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ABSTRACT

An efficient algorithm for adaptive kernel smoothing (AKS) of two-dimensional imaging data
has been developed and implemented using the Interactive Data Language (IDL). The functional
form of the kernel can be varied (top-hat, Gaussian, etc.) to allow different weighting of the
event counts registered within the smoothing region. For each individual pixel, the algorithm
increases the smoothing scale until the signal-to-noise ratio (S/N) within the kernel reaches a
pre-set value. Thus, noise is suppressed very efficiently, while at the same time real structure,
that is, signal that is locally significant at the selected S/N level, is preserved on all scales. In
particular, extended features in noise-dominated regions are visually enhanced. The ASMOOTH

algorithm differs from other AKS routines in that it allows a quantitative assessment of the
goodness of the local signal estimation by producing adaptively smoothed images in which all
pixel values share the same S/N above the background.

We apply ASMOOTH to both real observational data (an X-ray image of clusters of galax-
ies obtained with the Chandra X-ray Observatory) and to a simulated data set. We find the
ASMOOTHed images to be fair representations of the input data in the sense that the residuals
are consistent with pure noise, that is, they possess Poissonian variance and a near-Gaussian
distribution around a mean of zero, and are spatially uncorrelated.

Key words: methods: data analysis – methods: statistical – techniques: image processing.

1 I N T RO D U C T I O N

Smoothing of two-dimensional event distributions is a procedure
routinely used in many fields of data analysis. In practice, smoothing
means the convolution

I ′(r ) ≡ I (r ) ⊗ K(r ) =
∫

IR2
K(r − r ′) I (r ′) dr ′

[∫
IR2

K(r ) dr ′ = 1

]
(1)

of the measured data I (r ) with a kernel functionK (often also called
‘filter’ or ‘window function’). Although the raw data may be an im-
age in the term’s common meaning [i.e. the data set can be repre-
sented as a function I (x , y) where I is some intensity, and x and y are
spatial coordinates], the two coordinates x and y can, in principle,
describe any two-dimensional parameter space. The coordinates x
and y are assumed to take only discrete values, that is, the events
are binned into (x , y) intervals. The only requirement on I that we
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will assume in all of the following is that I is the result of a counting
process in some detector, such that I (x ,y) ∈ IN0.

An image, as defined above, is a two-dimensional histogram and
is thus often a coarse representation of the underlying probability
density distribution (e.g. Merritt & Tremblay 1994; Vio et al. 1994).
However, for certain experiments, an unbinned event distribution
may not even exist – for instance if the x and y values correspond
to discrete spectral energy channels. Also, some binning can be
desirable, for instance, in cases where the dynamic range of the data
under consideration is large. If the bin size is sufficiently small, the
unavoidable loss of spatial resolution introduced by binning the raw
event distribution may be a small price to be paid for a data array of
manageable size.

Smoothing of high-resolution data is of interest whenever the sig-
nal (defined as the number of counts per pixel above the expected
background) in the region of interest in x–y space is low, that is, it
is less than or of the order of 10, after the raw event distribution has
been sorted into intervals whose size matches approximately or ex-
ceeds the instrumental resolution. It is crucial in this context that the
observed count statistics are not taken at face value but are corrected
for background, which may be internal, that is, originating from the
detector (more general: the instrumental set-up), or external. If this
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correction is not applied, the observed intensity (counts) distribution
I (x , y) may be high across the region of interest, suggesting good
count statistics, even if the signal above the background that we are
interested in is actually low and poorly sampled. The statistics of
the observed counts alone can thus be a poor indicator of the need
for image smoothing.

Rebinning the data set into larger, and thus fewer, intervals im-
proves the count statistics per pixel and reduces the need for smooth-
ing. This is also the basic idea behind smoothing with a kernel of
the form

K(r ′, σ ) =
{

1
πσ 2 where |r ′| < σ

0 elsewhere
(2)

(circular ‘top-hat’ or ‘box-car’ filter of radial size σ ), the only dif-
ference being that smoothing occurs semicontinuously (the step size
being given by the bin size of the original data), whereas rebinning
requires an additional phase information [the offset of the bound-
aries of the first bin with respect to some point of reference such as
the origin of the (x , y) coordinate system]. However, when starting
from an image binned at about the instrumental resolution, both re-
binning and conventional smoothing share a well-known drawback,
namely that any improvement in the count statistics occurs at the
expense of spatial resolution.

2 A DA P T I V E K E R N E L S M O OT H I N G

Although conventional smoothing algorithms usually employ more
sophisticated functional forms for the kernel than the above ‘top-
hat’ filter (the most popular probably being a Gaussian), the problem
remains that a kernel of fixed size is ill suited for images that fea-
ture real structure on various scales, some of which may be much
smaller or much larger than the kernel size. In such a situation, small-
scale features tend to get oversmoothed while large-scale structure
remains undersmoothed. Adaptive kernel smoothing (AKS) is the
generic term for an approach developed to overcome this intrinsic
limitation by allowing the kernel to vary over the image and adopt
a position-dependent ‘natural’ size.

AKS is closely related to the problem of finding the optimal adap-
tive kernel estimator of the probability density distribution under-
lying a measured, unbinned event distribution. The advantages of
adaptive kernel estimators for the analysis of discrete, and in par-
ticular one-dimensional, astronomical data have been discussed by
various authors (e.g. Thompson 1990; Pisani 1993, 1996; Merritt &
Tremblay 1994; Vio et al. 1994). An overview of adaptive filtering
techniques in two dimensions is given by Lorenz et al. (1993).

A common feature of all non-parametric adaptive kernel algo-
rithms is that the ‘natural’ smoothing scale for any given position is
determined from the number of counts accumulated in its immediate
environment. Following the aforementioned principle, smoothing
occurs over a large scale where few counts have been recorded, and
over a small scale where count statistics are good. AKS algorithms
differ, however, in the prescription that defines how the amplitude
of the local signal is to be translated into a smoothing scale.

A criterion widely used for discrete data is that of Silverman
(1986). It determines the size,σ , of the local kernels relative to that of
some global (i.e. non-adaptive, fixed) kernel (σ const) by introducing
a scaling factor which is the inverse square root of the ratio of the
globally smoothed data to their logarithmic mean. For images, and
using the same notation as before, this means

σ (r ) =
√

〈I ′
const(r )〉log

I ′
const(r )

, (3)

where log10 〈I ′
const(r )〉log = 〈log10 I ′

const(r )〉, and I ′
const(r ) represents

the convolution of the measured data with a kernel of fixed size
σ const. However, whether or not this approach yields satisfactory re-
sults depends strongly on the choice of the global smoothing scale
σ const (Vio et al. 1994). In the context of discrete data sets, Pisani
(1993) suggested a least-squares cross-validation procedure to de-
termine an optimal global kernel size in an iterative loop. However,
for binned data covering a large dynamical range (see Section 4
for an example), the dependence of the result on the size of the
global kernel becomes very sensitive indeed, and the iteration be-
comes very time-consuming. Also the dependence on the somewhat
arbitrary scaling law (equation 3) remains. Other adaptive filtering
techniques discussed recently in the literature include the HFILTER al-
gorithm for square images (Richter et al. 1991, see also Lorenz et al.
1993) and the AKIS algorithm of Huang & Sarazin (1996). Closely re-
lated are image decomposition techniques including wavelet-based
algorithms (Starck & Pierre 1998, and references therein) and adap-
tive binning (e.g. Sanders & Fabian 2001; Cappellari & Copin 2003;
Diehl & Statler 2005).

In the following, we present ASMOOTH, an AKS algorithm for im-
ages, that is, binned, two-dimensional data sets of any size, which
determines the local smoothing scale from the requirement that the
above the background-corrected signal-to-noise ratio (S/N) of any
signal enclosed by the kernel must exceed a certain, preset value. The
algorithm is similar to AKIS (Huang & Sarazin 1996) in that it em-
ploys an S/N criterion to determine the smoothing scale.1 However,
other than AKIS, ASMOOTH does not require any initial fixed kernel
smoothing but determines the size of the adaptive kernel directly and
unambiguously from the unsmoothed input data. ASMOOTH also goes
beyond existing AKS algorithms in that its S/N criterion takes the
background (instrumental or other) of the raw image into account.
This leads to significantly improved noise suppression in the case
of large-scale features embedded in high background. Our approach
yields smoothed images which feature a near-constant (or, alterna-
tively, minimal) S/N above the background in all pixels containing
a sufficient number of counts. In contrast to most other algorithms
which require threshold values to be set (e.g. for the H coefficients
in the case of the HFILTER technique), ASMOOTH is intrinsically non-
parametric. The only external parameters that need to be specified
are the minimal and, optionally, maximal S/Ns (above the back-
ground) required under the kernel.

The simplicity of the determination of the local smoothing scale
from the counts under the kernel and an estimate of the local back-
ground greatly facilitates the translation of the smoothing prescrip-
tion into a simple and robust computer algorithm, and also allows a
straightforward interpretation of the resulting smoothed image.

3 D E S C R I P T I O N O F T H E A L G O R I T H M

ASMOOTH adjusts the smoothing scale (i.e. the size of the smooth-
ing kernel) such that, at every position in the image, the resulting
smoothed data values share the same S/N with respect to the back-
ground; one may call this the ‘uniform significance’ approach. The
only external parameter required by ASMOOTH is the desired minimal
S/N, τmin.

In order to ensure that statistically significant structure is not over-
smoothed to an S/N level much higher than τmin, an S/N range can
be specified as a pair of ττmin min, τmax values. Note, however, that
the maximal S/N criterion is a soft one and, also, is applied only at

1 We stress that ASMOOTH was developed completely independently.
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scales larger than the instrumental resolution (which is assumed to
be similar to, or larger than, the pixel scale); under no circumstances
will ASMOOTH blur significant point-like features (pixels whose S/N
in the unsmoothed image exceeds τmin) in order to bring their S/N
value down below the τmax threshold.

The background-corrected S/N of any features is computed ac-
cording to one of two definitions. The weaker requirement is given
by the definition of the ‘significance of detection’ above the back-
ground,

τ = (Nsrc − Nbkg)

�Nbkg
, (4)

where Nsrc and N bkg are the number of counts under the smoothing
kernel and the background kernel, respectively, and �Nbkg is the
1σ uncertainty of the background counts. Alternatively, and by de-
fault, the more stringent definition of the ‘significance of the source
strength measurement’ can be used,

τ = (Nsrc − Nbkg)√
(�Nsrc)2 + (�Nbkg)2

, (5)

with �Nsrc being the 1σ uncertainty of the source counts accumu-
lated under the smoothing kernel. Either of these definitions assumes
Gaussian statistics by implying that the nσ error of a measurement
is equal to n times the 1σ error.

In addition to the desired S/N limits τ min,max, estimates of the
background Ibkg and the associated background error �Ibkg are op-
tional additional parameter. To allow background variations across
the image to be taken into account, Ibkg and �Ibkg can be supplied
as images of the same dimensions as the raw image; in the case of
a flat background Ibkg and �Ibkg reduce to global estimates of the
background and background error per pixel, that is, single numbers.
Note that, more often than not, �Ibkg 	= √

Ibkg as the background
estimate will originate from model predictions rather than being
the result of another counting experiment. If no background infor-
mation is supplied, ASMOOTH determines a local background from
an annular region around the adaptive smoothing kernel, extending
from 3 to 4σ for a Gaussian kernel, and from 1 to 4/3σ for a top-hat
kernel.

Internally, the threshold S/N values τmin, τmax are translated into
a minimal and a maximal integral number of counts, N min, N max, to
be covered by the kernel. More precisely, the criterion is that

Nmin � I ′(r )

K[0, σ (r )]
� Nmax, (6)

where σ (r) is the characteristic, position-dependent scale of the
respective kernel. N min,max in equation (6) are determined from the
definition of the minimal and maximal S/N value τ min,max,

τmin,max = Nmin,max − Nbkg√
Nmin,max + �N 2

bkg

, (7)

where, in analogy to the definition of N min,max (cf. equations 1 and 6),
Nbkg and �Nbkg are the integral number of background counts under
the respective kernel and the associated error. From equation (7)
follows:

Nmin,max = Nbkg + 1

2
τ 2

min,max

+ τmin,max

√
Nbkg + �N 2

bkg + 1

4
τ 2

min,max. (8)

For an adaptive circular top-hat kernel of size σ (r) (cf. equation 2),
equation (6) translates into N min � πσ (r )2 I ′(r ) � N max, and the
interpretation is straightforward: at least N min, but no more than

N max, counts are required to lie within the area πσ (r )2 that the
smoothing occurs over. In the case of a uniform background, the
value of N bkg in equation (8) is simply given by nbkgπσ (r )2, where
nbkg is the global background level per pixel in the input image.

For any given pair of (N min, N max) values, a Gaussian kernel

K[r − r ′, σ (r )] = 1

2 π σ (r )2
exp

[
−|r − r ′|2

2σ (r )2

]
(9)

will yield considerably larger effective smoothing scales than a top-
hat kernel, as, in two dimensions, more than 60 per cent of the
integral weight fall outside a 1σ radius, whereas, in the case of a
circular top-hat kernel, all of N min needs to be accumulated within a
1 σ radius. [Note that, according to equation (9), it is the weights per
unit area that follow a Gaussian distribution. The weights per radial
annulus do not, which is why, for the kernel defined in equation (9),
the fraction of the integral weight that falls outside the 1σ radius
is much larger than the 32 per cent found for a one-dimensional
Gaussian.) Which kernel to use is up to the user: ASMOOTH offers a
choice of Gaussian (default) and circular top-hat kernel.

The algorithm is coded such that the adaptively smoothed image
is accumulated in discrete steps as the smoothing scale increases
gradually, that is,

I ′
AKS(r ) =

∑
i

I ′
i (r ) =

∑
i

Ii (r ) ⊗ K(r , σi ), (10)

where σ i starts from an initial value σ 0 which is matched to the
intrinsic resolution of the raw image (i.e. the pixel size), and Ii(r) is
given by

Ii (r ) =

⎧⎪⎨
⎪⎩

I (r ) where Nmin � I ′(r )/K(0, σi ) � Nmax

and I (r ) 	∈ I j (r ), j < i

0 elsewhere.

(11)

The adaptively smoothed image is thus accumulated in a ‘top-down’
fashion with respect to the observed intensities as ASMOOTH starts
at small kernel sizes to smooth the vicinity of the brightest pixels,
and then increases the kernel size until, eventually, only background
pixels contribute. Note that condition (11) ensures that pixels found
to contain sufficient signal at a scale σ i will not contribute to the im-
age layers I ′

j , ( j > i) subsequently produced with smoothing scales
σ j > σ i . Consequently, each feature is smoothed at the smallest
scale at which it reaches the required background-corrected S/N
(see equation 6), and low-S/N regions are smoothed at an appropri-
ately large scale even in the immediate vicinity of image areas with
very high S/N.

In order to take full advantage of the resolution of the unbinned
image, the size σ 0 of the smallest kernel is chosen such that the area
enclosed by K(r , σ0) is about 1 pixel. For the circular top-hat filter
of equation (2), this means σ0 = 1/

√
π; for the Gaussian kernel of

equation (9), we have σ0 = 1/
√

9π. Subsequent values of σ i (i > 0)
are determined from the requirement that equation (6) be true. If a
near-constant S/N value is aimed at with high accuracy, that is, if a
τmax value very close to τmin is chosen, the smoothing scale σ i will
grow in very small increments, and the smoothing will proceed only
slowly. In all our applications, we found values of τmax � 1.1 × τmin

to yield a good compromise between CPU time considerations and a
sufficiently constant S/N of the smoothed image. If no value for the
optional input parameter τmin is supplied by the user, the code there-
fore assumes a default value of τmax = τmin + 1 which meets the
above requirement for all reasonable values of τmin.
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While the intrinsic resolution of the raw image (i.e. the pixel size)
determines the smallest kernel size σ 0, the size of the image as a
whole represents an upper limit to the size of the kernel. Although the
convolution can be carried out until the numerical array representing
the kernel is as large as the image itself, this process becomes very
CPU time intensive as σ i increases. Once the smoothing scale has
exceeded that of the largest structure in the image, the criterion of
equation (6) can never be met as only background pixels contribute.
Since the only features left unsmoothed at this stage are insignificant
background fluctuations, the algorithm then smoothes the remain-
ing pixels with the largest possible kernel. Unavoidably, the S/N
of these last background pixels to be smoothed does not meet the
condition of equation (6). Note that in the case of the background
being determined locally from the data themselves (the default), it is
the size of the background kernel (an annulus around the smoothing
kernel) that reaches the limit first. Hence, for a Gaussian, the largest
smoothing scale (1σ size of the kernel) is 1/8 of the image size, for
a top-hat, it is 3/8 of the image size.

Since the algorithm uses fast-Fourier transformation (FFT) to
compute the many convolutions required, the overall performance
of the code is significantly improved if the image size in pixels is an
integer power of two. The smoothed image obtained from the above
procedure strictly conserves total counts (within the limitations set
by the computational accuracy) and provides a fair representation
of the original data at all positions.

4 P E R F O R M A N C E O F T H E A L G O R I T H M

We first demonstrate the performance of our algorithm by applying
it to an image of X-ray emission from a massive cluster of galaxies
taken with the ACIS-S detector on board the Chandra X-ray Obser-
vatory. Then, we use simulated data to test how faithfully ASMOOTH

reproduces the true count distribution of the input image.

4.1 Results for Chandra ACIS-S data

Because of the large range of scales at which features are detected in
the selected Chandra observation, this X-ray image is ideally suited
for a demonstration of the advantages of AKS. If photon noise is to be
suppressed efficiently, the very extended emission from the gaseous
intracluster medium needs to be smoothed at a rather large scale. At
the same time, a small smoothing scale, or no smoothing at all, is
required in high-S/N regions in order to retain the spatial resolution
in the vicinity of bright point-like sources [stars, quasi-stellar objects
(QSOs) and active galactic nucleus (AGN)] superimposed on the
diffuse cluster emission. Fixed kernel smoothing can meet, at most,
one of these requirements at a time.

Our choice of data set has the additional advantage that the se-
lected image was taken with an X-ray detector that is also very
sensitive to charged particles which makes the image particularly

Figure 1. Left-hand panel: X-ray emission detected with Chandra ACIS-S in the 0.5-7 keV band in a 4.2 × 4.2 arcmin2 field around the cluster of galaxies
MS 1054.4−0321; the intensity scaling is logarithmic. Shown are the raw data. Bottom panel: results obtained with ASMOOTH (adaptive Gaussian kernel) for
(top to bottom row) τmin = 2, 3 and 4. In all cases, τmax was set to τmin + 1. The three columns show (from left-hand to right-hand side) the adaptively
smoothed image (same intensity scaling as used for the image of the raw data shown in the single panel at the very top), a map of the kernel sizes (1σ radius of
a two-dimensional Gaussian) used by ASMOOTH in the smoothing of the raw data, and a map of the background-corrected S/N of pixel values in the adaptively
smoothed image. Note how ASMOOTH fully retains signal that reaches the specified background-corrected S/N level while, at the same time, heavily suppressing
background noise by applying a wide range of smoothing scales from much less than one to many tens of pixels. The majority of the pixels in the raw data
contain insufficient signal to reach the specified S/N threshold at any permissible smoothing scale and are thus smoothed with the largest possible kernel. Note
the correspondence between the outlines of regions with an S/N of less than τmin in the ASMOOTHed images (right-hand column) and the outlines of regions
smoothed with largest possible kernel (centre column). With the exception of a few very bright pixels whose S/N exceeds τmax in the raw data (i.e. without
any smoothing), all other pixels in the ASMOOTHed image contain signal whose background-corrected S/N is near-constant at the specified level.

well suited to emphasize the importance of a proper treatment of
the background.

Fig. 1 (top left-hand panel) shows the raw counts detected with
ACIS-S in the 0.5–7 keV energy band in an 89-ks observation of the
galaxy cluster MS 1054.4−0321. The diffuse emission originates
from an electron–ion plasma trapped in the gravitational potential
well of the cluster and heated to temperatures of typically 1 × 108 K
(corresponding to kT ≈ 10 keV). A detailed analysis of this observa-
tion is given by Jeltema et al. (2001). The image shown here (512 ×
512 pixel2) covers a subsection of the detector spanning a 4.2 ×
4.2 arcmin2 region; the pixel size of 0.492 arcsec corresponds
roughly to one on-axis resolution element of the telescope–detector
configuration. Note the high background throughout the image,
caused by high-energy cosmic rays.

Fig. 1 summarizes ASMOOTH results obtained with a Gaussian
kernel, and for S/N target values of τmin = 2, 3, 4 and τmax = τmin +
1, in a three-by-three array of plots below the image of the raw
data.

4.1.1 ASMOOTHed images

The left-most column of Fig. 1 shows the adaptively smoothed im-
ages for the three different τmin values. ASMOOTH fully preserves the
high-information content of the raw data in the high-S/N regions
corresponding to bright, small-scale features, while at the same time
heavily smoothing the low-S/N regions of the image where the sig-
nal approaches the background value. Note, however, that for small
values of τmin (top row) the goodness of the local estimation of
the signal above the background is relatively low, and noise is not
removed efficiently on all scales.

Fig. 2 illustrates the gradual assembly of the adaptively smoothed
image by showing the change in various ASMOOTH parameters as a
function of smoothing step.

At the highest pixel intensities above the S/N threshold, ASMOOTH

occasionally returns smoothed count values that exceed the counts
in the unsmoothed image: the brightest point source in the raw data
has a peak value of 126 counts, the ASMOOTHed image features a
value of 128.5 at the same location. This is due to the fact that,
although the corresponding pixels themselves remain essentially
unsmoothed and thus keep their original values, there is an additional
contribution from the larger sized kernels of neighbouring pixels
whose S/N above the background falls short of τmin. Since the final
image is accumulated from the partial images resulting from the
successive convolution with the whole set of differently sized kernels
(cf. equation 10), the total smoothed intensity can become larger than
the actually observed counts at pixel positions where I (r ) � N min.
This artefact is caused by the limited resolution of the images and
can be notable when a large bin size is chosen for the original data.
The integral number of counts in the image is always conserved.
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Figure 2. ASMOOTH processing parameters as a function of smoothing step
for one of the examples shown in the Fig. 1 (τmin = 3, τmax = 4). The shaded
region and solid black line delineate the range of S/Ns and their median
value, respectively, for the set of image pixels processed in each step. The
target values τmin and τmax are marked by the dashed horizontal lines. Note
the non-linear increase in the smoothing radius σ (green line), the cumulative
fraction of pixels processed (red line) and the cumulative fraction of counts
processed. Note also that the criterion of equation (6) is a soft one as far as
N max (τmax) is concerned: τ values greater than τmax are tolerated as long as
the median value of the S/N distribution for each smoothing step is smaller
than (τmax + τmin)/2. S/N values exceeding τmax occur also at the smallest
smoothing scales as the code is designed not to blur features whose S/N is
higher than τmin already in the raw data.

4.1.2 Kernel size and S/N maps

As illustrated in Fig. 2, ASMOOTH applies a wide range of smoothing
scales to the input data as the algorithm attempts to fulfil the require-
ment given by equation (6) throughout the image. In addition to the
adaptively smoothed image, ASMOOTH also returns, in an Interac-
tive Data Language (IDL) data structure, maps of the background-
corrected S/N of the pixel values in the smoothed image and the
kernel size used in the smoothing process, respectively.

The second and third columns of the three-by-three panel in Fig. 1
show both of these maps for the ASMOOTH images shown in the first,
left-most column of plots. The maps of ASMOOTH kernel sizes as
well as Fig. 2 demonstrate how very small kernel sizes of less than
or about 1 pixel (1σ radius) are assigned to very few bright pixels;
accordingly, these pixels remain essentially unsmoothed. For τmin =
3 (middle row), for instance, some 27 per cent of the image pixels
are found to satisfy the criterion of equation (6) at smoothing scales
between one and 62 pixels (radius), while the majority of the remain-
ing pixels (more than 72 per cent) do not contain enough signal to
reach the required S/N even at the largest permissible smoothing
scale. The majority of the image is smoothed at the largest possi-
ble scale of 63.8 pixels at which the dimensions of the background
kernel array (a 1σ wide annulus surrounding the two-dimensional
Gaussian smoothing kernel computed out to 3σ radius) equals that of
the image itself. The S/N maps (Fig. 1, right-most column), finally,
give evidence of the near-constant S/N of all regions smoothed with
kernels other than the largest one.

4.1.3 Statistical properties of the residual image

The qualitative demonstration of the performance of ASMOOTH

shown in Fig. 1 can be made more quantitative by comparing it with
the results obtained with fixed kernel smoothing. To this end, we
examine the properties of the residual images obtained by subtract-

ing the respective smoothed image from the observed raw image.
Following Piña & Puetter (1992) who introduced this criterion in
the context of Bayesian image reconstruction, we state that, for an
ideal smoothing algorithm, this residual image should contain only
uncorrelated Poissonian noise around a zero mean. A global mean
of zero is guaranteed – within the numerical accuracy of the con-
volution code – by the requirement that any smoothing algorithm
conserve counts. The requirements that the mean also be zero lo-
cally, that the residual signal have Poissonian variance, and that the
residual signal be uncorrelated across the image are much harder
to meet. In the following, we will examine how well adaptive and
fixed kernel smoothing fulfil these requirements.

4.1.3.1 Is the residual signal consistent with Poissonian noise
shifted to zero mean as expected if shot noise dominates? If so,
the square of the noise (given by the residual signal), n2

res, should
equal the mean (given by the smoothed signal nsmooth). Since the
smoothed image contains a wide range of mean values, we can test
for this condition only within bins of similar mean. Fig. 3 shows
the ratio n2

res/n smooth as a function of nsmooth for both ASMOOTH and
a number of fixed kernels of various sizes. Note how the residual
signal obtained with ASMOOTH exhibits a near-Poissonian variance
over a larger range of mean values than does the residual produced
by smoothing with a fixed kernel of essentially any size. Only the
smallest fixed kernel size tested here, σ c = 1.1 pixel, yields com-
parable results – a kernel of such small size, however, also provides
essentially no smoothing.

4.1.3.2 Is the signal in the residual image spatially uncorrelated?
Fig. 4 shows the autocorrelation function of the residual images
obtained with ASMOOTH and fixed kernels of various sizes. Here, we
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Figure 3. The ratio of the variance of the residual signal to the mean (as
given by the smoothed signal) as a function of the smoothed signal for the
example shown in Fig. 1. Only bins containing at least 5 pixel are shown.
Also shown are Gaussian errors based on the number of pixels per bin. For
a perfect smoothing algorithm, the plotted ratio is unity at all values of the
mean. The bold lines (red, green and blue) representing the results obtained
with ASMOOTH for τmin = 2, 3 and 4 come close to the ideal of a constant
value of unity for most values of the mean. Only a few bright pixels exhibit
significantly higher variance than expected for Poissonian statistics. By com-
parison, fixed kernel smoothing (see the fine solid lines) results in far too
high variances for all but the smallest kernel size. Strong deviations from
Poissonian statistics are observed over large portions of the image. The cho-
sen fixed kernel sizes assume the values of the 1/100th 3/100th 1/10th 1st
and 10th percentile of the distribution of ASMOOTH kernel sizes for τmin =
3(1.1, 2.5, 6.7, 11.4 and 21.9 pixels).
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Figure 4. The normalized autocorrelation function (cf. equation 12) of the
signal in the residual images obtained by subtracting the smoothed image
from the original one for the example shown in Fig. 1. For a perfect smooth-
ing algorithm, the autocorrelation signal is zero at all lags r > 0. The almost
indistuinguishable bold lines (red, green and blue) representing the results
obtained with ASMOOTH for τmin = 2, 3 and 4 come close to this ideal at the
price of a slight positive correlation on all scales. Fixed kernel smoothing al-
ways results in significant spatial correlations. The chosen fixed kernel sizes
assume the values of the 1/100th, 3/100th, 1/10th, 1st and 10th percentile
of the distribution of ASMOOTH kernel sizes for τmin = 3(1.1, 2.5, 6.7, 11.4
and 21.9 pixels).

use the standard definition of the autocorrelation ξ as a function of
radial lag r:

ξ (r ) = 〈Ires(r ′) Ires(r ′ + r )〉
〈Ires〉2

− 1, (12)

where the angular brackets signify averaging over the position r ′

within the image (e.g. Peebles 1980). In the normalized represen-
tation of ξ (r) shown in Fig. 4, an ideal smoothing algorithm would
produce zero signal at all lags except for a singular value of unity
at r = 0. ASMOOTH comes close to this ideal: the signal in the resid-
ual images generated with ASMOOTH is essentially uncorrelated at
all scales except for a weak (�2 per cent) positive signal at scales
smaller than about the maximum adaptive kernel size. Note the very
different result when fixed Gaussian kernels of size σ const are used:
strong spatial correlations are observed in the residual images at all
scales smaller than about the kernel size. Only for very small ker-
nel sizes does non-adaptive smoothing come close to meeting the
requirement that any residual signal after smoothing be spatially
uncorrelated. However, such small kernel sizes perform very poorly
in the presence of significant structure on a large range of scales (cf.
Fig. 1, centre column).

4.2 Simulated data

The example shown in the previous section has the advantage of
using real data but, for this very reason, does not allow the user to
assess quantitatively how the ASMOOTHed image compares to the
true counts distribution underlying the noisy input image. We there-
fore present in this section results obtained for a simulated data set
that contains multiple extended and point-like features, as well as a
constant background component.

Fig. 5 summarizes the characteristics of the model used for our
simulation (top row). The same figure shows, in the bottom row,
results obtained with ASMOOTH for τmin = 3, τmax = τmin + 1, and

with the adaptive binning algorithm WVT (Diehl & Statler 2005)
for a target S/N value of 5. Note how the requirement of a minimal
S/N above the local background (equations 4 and 5) causes AS-
MOOTH to reduce noise much more aggressively than WVT in spite
of a nominally lower S/N target value. As demonstrated by the er-
ror distribution depicted in the final panel of Fig. 5, the ASMOOTH

residual image exhibits a near-Gaussian error distribution around
zero mean, in addition to featuring Poissonian variance and being
spatially uncorrelated (Section 1). ASMOOTHed images can thus be
considered to be fair representations of the ‘true’ input image.

5 S U M M A RY

We describe ASMOOTH, an efficient algorithm for adaptive kernel
smoothing of two-dimensional image data. ASMOOTH determines
the local size of the kernel from the requirement that, at each posi-
tion within the image, the S/N of the counts under the kernel, and
above the background, must reach (but not exceed greatly) a certain
preset minimum. Qualitatively, this could be called the ‘uniform
significance approach’. As a consequence of this criterion, noise is
heavily suppressed and real structure is enhanced without loss of
spatial resolution. Due to the choice of boundary conditions, the
algorithm preserves the total number of counts in the raw data. The
ASMOOTHed image is a fair representation of the input data in the
sense that the residual image is consistent with pure noise, that is,
the residual possesses Poissonian variance and is spatially uncorre-
lated. As demonstrated by the results obtained for simulated input,
the adaptively smoothed images created by ASMOOTH are fair repre-
sentations of the true counts distribution underlying the noisy input
data.

Since the background is accounted for in the assessment of any
structure’s S/N, a feature that distinguishes ASMOOTH from most
other adaptive smoothing or adaptive binning algorithms, the inter-
pretation of the adaptively smoothed image is straightforward: all
features in the ASMOOTHed image are equally significant at the scale
of the kernel used in the smoothing. A map of these smoothing scales
is returned by ASMOOTH together with the smoothed image. Note that
these are the smallest scales at which real features reach the selected
S/N threshold. Consequently, background regions never meet the
S/N criterion and are smoothed at the largest possible scale for
which the kernel size equals the size of the image. Such regions of
insufficient signal are easily flagged using an S/N map which is also
provided by our algorithm.

We emphasize that our definition of ‘signal’ as meaning ‘signal
above the (local) background’ was chosen because many, if not
most, real-life applications do not provide the user with a priori
knowledge of the intensity of the background or any spatial back-
ground variations. Also, superpositions of features (such as the point
sources on top of the diffuse emission in our Chandra ACIS-S ex-
ample) require a local background estimate if the intrinsic signal
of features on very different scales is to be assessed reliably. The
approach taken by ASMOOTH is thus intrinsically very different from
the one implemented in, for instance, the adaptive binning algorithm
WVT (Diehl & Statler 2005) and the difference in the resulting out-
put is accordingly dramatic (see Section 4.2).

ASMOOTH is being used extensively in the analysis of astronomi-
cal X-ray imaging data gathered in a wide range of missions from
ROSAT to XMM–Newton, and has become the analysis tool of choice
for the display of high-resolution images obtained with the Chandra
X-ray Observatory. Recent examples illustrating ASMOOTH’s per-
formance can be found in Ebeling, Mendes de Oliveira & White
(1995), Brandt, Halpern & Iwasawa (1996), Hamana et al. (1997),
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Figure 5. Top row. Left-hand panel: The model used in our simulation, a combination of two extended, four compact features, and a spatially invariant
background component, designed to mimic an astrophysical X-ray image of point sources superimposed on asymmetric diffuse emission from, for example, a
cluster of galaxies. Middle panel: iso-intensity contours for the same model. Right-hand panel: input image obtained by applying Poisson noise to the model.
Bottom row. Left-hand panel: iso-intensity contours of the ASMOOTHed image obtained with a Gaussian kernel and τmin = 3 – the contour levels are the same as
above for the model image. Middle panel: iso-intensity contours of an adaptively binned image as obtained with the WVT algorithm (Diehl & Statler 2005) for
an S/N target value of 5 – the contour levels are again the same as for the model image. Note that, unlike ASMOOTH, WVT does not correct for a local background
in its S/N estimation. Right-hand panel: histogram of relative errors, defined as (result – model)/model, in per cent, for ASMOOTH (solid orange fill) and the WVT

adaptive binning code (hatched).

Ebeling et al. (2000), Fabbiano, Zezas & Murray (2001), Krishna-
murthi et al. (2001), Karovska et al. (2002), Bauer et al. (2002),
Gil-Merino & Schindler (2003), Heike et al. (2003), Rasmussen,
Stevens & Ponman (2004), Clarke, Blanton & Sarazin (2004), Ebel-
ing, Barrett & Donovan (2004), or Pratt & Arnaud (2005), as well as
in many Chandra press releases (http://chandra.harvard.edu/press/).

Under development is an improved version of the algorithm which
accounts for Poisson statistics using the analytic approximations
of Ebeling (2003) to allow proper treatment of significant negative
features, such as absorbed regions, detector chip gaps, or instrument
elements [e.g. the window support structure of the ROSAT Position
Sensitive Proportional Counter (PSPC)] obscuring part of the image.

ASMOOTH is written in the IDL programming language. The source
code is available on request from ebeling@ifa.hawaii.edu. A C++
version of an early version of the code, called CSMOOTH, is part of
CIAO, the official suite of data analysis tools for the Chandra X-ray
Observatory, and is not identical to the algorithm described here.
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