method of the MFactorylmpl class and then searched for references to the method. They 

then followed a chain of three more searches for references directly in the search view, 

eventually resulting in them opening the parseEvent method from the ParserDisplay 

class in the editor. 

3. Verify that the method found was in fact where the parsing takes place: "do you 

think [parseEvent]- is it?" [N8]. To accomplish this sub-goal the participants set a 

break point and ran the application in debug mode. They were able to confirm their 

hypothesis when the breakpoint was hit, 

4. Finally they wanted to find an appropriate point on the execution path to begin making 

changes to the code: "so we have to search backwards from here" [N8]. They used 

the variables view (in Eclipse's debug perspective) to determine various stages in the 

parsing. 

Translating goals in this way was not always straightforward. For example, we observed 

that the question "how does [MAssociation] relate to [FigAssociation]?" [1.3/N4] can 

not be answered directly in the development environment, but rather requires a significant 

amount of exploration to identify and integrate the various relationships involved. While this 

behavior bears some resemblance to the top-down model of program comprehension described 

in Section 2.1.1, we see this as driven by the level at which the available tools operate. 

Observation 2: Goals were initially narrowly focused, but became more broad in 

scope as programmers struggled to understand the system sufficiently to perform 

the task. 

At the start of a change task, participants in this study typically attempted to learn as 

little as possible about the system, focusing on very specific parts of the system, rather than 
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learning about broader issues, such as the package structure or architecture of the system. 

For instance, the pairs in sessions involving task 1622 (1.2, 1.4, 1.5 and 1.7) all focused on 

understanding how control reached the PropPanelCallEvent class to learn some key behavior 

assumed important for the task, rather than working to understand overall how the panel 

GUI worked. 

For several sessions (most notably 1.6, 1.7, 1.9 and 1.12), the participants felt by the end 

of the session that to succeed with the task they needed to consider the system more broadly: 

"I would definitely need a big picture, we are sort of in this small little bit of code [...] we 

need to back up further and see what else was out there" [1.12/N9]. This comment seems to 

have been caused by a realization that the solution for the task is more complex than first 

suspected. As another example, at the end of session 1.7, the driver felt that "focusing on 

how to solve the task is too premature, because we're never going to figure it out if we are too 

narrow, I think we really have to get a wider view" [N3|. 

One approach suggested by our participants as a means of gaining a broader view was to 

essentially continue the same exploration approach but getting gradually more broad ( "we 're 

kind of circling in a spiral [. . .] we got to get a bit further out" [NI]). This suggestion is 

consistent with the bottom-up approach described in Section 2.1.1, though in the sessions we 

observed, participants aimed to develop an understanding of specific task relevant concerns 

in the source code, rather than an entire program. Three other approaches were suggested 

by our participants: looking at architectural documentation, exploring the package structure, 

and using a "brute force" [1.6/N2] approach, which involved stepping through the running 

application using the debugger, looking at much more of the system than had been considered 

up to that point. 

Observation 3: Programmers wrote code early in the change process. 

In half of the sessions (1.1, 1.5, 1.7, 1.8, 1.10 and 1.12) programmers felt that a relatively 

narrow and incomplete understanding of the relevant code was sufficient to begin making 

changes to the source code. In these sessions, programmers began writing code as soon as 

they knew enough to begin. The pair in session 1.5 referred to their writing of code as 

"mucking around with things" [N3]. In contrast, in the other six sessions, the programmers 
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set out to gain an understanding of all (or most) of the relevant code before beginning to 

make any changes. One programmer expressed discomfort coding too soon: "I think I have 

just seen too many cases where [programmers] never come back and it is just really hard to 

maintain it afterwards" [1.8/N7]. 

When coding occurred it appeared to be part of an exploratory process that served several 

purposes that appear to have not yet been discussed in the literature. First, it minimized the 

amount of information that participants needed to remember as many pieces of information 

that were learned could be captured explicitly in the code. Second, it served as a way to check 

assumptions, especially when combined with the use of Eclipse's debugger. For example, while 

writing code the programmers in session 1.5 kept the target application running in debug 

mode and continually switched between coding and inspecting the system in the debugger to 

ensure that the code they had written was executing when and how they expected it would. 

Finally, writing code helped support a narrow investigation of the system (Observation 2) as 

only those parts of the system needed to write the code had to be understood. 

Observation 4' Programmers minimized the amount of code that was investi-

gated in detail. 

In addition to being narrow in their investigation of the code (Observation 2), the 

participants tended to avoid looking at source code in detail. For example, in 1.2 the 

observer said to the driver "if I were you I would click on the interfaces, because the classes 

which implement it will have a lot of detail that is not so important" [NI]. Similarly, the 

participants in 1.4 when considering the MEvent hierarchy (Figure 3.3) initially ignored the 

implementations of the classes and the interfaces and simply looked at the relationships 

involved, beginning with the type hierarchy. 

In general, the participants appeared reluctant to look closely at the source code for an 

entity—a class or method—until after they had developed an initial understanding of the 

entity using tools that provided an abstract view of it, and until the participants felt that 

it was sufficiently important to their task. The participants in 1.3 were the most obvious 

exception to this rule as they spent a relatively large amount of time reading source code, 

which appeared to be detrimental as little progress was made on the task. The more common 
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and successful behavior we observed is consistent with the observation by Robertson et al. 

that programmers do not read source code line by line [76]. 

Also, programmers tended not to systematically explore more than about three search 

results. In some cases, rather than explore a large number of results the programmers 

would attempt to refine their query, although producing sufficiently precise queries was often 

difficult. In other cases the results were disregarded entirely. 

Observation 5: Exploration activities were of two distinct types: (1) those aimed 

at finding initial focus points and (2) those aimed at building from such points. 

Activities that focused on identifying relevant information can be divided into two sets: 

(1) those aimed at finding initial focus points (or "places to start looking" [109]) and (2) 

those aimed at building from such points. N2 said that much of his effort in 1.10 involved 

finding initial focus points: "that was the main point, finding that spot where you can focus 

in on" [N2]. 

As an example of an effective approach to finding initial starting points, the programmers 

in sessions 1.5 searched for possibly relevant entities and set break points at some of these 

places. The application was then run in debug mode to see which of the identified points 

were in fact along the relevant control path. This approach gave the pair immediate feedback 

on their hypotheses, and confidence in what they had found. In session 1.9 the programmers 

began looking for such a point in the code by performing text searches based on an error 

message. 

Given a relevant point (or points) to focus on, programmers often changed their approach 

and began building from that point, using several different means: references searches ( "let's 

see if [targetChanged] gets called" [1.6/N5]), opening the entity in the type hierarchy 

("what does [NavPerspective] inherit from?" [1.1/N3]), stepping through the method in 

the debugger, and reading the source code. Similarly, Ko et al. report that once relevant 

code had been identified, programmers explored the code's dependencies [51]. 

Several times, programmers had difficulty identifying the information that they needed 

to perform the task. Sometimes the information could not be found because the tools were 

not helpful; other times the programmers did not make effective use of the tools. Tools 
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Figure 3.3: The model classes and interfaces (shown in italics) relevant to tasks 1622 and 

1622a along with the factories for creating those elements. 

were not helpful with data-flow issues and where the control-flow was obscured by the use of 

Java reflection: "what was throwing me off was how much reflection was being used [...] the 

hardest part about reflection is that it just breaks the tools" [1.7/N3]. All of the participants 

that worked on task 1622 struggled with this issue. 

Observation 6: Bui lding a complete understanding of the relevant code was 

difficult. 

As entities and relationships were identified as relevant to the task and more information 

was discovered about those entities, an integrated model of how those entities fit together 

needed to be developed: "I am kind of curious how [the CoreFactory] class integrates 

with this whole hierarchy" [1.2/N1]. In some cases the tools provided by the development 

environment acted as an external representation of the information to be integrated [113]. 

When the information was not or could not be externalized in this way, integration was often 

unsuccessful even when all (or most) of the relevant pieces of information had been correctly 

identified. These failures are possibly related to cognitive limitations [30]. 
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For both task 1622 and task 1622a understanding events and how they are created in 

ArgoUML was crucial. The key classes and interfaces involved are shown in Figure 3.3, 

though not all of the relationships are shown. Participants generally quickly identified the 

MEvent interface as important and opened it in the type hierarchy which externalized the 

information shown in the upper left corner of the diagram. The rest of the information 

necessary to understand ArgoUML events was identified but not externalized as a whole and 

none of the participants completely understood all of it. 

To help build an integrated understanding, some participants drew structural diagrams 

on paper, presumably to take pressure off of their working memory. To explain why he 

was writing notes NI said "I know I am going to get lost" [1.2]. During the interview 

after the session on his use of paper and pen, a participant said: "I was starting to forget 

who was calling what, especially because there is only one search panel at a time that I can 

see" [1.4/N6]. Even when paper was used, integration remained a difficult and important 

challenge. 

Observation 7: Programmers' false assumptions about the system were at times 

left unchecked and made progress on the task difficult. 

An issue that impeded progress in several sessions (particularly 1.9, 1.11 and 1.12), and 

has not been heavily discussed in the literature, was that of assumptions that were incorrect 

but never properly checked. These assumptions were only sometimes articulated explicitly. 

In session 1.9 the root cause of a false assumption appeared to be the misinterpretation of 

the condition (InotContained. isEmptyO) under which a particular exception was thrown: 

"the hash table being empty is the problem, right?" [N8]. This false assumption lead to other 

false assumptions and significant confusion. The programmers never identified and corrected 

their root error. 

A common assumption was that the existing code in the system was correct. This fueled 

a desire to reuse system knowledge as observed by Flor et al. [18]. An example of this 

was observed while programmers worked on task 1622 and 1622a during which programmers 

attempted to use the partial implementation of call events as a guide for implementing other 

kinds of events. Although this approach was partially successful, the assumption that the 
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existing code was correct was false and caused some problems. The code may have been 

incorrect because the ArgoUML code base is still in active development. 

Observation 8: Revisiting entities and relationships was common, but not always 

straightforward. 

Much of the exploration we observed can be viewed as re-exploration. In fact 57% of 

observed visits to source code entities were revisits and, perhaps unsurprisingly, in many' 

sessions this proportion of revisits increased over time. Several revisiting patterns are depicted 

in Figure 3.4. In a session such as 1.4, where the one of the participants (N4, in this case) had 

previously worked on the assigned change task (1622) the proportion of revisits was quite 

high but generally not increasing, possibly suggesting differences in revisiting behavior at 

different stages of a task. 

In some cases, source code entities appeared to be revisited because the discovered 

information had been forgotten, and in other cases because an earlier exploration had been 

stopped short or had been unsuccessful. This revisiting or re-exploration was sometimes 

intentional and other times not, and was sometimes noticed and sometimes not: "we were 

retracing steps we had done before and [were not] aware of it" [1.2/N1]; "when we say let's 

look at that later, I think what that usually means is that if we come across this again using 

a different route, if there is an intersection somewhere, then we're going to look at this" 

[1.3/N4]. 

A number of different tools were used both for discovering new information and (later) 

for navigating back to that information. In session 1.5, for example, the programmers used 

Eclipse's inline type hierarchy both to find out.about a type hierarchy and then to navigate 

between the members of that hierarchy. Similarly the search features of Eclipse were used to 

initially find a piece of information and then later to navigate back to it. 

Some previous research has focused on supporting navigation, including revisiting, (for 

example, [14]) and the results can be seen in certain features that Eclipse and other state-

of-the-practice IDEs have today: back-and-forward and hypertext navigation, for example. 

Despite these features, the activity of navigating was sometimes simple and direct; other 

times it was not. In a few rare cases, navigation was really difficult because the programmers 
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Figure 3.4: Several source code entity revisit patterns from sessions from this study. Time 
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time that are to entities that have been previously visited. 
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had only a vague handle on the entity they wanted. In these cases, a certain amount of 

re-exploration was needed to complete the navigation. During session 1.6, the programmers 

wanted to navigate back to an entity they had visited one minute prior, but had difficulty 

doing so: "the class disappeared" [N5]. Eventually using the editor tab list, after about thirty 

seconds of effort, they re-found the entity of interest. At one point during session 1.11 the 

participants completely abandoned the effort to navigate back to a previously visited entity: 

"do you remember in that stack trace of the exception where the method was that was sort of 

doing that save?" [N2]. 

3.2.1 Challenges 

The participants in our study found the assigned tasks challenging, as we expected they 

would. Many participants expressed a feeling of having made little progress during a session 

or specific parts of a session: "waffled around" [1.2/N1]; "we ended up going in circles for a 

long time" [1.6/N2]; "we seemed to be spinning our wheels a bit" [1.11/N2J; "I am not sure 

what we did in terms of progress" [1.12/N6]. Based on our observations from the previous 

section, there are at least five important challenges the programmers faced in performing these 

tasks. Though several of these have been discussed in previous research, our motivation for 

listing these here is to highlight the challenges that appear to be the most significant to 

the particular situation we have studied. In Section 5.2.5 we discuss these challenges in the 

context of our further analysis. 

Gaining a sufficiently broad understanding. The participants struggled with gaining a 

sufficiently broad understanding of the relevant entities and relationships in the code base to 

correctly complete the task (see Observations 2, 5 and 6). While the observed investigation 

of the code base began by focusing quite narrowly, as participants identified information of 

relevance and attempted to build on it, they needed to identify more broad information and 

form a mental model of more of the code. Participants consistently found this difficult. To 

the best of our knowledge, this challenge is not directly discussed in the literature, however it 

does relate to bottom-up comprehension (e.g., [83]) discussed previously (see Section 2.1.1) 
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and the concept assignment problem [4] discussed in Section 6.4, both of which focus on the 

process of developing a higher-level understanding of a code base. 

Cognitive overload. At times the amount of information that needed to be understood 

exceeded the amount that the programmers could manage mentally, causing cognitive 

overload [30]. To compensate, the programmers avoided looking at more detail than necessary 

and tried to minimize the amount of information that they attempted to understand (see 

Observations 2 and 4). Behaviors such as drawing diagrams and taking notes can be seen as 

an attempt to bridge local views to generate a more global understanding (see Observation 6) 

without relying on memory. We are not the first to identify this as a challenge faced by 

programmers, for example, Storey et al. discuss this issue in the context of dealing with 

multiple programming tools [95]. 

Navigation. Participants frequently navigated between entities that they had already 

visited (see Observation 8). Deline et al. believe that issues related to navigation and re-

finding detract from programmers quickly accomplishing their tasks [15]. We hypothesize 

that when navigation is not direct, additional cognitive effort is required of programmers, 

more pressure is put on working memory and developing a complete understanding is made 

more difficult. 

Making and relying on false assumptions. Difficulties around unchecked false assumptions 

were presented in Observation 7. We believe participants made and failed to check 

false assumptions for at least three different reasons: (1) they misunderstood information 

they observed, (2) checking the information was difficult due to tool usage issues (see 

Observations 1 and 5) and (3) assumptions were not explicitly formulated as hypotheses 

that needed to be checked. Similar to Robillard et al, we found that relevant information 

is typically discovered only when deliberately searched for, which we believe allows false 

assumptions to continue [77]. 

Ineffective use of tools. Programmers varied in their use of tools. For example, some 

programmers made effective use of the debugger (see Observation 5) while others did not and 

as a consequence missed opportunities to directly discover information that they were trying 

to find. We also observed participants who did not understand the tools provided, such as 
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being unsure of how to interpret search results (Observation 5), and who made less effective 

use of a particular tool, such as session 1.2 in which the participants could have used the type 

hierarchy viewer to externalize more relevant information. This challenge appears to be not 

well studied, however some previous research has investigated the usability of programming 

tools (e.g., [29]). 

3.3 Summary 

The first study we carried out was conducted in a laboratory setting. The goal of this study 

was to observe programmers performing significant change tasks, using state-of-the-practice 

development tools. The study involved nine participants (with a range of previous experience) 

and a total of twelve 45 minute sessions. In each session two participants performed an 

assigned task as a pair working side-by-side at one computer. In the course of this study 

we observed different pairings working on the same change task, as well as participants 

working in different pairings. Our data collection has been largely qualitative, with most 

analysis focusing on an audio recording which was made of discussion between the pair of 

participants and a video of their screen. 

We also covered some initial observations that resulted from our analysis of the data 

from this study. This discussion included a description of the basic activities we observed, 

tool usage statistics and eight key observations which are summarized in Table 3.3. The 

participants in this study found the assigned tasks challenging and in this chapter we 

have discussed our initial impressions of the major challenges that the participants faced 

in completing the tasks: gaining a sufficiently broad understanding and ineffective use of 

tools, for example. Results from further analysis of the data from this study (along with data 

from the second study), including further discussion about these challenges, is presented in 

Chapter 5. 
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Chapter 4 

Study 2: Industry-based 

Investigation 

The second study we performed was conducted in an industry setting. The goal of this 

study was similar to that of the study described in the previous chapter, that is to observe 

programmers performing significant change tasks. In this study we observed programmers 

working on their own change tasks to a code base for which they had responsibility. Sixteen 

programmers, all employed by the same large technology company, participated in this study. 

During the sessions participants used whatever tool set they normally used and the systems 

they worked on were implemented in a number of different programming languages. These 

two studies have allowed us to observe programmers in situations that vary along several 

dimensions including the programming tools used, the type of change task, the system, and 

the level of prior knowledge of the code base. 

This chapter presents the details of this second study (Section 4.1) along with some initial 

observations of the results (Section 4.2). As described earlier (see Section 1.1) we have used a 

grounded theory approach in analyzing our data. The observations presented here are based 

on the categories we developed as part of trying to understand the difference between the 

situation studied in the laboratory and the situation studied in the industrial setting. These 

differences include the level of familiarity participants had with the code base, the range 

of programming languages and tools used, the level of customization in the way tools were 

arranged, challenges in working in a production environment, and the level of isolation the 

tasks were performed in. Results from our further analysis of the data from both studies, 

focusing more closely on the question and answering process, are presented in Chapter 5. 
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4.1 Study Setup 

Our second study was carried out with sixteen programmers in an industrial setting. In 

this case we studied individual programmers (rather than pairs) because that was how the 

participants normally worked. Each of the sessions (numbered 2.1 to 2.15) we conducted are 

summarized in Table 4.1. One session from this study was exceptional in that two participants 

(E6 and E7) worked together because that was how they were accustomed to working. These 

two participants referred to their working arrangement as "pair programming", however 

their work style was different than the pair programming approach used in our first study. 

E6 and E7 worked on the same task but both used their own computers (laptops), and used 

NetMeeting to share their desktops and used IM to pass snippets of code to each other. 

Participants were observed as they worked on a change task to a software system for 

which they had responsibility. The systems were implemented in a range of languages and 

during the sessions the participants used the tools they would normally use. For example 

participant E l worked on a C++ and Tel code base using tools such as Emacs and DDD, 

while E3 worked on a C# and XSLT code base using Visual Studio. The complete list of 

programming languages used include: C [49], C++ [97], Java [28], DOS Batch [81], Tel [19], 

C# [35], HTML [68], XML [34], ASP [107], SQL [41] and MDX [32]. Each of the tools used 

are described below. 

� Visual Studio: Integrated development environment providing basic static analysis and 

debugging support. There are versions for a range of languages including C/C++, C#, 

and J#. 

� Netbeans: Integrated Java development environment providing basic static analysis 

and debugging support. 

� GNU Project Debugger (GDB): a command-line debugger for languages such as C and 

C++. 

� Data Display Debugger (DDD): a graphical user interface for command-line debuggers 

(such as GDB). 
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Session Participant Languages Tools 

2.1 El C++, Tel Emacs, DDD, Virtual desktops 

2.2 E2 C++, Tel Emacs (split window) 

2.3 E3 C#, XSLT Visual Studio, Biztalk Orchestration 

2.4 E4 c # Visual Studio, Biztalk Orchestration 

2.5 E5 C#, ASP Visual Studio 

2.6 E6, E7 C#, ASP Visual Studio, NetMeeting 

2.7 E8 Java Netbeans 

2.8 E9 SQL, MDX Visual Studio, Enterprise Manager, Query 

Analyzer, Analysis Manager 

2.9 E10 C++, Batch Notepad, Visual Studio 

2.10 E l l C (embedded) Proprietary loading and debugging tools 

2.11 E12 C, C++ Visual Studio (two instances) 

2.12 E13 HTML UltraEdit, Proprietary Document Manager 

2.13 E14 C Emacs (split window) 

2.14 E15 XML, Java VIM (two instances) 

2.15 E16 C VI (two instances), GDB 

Table 4.1: Session number, participant(s), the programming language(s) for the system being 

changes, and the primary tools for each session of the second study. 
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� NetMeeting: multipoint video conferencing application. Supports sharing desktops. 

� Virtual Desktops: software allowing users to organize application windows into multiple 

contexts. 

� BizTalk Orchestration: Visual programming tool for describing business processes. 

� Enterprise Manager, Query Analyzer and Analysis Manager: various tools for admin-

istering and creating queries against Microsoft SQL Server. 

� Emacs, VI, VIM and UltraEdit: basic source code editors. 

Participants were observed working on the their tasks for approximately 30 minutes. After 

each session the experimenter (the author of this dissertation) interviewed the participant 

(or participants) about their experience. The interviews were informal and focused on the 

challenges faced and their use of tools. An audio recording and field notes were made during 

each session, including during the interview portion of the session. 

4.1.1 Participants and Change Tasks 

Three of the sixteen participants (E9, E l l and E16) are female. All participants were 

professional programmers employed by the same large technology company and several of 

them worked in the same groups within that company (El and E2; E6 and E7; E3, E4 and 

E5; E14 and E15) and as a result worked on similar (or identical in a few cases noted below) 

code bases. In this study the participants were all working with code that they had experience 

with, though the amount of experience varied significantly (from a just few months to eight 

years). 

The tasks were selected by the participants. They were asked, in advance of the session, 

to select a task that would be "involved, not a simple local fix", beyond that no guidance 

was given. In each session the programmer was asked to describe the task they had selected 

and then to spend about 30 minutes working on that task. They were asked to think-aloud 

while working on the task [101]. The following describes the code bases and the tasks the 

participants worked on as well the amount of experience each programmer had with the code 
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base. The code bases were proprietary and we had no access to them, so these descriptions 

are based on the comments from the participants. In several cases the participants were not 

able to specify a size for their code base. 

� We observed El working on a component comprising 200KLOC to 300KLOC, that is 

part of a larger system (over 1 million lines of code) which he described as a "physical 

design tool". He had been working on different aspects of this larger system for eight 

years. His task was to add a new feature to the component. 

� Participant E2 worked on the same component as E l and his task was to port older 

code to a newer code base for the component. He also had been working on different 

aspects of this larger system for eight years. 

� We observed participant E3 working on code for a middleware (business transaction 

processing) application. In particular he was working on code for converting between 

data types. He had been working on this code base for four years. 

� Participant E4 described his task as a refactoring task. The code base he worked on 

was a number of generic COM components for use in middleware applications. He had 

been working on that code base for two and a half years. 

� Like, participant E3, participant E5 worked on code for a middleware application. His 

task focused on various generic components that he estimated were a several thousand 

lines of code each and he had been working with this and similar types of applications 

for five years. 

� Participants E6 and E7 performed a task that involved writing test code for a back-end 

file transfer application. The code base comprised 20KLOC. Participant E6 had been 

working on this code for six months. Participant E7 had been working on this code for 

seven months. 

� We observed participant E8 working on a 30KLOC key management application that 

he had been working on for several months. He felt that he understood this application 
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"extremely well" because he had spent several years working with a previous application 

with the same architecture. 

� Participant E9 was observed fixing a bug with a database application. She had spent 

four years working with a family of such applications. 

� The code base E10 worked on is an application that is over a million lines of code, and 

he described it as a "large mostly unfamiliar code base" though he had been working on 

it for several months. His task was to update the uninstall feature of that application. 

� Participant Ell's task focused on testing an embedded board management system. She 

had spent that last 4 or 5 years on this and other embedded systems. 

� Participant E12 worked on a restructuring task involving two code bases. The first is 

an engine (or library) written in C, and the other is a C++ GUI application which 

used that engine. Just the GUI application comprised 10KLOC. He had been working 

on these code bases for six months. 

� We observed participant E13 performing a relatively simple (he referred to it as "not 

that advanced") bug fix to a web application that he had been working on for seven 

months. 

� The change task participant E14 worked on involved moving a feature between two 

versions of a code base. The code base, which he had been working on for two years, 

comprised over a million LOC, much of it hardware level code. 

� Participant E15 worked on the same code base as E14. E15's involved changes to the 

build system. He had been working on the code base for six months. 

� The change task participant El6 worked on was a bug fix to the front-end for a compiler. 

She had been working (part-time) for three years on this 500KLOC code base. 

These sessions have allowed us to observe different programmers working on a wide range 

of change tasks targeting a range of code bases. This data (along with data from the first 

study) provides a basis for exploring how programmers manage change tasks. 
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4.2 Initial Observations 

In this section we describe several initial observations based on the data collected from the 

second study. Our focus is on characterizing several observed differences between the situation 

studied in the laboratory and the situation studied in the industrial setting. These differences 

include the level of familiarity participants had with the code base, the range of programming 

languages and tools used, the level of customization in the way tools were arranged, challenges 

in working in a production environment, and the level of isolation the tasks were performed 

in. Each of these initial observations are described below. Results from further analysis of 

the data from both studies is presented in Chapter 5. 

Familiar Code Bases 

A central difference between the two studies is that the participants in this second study 

were observed working on a code base that they had previous experience with, and some 

participants felt that they knew their code base "extremely well" [E8]. As compared to the 

participants in the previous study, these participants began the task knowing much more 

about both the application and the application domain. Interestingly, however, several of 

the participants felt that they did not completely know the code base on which they worked, 

for example: "it is as complicated as say the Linux kernel /..._/ / have only been working 

on this two years, there is no way I can understand everything, but I understand the stuff 

that gets assigned to me" [E14]; "I haven't been in development mode the last week or so, 

I am forgetting everything" [Ell]; and "the project I'm currently working on is a large and 

mostly unfamiliar code base so I typically need to do analysis of a few days prior to digging 

into the code" [E10]. Participant E8 felt that code he wrote during the session needed to be 

documented because "when I look at this code in two m.onths I won't remember what I did". 

Also, though participants in this study selected their own tasks and clearly began the session 

knowing more about the task than participants from the previous study, they did not always 

immediately know which changes were needed. For example, E10 spent most of the session 

in what he described as "figuring out what needs to be done mode" [E10]. 
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Multiple Languages and Tools 

Most of the change tasks we observed participants perform in this study involved systems 

implemented in multiple programming languages. Of the fifteen sessions in this study 

(summarized in Table 4.1) only six involved only one programming language (sessions: 2.4, 

2.7, 2.10, 2.13 and 2.15). Participants in this study also used multiple tools to interact 

with their code base. For example, participant E9 used four different tools (Visual Studio 

and three tools targeting Microsoft SQL Server) to perform her change task and frequently 

switched between them, which she described as "not a convenient way to work because we 

actually refer to the same objects and the same data from different tools" [E9]. Similarly, 

participant E l l used multiple tools to support loading, executing and debugging embedded 

code ( "when you're working through multiple systems like this, you feel like you are jumping 

through all these little loops" [Ell]). Some participants even considered applications for 

instant messaging ( "we use IM quite a lot if we have a quick question for someone" [E4]), 

email and browsing the web as an important part of the development tool set, in particular 

when the application was web based. In contrast, participants in our first study worked on a 

code base written exclusively in Java and they spent the vast majority of their time working 

with the tools provided by the Eclipse Development Environment. 

Customized Environments 

Participants in the first study were provided with a computer system to use for the session, 

and none of those participants customized the provided environment in any significant ways. 

The participants in the second study were observed working on their own computers, which 

allowed us to see how they normally arranged their programming tools. Four of these 

arrangements are depicted in Figure 4.1 and are described below 

Participant E l organized each of his tasks (including the one. we observed him working 

on) around nine virtual desktops: "I tend to split up everything based on what task I am 

working on" [El]. Part A of Figure 4.1 is a sketch of the way applications were arranged in 

these virtual desktops. Different desktops, and the applications in those desktops are used 

for different parts of working on a task: "the center is where I always keep my Emacs. If I am 
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Figure 4.1: Various arrangements of windows and tools observed in study two: (A) El's use 

of virtual desktops, (B) E14's split Emacs window, (C) E16's arrangement of shells and tools 

in those shells, and (D) E2's split Emacs window. 

doing any debugging then I go up. To do my merges I go over. You just get used to doing it 

the same way" [El]. He also customized various aspects of the individual tools, for example 

his application windows had no title bars ( "because that is just a waste of real estate" [El]). 

Participant E14 had a large display and had a maximized Emacs window filling the entire 

display. The Emacs window was split vertically as sketched in part B of Figure 4.1. The task 

we observed E14 working on involved porting code from one source tree to another: "trying 

to bring over into the code I am working on, but the code is different enough that I can't just 

do a simple diff, so I got to go into there by hand and find what I need" [E14]. He explained 

his reasons for his arrangement by saying "so I can look at both files, edit both of them without 

having to click from window to window" [E14]. Participant E2, who also worked on a merging 

task, used Emacs arranged as in part D of Figure 4.1. 
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Participant E16 organized her task around three DOS command windows arranged as 

shown in part C of Figure 4.1. In one window she primarily used VI to work with the 

code that was most central to her task. In the second window she searched for and viewed 

other related source files. The third window was used for running the failing test case in 

the debugger (GDB). She switched frequently between these three windows: "/ try to always 

arrange them in the same way so that I can remember where I am at as I windows switch" 

[E16]. Though the specifics were different, participant E15 worked in a very similar way. 

4.2.1 Production Environments 

The participants in the first study worked on an isolated application and knew that the code 

they wrote would never need to be deployed in a production environment. In contrast, the 

participants in the second study were often working on code that interacted with a much more 

complicated environment and they were writing code that would (eventually) be deployed in 

production and in many cases the applications were crucial to the company. As a result the 

participants in the second study dealt with a different set of issues: "when you integrate [a 

changed] module into the bigger system, something goes wrong" [El]; "you are never going 

to get 100% coverage from your unit tests, so you really can't know if everything is working 

the way you want it to work" [E4]; and "there's a lot of the interactions between the different 

modules that aren't exactly understood to be honest, so there's always a chance for a side 

effect if you modify a piece of code" [E10]. 

4.2.2 Interruptions 

One final difference we observed between the two situations was that in the first study the 

participants were isolated and worked exclusively on the assigned change task, while in the 

second study the participants faced distractions and interruptions as they would in their 

normal work day. For example, participant E8 was interrupted several times by instant 

messages: "this is what sucks about IM: you're in the middle of something and people can get 

a hold of you" [E8]. This same participant believed that "any interruption is about a five 

minute problem" and said that he would only program when he had "at least half an hour" 
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to dedicate to the activity. Similarly, while we were observing participant E10 working on a 

change task, he left his cubicle to ask his nearby coworker a question (about what stage of a 

long-term restructuring the code base was in). Obviously the participants in the first study 

did not have this opportunity. 

4.3 Summary 

Our second study was conducted in an industry setting. The goal of this study was similar 

to that of the first study: to observe programmers performing significant change tasks. In 

this study we observed programmers working on their own change tasks to a code base 

for which they had responsibility. During the sessions participants used whatever tool set 

they normally used and the systems they made changes to were implemented in a number 

of different programming languages. These two studies, then, have allowed us to observe 

programmers in situations that vary along several dimensions including the programming 

tools used, the type of change task, the system, and the level of prior knowledge of the code 

base. 

This chapter has presented the details of this second study along with some initial 

observations of the results. In presenting these observations our focus has been on 

characterizing several observed differences between the situation studied in the laboratory 

and the situation studied in the industrial setting. These differences include the level of 

familiarity participants had with the code base, the range of programming languages and 

tools used, the level of customization in the way tools were arranged, challenges in working 

in a production environment, and the level of isolation in which the tasks were performed. 

Results from further analysis of the data from both studies is presented in the next chapter. 
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Chapter 5 

Questions in Context 

This chapter presents the results of our analysis of the data collected in the two user studies 

described in Chapters 3 and 4. This analysis was an iterative process of discovering questions 

in the data and exploring similarities, connections and differences among those questions. 

Our analysis method is described in more detail in Section 1.1. In the process we found that 

many of the questions asked were roughly the same, except for minor situational differences, 

so we developed generic versions of the questions, which slightly abstract from the specifics 

of a particular situation and code base. For example, N4 asked the question "how does 

[MAssociationJ relate to [FigAssociationJ?" which can be made more generic as: How are 

these types or objects related? (see question 22). As this example illustrates, the questions in 

our catalog are very close to the data. As a result these questions are discussed in Section 5.1 

without a comprehensive set of exemplars from the raw data and in other places in this 

dissertation are used in place of raw data. This use of the questions makes for a more clear 

presentation and allows us to manage the confidentiality issues around the proprietary code 

featured in our second study. In cataloging and analyzing those generic questions we found 

that many of the similarities and differences could be understood in terms of the amount 

and type of information required to answer a given question. This observation became the 

foundation for the categorization of the questions. 

We also report on the results of our analysis of the behavior we observed around answering 

those questions both at the particular question level and at the category level. In the context 

of the process of answering questions, we have analyzed the interactions between questions 

and tools. We found that some questions are closely related (with some questions being 

asked in support of higher-level questions, for example). We also observed important issues 
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for our participants in using the available tools to answer their questions (with tools answering 

less precise questions than intended by our participants, for example) and taking multiple 

disconnected result sets and using those to answer their intended questions. These issues 

are discussed further in Section 5.2. Further analysis considering a wide range of tools for 

answering the questions our participants asked is reported on in Chapter 6. Note that the 

results presented in this chapter have been published previously [84]. 

5.1 Questions Asked 

We report on 44 kinds of questions we observed our participants asking. This catalog captures 

the information that our participants aimed to discover about the various code bases they 

worked on. These questions are generalized versions of the specific questions asked by our 

participants. As participants were not always explicit about their questions, in some cases 

we inferred an implicit question based on their actions and comments. 

We organize the discussion of these questions around four categories. Considering a code 

base as a graph of entities (methods and fields, for example) and relationships between those 

(references and calls, for example), to answer any given question requires considering some 

subgraph of the system. The properties of that subgraph are the basis for our categorization as 

illustrated in Figure 5.1. Questions in the first category are about discovering an initial entity 

in the graph. Questions in the second category are about a given entity and other entities 

directly related to it (i.e., questions that build on a node). Questions in the third category 

are about understanding a number of entities and relationships together (i.e., questions about 

understanding a subgraph). Questions in the final category are over such connected groups; 

how they relate to each other or to the rest of the system (i.e., questions over groups of 

subgraphs). 

This categorization, along with the questions we have identified, represent a novel and 

central contribution of our research, though aspects of programs are often referred to in terms 

of graphs. For example, Brooks referred to directed graphs representing control flow, data 

flow and dependencies [7]. Although other categorizations of the questions are possible, we 
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present this categorization for three reasons. First, the categories show the types and scope 

of information needed to answer the given questions. Second, they capture some intuitive 

sense of the various levels of questions asked. Finally, the categories make clear various kinds 

of relationships between questions (a question-subquestion relationship, for example), as well 

as certain challenges in answering questions (mentally integrating information, for example) 

as described in Section 5.2. 

The levels suggested by our categories bear some resemblance to the hierarchy of 

information implied by various cognitive models (see Section 2.1.1), however the order in 

which we present the categories is not representative of how the questions were necessarily 

asked and it is not our intention to suggest that our data supports, for example, a bottom-up 

(e.g., [83]) or a top-down (e.g., [88]) model. In fact we observed that participants often jumped 

around between various activities or explorations, at times leaving questions only partially 

answered, sometimes forgetting what they had learned ( "did we look at M'Association? What 

was that?" [N4]), sometimes abandoning an exploration path and beginning again ( "/ guess 

we're on the wrong track there. Where is the earliest place we know that we can set a break 

point?" [N2]) and sometimes returning to previous questions ( "I am still kind of curious. .. " 

[NI]). 

5.1.1 Finding Focus Points 

One category of questions asked by our participants, the newcomers from the first study in 

particular, focused on finding initial points in the code that were relevant to the task. The 

participants in the first study naturally began a session knowing little or nothing about the 

code and often they were interested in finding any "starting point" [N9]. For example, N3 

and N5 began session 1.5 by discussing "where do we start?" [N5]. Such questions were 

asked at the beginning of sessions, but also as participants began to explore a new part of the 

system or generally needed a new starting point. These are perhaps similar to what Wilde 

and Casey call "places to start looking" [109]. 

These questions were at times about finding methods or types that correspond to domain 

concepts: "I want to try and find the extends relationship) [i.e., a concept from the domain of 
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Finding initial focus 
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For example: Which type 
represents this domain 
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together? 
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method) 
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source code entities (e.g., a 
calls relationship) 
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part of answering a given 
question 

A subgraph of entities and 
relationships considered as a 
group 

Figure 5.1: An overview of the four categories of questions asked by our participants. Each is 

illustrated by a diagram depicting source code entities along with connections between those 

entities. 
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UML editors]" [N5]; and "my idea is to see if we can find a representation of this transition" 

[NI]. Similarly there were questions about finding code corresponding to UI elements or the 

text in an error message: "what object refers to this actual [UI text]?" [N7]; and "do a search 

for spline" [N3] (where spline was the text in a tool tip). The following is a summary of the 

types of questions asked in this category. Each question is followed by a list of the sessions 

in which we observed it being asked. 

1. Which type represents this domain concept or this UI element or action? (1.1 1.2 1.3 

1.5 1.6 1.7 1.8) 

2. Where in the code is the text in this error message or UI element? (1.5 1.9) 

3. Where is there any code involved in the implementation of this behavior? (1.1 1.2 1.3 

1.5 1.6 1.10 1.11 2.11) 

4. Is there a precedent or exemplar for this? (1.1 1.10 1.12 2.6 2.14 2.15) 

5. Is there an entity named something like this in that unit (project, package or class, 

say)? (1.1 1.2 1.4 1.5 1.6 1.10) 

To answer these questions our participants often used text-based searches or Eclipse's 

Open Type Tool, which allows programmers to find types (classes or interfaces) by specifying 

a name or part of a name. For example, E16 used grep from the command line to find an 

exemplar for what she needed to do. On the other hand, questions like question 5 were less 

amenable to text-based searches, because the participants often had only a general idea of 

the sort of name for which they were looking. Instead, scrolling/scanning through code or 

overviews was used (for example, Eclipse's Package Explorer, which provides a tree view of 

the packages and classes in a system). At times the number of search results or candidates 

otherwise identified was quite large and a fundamental question that needed to be answered 

was what is relevant? 

In several sessions, the debugger was used to help answer questions of relevancy. 

Participants set break points in candidate locations (without necessarily first looking closely 
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at the code) and running the application in debug mode to see which, if any, of those break 

points were encountered during the execution of a given feature. If none were encountered, 

this process was repeated with new candidate points. N6 explained his use of the debugger: 

"/ thought maybe these classes are not even relevant, even though they look like they should 

be. So I get confidence in my hypothesis, just that I am on the right track" [N6]. 

5.1.2 Building on Those Points 

A second category of questions were about building from a given entity believed to be related 

to the task, often by exploring relationships. For example after finding a method relevant 

to the task, N3 asked the following sequence of questions: "what class is this [in]?"; "what 

does it inherit from?"; "now where are these NavPerspective's [i.e., a type] used?"; and then 

"what [container] are they put into?". With these kinds of questions the participants aimed 

to learn more about a given entity and to find more information relevant to the task. 

Sometimes we observed a series of questions about the same entity, forming a star pattern 

as depicted in part A of Figure 5.2 (showing source code entities and connections between 

entities). At other times we observed a series of questions where each subsequent question 

started from an entity discovered as an answer to a previous question, forming a linear pattern 

as depicted in part B of Figure 5.2. 

Some questions in this category were questions about types, including questions about 

the static structure of types: "are there any sibling classes?" [N3]; or "what is the type of 

this object?" [E16]. The following summarizes these kinds of questions along with a list of 

the sessions during which each question was asked. 

6 What are the parts of this type? (1.2 1.5 1.6 1.7 1.8 1.10 1.11 2.15) 

7 Which types is this type a part of? (1.2 1.5) 

8 Where does this type fit in the type hierarchy? (1.1 1.2 1.3 1.5 1.6 1.12) 

9 Does this type have any siblings in the type hierarchy? (1.5 1.11) 

10 Where is this field declared in the type hierarchy? (1.5 1.7) 
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B 

Figure 5.2: A depiction of two observed patterns of questions: (A) multiple questions about 

the same entity, and (B) a series of questions where each subsequent question is about a newly 

discovered entity. Circles represent source code entities and lines represent relationships 

between entities. Black circles and lines represent the the entities and relationships visited 

as part of answering a series of questions. 

11. Who implements this interface or these abstract methods? (1.5 1.6 1.7 1.10) 

Other questions in this category focused on discovering entities and relationships that 

capture incoming connections to a given entity, such as "let's see who sends this" [NI]; "so 

where does that method get called, can you look for references?" [N2]; "who is using the 

factory?" [N4]; and "now I look to see where this gets set" [E15]. 

12. Where is this method called or type referenced? (1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.10 

1.11 1.12 2.1) 

13. When during the execution is this method called? (1.2 1.4 1.5 2.15) 

14. Where are instances of this class created? (1.2 1.5 1.7 1.8 1.10) 

15. Where is this variable or data structure being accessed? (1.4 1.5 1.6 1.7 1.12 2.1 2.8 

2.14) 

16. What data can we access from this object? (1.8 2.15) 

Questions 12 and 13 are similar in that both may be about a call to a particular method. 

The distinction is that with 12 the participant is asking for all callers, while with 13 the 
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participant is asking about a particular caller, such as might be discovered by looking at the 

call stack in a debugger. 

Finally, there were also questions around outgoing connections from a given entity, many 

of which were aimed at learning about the behavior of that entity, including questions about 

callees and arguments ( "/ wonder what [this argument] is?" [NI]). 

17. What does the declaration or definition of this look like? (1.2 1.5 1.8 1.10 1.11 2.1 2.11 

2.13 2.15) 

18. What are the arguments to this function? (1.2 1.3 1.4 1.5 1.7 1.8 1.10 1.11 1.12) 

19. What are the values of these arguments at runtime? (1.4 1.9 1.12 2.15) 

20. What data is being modified in this code? (1.6 1.11) 

Many questions in this category could be answered directly with the tools available. For 

example the question "how it is that I reach it" [N6] (see question 13) was answered using 

the call stack viewer in the debugger. Others could be approximated with the available tools. 

For example the question "what classes have MEvents as fields?" [N3] (see question 7) could 

be approximated by a references search. In cases like these, and also for questions about 

connections involving polymorphism, inheritance events and reflection ( "they are making it 

so convoluted, with all the reflection" [N6]), the results were more noisy and more difficult to 

interpret. In some cases participants were able to switch tools or otherwise refine their use 

of tools to get a more precise answer. For example, "maybe I can filter this a bit more, so we 

get less records" [E9]. 

5.1.3 Understanding a Subgraph 

A third category of questions was about building an understanding of concepts in the code 

that involved multiple relationships and entities. Answering these questions required the 

right details as well as an understanding of the overall structure of the relevant subgraph: 

"we really have to get a good understanding of the whole" [N3]. This need is expressed in a 

comment by participant N6 that exposes a desire to understand the results of several searches 
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together: "I was starting to forget who was calling what, especially because there is only one 

search panel at a time that I can see" [N6]. 

To see the distinction between this category and the one just described, consider 

questions 6 ( What are the parts of this type?) and 7 ( Which types is this type a part of?) from 

the previous category and question 22 (How are these types or objects related?) included as 

part of the category described in this section. Questions 6 and 7 are about direct relationships 

to a particular source code entity, while question 22 is similar but requires considering a 

subgraph of the system together. 

Some questions in this category were aimed at understanding certain behavior ( "we could 

trace through how it does it's work" [NI]) and the structure of specific parts of the code base 

( "I thought it would tell me something about the structure of the model" [N6]). Some of the 

questions around these issues aimed at understanding "why" things were the way they were 

and what the logic was behind a given decomposition ( "why they're doing that" [E14]). 

21. How are instances of these types created and assembled? (1.1 1.2 1.4 1.7 1.9 1.10 1.11 

1.12) 

22. How are these types or objects related? (whole-part) (1.2 1.10) 

23. How is this feature or concern (object ownership, U I control, etc.) implemented? (1.1 

1.2 1.4 1.7 1.11 1.12 2.1) 

24. What in this structure distinguishes these cases? (1.2 1.12 2.8) 

25. What is the behavior these types provide together and how is it distributed over the 

types? (1.1 1.2 1.3 1.4 1.6 1.11 1.12 2.11) 

26. What is the "correct" way to use or access this data structure? (1.8 2.15). 

27. How does this data structure look at runtime? (1.10 2.15) 

Other questions in this category were about data and control-flow. Note that these are 

not questions such as what calls this method?, but instead were about the flow of control or 
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data involving multiple calls and entities. For example: "how do I get this value to here?" 

[E15], 

28. How can data be passed to (or accessed at) this point in the code? (1.5 1.6 1.8 1.12 

2.14) 

29. How is control getting (from here to) here? (1.3 1.4) 

30. Why isn't control reaching this point in the code? (1.4 1.9 1.12 2.1 2.10) 

31. Which execution path is being taken in this case? (1.2 1.3 1.7 1.9 1.12) 

32. Under what circumstances is this method called or exception thrown? (1.3 1.4 1.5 1.9) 

33. What parts of this data structure are accessed in this code? (1.6 1.8 1.12) 

We observed that to answer these questions, participants often revisited entities, repeating 

questions such as those described in Sections 5.1.1 and 5.1.2; "I forgot what we figured out 

from that" [N3]; "/ want to have another look at this guy" [N8]. Part of the issue is that 

for a participant to see or discover relevant entities and relationships individually was not 

always sufficient to mentally build an answer to the questions in this category; "it gets very 

hard to think in your head how that works" [E14]. For example losing track of the temporal 

ordering of method calls and of structural relationships that they had already investigated 

was a source of confusion for the participants in session 1.10; "why is the name already set?" 

[N2] and "why is the namespace null?" [N2]. 

5.1.4 Questions Over Groups of Subgraphs 

The fourth category of questions we observed in our studies includes questions over related 

groups of subgraphs. The questions already described in Section 5.1.3 involved understanding 

a subgraph, while the questions in this category involve understanding the relationships 

between multiple subgraphs, or understanding the interaction between a subgraph and the 

rest of the system. For example, question 29 (How is control getting (from here to) here?) 
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presented above is about understanding a particular flow through a number of methods, while 

question 34 presented in this section is about how two related control-flows vary. 

Questions around comparing or contrasting groups of subgraphs included questions such 

as: "what do these things have that are different than each other?" [NI]; and "I am jumping 

between the source and the header trying to compare what was moved out" [E2]. For example, 

participant N6 was interested in learning about differences between four different types: "I 

looked at what was different between those four classes and at first I tried looking at the 

implementation [i.e., the source code for the classes] but I thought, what might be more 

interesting is to see is the call event called from some place the other ones are not" [N6]. 

Several participants in the second study used split Ernacs windows (E2 and E14), multiple 

monitors (E12) or multiple windows (E16), which seemed to help with answering these 

questions around making comparisons: "so I can look at both files, edit both of them without 

having to click from window to window" [E14]; "using two monitors I can look at this source 

code as well as the engine code itself without having to swap windows" [E12]. With these 

arrangements more (though not all) of the information that they were comparing could be 

seen side by side. We also observed questions about how two subgraphs were connected; such 

as question 37, which was asked after participants had discovered various user interface types 

and various model types and needed to understand the connection between these two groups. 

34. How does the system behavior vary over these types or cases? (1.2 1.3 1.4 2.14) 

35. What are the differences between these files or types? (1.2 2.1 2.2 2.13 2.15) 

36. What is the difference between these similar parts of the code (e.g., between sets of 

methods)? (1.7 1.8 1.10 1.11 2.6 2.11 2.14 2.15) 

37. What is the mapping between these U I types and these model types? (1.1 1.2 1.5) 

Given an understanding of a number of structures, our participants asked questions 

around how to change those structures (see questions 38 and 39, below). Specific examples 

include "as long as we can figure out how to fit into the existing frame work, we should be 

OK" [N3] and "how to sort of decouple it and add sort of another layer of choice?" [N6]. 
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They also asked questions around determining the impact of their (proposed) changes, 

including asking questions around understanding how the structures of interest were 

connected with the rest of the system: "there's a lot of the interactions between the different 

modules that aren't exactly understood" [E10]; and "/ find it hard to see what are all the things 

that are acting on the bits of code we are looking at" [N9]. One participant was guided in 

making changes by the question "what's the minimal impact to the source code I [can] have?" 

[E12]. Question 41 below was asked by participants trying to determine whether or not their 

changes were correct. 

38. Where should this branch be inserted or how should this case be handled? (1.4 1.5 1.6 

1.8 1.9 2.11 2.15) 

39. Where in the Ul should this functionality be added? (1.1 1.5 1.7 2.1) 

40. To move this feature into this code what else needs to be moved? (2.7 2.13) 

41. How can we know this object has been created and initialized correctly? (1.10 1.12) 

42. What will be (or has been) the direct impact of this change? (1.5 1.8 1.10 1.11 1.12 2.1 

2.7 2.12 2.15) 

43. What will be the total impact of this change? (1.7 2.1 2.3 2.4 2.5 2.9 2.11) 

44. Will this completely solve the problem or provide the enhancement? (1.1 1.9 1.11 2.2 

2.14) 

5.2 Answering Questions 

To this point we have described specific kinds of questions asked by our participants 

organized around the four categories summarized in Figure 5.1. We have also described some 

behavior around answering specific questions. This section aims to put these questions and 

activities into context by describing aspects of the observed process of asking and answering 

questions. This process is summarized in Figure 5.3. Specifically, we found three important 
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Questions and supporting questions Tool supported Results returned by 
Participants asked questions at a range of levels. questions tools 
Some lower-level questions contributed to T o a n s w e r t h e i r R e s u | t s e t s ( o f t e n , a r g e 

answering higher-level questions. At times the questions participants and containing false 

higher-level question was articulated before the s e i e c t f r o m a r a n g e o f positives or negatives) are 

lower level question, at other times it was the available tools. used as part of answering 

other way around. t h e o r i g j n a | question. 

Question 

Supporting 

question 
Tool question Result set 

Figure 5.3: An illustration of the process of using the tools available to answer questions 

about a software system, showing the relationship between questions, sub-questions, tool 

questions and results from tools. 

considerations. First, the interaction between a participant's questions, with some questions 

being asked as part of answering other questions (see Section 5.2.1). Second, the interaction 

between the questions our participants asked and those that the available tools could answer 

(see Section 5.2.2). Finally, taking the results produced by the tools and using those to 

answer a participant's intended question (see Section 5.2.3). We present a more detailed 

anecdote from the second study that provides an overview of this process and many of the 

issues raised (see Section 5.2.4). We end this discussion by considering some of the challenges 

we observed in the first study in the context of the results presented here (see Section 5.2.5). 

5.2.1 Questions and Sub-Questions 

We observed that many of the questions asked in our studies were closely related. At times 

an answer to a higher-level question was pursued by asking a number of other, lower-level, 

questions. For example, answering question 14 (Where are instances of this class created?) 

may provide information relevant to answering question 21 (How are instances of these types 

created and assembled?). In session 1.4, the participants asked the question "what classes 
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are relevant?" [N6]. This question was not directly supported by any of the tools available; 

instead the participants asked several other questions around finding candidate classes and 

building on those results. As candidate classes were found, the participants set break points 

and ran the application to answer the question "is this the thing" [N6]. This process was 

repeated until several relevant entities had been discovered. During the interview following 

session 1.4 participant N6 described the process as exploration to come up with a hypothesis 

(i.e., a candidate class) and then checking that hypothesis. The process of breaking questions 

down into lower-level questions that were directly supported (or at least partially supported) 

by the available tools was described as "trying to take rny questions and filter those down to 

something meaningful where I could take a next step" [N4]. 

On the other hand, the process we observed was not always obviously driven by a higher-

level question. At times the lower-level questions were asked first. For example in session 1.2 

the participants began by asking various questions such as "do you see something that seems 

like a 'name'?" [NI] and "does [this type] have a guard?" [NI]. Answering these questions 

gave them various pieces of information about several relevant types and relationships. Only 

later did they ask questions such as "/ am kind of curious how this class integrates with this 

whole hierarchy" [NI]. While attempting to answer this question, one participant expressed 

"I am getting lost in the details" [NI], where the details were lower-level questions and the 

answers to those. Though in such cases the lower-level questions came first, they can still be 

regarded as being in support of the higher-level questions. Answering these first questions 

produces information that both motivates and helps answer the later questions. 

We also observed that some questions can be seen as more refined versions of other 

questions. For example, question 13 (When during the execution is this method called?) is 

more refined than question 12 (Where is this method called or type referenced?), and question 

33 (What parts of this data structure are accessed in this code?) is a more refined version 

of question 15 (Where is this variable or data structure being accessed?). Generally the less 

refined versions specify less of the context important to the question. 
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5.2.2 Questions and Tools 

In various ways participants used the tools available to them to answer their questions. This 

mapping between questions and tools was more successful in some situations than others. At 

times the tools used answered a question somewhat different than the one our participants 

were trying to answer. Wanting to know "which classes have MEvents as fields?" [N3], or as 

the other participant expressed it " 5 0 we want to see what kinds of things have MEvents?" 

[N5], the participants in session 1.5 performed a references search in Eclipse. The search 

returned 102 results (obviously including more kinds of references than they had in mind), 

of which they looked at only a few, before abandoning that line of inquiry. 

Due to a mismatch between the participant's intentions and the questions supported by 

tools, the same approach could prove more or less effective in various situations. For example, 

in session 1.2 the participants wanted to find a "representation of this transition class" [NI]. 

Using the Open Type tool in Eclipse they asked the question which types have -'transition' 

in the name?, which worked well. However, a similar approach failed for the participants in 

session 1.3 who looked for types with 'association' in the name, because the list was large 

and provided no way for the participants to differentiate the results (i.e., no information in 

the result list indicated what was relevant). 

At other times the participants appeared to choose a tool or an approach that was not 

optimal. For example, in session 1.12 the participants spent several minutes reading code 

trying to figure out the flow of data in a pair of methods and in particular the value of one 

of the variables: "so [variable Ij is [variable 2] once you've parsed out the guard and the 

actions?" [N6]. This process was time consuming and by the end of their exploration they 

were left with incorrect information. If they had used Eclipse's debugger (which was available 

to them) they could have very quickly and accurately answered the question. 

There were also times when there seemed to be no tool that could provide much direct 

assistance. For example, participant E2's task was to do a merge between two versions of 

a pair of files (a C++ source file and header file), "the changes were overlapped enough 

that diff is completely confused as to what parts should merge [. . . [ it is showing all these 

differences that are just in the wrong parts of the code" [E2]. The result was that he used 
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a very manual approach (using a split Emacs window) to answer his questions about what 

areas to merge. This approach involved "jumping between the source and the header trying 

to compare what was moved out and hoping that the compiler will catch the syntax errors 

because of code that was inserted improperly" [E2]. Participant E14's experience was similar: 

"the code is different enough that I can't just do a simple diff, so I got to go into there by 

hand and find what I need, extract it out and put in where I need it in my tree" [E14]. 

A programmer's questions often have an explicit or implicit context or scope. In question 

31 (Which execution path is being taken in this case?) this context is explicit. Question 

33 (What parts of this data structure are accessed in this code?) asks about changes to a 

data structure but in the context of a certain section of code. For example, in session 1.6 

the participants used the call stack in the debugger to very manually try to understand the 

relationship between a given data structure and a sequence of method calls. As another 

example, in session 1.11, participant N2 wanted to learn about the properties of an object 

in the context of a particular failing case of a large loop: "what I want to see is the object 

that is being converted to XMI" [N2]. Getting a handle on this object (in the debugger, 

for instance) proved difficult. We observed that the tools used by our participants had very 

limited support for specifying the scope of a tool or query with the result that information 

displayed was noisy: "we need to narrow this down" [N4]. 

5.2.3 From Results to Answers 

The lack of a direct mapping between the questions our participants pursued and the questions 

supported by tools (the tool questions might be "too general" [N7], for example) had a number 

of consequences. One was that the results produced by tools were often noisy when considered 

in the context of the questions being asked by the participant. This consequence holds even 

for tools that provide no false positives relative to the questions that they are designed to 

answer. 

We observed that, at times, getting accurate answers to a number of questions that 

could be posed to the tools did not necessarily lead to an accurate answer to the question 

the participant had in mind. For example, early in the session 1.4 one of the participants 
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expressed a desire to "figure out why one works and one doesn't" [N4], or in other words to 

compare how the system's handling of one type compared with its handling of a second type. 

The participants' approach was to do two series of references searches, one starting from each 

of the types under investigation ( "now who calls this method?" [N6]). Results were compared 

by toggling between search result sets at each step until they first diverged ( "this one only 

has those two" [N6]). This point of divergence was taken as an answer to their higher-level 

question, but in fact it was only a partial answer and missed the most important difference. 

In some situations piecing together the results from a number of queries was problematic: 

"I can't keep track of all of these similar named things" [N2]; "we were retracing steps we 

had done before and [weren't] aware of it" [NI]. And naturally there where times when the 

participants wanted some kind of overview, rather than narrow sets of search results: "I think 

I would need some kind of overview document that says. . . this is the architecture of how the 

thing works and the main classes involved" [N9]; "I think we really have to get a wider view" 

[N3]. 

5.2.4 A More Involved Anecdote 

We end this section with one more anecdote from the second study. It provides an overview 

of the process participant E16 carried out to answer her questions, and demonstrates that 

often multiple supporting questions must be pursued and that multiple tools are used to 

answer those questions. It also demonstrates that working in this way, while producing a 

significant volume of results, does not necessarily result in an answer to the original question 

posed. In these cases, the participant must often begin the process again, making different 

choices about what lower-level questions to ask and how to use the available tools to answer 

those questions. 

Central to the task participant E16 worked on was a connected group of data structures 

which she described as "kinda complicated, there are a lot of enums and variants, if it is that 

variant then these fields apply and if it is that variant than those fields apply". She spent 

a significant portion of the session trying to determine how to get a certain value from an 

instance passed to a particular routine (see questions 26 and 27 described in Section 5.1.3). 
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Questions such as: 

What is the value at runtime? 

Where is this being called 

from? 

Questions such as: 

Where is this data structure 

defined? What else accesses 

this structure? 

Questions such as: 

What has changed? What does 

the source for this look like? 

Figure 5.4: Participant E16's arrangement of windows and associated tools. Also shows the 

types of questions asked in each window. 

To determine this she asked many lower-level questions around callers and especially the parts 

of data structures. Activities around asking and answering these questions were interleaved, 

with the goal of building an answer to the higher-level question. She used several different 

tools (GDB, diff, grep and VI). Each of these tools were in separate windows, arranged as in 

Figure 5.4. She explained her arrangement in this way: "/ got one where I am running the 

program, one where I am actually looking at the code, and one where I am just searching for 

other things. I try to always arrange them in the same way so that I can remember where I 

am at as I windows switch." 

She described her process as a path: "you go down a path to try to find out some 

information and it leads to a dead end and you got to start all over again." She had mapped 

her question down in a certain way, pursued a number of lower-level questions, but by the 

end of the session she had failed to answer her question: "so now I have to think, what is-

another way I can figure out what the variable is from the field". 
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5.2.5 Understanding the Challenges Programmers Face 

At the end of Chapter 3 we presented five significant challenges faced by the participants 

of study one: (1) gaining a sufficiently broad understanding, (2) cognitive overload, (3) 

navigation, (4) making and relying on false assumptions, and (5) ineffective use of tools. 

Here we discuss these challenges further in the context of the results we have presented in 

this chapter. 

� Cognitive overload and issues around gaining a sufficiently broad understanding of the 

portions of the source code relevant to the task are particularly relevant to questions 

that require considering one or more subgraphs of information. In general learning 

Which types is this type a part of? is easier than developing an understanding of how 

a particular type "fits into GUI generation as a whole?" [N3], for example. 

� Issues around navigating relate to the need to use multiple tools to answer questions 

and needing to piece together answers. We expect that being able to do this accurately 

would facilitate answering higher-level questions as it would be easier to mentally 

maintain the necessary context. 

� Making and relying on false assumptions becomes more likely if checking those 

assumptions is difficult (i.e., when questions can not be answered directly using 

the available tools). When the information presented in tools is noisy (due to the 

programmer not being able to appropriately specify a scope for a question, for example) 

information is more likely to be missed and false assumptions not corrected. 

� For a given question, various tools could" potentially be used to answer those questions, 

with some being more effective than others. We observed that effective use of tools 

could significantly improve the success a participant had in answering their questions, 

however the choice of tool is not always straightforward as there is often no perfect 

match. 
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5.3 Summary 

We have considered the questions our participants asked at several different levels. First, 

we have produced generic versions of the questions which has allowed as to abstract slightly 

from the specific situations and code bases. These abstractions have given us the ability to 

compare these questions and record their frequency across sessions. For example, question 4 

(Is there a precedent or exemplar for this?) was asked in six different sessions, while question 

20 (What data is being modified in this code?) was asked in just two different sessions. 

Next, based on these generic questions we have developed four categories and several 

subcategories which are based on the information needed for answering those questions: (1) 

questions about finding initial focus points, (2) questions about building on such points, (3) 

questions aimed at understanding a subgraph, and (4) questions over multiple subgraphs. 

Finally we have considered the overall process of using tools to answer questions, including 

the relationships between questions. This answering process and the specific questions asked 

is heavily influenced by the tools available. Many questions are asked only because the 

intended questions can not be asked directly. A question can go beyond what tools can 

answer by the scope of information needed to answer it, or a question can be more precise 

than can be expressed in the tools. Even for lower-level questions asked by programmers the 

match between the intended questions and the questions the tools were designed to answer 

was not always perfect. The consequence of these issues is that programmers are presented 

with noisy information and must mentally piece information together from multiple tools or 

views. 
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Chapter 6 

Analysis of Tool Support for 

Answering Questions 

In the previous chapter we presented the results of our analysis in two major parts. First, we 

analyzed the questions asked by our participants which produced a list of generic questions 

organized into four top-level categories. Second, we analyzed the process of asking and 

answering questions. This analysis was based on the two studies that we have performed and 

which cover a particular set of programming tools (Eclipse, Emacs and Visual Studio, for 

example). In this chapter we build on this analysis by considering the ability of a much wider 

range of tools (both industry and research tools) and techniques to support a programmer 

in answering each of the questions we observed as well as how well the overall process of 

answering questions is supported. 

To do this we have reviewed the literature on programming tools and techniques for 

exploring source code information, and also drew on the tools we observed our participants 

using. We have performed this review and evaluated the level of support provided, in the 

context of our participants' behavior around answering their questions. Our goal has not 

been to find all tools or techniques applicable to each questions, but rather to determine 

whether or not a tool or technique exists to address each question. In particular we were 

interested in a tool that fully supports answering each question. Where we have not found 

such a tool, and also in the absence of evidence from our studies on how a particular industry 

tool supported our participants, or supporting empirical evidence from the literature, we 

discuss various candidate tools that may provide some support. In this way we develop an 

understanding of where existing industry tools work well, where researchers have proposed 
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relevant techniques, and where support is currently lacking. This understanding is important 

for identifying areas where further research or new tools would be valuable. 

This discussion is organized around the four categories of questions. Tables 6.1, 6.2, 6.3, 

6.4, 6.5, 6.6, 6.7 and 6.8 summarize the techniques and tools applicable to answering each 

question and the level of support provided by those techniques and tools. We rate the level of 

support provided as full (i.e., well supported), partial (i.e., some support but not complete), 

and minimal (i.e., little or no tool support). To be clear, our intention is to explore the 

support provided by tools and techniques, rather than to provide a conceptual framework for 

categorizing tools or techniques (for an example of such a framework, see [100]). The last 

section of this chapter summarizes the gap our analysis has exposed between the support 

programming tools provide and the support programmers need to answer their questions. 

For example, we show that programmers need better support for maintaining context and 

for putting information together. 

6.1 Answering Questions Around Finding Initial Focus 

Points 

In this section we discuss tool support for answering questions 1 through 5, that is questions 

around finding an initial focus point in the code base to support further exploration. These 

questions were particularly important for the participants in our first study at the beginning of 

a session or when they began to explore a new part of the system on which they were working. 

Table 6.1 lists some of the techniques and tools applicable to each of these questions, as well 

as the level of support provided by those techniques. 

Questions 1 (Which type represents this domain concept or this UI element or action?), 2 

(Where in the code is the text in this error message or UI element?) and 5 (Is there an entity 

named something like this in that unit (project, package or class, say)?), all require finding 

a name or some text in the source code. Simple lexical search tools such as grep and the 

Eclipse file search tool can be helpful in answering these questions in many situations. For 

instance a developer using grep to answer question 1 may form a hypothesis about possible 
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names for types representing a given concept, formulate an appropriate regular expression 

and then perform a search. The Eclipse Open Type tool provides more focused support for 

this particular scenario as it uses static analysis to limit the search to type names. 

Question 5 (Is there an entity named something like this in that unit (project, package or 

class, say)?) can also be supported by source code editors and overview tools such as those 

shown in Figure 6.1. These are particularly helpful in situations where a hypothesis about the 

name to locate is difficult to form. This difficulty was encountered, for example, in session 1.6 

where the participants were looking "for a move or a set destination or something like that" 

[N2] and resorted to scrolling/scanning through the source code in an editor and then using 

Eclipse's Outline View (see part C of Figure 6.1) to try to find something appropriate. 

Answering question 3 (Where is there any code involved in the implementation of this 

behavior?) was essentially about finding any point in the code relevant to a particular portion 

of a task. For several of our participants this involved first using lexical or static analysis 

based tools to generate candidate types or methods. They then used further exploration or 

debugging techniques to check the hypothesis that a given candidate was part of the behavior 

of interest ("get confidence in my hypothesis" [N6]). Examples of search tools used in this 

way in our studies include grep, Eclipse's search tools (Figure 6.2 shows Eclipse's Search 

Results View) and Visual Studio's search tools. Examples of debugging tools used in our two 

studies include GDB, DDD and the Eclipse Debug perspective. 

This multistep process was not always straightforward and at times included several 

failed attempts. Software reconnaissance is a technique based on comparison of traces of 

different test cases, which can allow programmers to more directly find a relevant point in 

the code [109]. This technique relies on a relatively comprehensive test suite and has three 

parts. First, the target program must be instrumented so that a trace is produced of the 

blocks or branches executed in each test. Then test cases are run, some "with" and others 

"without" the desired behavior. Finally, the traces are analyzed to look for blocks or decisions 

that are executed exclusively "with" the feature and a list of candidate entities is produced 

which can then be explored further. RECON2 and RECON3 are examples of tools providing 

support for this technique [42]. 
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1 Which type represents this domain concept or this UI element or action? 

F u l l support: Lex ica l or static analysis based search (e.g., Eclipse 's Open Type tool) 

2 Where in the code is the text in this error message or UI element? 

F u l l support: Lex ica l or static analysis based search (e.g., grep [21]) 

3 Where is there any code involved in the implementation of this behavior? 

Par t i a l support: Search wi th debugging support or feature locat ion techniques (e.g., 

R E C O N 3 [42]) 

4 Is there a precedent or exemplar for this? 

Par t i a l support: Lex ica l or static analysis based search or example finding tools 

(e.g., CodeFinder , assuming an appropriate repository this could be considered full 

support [36]) 

5 Is there an entity named something like this in that unit (project, package 

or class, say)? 

F u l l support: Lex ica l or static analysis based search or overviews 

Table 6.1: A summary of the techniques and tools applicable to answering each of the 

questions from the first category, along wi th the level of support for each: full, part ial 

or min imal . A l l of these questions are about finding a s tar t ing point to begin further 

investigation and are described in detail in Section 5.1.1. 
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Answering question 4 (Is there a precedent or exemplar for this?) requires identifying a 

location in a code base that gives information about how to code certain types of things in 

the context of that code base. Lexical search or static analysis based cross-referencing tools 

can be used to help (i.e., tools that allow programmers to elicit relationships between source 

code entities [98, 90]). For instance, in the second study when El5 was looking for examples 

of the use of a particular API, he used grep to find candidate locations in the code. In session 

1.10 the participants (N2 and N8) looked for an example using Eclipse's cross-reference search 

tools (Figure 6.2 shows the results of a references search in Eclipse) to identify an example. 

To make use of that example they first copied-and-pasted it ( "should we just copy the code 

and see what happens?" [N8]) and then made changes as needed. 

One challenge we observed for programmers in finding exemplars was in formulating a 

query that sufficiently captures the situation. In particular there are cases when searching for 

a reference to one type or method produces many irrelevant results. Several research tools 

aim to address this problem including CodeFinder [36] and Strathcona [40]. CodeFinder 

supports a programmer in defining queries to be used to find examples in an example-

based programming environment (i.e., a repository of tagged examples). These queries are 

iteratively formed, beginning with a simple textual query which when executed returns a 

list of possible terms. In Strathcona queries are created automatically and are based on 

structural context; as a programmer writes code, supporting examples can be (based on the 

code the programmer has written) automatically proposed. 

In summary, answering these questions generally involves performing searches based on 

hypothesis of what identifiers or other text were used, possibly based on information from the 

domain or the user interface of the system. Generally speaking, answering questions in this 

category is relatively well supported, with all questions having at least partial support. The 

challenges that do exist in answering these questions stem from difficulties in formulating 

queries or in the volume of information returned by various tools, much of which is irrelevant 

to the intended question. 
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6 W h a t are the parts of this type? 

Partial support: Source code editors or overviews 

7 W h i c h types is this type a part of? 

Full support: Static analysis based cross-referencing tools (e.g., Masterscope [98]) 

8 W h e r e does this type fit i n the type hierarchy? 

Full support: Static analysis based type hierarchy tools (e.g., Eclipse's Type 

Hierarchy) 

9 Does this type have any siblings i n the type hierarchy? 

Full support: Static analysis based type hierarchy tools 

10 W h e r e is this field declared i n the type hierarchy? 

Full support: Static analysis based type hierarchy tools 

11 W h o implements this interface or these abstract methods? 

Full support: Static analysis based type hierarchy tools 

Table 6.2: A summary of the techniques and tools applicable to answering questions 6 to 11, 

along with the level of support for each: full, partial or minimal. All of these questions are 

from category two and are about types and static structure. 

6.2 A n s w e r i n g Questions A r o u n d B u i l d i n g on a Po in t 

In this section we discuss tool support for answering questions 6 through 20. These are 

all questions around building on a given point in the source code. With these questions 

programmers can learn more about a given entity (determine its relevance, for example) and 

find more information relevant to the task. Answering these questions generally involves 

considering information about different types of relationships between the starting point and 

other related entities. Tables 6.2, 6.3 and 6.4 list some of the techniques and tools applicable 

to each of these questions, as well as the level of support provided by those techniques. 

Questions 6 (What are the parts of this type?), 16 (What data can we access from this 

object?) and 20 (What data is being modified in this code?) are perhaps three of the least 

well supported questions in this category. Questions 6 and 16 both require considering the 
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12 Where is this method called or type referenced? 

Full support: Static analysis based cross-referencing tools (e.g., CScope [90]) 

13 When during the execution is this method called? 

Full support: Debugging tools (e.g., GDB [22]) 

14 Where are instances of this class created? 

Full support: Static analysis based cross-referencing tools 

15 Where is this variable or data structure being accessed? 

Full support: Static analysis based cross-referencing tools or slicing techniques 

16 What data can we access from this object? 

Partial support: Source code editors or overviews 

Table 6.3: A summary of the techniques and tools applicable to answering questions 12 to 

16, along with the level of support for each: full, partial or minimal. All of these questions 

are from category two and are about incoming connections. 

methods and/or fields of a given type. Source code editors or overview tools can help 

with answering these. For participants in the first study, Eclipse's Outline View helped, 

by providing an overview. The participant in session 2.15 used VI (and to some extent 

GDB) to support answering these questions. In our two studies we observed some situations 

where getting at the essential (and task relevant) structure to answer these questions was not 

straightforward due to the volume of information presented by the various views. Question 20 

requires considering a block of code and determining its effects (or the subset of those 

effects most relevant). We observed participants carefully reading source code to answer this 

question. Baniassad and Murphy [2], and Jackson [44] demonstrate that data-flow analysis 

techniques can be used to produce a list of effects that may allow a programmer to answer 

such questions more directly, though likely some additional investigation would be required. 

Questions 7 (Which types is this type a part of?), 12 (Where is this method called or 

type referenced?), 14 (Where are instances of this class created?) and 15 (Where is this 

variable or data structure being accessed?) consider a type, method or variable and ask 

77 



about connections to it. For the most part these can be answered relatively directly by tools 

using static analysis. Examples of such tools include cross-referencing tools such as those 

mentioned above as well as FEAT [78] and JQuery [46], two Eclipse plugins that both add 

direct support for answering question 14. Note however that we observed that these tools 

are less helpful when Java reflection or other indirection obscured the control-flow. Also, 

we observed that in some situations answering a question such as 15 may require tools to 

analyze the data-flow. In these cases, a tool based on slicing or chopping techniques may 

help [106, 33, 45]. Both slicing and chopping are data-flow analysis techniques that can be 

used to identify code that potentially impacts the value of a variable at a specified point in 

the code. 

Questions 17 (What does the declaration or definition of this look like?) and 18 (What 

are the arguments to this function?) also involve following relationships between entities and 

can similarly be supported by static analysis techniques. For example, IDEs such as Eclipse 

and Visual Studio used in our studies support navigating to the declaration of a given type or 

variable, and we observed that this feature was used frequently by our participants. Several 

participants (El, E2 and E14) in the second study used a tool called ctags to support this 

kind of navigation [39]. Ctags uses lexical analysis to produce (as part of a code base's build 

process, generally) an index file for the source code which can be used by various editors 

(Emacs in the cases we observed) to navigate directly to the declaration of a source code 

entity. 

Questions 8 (Where does this type fit in the type hierarchy?), 9 (Does this type have any 

siblings in the type hierarchy?), 10 (Where is this field declared in the type hierarchy?), and 11 

(Who implements this interface or these abstract methods?) all consider aspects of the type 

hierarchy of an object-oriented system. Static analysis techniques can be used to elicit the 

necessary information and various tools exist for displaying it. For example Eclipse provides 

a Type Hierarchy View (see part B of Figure 6.1) and was one of the more frequently used 

tools by participants in the first study (accounting for 14.6% of the events). Eclipse also 

supports searches for implementing methods. 
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17 What does the declaration or definition of this look like? 

Full support: Lexical (or static analysis) based cross-referencing tools (e.g., 

ctags [39]) 

18 What are the arguments to this function? 

Full support: Lexical (or static analysis) based cross-referencing tools 

19 What are the values of these arguments at runtime? 

Full support: Debugging tools (e.g., GDB [22]) 

20 What data is being modified in this code? 

Partial support: Source code editor or data-flow analysis techniques 

Table 6.4: A summary of the techniques and tools applicable to answering questions 17 to 

20, along with the level of support for each: full, partial or minimal. All of these questions 

are from category two and are about outgoing connections. 

Questions 13 (When during the execution is this method called?) and 19 (What are the 

values of these arguments at runtime?) consider dynamic properties of a system, generally 

in the context of a particular point in an execution, as opposed to a questions such as 15 

(Where is this variable or data structure being accessed?) that asks generally for the possible 

callers of a method or referencers of a type. These more specific questions can be answered 

using debugging tools that provide the ability to set a breakpoint, and to view the call stack 

(to answer question 13) and the values of variables (to answer question 19) at that point. For 

example, we observed participant E16 use GDB to answer several instances of both of these 

questions. 

In summary, answering questions from category two generally involves considering 

information about different types of relationships between the starting point and other related 

entities. In most cases, eliciting this information is relatively well supported by static analysis 

based tools such as have been available for many years (e.g., see [27, 70]). For other cases 

debugging tools, overview tools or data-flow techniques provide some support. Where there 

are challenges, they stemmed from various forms of indirection or the volume of information 
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presented by the various tools. Despite this, answering these questions is relatively well 

supported by today's tools, as summarized in Tables 6.2, 6.3 and 6.4. 

6.3 Answering Questions Around Understanding a Subgraph 

In this section we discuss tool support for answering questions 21 through 33. These 

questions are about building an understanding of concepts in the code that involved multiple 

relationships and entities. Answering these questions requires the right details as well as 

an understanding of the overall structure of the relevant subgraph. We consider a range of 

research tools that provide partial support for answering these questions, listing some of the 

applicable techniques and tools in Tables 6.5 and 6.6. 

Question 23 (How is this feature or concern (object ownership, Ul control, etc.) 

implemented?) requires identifying what methods or types are involved in the implementation 

of a given concept as well as understanding the relationships between them. This question 

is directly the aim of feature location techniques, such as software reconnaissance which we 

described in Section 6.1. Another technique is known as the dependency graph method [13]. 

This technique involves a search in the component dependency graph, beginning at a starting 

node. In each step one component (generally a function) is selected for a visit. The 

programmer explores the source code dependency graph to understand the component and 

decide if it is relevant to the feature. The search then proceeds to another component until 

all the components related to the given feature are found and understood. In a case study 

comparing software reconnaissance with the dependency graph method, Wilde et al. found 

that while software reconnaissance is effective at identifying code associated with a feature, 

it is less effective at helping programmers in understanding a feature because insufficient 

context is provided [108]. On the other hand the dependency graph method is very manual 

(essentially a more systematic version of the behavior we observed in our studies) and involves 

asking a series of lower level questions to produce information toward answering a higher-level 

question. 
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Answering questions 30 (Why isn't control reaching this point in the code?) and 31 

(Which execution path is being taken in this case?) requires understanding aspects of the 

dynamic control or data flow in a particular context. An interrogative debugging tool by Ko 

and Myers called Whyline aims to help programmers both ask and answer these kinds of 

questions [52]. This tool uses program slicing techniques (as described above) to present the 

programmer with an automatically populated question menu organized into "why did" and 

"why didn't" questions. Under each of these are submenus organized around the objects that 

could have been affected. These then contain the questions that can be directly answered. 

The whyline presents the answer to a questions in terms of a visualization of the control and 

data flow. Whyline has been evaluated and found to significantly decrease debugging time 

for programmers using the Alice programming environment. Scaling this tool or approach to 

the level of systems and tasks we observed in our studies remains an open research problem. 

Questions 27 (How does this data structure look at runtime?), 28 (How can data be passed 

to (or accessed at) this point in the code?) and 32 (Under what circumstances is this method 

called or exception thrown?), all require considering a range of information, and we observed 

that considering dynamic information about data and about control flow can aid in answering 

these and our participants made frequent use of the debugger (GDB or the Eclipse Debug 

perspective) in this effort. There have been several efforts to support the visualization of data 

structures at runtime [73]. For example, the Amethyst (later called Pascal Genie) debugging 

tool provides a visualization of the data (including records, arrays and pointers) currently 

on the stack [69]. Similarly there have been efforts to provide visualizations to support the 

understanding of control flow. Some of this work has been part of efforts to teach algorithms 

to students. For example, BALSA (later called Zeus) animates algorithms including providing 

a display of the call stack [10, 11]. Though at times more graphical, these tools operate at 

a similar level as the various tools provided by the Eclipse Debug perspective. The UWPI 

tool is an example of an effort to provide more abstract information [37], though this effort 

(like others) is quite application (i.e., algorithm) specific ("fine-tuned it until it worked for 

a particular example" [72, page 227]), which makes such tools less useful in the context of 

performing a change task, though there has been some work to minimize the effort to create 
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21 How are instances of these types created and assembled? 

Minimal support: Visualization or browsing tools (e.g., SHriMP [94]) 

22 How are these types or objects related? (whole-part) 

Minimal support: Visualization or browsing tools 

23 How is this feature or concern (object ownership, U l control, etc.) 

implemented? 

Partial support: Feature location techniques (e.g., software reconnaissance [109]) 

24 What in this structure distinguishes these cases? 

Minimal support: Visualization or browsing tools (e.g., FEAT [78]) 

25 What is the behavior these types provide together and how is it 

distributed over the types? 

Minimal support: Visualization or browsing tools (e.g., Relo [87]) 

26 What is the "correct" way to use or access this data structure? 

Minimal support: Visualization or browsing tools 

27 How does this data structure look at runtime? 

Minimal support: Debugging and data structure visualization tools tools (e.g., 

Amethyst [69]) 

Table 6.5: A summary of the techniques and tools applicable to answering questions 21 to 

27, along with the level of support for each: full, partial or minimal. All of these questions 

are from the third category and are about behavior and structure. 
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a visualization [64]. The challenge for programmers is similar both when using these research 

tools and when using today's debuggers: what they need to understand goes beyond what 

these tools present and answering the questions requires a number of investigations around 

lower level questions. 

Answering questions 21 (How are instances of these types created and assembled?), 22 

(How are these types or objects related? (whole-part)), 24 (What in this structure distinguishes 

these cases?), 25 (What is the behavior these types provide together and how is it distributed 

over the types?) and 26 (What is the "correct" way to use or access this data structure?) 

requires bringing together a range of static and/or dynamic information. As described 

previously, to answer these questions, our participants used a number of tools to answer 

several supporting questions. In the process of attempting to understand the subgraph, 

participants often revisited entities believed to be relevant. Various code browsing tools have 

been developed which may make the navigation or revisiting aspect of this process more 

direct, and thereby may make these questions easier to answer. Examples include Lemma 

which supports navigating through various code paths |60], FEAT which allows a developer 

to navigate between entities designated as part of a named concern [78] and JQuery which 

presents the results from multiple queries as a tree that supports navigating between entities 

in the results [46]. Activities around bringing together a number of relevant entities and 

navigating between those may provide some minimal support for answering questions such 

as 22, 24 and 25. 

The goal of various software visualization tools is to support a programmer in exploring 

and understanding programs. We believe that a visualization with the right entities and 

relationships may provide some support for answering the questions in this category, so we 

describe two example tools: the Simple Hierarchical Multi-Perspective (SHriMP) tool [94] and 

Relo [87]. SHriMP is designed to support software exploration, and supports multiple layouts 

of source code structural information including: grid, spring, radial, tree, and treemap. The 

tree layout is shown in part A of Figure 6.3. SHriMP provides various kinds of abstraction 

mechanisms generally aimed at exploring code based on its hierarchal structure, but not 

specific support for producing a view of the information required for answering questions 
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28 How can data be passed to (or accessed at) this point in the code? 

Minimal support: Runtime visualization tools (e.g., BALSA [10]) 

29 How is control getting (from here to) here? 

Partial support: Visualization or browsing tools (e.g., a call hierarchy browser) 

30 Why isn't control reaching this point in the code? 

Partial support: Debugging and slicing techniques (e.g., Whyline [52]) 

31 Which execution path is being taken in this case? 

Partial support: Debugging and slicing techniques 

32 Under what circumstances is this method called or exception thrown? 

Minimal support: Debugging and visualization tools 

33 What parts of this data structure are accessed in this code? 

Minimal support: Browsing or overview tools 

Table 6.6: A summary of the techniques and tools applicable to answering, questions 28 to 

33, along with the level of support for each: full, partial or minimal. All of these questions 

are from the third category and are about data and control flow. 

such as 21 (How are instances of these types created and assembled?) and 34 (How does the 

system behavior vary over these types or cases?). 

SHriMP (along with Rigi [65] and SNIFF+ [50]) was featured in an experiment which 

aimed to determine how tools affect how programmers understand programs [95]. The 

experiment showed that the amount of information (especially arcs) presented could be 

overwhelming, even for the relatively small program used (1700 LOC). The participants 

in our studies faced this challenge as well; being able to clearly see and work with the 

relevant subgraph(s) of the system was difficult. Relo is a tool that aims to support 

program understanding by allowing interactive exploration of code. As a programmer explores 

relationships found in the code, Relo builds a visualization (which is initially empty) of 

what has been explored preserving one kind of context. An example of this is shown in 

part B of Figure 6.3. Though the process still revolves around lower-level questions and 
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Figure 6.4: Eclipse Call Hierarchy Viewer showing a the call hierarchy rooted at a method 

named getFactory. 

no direct support is provided to identifying relevant information, the resulting visualization 

may help a programmer in answering higher-level questions by externalizing more supporting 

information [114]. 

Questions 29 (How is control getting (from here to) here?), 33 (What parts of this data 

structure are accessed in this code?) and 37 (What is the mapping between these Ul types 

and these model types?) all consider two different sets of entities or points in the code and 

ask about the connections between them. For example, question 29 is about understanding 

the control flow between two methods. A tool such as the Call Hierarchy Viewer provided in 

Eclipse (see Figure 6.4) can be used to produce information towards answering this questions, 

but the branching factor is high and we observed that our participants rarely used this viewer 

beyond two or three calls. The Relo tool described above supports a related feature called 

Autobrowsing. Autobrowsing tries to model a simple directed exploration activity between 

two or more selected entities. It effectively does a breadth first search and adds a source code 

entity to the visualization that is relevant to all of the selected entities. The process can be 

repeated and in some simple situations such a feature may help answer these questions about 

understanding connections. 

In summary, tool support for answering questions in this category is limited. Of the 

thirteen questions, we found that four had partial support, while the rest had only minimal 

support. We found that often to answer these questions lower-level, possibly less refined 

versions of these questions (i.e., ones with better tools support) must be asked. The 
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Figure 6.5: Sample output from the diff command line tools. 

consequences of this include noisier results and the need to mentally put together answers, 

though visualization tools may make integrating this information easier. 

6.4 Answering Questions About Groups of Subgraphs 

In this section we discuss tool support for answering questions 34 through 44. These are 

all high-level questions about one or more subgraphs of a system. Including, for example, 

questions about how two subgraphs were related, or questions about the potential impacts of 

changes to a subgraph. Like questions discussed in the previous category, for the participants 

in our studies these questions required multiple lower-level questions to provide the necessary 

information and even when that information was identified, answering the intended questions 

could still be difficult. Tables 6.7 and 6.8 list some of the techniques and tools applicable to 

each of these questions, as well as the level of supported provided. 

Questions 34 (How does the system behavior vary over these types or cases?), 35 (What 

are the differences between these files or types?) and 36 (What is the difference between these 

similar parts of the code (e.g., between sets of methods)?) are about making comparisons 

between behavior, types or methods. Generally making comparisons (especially comparing 

behavior) is difficult, especially comparing behavior as needed for answering question 34. For 
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34 How does the system behavior vary over these types or cases? 

Minimal support: Dynamic visualization 

35 What are the differences between these files or types? 

Partial support: Line-based comparison tools (e.g., diff [20]) 

36 What is the difference between these similar parts of the code (e.g., 

between sets of methods)? 

Partial support: Line-based comparison tools 

37 What is the mapping between these U l types and these model types? 

Partial support: Conceptual module querying [2] 

Table 6.7: A summary of the techniques and tools applicable to answering questions 34 to 

37, along with the level of support for each: full, partial or minimal. All of these questions 

are over from the fourth category and are about comparing and connecting. 

questions 35 and 36, diff [20] which is a command line tool designed to show, line by line, 

the differences between two files, provides partial support (see Figure 6.5). However in the 

cases we observed that the differences (from a line by line view) were sufficiently large that 

diff was of limited help: "the code is different enough that I can't just do a simple diff" [E14]. 

Question 37 (What is the mapping between these Ul types and these model types?) is an 

example of a question asked when a programmer develops a (partial) understanding of two 

related groups of entities and wants to understand the connection between those (the control-

flow between them, for example). Baniassad and Murphy have developed a technique and 

a tool called conceptual module querying, that in some situations may help with identifying 

these connections [2]. A conceptual module is defined by a list of source code lines and the 

associated tool allows programmers to ask: how do the conceptual modules relate to each 

other? If two conceptual modules are defined appropriately (one for each subgraph) then 

in some cases a query could yield some information of help to a programmer in answering 

question 37. The conceptual module query tool also allows programmers to ask: how are the 

conceptual modules related to the other source code? This query may help answer questions 
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38 Where should this branch be inserted or how should this case be handled? 

Minimal support: Visualization and browsing tools 

39 Where in the U l should this functionality be added? 

Minimal support: Visualization and browsing tools 

40 To move this feature into this code what else needs to be moved? 

Partial support: Conceptual module querying [2] 

41 How can we know this object has been created and initialized correctly? 

Minimal support: Visualization and browsing tools 

42 What will be (or has been) the direct impact of this change? 

Partial support: Testing and impact analysis techniques (e.g., Chianti [74]) 

43 What will be the total impact of this change? 

Partial support: Testing and impact analysis techniques (e.g., Unit tests) 

44 Will this completely solve the problem or provide the enhancement? 

Partial support: Testing techniques 

Table 6.8: A summary of the techniques and tools applicable to answering questions 38 to 

44, along with the level of support for each: full, partial or minimal. All of these questions 

are over from the fourth category and are about changes and impacts of changes. 
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around how a subgraph is connected to the rest of the system, for example question 40 (To 

move this feature into this code what else needs to be moved?). 

Questions 42 (What will be (or has been) the direct impact of this change?), 43 (What 

will be the total impact of this change?) and 44 (Will this completely solve the problem or 

provide the enhancement?) are about the impact of (planned) changes to a system. Unit 

testing and other testing techniques allow programmers to verify some aspects of the impact 

of changes to a code base. In situations where an extensive test suite is available, testing 

allows programmers to determine both if their changes had the desired effect and whether 

there were any unintended effects [3]. Note however that in our studies such a test suite 

was the exception, rather than the rule and that several of the participants from study 

two were writing code for an environment that made some types of testing difficult. Various 

impact analysis techniques and tools exist to help programmers identify the parts of a system 

impacted by a change. For example, Fyson and Boldyreff show how this can be done using 

program understanding techniques to populate a ripple propagation graph [24] and Chianti 

is a tool that uses a suite of unit tests to generate a list of affected unit tests given a change 

to a system [74]. These techniques generate candidates for the programmer to investigate 

and so constitute partial support for understand the impact of changes made. 

Questions 38 (Where should this branch be inserted or how should this case be handled?), 

39 (Where in the Ul should this functionality be added?) and 41 (How can we know this 

object has been created and initialized correctly?), as well as several questions discussed 

previously such as 26 ( What is the "correct" way to use or access this data structure?), require 

understanding a code base at a relatively abstract level. Building this level of understanding-

based on source code details is quite difficult. Tool support for this activity is limited and 

many of the possibly relevant research tools that exist have not been empirically evaluated in 

a way to support strong claims about the support provided. Despite this, we briefly describe 

several approaches to supporting programmers in abstracting information. 

Several visualization tools (such as SHriMP, already discussed) allow subtrees and 

relationships to be collapsed or expanded during exploration. Other tools or techniques 

exist which aim to support programmers in recovering a code base's design or architecture, 
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which has been viewed as a clustering problem [59], a CSP problem [112], a graph 

partitioning problem [12], a visualization and composition problem [66], and a graph matching 

problem [79, 80]. These techniques and tools provide a kind of abstraction over the details 

of a code base. They aim to support programmers in developing an understanding of the 

decomposition of a system or its macrostructure and may provide some support for answering 

questions 26, 38, 39 and 41 to the extent that the answers to these questions can be found 

along that structure. 

Another approach to supporting programmers in abstracting information stems from 

research around solving the concept assignment problem which is a generalization of the 

feature location problem discussed above. The concept assignment problem is that of 

discovering human-oriented (high-level) concepts and assigning them to their realizations 

within a program [4]. Tool support for this is limited though several research tools exist 

including DESIRE [5], HB-CAS [26] and PAT [31]. These tools use various techniques 

to tag contiguous regions of code with a term that captures the meaning of that code. 

Although such an approach may help with some aspects of understanding code at a higher-

level, many questions in this category (and the previous category) require understanding 

arbitrary subgraphs, including understanding why things are the way they are and how to 

use or change things in a way that is consistent with the current code base. Despite some 

tool support, we believe that developing this level of understanding remains difficult. 

6.5 The Gap 

In this chapter we have considered techniques and tools for answering each kind of question 

asked by our participants. The level of support available by category is summarized in 

Table 6.9, with more details available in the other tables in this chapter. This summary 

table shows that questions in the first two categories all had at least partial support, with 

the majority having full support. We found that in most, though not all, situations these 

questions could be answered relatively directly using today's tools. The situation was quite 

different for questions in categories three and four. None of these questions had full support 
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Question Category Full Partial Minimal 

1. Finding an initial focus point (5 questions) 3 2 0 

2. Building on a point of focus (15 questions) 12 3 0 

3. Understanding a subgraph (13 questions) 0 4 9 

4. Over groups of subgraphs (11 questions) 0 7 4 

Total 15 (34%) 16 (36%) 13 (30%) 

Table 6.9: Summary of the number of questions with full, partial or minimal support by 

question category. This information is broken out by question in Tables 6.1, 6.2, 6.3, 6.4, 6.5, 

6.6, 6.7 and 6.8. 

with over half having only minimal support. These questions are at a relatively higher level 

and require programmers to consider a wider range of information and as a result these are 

more difficult for tools to support and more difficult for programmers to answer. 

Regarding questions in category one and category two, it is important to note that often 

these are asked in support of higher-level questions and the particular supporting question 

asked will be heavily influenced by the tools available to the programmer. In general, as the 

actual question asked (using the available tools) gets conceptually further from the intended 

questions the number of questions that have to be asked will increase and the number of false 

positives and negatives will increase; a question asked by a programmer can be supported 

effectively by a given tool, but the programmer may not have been well supported in answering 

their intended question. 

In addition to providing information about which questions (or categories of questions) can 

or can not be answered directly with today's programming tools, our results also suggest more 

general limitations with current industry and research tools. Based on our results, we believe 

programmers need better or more comprehensive support in three related areas: (1) support 

for asking higher-level questions and more precise questions, (2) support for maintaining 

context and putting information together, and (3) support for abstracting information and 
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working with subgraphs at various levels of detail. These areas of support are discussed in 

more detail below. 

1. Support for asking higher-level questions. Many programming tools support only 

relatively low-level questions. For example, questions that are limited to individual entities 

and just one type of relationship. On the other hand many of the questions asked go 

beyond what can be directly asked under these limitations. For example, questions about 

subgraphs or groups of subgraphs such as 30 (Why isn't control reaching this point in the 

code?) require considering multiple entities and relationships. In these situations, as we have 

discussed, programmers map their questions to multiple tools which they believe will produce 

information that will contribute to answering their questions. 

Programmers are often limited in how precise or refined their questions can be. A 

programmer's questions often have an explicit or implicit context or scope. In question 

31 (Which execution path is being taken in this case?) this context is explicit. Question 33 

(What parts of this data structure are accessed in this code?) asks about changes to a data 

structure but in the context of a certain section of code. Similarly, in session 1.11 participant 

N2 wanted to learn about the properties of an object in the context of a particular failing 

case of a large loop. Tools generally provide little or no support for a programmer to specify 

such context as a way to scope his or her questions, and so programmers ask questions more 

globally than they intend. Due to lack of precision or support for suitably refining queries, 

result sets or other information displayed by the various tools include many items irrelevant 

to the intended questions (i.e., false positives relative to the information the participant was 

seeking) and determining relevance requires additional exploration. 

2. Support for maintaining context and putting information together. Most tools treat 

questions as if they were asked in a isolation, though we have shown that often a particular 

question is part of a larger process. For example, answering a higher-level question may 

involve multiple lower-level questions each possibly asked using different tools. Similarly, 

answering a question may involve gathering information from a code base written in two 

different languages, each with support from a different set of programming tools. Even 

when multiple questions are asked using the same tool, the results are presented by that 
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tool in isolation as largely undifferentiated and unconnected lists. Some tools that we have 

shown to partially help answer higher-level questions, such as impact analysis tools simply 

produce a list of candidate entities to consider; investigating those can be nontrivial and 

generally requires using other tools. Although earlier in this chapter we discussed several 

notable exceptions (conceptual module querying, for example), generally tools are designed 

to answer a specific kind of question targeting a particular programming language or type of 

artifact. In cases like these the burden is on the programmer to maintain the context and 

assemble the information which can be difficult; "it gets very hard to think in your head how 

that works" [E14]. Missing is support for bringing information together as well as support 

for building toward an answer. We believe also that there are missed opportunities for tools 

to make use of the larger context to help programmers determine what is relevant to their 

higher-level questions. 

3. Support for abstracting information and working with subgraphs. Questions in 

categories three and four (that is questions about understanding subgraphs, and questions 

over one or more subgraphs) are distinguished from those in the other two categories by 

the volume and variety of information that must be considered to answer those questions. 

Answering these questions involves treating a number of entities as a conceptual whole and 

dealing with information at a number of levels. These distinguishing factors are also the 

factors that make answering these questions difficult as working with subgraphs at this level 

is not well supported by tools. Making comparisons between a number of entities is one 

example of an operation between subgraphs that is not well supported. As mentioned earlier, 

E2 spent nearly 30 minutes of session 2.2 merging the changes from one version of a pair 

of files into a different version of those files, because the changes were sufficiently large that 

diff (and therefore merge) was of limited help. In some cases, even harder is a comparison 

between a system's behavior in two different cases as in question 34 (How does the system 

behavior vary over these types or cases?). Further, to answer questions such as question 38 

(Where should this branch be inserted or how should this case be handled?) requires both the 

right details and an overview of the right aspects of the structure; this requires support for 
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abstracting information in a way that goes beyond collapsing subsystem nodes and composite 

arcs in a nested graph. Tool support for understanding systems at this level is quite limited. 

6.6 Summary 

Based on our results and results from previous research papers, we have investigated support 

provided by today's research tools for answering the 44 kinds of questions asked by our 

participants. We found that overall fifteen of those questions had full support, sixteen had 

partial support and thirteen had minimal or no support. Generally, answering questions from 

the first two categories was well supported, while answering questions from the third and 

fourth categories was much less well supported. We also observed that questions in the first 

two categories are at times asked precisely because there is tool support for answering them. 

In the process of this investigation, we have identified several areas in which programmers 

need better support, including support for asking higher-level and more precise questions, 

support for maintaining context and putting information together, and finally support for 

abstracting information and working with subgraphs at various levels of detail. Our results 

suggest that improvements in these areas will move programming tools closer to programmers' 

questions and the process of answering those questions. 

95 



C h a p t e r 7 

Discussion 

The previous two chapters have presented the results of our analysis of the data collected 

from our two studies. This presentation has included a discussion of areas where we have 

found tool support to be missing for activities around answering questions (see Section 6.5). 

The goal of this chapter is to provide a brief discussion of these studies and results. First, we 

discuss the implications of our results in Section 7.1. This discussion includes suggestions for 

programming tool features to better support the activities we observed around answering 

those questions. To make these feature suggestions concrete we describe features for a 

hypothetical search tool. Second, we discuss our findings in relation to some earlier work 

(see Section 7.2). Third, we discuss the limitations of our studies which affect how our 

results should be interpreted (see Section 7.3). Finally, we discuss possible future studies 

that could be used to build on our research (see Section 7.4). 

7.1 Implications 

Our analysis has identified particular questions that can not easily be answered using current 

tools. We observed that the most difficult questions to answer are often the higher-level 

questions-those about one or more subgraphs of a system. One very effective way to get 

an answer to such a high-level question is to "ask somebody who knows" [48]. People 

have an ability to make a sketch or provide an explanation that captures just the right 

details; abstracting and crossing boundaries. Their tools are natural language, metaphors 

and pictures. Using these people can relatively effectively answer the types of questions 

that are the most difficult to answer using current tools. Though there are limitations with 

people's abilities here: "there are lots of different metaphors [used to describe this code base] 
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but it ends up diving in to details so quickly that the metaphors are often lost" [E2]. The 

availability of documentation in our two studies was limited. Based on our results, we believe 

that improving the ability of programmers to document and communicate about parts of 

their code would be valuable. This support should focus on subgraphs of the system including 

issues around "why" and "how best" kinds of questions. 

When neither documentation nor an expert is available to help answer a programmer's 

questions, he or she heavily relies on tools to help with activities around answering those 

questions. Our results point to several aspects of the gap between the support programmers 

need in answering their questions and the support that tools provide (see Section 6.5). Here 

we explore possible ways that tools can be designed to better support the process of answering 

questions. 

Based on support that we have shown to be missing from current tools, we believe 

that programmers need tools that support questions or views that cross relationship types 

and artifact types. Tools need to support more options for scoping queries (possibly 

integrating techniques such as slicing or feature location techniques) to increase the relevance 

of information presented. Tools that present lists or trees of source code entities could 

show additional information (some source code details, for example) to make it easier for 

programmers to determine what is relevant and to increase the information content of the 

view. Search results or other views should maintain context between searches or other actions. 

Examples of contexts that could be profitably used include: visited entities, previous search 

results, modified entities and executions of the program. These kinds of contexts could be 

made explicit and used between tools. If made explicit these represent groups of entities 

that tools could support operations over (intersecting, union, comparison and connecting, for 

example) and generally should support working with and seeing together. Finally, in bringing 

together more information, tools should support flexibly combining appropriate details and 

overviews of that information. 

To make these suggestions more concrete, next we describe features of a hypothetical 

search tool. The tool is mocked up in Figure 7.1. On the left are the search results. On the 
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Search Results 

Mockup 

SKTImage 

- (id)copyWithZone:(NSZone *)zone 

id newObj = [super copyWithZone:zone]; 

[newObj setlmage:[self image]]; ... 

- (void)loadPropertyListRep:(NSDictionary *)dict 

id obj; ... 

obj = [diet objectForKey:SKTImageContentsKey]; ... 

[self setlmage:[unarchiver unarchiveObject:obj]]; ... 

- (void)setlmageFile:(NSString *)filePath 

newlmage = [[NSImage allocWithZone:[self zone]]...]; 

if (newlmage) { 

[self setlmage:newlmage]; ... 

SKTCraphicView 

- (BOOL)makeNewlmageAtPoint:(NSPoint)point 

NSImage *contents = [[NSImage allocWithZone: ...]; 

if (contents) {... 

[newlmage setlmagexontents]; ... 

calls:setlmage 

Level of detail 

Limit scope 

i</ Last execution 

j Last unit test run 

Recent failed unit tests 

� Previous results 

etc 

Save As 

Figure 7 . 1 : A mockup of a search tool illustrating some of the suggestions in our results. On 

the left are the search results (from an Objective-C code base) and on the right are controls 

that affect the set of results shown. Parts of the mockup labeled A through F are described 

in Section 7 . 1 . 

right are controls that affect the set of results shown. Parts of the mockup are labeled A 

through F and are described below. 

A. The search box with support for simple keyword searches as well as support for more 

complicated searches including searches over multiple relationship types. The very 

simple example in the diagram represents a search for all methods that call a method 

named setlmage. 

B. A summary of each item (method in this case) returned from the search organized by 

type. A slice algorithm based on the primary reason for the items inclusion in the result 

set could be used to scale this summary in an intelligent way. Since this search was for 
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all callers to setlmage, the summary (i.e., the slice) of each method would center on 

the line of code containing that call. 

C. A slider allowing the programmer to determine the size of the summary (i.e., the slice) 

to show. The size could range from just the method name to the entire method body. 

This extra information can be used to determine what is relevant and generally to 

understand aspects of the system relative to the current search. 

D. This search tool could support various ways to limit the scope of searches. In the case 

shown in the diagram, only methods that both call setlmage and were encountered in 

the most recent execution of the system would be included in the result set. Other 

scopes shown in the figure are based on unit test runs and previous searches. Other 

possibilities could include scopes based on output from feature location tools (to scope 

searches by feature), navigation or modification history, and revision control history. 

E. Information about context can be provided by highlighting entities in the result 

set. For example, different color highlighting could emphasize entities returned in 

previous searches, modified entities or previously visited entities. Two methods 

(loadPropertyListRep and makeNewImageAtPoint) are highlighted in this example. 

F. Results sets can be manually modified (items removed from the set, for example) and 

the resulting set can be given a name and saved. This save feature could allow a 

programmer to specify a group of relevant entities. In this way an arbitrary group of 

entities can be revisited, documented and shared, used as a scope for future searches, 

etc. 

7.2 Related Work 

In Section 2.1.3, we describe earlier work involving studies of programmers and the questions 

they ask. In this section we compare our findings with those of the most related of this earlier 

work. 
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Erdos and Sneed suggest, based on their personal experience, that seven questions need to 

be answered for a programmer to maintain a program [17]. The first six questions identified 

by Erdos and Sneed map in a very direct way with questions asked by our participants. 

For example, their first question (Where is a particular subroutine/procedure invoked?) is 

captured by our question 12 (Where is this method called or type referenced?). However, 

their seventh question (What are the inputs and outputs of a module?) is not captured by a 

question in our catalog since we observed no evidence of this question (or similar questions) 

being asked by our participants. This may be due to the fact that we observed programmers 

working on specific change tasks, rather than on more general understanding tasks. 

Letovksy's work on inquiry episodes [56, 57] focuses on "conjectures" which are questions 

along with a hypothesis of the answer. In our studies we also observed some evidence of 

this form of questioning, though most of the questions we observed were not formulated in 

this way and so we have not made this distinction. Letovsky does not extensively catalog 

the conjectures asked by his participants, instead he discusses five categories of conjectures 

(why, how, what, whether and discrepancy). This represents an alternative categorization to 

the one we have proposed in Section 5.1. The differences between our categorizations stem 

from differences in our goals: Letovsky's work aims for a description of the mental processes 

involved, while our work aims for a characterization of the information needs associated with 

the questions as we believe such a characterization will be valuable for tool builders. 

As described in Section 2.1.2, our work also relates to an earlier effort by Von Mayrhauser 

and Vans to inform the design of tools based on their program comprehension work [102]. 

This earlier work identifies several information needs based on the tasks and subtasks that 

make up their model of program comprehension. In contrast, our work has characterized the 

information needed by programmers based on the questions our participants asked and the 

portion of the system relevant to answering those questions. As a result of the differences 

between our approaches, the similarities between the information needs proposed by Von 

Mayrhauser and Vans are generally quite small. Also, our findings around programmers' 

processes are at quite different levels. Their analysis has aimed to produce a description 

of the mental processes of programmers, while we have aimed to produce a description of 
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the work processes involved, including their use of tools. Future research should aim to 

understand the connections between the mental processes and the work processes. 

7.3 L imi t a t i ons 

The studies that we have performed have allowed us to observe programmers in situations that 

vary along several dimensions including the programming tools used, the type of change task, 

and the level of prior knowledge of the code base. This research approach has allowed us to 

explore and report on a broad sample of the questions programmers ask along with behaviors 

around answering those questions. This focus on breadth also has several limitations which 

we discuss here. 

The use of pairs in our first study likely impacted the change process we observed. We 

chose this approach to encourage a verbalization of thought processes and to gain insight 

into the intent of actions performed. An alternative approach to getting similar kinds of 

information is to have single participants think-aloud [101], which was the approach taken in 

our second study. Although the questions asked in the context of a pair working together may 

well be different than in the context of an individual working alone, both represent realistic 

programming situations. 

Our results need to be interpreted relative to the types of tasks used. In the first study we 

chose change tasks that could not be completed within the allotted time. We chose complex 

tasks to stress realism and to stress the investigation of non-local unfamiliar code, a common 

task faced by newcomers to a system, and.by programmers working on changes that escape 

the immediate area of the code for which they have responsibility. In the second study tasks 

were selected by participants and so varied significantly. This approach has allowed us to 

explore a range of realistic tasks. However, not all questions apply to all tasks or to all stages 

of working on a task, and clearly our studies do not cover all types of tasks. 

In addition to being influenced by the task at hand, the questions asked and the process 

of answering those are influenced by the tools available and by individual differences among 

the participants themselves. Given a completely different set of tools or participants our data 
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could be quite different. This fact needs to be considered when interpreting our results or 

when generalizing them. This limitation is mitigated by three factors. First, our studies cover 

a range of tools in use today as well as a range of programmers with different backgrounds 

and levels of experience. Second, many of the questions we observed programmers asking 

were independent of the questions that could be answered directly using the tools provided 

by the environment. Third, we have performed an analysis of tool support for answering 

questions which covered a wide range of tools. 

Our analysis of the level of tool support for answering questions (presented in Chapter 6) 

is limited in two important ways. First, it is possible we have overlooked a particular research 

tool applicable to answering one of the questions our participants asked, and covering every 

tool has not been our goal. This limitation means that it is possible that one or more 

questions have a higher level of support than noted in our analysis. Second, as many of the 

tools we considered have been evaluated in only limited ways (or not at all in some cases), 

at times it was difficult to determine the level of support a tool may provide for answering 

a given question. For this reason there is a certain degree of subjectivity between what 

constitutes full support, partial support and minimal support, and for this reason one or 

more of the questions arguably have a higher or lower level of support than noted in our 

analysis. However we believe that these limitations had at most a small effect on particular 

details of our analysis and have not impacted the overall findings. 

7.4 Follow-up Studies 

In presenting our results we have provided some limited frequency data describing the 

frequency of question types across sessions. This data is summarized in Figure 7.2 which 

shows the distribution of observed question occurrences across the two studies by category. 

An occurrence consists of one or more questions from a category being asked in a session. 

This data illustrates that questions in the first three categories occurred more frequently 

during the first study than the second, while for the fourth category the breakdown between 

studies was more even. One possible reason for the differences is that participants in the first 
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Finding initial focus points 

Study 1 (75%) S t u d y 2 (25%) 

I 

Building on those points 

Study 1 (67%) Study 2 (33%) 

Understanding a subgraph 

Study 1 (67%) Study 2 (33%) 

Quest ions over groups of subgraphs 

Study 1 (48%) Study 2 (52%) 

Figure 7.2: The distribution of observed question occurrences across the two studies by 

category. An occurrence consists of one or more questions from a category being asked in 

a session. For example, 25% of the sessions that featured a question from the first category 

were from study two. 
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study were newcomers to the code they were working on while participants in the second 

study were working with code they had experience with. However, other factors may have 

also contributed. In this section we discuss ways to build on our work by addressing open 

research questions such as what factors precisely contribute to these differences in question 

frequency. 

The two studies we have performed and analyzed have provided a wealth of information 

around programmers asking and answering questions. At the same time our analysis has 

left several related and important research questions unanswered. Here we discuss several of 

these open questions and suggest how future studies could build on our work. 

As mentioned above, the sessions in our two studies varied along several dimensions and 

we have not analyzed how the questions asked and the answering behavior varied along those 

dimensions. For example we have not carefully compared newcomers to a code base with 

programmers working with code with which they have prior experience. Similarly we have 

not looked for a correlation between the questions asked and the type of tools used. Various 

follow-up studies to support these comparisons are possible. Studies which vary one of the 

possible factors (the task, the tool set or the experience level of the participants, for example) 

and fixed the others could support such comparisons. 

We have made no effort to rank the questions we observed being asked by some measure 

of importance. Such a ranking would be valuable for prioritizing future research as well 

as efforts around building tools to support answering particular questions. Although the 

occurrence data that we have provided could provide a basis for such a ranking, we believe 

that this would be insufficient. Instead, a study that collected and analyzed data around how 

much time was spent on particular questions as well as how successful programmers were at 

answering their various questions should provide a more effective ranking of questions. 

In both of the studies that we have performed, we observed participants working for only 

a relatively short period of time (forty-five minutes for study one and thirty minutes for study 

two), on tasks that required much more time typically to complete. A follow-up study in 

which participants were asked to work on a change task to completion would be helpful in at 

least two ways. First, it would support an analysis of the questions asked at different stages 
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of working on a task. Second, differences in the questions asked and the behavior around 

answering those questions could be analyzed to determine which approaches tended to be 

more successful over the course of a task. 

In addition to studies that build on our work we believe that our.results provide support for 

user studies that aim to evaluate tools. Designing a study that has both reasonable overhead 

and can be shown to capture a realistic and important situation can be challenging for 

researchers. We believe that information such as questions that programmers need to answer 

as well as the activities involved in answering those questions can be valuable for developing 

lighter weight studies that can be shown to be applicable to programming activities in the 

real world. 
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C h a p t e r 8 

Summary 

A significant amount of research in software engineering has been based on researchers' own 

intuitions and experiences about problems in software development, rather than on empirical 

results. Much of the empirical research that has been conducted has focused on smaller 

programs using older methods and tools. The result of this has been that programming tools 

have not helped as much as they might and many aspects of activities around programming 

are not as well understood as they need to be. For example, what does a programmer need 

to know about a code base when performing a change task to a software system? How does a 

programmer go about finding that information? The goal of this research has been to provide 

an empirical foundation for tool design based on an exploration of what programmers need 

to understand and of how they use tools to discover that information while performing a 

change task. 

To this end, we have collected and analyzed data from two observational studies. Our 

first study was carried out in a laboratory setting and the second study was carried out in 

an industrial work setting. The participants in the first study were observed as they worked 

on assigned change tasks to a code base that was new to them. This code base comprises 

roughly 60K lines of Java code. The participants in the second study were all professional 

programmers working for the same company. These participants were observed as they 

worked on their own change task to a software system for which they had responsibility. 

These system varied from relatively modest sized ones (about 20K lines of code) to very 

large ones (over one million lines of code). Participants in the first study used the Eclipse 

Development Environment while participant in the second study used the tools that they 

normally used, which varied significantly (Emacs, Visual Studio, etc). Through these studies 
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we have been able to observe a range of programmers working on a range of change tasks, 

using a range of programming tools. 

To structure our data collection and the analysis of that data, we have used a grounded 

theory approach. This collection and analysis was an iterative process of discovering questions 

in the data and exploring similarities, connections and differences among those questions. In 

the process we developed generic versions of the questions, which slightly abstract from 

the specifics of a particular situation and code base. We also analyzed the behavior we 

observed around answering those questions both at the particular question level and at the 

category level. To build on this, and to increase the generalizability of our results, we have 

performed additional analysis of tool support for answering each type of question. This 

analysis considered a wide range of tools (beyond those used by our participants) and allowed 

us to explore the level of support today's tools provide for answering the questions our 

participants asked. 

This research has made four key contributions. The first contribution is an empirically 

based catalog of the 44 types of questions asked by the participants of the two studies. These 

are slight abstractions over the many specific questions and situations we have observed. 

These abstractions have allowed us to compare and contrast the questions asked as well as 

to gather some simple frequency data for those questions. The questions asked range from 

simple low-level questions such as Who implements this interface or these abstract methods? 

to much more involved questions such as Why isn't control reaching this point in the code?. 

Although not a complete list of questions, it illustrates the sheer variety of questions asked 

and provides a basis for an analysis of tool support for answering questions. To our knowledge 

this is the most comprehensive such list published to date. 

The second contribution is a categorization of those 44 types of questions into four 

categories based on the kind of information needed to answer a question: one category 

groups questions aimed at finding initial focus points, another groups questions that build on 

initial points, another groups questions which aim at understanding subgraphs of a system, 

and the final category groups questions over one or more such subgraphs. Although other 

categorizations of the questions are possible, we have selected this categorization because 
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these categories show the types and scope of information needed to answer the questions, 

capture some intuitive sense of the various levels of questions asked, and make clear various 

kinds of relationships between questions, as well as certain observed challenges around 

answering those questions. 

Third, an analysis of the observed process of asking and answering questions, which 

provides valuable context for the questions we report. We have shown that many of the 

questions asked were closely related. For example, some lower-level questions were asked as 

part of answering higher-level questions. We have shown that the questions a participant 

asked often mapped imperfectly to questions that could be answered directly using the 

available tools. For example, at times the questions programmers ask using current tools 

are more general than their intended questions. We have also shown that programmers, at 

times, need to mentally combine result sets or other information from multiple tools to answer 

their questions. These results contribute to our understanding both about how programmers 

answer their questions and the challenges they face in doing so. 

The final contribution from our research is an analysis of the support existing tools (both 

industry tools and research tools) provide for answering each kind of question. We consider 

which questions are well supported and which are less well supported. We also generalize 

this information to demonstrate a gap between the support tools provide and that which 

programmers need. In particular we show that programmers need improved support for 

asking higher-level questions and more precise questions, support for for maintaining context 

and putting information together, and support for abstracting information and working with 

subgraphs of source code entities and relationships. We hope these results will provide 

motivation and a foundation for the design of future programming tools. 

These results provide a more complete understanding of the information needed by 

programmers performing nontrivial change tasks, and of how programmers use tools to 

discover that information. These results have several implications for tool design. Our 

results point to the need to move tools closer to programmers' questions and the process 

of answering those questions and also suggest ways that tools can do this, for example, by 

maintaining and using more types of context and by providing support for working with larger 
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and more diverse groups of entities and relationships. More generally, we believe that tool 

design has often targeted the questions and activities of programmers too narrowly, which has 

resulted in tools that answer very narrow questions. Further, there is a difference between an 

environment providing multiple tools that answer a range of questions and actually supporting 

a programmer in the process of understanding what they' need to know about a software 

system. 
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