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Abstract

Aspect based sentiment analysis (ABSA)

can provide more detailed information

than general sentiment analysis, because

it aims to predict the sentiment polarities

of the given aspects or entities in text.

We summarize previous approaches into

two subtasks: aspect-category sentiment

analysis (ACSA) and aspect-term senti-

ment analysis (ATSA). Most previous ap-

proaches employ long short-term mem-

ory and attention mechanisms to predict

the sentiment polarity of the concerned

targets, which are often complicated and

need more training time. We propose a

model based on convolutional neural net-

works and gating mechanisms, which is

more accurate and efficient. First, the

novel Gated Tanh-ReLU Units can selec-

tively output the sentiment features ac-

cording to the given aspect or entity. The

architecture is much simpler than attention

layer used in the existing models. Sec-

ond, the computations of our model could

be easily parallelized during training, be-

cause convolutional layers do not have

time dependency as in LSTM layers, and

gating units also work independently. The

experiments on SemEval datasets demon-

strate the efficiency and effectiveness of

our models. 1

1 Introduction

Opinion mining and sentiment analysis (Pang and

Lee, 2008) on user-generated reviews can pro-

vide valuable information for providers and con-

sumers. Instead of predicting the overall sen-

1The code and data is available at https://github.
com/wxue004cs/GCAE

timent polarity, fine-grained aspect based senti-

ment analysis (ABSA) (Liu and Zhang, 2012) is

proposed to better understand reviews than tradi-

tional sentiment analysis. Specifically, we are in-

terested in the sentiment polarity of aspect cate-

gories or target entities in the text. Sometimes,

it is coupled with aspect term extractions (Xue

et al., 2017). A number of models have been

developed for ABSA, but there are two different

subtasks, namely aspect-category sentiment anal-

ysis (ACSA) and aspect-term sentiment analysis

(ATSA). The goal of ACSA is to predict the sen-

timent polarity with regard to the given aspect,

which is one of a few predefined categories. On

the other hand, the goal of ATSA is to identify

the sentiment polarity concerning the target enti-

ties that appear in the text instead, which could be

a multi-word phrase or a single word. The num-

ber of distinct words contributing to aspect terms

could be more than a thousand. For example, in

the sentence “Average to good Thai food, but terri-

ble delivery.”, ATSA would ask the sentiment po-

larity towards the entity Thai food; while ACSA

would ask the sentiment polarity toward the aspect

service, even though the word service does not ap-

pear in the sentence.

Many existing models use LSTM lay-

ers (Hochreiter and Schmidhuber, 1997) to

distill sentiment information from embedding

vectors, and apply attention mechanisms (Bah-

danau et al., 2014) to enforce models to focus on

the text spans related to the given aspect/entity.

Such models include Attention-based LSTM

with Aspect Embedding (ATAE-LSTM) (Wang

et al., 2016b) for ACSA; Target-Dependent

Sentiment Classification (TD-LSTM) (Tang et al.,

2016a), Gated Neural Networks (Zhang et al.,

2016) and Recurrent Attention Memory Network

(RAM) (Chen et al., 2017) for ATSA. Attention

mechanisms has been successfully used in many

https://github.com/wxue004cs/GCAE
https://github.com/wxue004cs/GCAE
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NLP tasks. It first computes the alignment scores

between context vectors and target vector; then

carry out a weighted sum with the scores and the

context vectors. However, the context vectors

have to encode both the aspect and sentiment

information, and the alignment scores are applied

across all feature dimensions regardless of the dif-

ferences between these two types of information.

Both LSTM and attention layer are very time-

consuming during training. LSTM processes one

token in a step. Attention layer involves exponen-

tial operation and normalization of all alignment

scores of all the words in the sentence (Wang

et al., 2016b). Moreover, some models needs the

positional information between words and targets

to produce weighted LSTM (Chen et al., 2017),

which can be unreliable in noisy review text.

Certainly, it is possible to achieve higher accuracy

by building more and more complicated LSTM

cells and sophisticated attention mechanisms; but

one has to hold more parameters in memory, get

more hyper-parameters to tune and spend more

time in training. In this paper, we propose a fast

and effective neural network for ACSA and ATSA

based on convolutions and gating mechanisms,

which has much less training time than LSTM

based networks, but with better accuracy.

For ACSA task, our model has two separate

convolutional layers on the top of the embedding

layer, whose outputs are combined by novel gat-

ing units. Convolutional layers with multiple fil-

ters can efficiently extract n-gram features at many

granularities on each receptive field. The pro-

posed gating units have two nonlinear gates, each

of which is connected to one convolutional layer.

With the given aspect information, they can selec-

tively extract aspect-specific sentiment informa-

tion for sentiment prediction. For example, in the

sentence “Average to good Thai food, but terrible

delivery.”, when the aspect food is provided, the

gating units automatically ignore the negative sen-

timent of aspect delivery from the second clause,

and only output the positive sentiment from the

first clause. Since each component of the proposed

model could be easily parallelized, it has much

less training time than the models based on LSTM

and attention mechanisms. For ATSA task, where

the aspect terms consist of multiple words, we ex-

tend our model to include another convolutional

layer for the target expressions. We evaluate our

models on the SemEval datasets, which contains

restaurants and laptops reviews with labels on as-

pect level. To the best of our knowledge, no CNN-

based model has been proposed for aspect based

sentiment analysis so far.

2 Related Work

We present the relevant studies into following two

categories.

2.1 Neural Networks

Recently, neural networks have gained much pop-

ularity on sentiment analysis or sentence classifi-

cation task. Tree-based recursive neural networks

such as Recursive Neural Tensor Network (Socher

et al., 2013) and Tree-LSTM (Tai et al., 2015),

make use of syntactic interpretation of the sen-

tence structure, but these methods suffer from

time inefficiency and parsing errors on review

text. Recurrent Neural Networks (RNNs) such as

LSTM (Hochreiter and Schmidhuber, 1997) and

GRU (Chung et al., 2014) have been used for sen-

timent analysis on data instances having variable

length (Tang et al., 2015; Xu et al., 2016; Lai

et al., 2015). There are also many models that use

convolutional neural networks (CNNs) (Collobert

et al., 2011; Kalchbrenner et al., 2014; Kim, 2014;

Conneau et al., 2016) in NLP, which also prove

that convolution operations can capture composi-

tional structure of texts with rich semantic infor-

mation without laborious feature engineering.

2.2 Aspect based Sentiment Analysis

There is abundant research work on aspect based

sentiment analysis. Actually, the name ABSA is

used to describe two different subtasks in the lit-

erature. We classify the existing work into two

main categories based on the descriptions of senti-

ment analysis tasks in SemEval 2014 Task 4 (Pon-

tiki et al., 2014): Aspect-Term Sentiment Analysis

and Aspect-Category Sentiment Analysis.

Aspect-Term Sentiment Analysis. In the first

category, sentiment analysis is performed toward

the aspect terms that are labeled in the given sen-

tence. A large body of literature tries to utilize the

relation or position between the target words and

the surrounding context words either by using the

tree structure of dependency or by simply counting

the number of words between them as a relevance

information (Chen et al., 2017).

Recursive neural networks (Lakkaraju et al.,

2014; Dong et al., 2014; Wang et al., 2016a) rely
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on external syntactic parsers, which can be very

inaccurate and slow on noisy texts like tweets and

reviews, which may result in inferior performance.

Recurrent neural networks are commonly used

in many NLP tasks as well as in ABSA prob-

lem. TD-LSTM (Tang et al., 2016a) and gated

neural networks (Zhang et al., 2016) use two or

three LSTM networks to model the left and right

contexts of the given target individually. A fully-

connected layer with gating units predicts the sen-

timent polarity with the outputs of LSTM layers.

Memory network (Weston et al., 2014) coupled

with multiple-hop attention attempts to explicitly

focus only on the most informative context area

to infer the sentiment polarity towards the tar-

get word (Tang et al., 2016b; Chen et al., 2017).

Nonetheless, memory network simply bases its

knowledge bank on the embedding vectors of in-

dividual words (Tang et al., 2016b), which makes

itself hard to learn the opinion word enclosed

in more complicated contexts. The performance

is improved by using LSTM, attention layer and

feature engineering with word distance between

surrounding words and target words to produce

target-specific memory (Chen et al., 2017).

Aspect-Category Sentiment Analysis. In this

category, the model is asked to predict the sen-

timent polarity toward a predefined aspect cate-

gory. Attention-based LSTM with Aspect Embed-

ding (Wang et al., 2016b) uses the embedding vec-

tors of aspect words to selectively attend the re-

gions of the representations generated by LSTMs.

3 Gated Convolutional Network with

Aspect Embedding

In this section, we present a new model for ACSA

and ATSA, namely Gated Convolutional network

with Aspect Embedding (GCAE), which is more

efficient and simpler than recurrent network based

models (Wang et al., 2016b; Tang et al., 2016a;

Ma et al., 2017; Chen et al., 2017). Recurrent neu-

ral networks sequentially compose hidden vectors

hi = f(hi−1), which does not enable paralleliza-

tion over inputs. In the attention layer, softmax

normalization also has to wait for all the alignment

scores computed by a similarity function. Hence,

they cannot take advantage of highly-parallelized

modern hardware and libraries. Our model is built

on convolutional layers and gating units. Each

convolutional filter computes n-gram features at

different granularities from the embedding vectors

at each position individually. The gating units on

top of the convolutional layers at each position

are also independent from each other. Therefore,

our model is more suitable to parallel computing.

Moreover, our model is equipped with two kinds

of effective filtering mechanisms: the gating units

on top of the convolutional layers and the max

pooling layer, both of which can accurately gen-

erate and select aspect-related sentiment features.

We first briefly review the vanilla CNN for text

classification (Kim, 2014). The model achieves

state-of-the-art performance on many standard

sentiment classification datasets (Le et al., 2017).

The CNN model consists of an embedding

layer, a one-dimension convolutional layer and a

max-pooling layer. The embedding layer takes the

indices wi ∈ {1, 2, . . . , V } of the input words

and outputs the corresponding embedding vec-

tors vi ∈ R
D. D denotes the dimension size

of the embedding vectors. V is the size of the

word vocabulary. The embedding layer is usu-

ally initialized with pre-trained embeddings such

as GloVe (Pennington et al., 2014), then they are

fine-tuned during the training stage. The one-

dimension convolutional layer convolves the in-

puts with multiple convolutional kernels of differ-

ent widths. Each kernel corresponds a linguistic

feature detector which extracts a specific pattern

of n-gram at various granularities (Kalchbrenner

et al., 2014). Specifically, the input sentence is

represented by a matrix through the embedding

layer, X = [v1,v2, . . . ,vL], where L is the length

of the sentence with padding. A convolutional fil-

ter Wc ∈ R
D×k maps k words in the receptive

field to a single feature c. As we slide the filter

across the whole sentence, we obtain a sequence

of new features c = [c1, c2, . . . , cL].

ci = f(Xi:i+K ∗Wc + bc) , (1)

where bc ∈ R is the bias, f is a non-linear acti-

vation function such as tanh function, ∗ denotes

convolution operation. If there are nk filters of

the same width k, the output features form a ma-

trix C ∈ R
nk×Lk . For each convolutional filter,

the max-over-time pooling layer takes the maxi-

mal value among the generated convolutional fea-

tures, resulting in a fixed-size vector whose size is

equal to the number of filters nk. Finally, a soft-

max layer uses the vector to predict the sentiment

polarity of the input sentence.

Figure 1 illustrates our model architecture. The
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sushi rolls are great

· · ·

· · ·

Aspect

Embedding

· · · · · ·

· · · · · ·

Sentiment

softmax

Word Embeddings

Convolutions

GTRU

Max Pooling

Figure 1: Illustration of our model GCAE for

ACSA task. A pair of convolutional neuron com-

putes features for a pair of gates: tanh gate and

ReLU gate. The ReLU gate receives the given

aspect information to control the propagation of

sentiment features. The outputs of two gates are

element-wisely multiplied for the max pooling

layer.

Gated Tanh-ReLU Units (GTRU) with aspect em-

bedding are connected to two convolutional neu-

rons at each position t. Specifically, we compute

the features ci as

ai = relu(Xi:i+k ∗Wa +Vava + ba) (2)

si = tanh(Xi:i+k ∗Ws + bs) (3)

ci = si × ai , (4)

where va is the embedding vector of the given as-

pect category in ACSA or computed by another

CNN over aspect terms in ATSA. The two convo-

lutions in Equation 2 and 3 are the same as the

convolution in the vanilla CNN, but the convo-

lutional features ai receives additional aspect in-

formation va with ReLU activation function. In

other words, si and ai are responsible for generat-

ing sentiment features and aspect features respec-

tively. The above max-over-time pooling layer

generates a fixed-size vector e ∈ R
dk , which

keeps the most salient sentiment features of the

whole sentence. The final fully-connected layer

with softmax function uses the vector e to pre-

dict the sentiment polarity ŷ. The model is trained

by minimizing the cross-entropy loss between the

ground-truth y and the predicted value ŷ for all

data samples.

L = −
∑

i

∑

j

y
j
i log ŷ

j
i , (5)

where i is the index of a data sample, j is the index

of a sentiment class.

4 Gating Mechanisms

The proposed Gated Tanh-ReLU Units control

the path through which the sentiment information

flows towards the pooling layer. The gating mech-

anisms have proven to be effective in LSTM. In as-

pect based sentiment analysis, it is very common

that different aspects with different sentiments ap-

pear in one sentence. The ReLU gate in Equation 2

does not have upper bound on positive inputs but

strictly zero on negative inputs. Therefore, it can

output a similarity score according to the relevance

between the given aspect information va and the

aspect feature ai at position t. If this score is zero,

the sentiment features si would be blocked at the

gate; otherwise, its magnitude would be amplified

accordingly. The max-over-time pooling further

removes the sentiment features which are not sig-

nificant over the whole sentence.

In language modeling (Dauphin et al., 2017;

Kalchbrenner et al., 2016; van den Oord et al.,

2016; Gehring et al., 2017), Gated Tanh Units

(GTU) and Gated Linear Units (GLU) have shown

effectiveness of gating mechanisms. GTU is rep-

resented by tanh(X ∗W+ b)× σ(X ∗V+ c), in

which the sigmoid gates control features for pre-

dicting the next word in a stacked convolutional

block. To overcome the gradient vanishing prob-

lem of GTU, GLU uses (X∗W+b)×σ(X∗V+c)
instead, so that the gradients would not be down-

scaled to propagate through many stacked convo-

lutional layers. However, a neural network that

has only one convolutional layer would not suf-

fer from gradient vanish problem during training.

We show that on text classification problem, our

GTRU is more effective than these two gating

units.

5 GCAE on ATSA

ATSA task is defined to predict the sentiment po-

larity of the aspect terms in the given sentence.

We simply extend GCAE by adding a small con-

volutional layer on aspect terms, as shown in Fig-

ure 2. In ACSA, the aspect information controlling

the flow of sentiment features in GTRU is from

one aspect word; while in ATSA, such informa-

tion is provided by a small CNN on aspect terms

[wi, wi+1, . . . , wi+k]. The additional CNN ex-

tracts the important features from multiple words
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sushi rolls are great <PAD> sushi rolls <PAD>

· · ·

· · ·

· · ·

· · · · · ·

Sentiment
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Max Pooling

Context Embeddings Target Embeddings
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Figure 2: Illustration of model GCAE for ATSA task. It has an additional convolutional layer on aspect

terms.

while retains the ability of parallel computing.

6 Experiments

6.1 Datasets and Experiment Preparation

We conduct experiments on public datasets from

SemEval workshops (Pontiki et al., 2014), which

consist of customer reviews about restaurants and

laptops. Some existing work (Wang et al., 2016b;

Ma et al., 2017; Chen et al., 2017) removed “con-

flict” labels from four sentiment labels, which

makes their results incomparable to those from the

workshop report (Kiritchenko et al., 2014). We

reimplemented the compared methods, and used

hyper-parameter settings described in these refer-

ences.

The sentences which have different sentiment

labels for different aspects or targets in the sen-

tence are more common in review data than in

standard sentiment classification benchmark. The

sentence in Table 1 shows the reviewer’s different

attitude towards two aspects: food and delivery.

Therefore, to access how the models perform on

review sentences more accurately, we create small

but difficult datasets, which are made up of the

sentences having opposite or different sentiments

on different aspects/targets. In Table 1, the two

identical sentences but with different sentiment la-

bels are both included in the dataset. If a sentence

has 4 aspect targets, this sentence would have 4

copies in the data set, each of which is associated

with different target and sentiment label.

For ACSA task, we conduct experiments on

restaurant review data of SemEval 2014 Task 4.

There are 5 aspects: food, price, service, ambi-

ence, and misc; 4 sentiment polarities: positive,

negative, neutral, and conflict. By merging restau-

rant reviews of three years 2014 - 2016, we obtain

a larger dataset called “Restaurant-Large”. Incom-

patibilities of data are fixed during merging. We

replace conflict labels with neutral labels in the

2014 dataset. In the 2015 and 2016 datasets, there

could be multiple pairs of “aspect terms” and “as-

pect category” in one sentence. For each sentence,

let p denote the number of positive labels minus

the number of negative labels. We assign a sen-

tence a positive label if p > 0, a negative label if

p < 0, or a neutral label if p = 0. After removing

duplicates, the statistics are show in Table 2. The

resulting dataset has 8 aspects: restaurant, food,

drinks, ambience, service, price, misc and loca-

tion.

For ATSA task, we use restaurant reviews and

laptop reviews from SemEval 2014 Task 4. On

each dataset, we duplicate each sentence na times,

which is equal to the number of associated aspect

categories (ACSA) or aspect terms (ATSA) (Ruder

et al., 2016b,a). The statistics of the datasets are

shown in Table 2.

The sizes of hard data sets are also shown in Ta-

ble 2. The test set is designed to measure whether

a model can detect multiple different sentiment

polarities in one sentence toward different enti-

ties. Without such sentences, a classifier for over-

all sentiment classification might be good enough
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Sentence aspect category/term sentiment label

Average to good Thai food, but terrible delivery. food positive

Average to good Thai food, but terrible delivery. delivery negative

Table 1: Two example sentences in one hard test set of restaurant review dataset of SemEval 2014.

for the sentences associated with only one senti-

ment label.

In our experiments, word embedding vectors

are initialized with 300-dimension GloVe vectors

which are pre-trained on unlabeled data of 840 bil-

lion tokens (Pennington et al., 2014). Words out of

the vocabulary of GloVe are randomly initialized

with a uniform distribution U(−0.25, 0.25). We

use Adagrad (Duchi et al., 2011) with a batch size

of 32 instances, default learning rate of 1e−2, and

maximal epochs of 30. We only fine tune early

stopping with 5-fold cross validation on training

datasets. All neural models are implemented in

PyTorch.

6.2 Compared Methods

To comprehensively evaluate the performance of

GCAE, we compare our model against the follow-

ing models.

NRC-Canada (Kiritchenko et al., 2014) is the

top method in SemEval 2014 Task 4 for ACSA and

ATSA task. SVM is trained with extensive fea-

ture engineering: various types of n-grams, POS

tags, and lexicon features. The sentiment lexicons

improve the performance significantly, but it re-

quires large scale labeled data: 183 thousand Yelp

reviews, 124 thousand Amazon laptop reviews, 56

million tweets, and 3 sentiment lexicons labeled

manually.

CNN (Kim, 2014) is widely used on text clas-

sification task. It cannot directly capture aspect-

specific sentiment information on ACSA task, but

it provides a very strong baseline for sentiment

classification. We set the widths of filters to 3, 4,

5 with 100 features each.

TD-LSTM (Tang et al., 2016a) uses two LSTM

networks to model the preceding and following

contexts of the target to generate target-dependent

representation for sentiment prediction.

ATAE-LSTM (Wang et al., 2016b) is an

attention-based LSTM for ACSA task. It appends

the given aspect embedding with each word em-

bedding as the input of LSTM, and has an atten-

tion layer above the LSTM layer.

IAN (Ma et al., 2017) stands for interactive

attention network for ATSA task, which is also

based on LSTM and attention mechanisms.

RAM (Chen et al., 2017) is a recurrent atten-

tion network for ATSA task, which uses LSTM

and multiple attention mechanisms.

GCN stands for gated convolutional neural net-

work, in which GTRU does not have the aspect

embedding as an additional input.

6.3 Results and Analysis

6.3.1 ACSA

Following the SemEval workshop, we report the

overall accuracy of all competing models over the

test datasets of restaurant reviews as well as the

hard test datasets. Every experiment is repeated

five times. The mean and the standard deviation

are reported in Table 4.

LSTM based model ATAE-LSTM has the worst

performance of all neural networks. Aspect-based

sentiment analysis is to extract the sentiment in-

formation closely related to the given aspect. It is

important to separate aspect information and sen-

timent information from the extracted information

of sentences. The context vectors generated by

LSTM have to convey the two kinds of informa-

tion at the same time. Moreover, the attention

scores generated by the similarity scoring function

are for the entire context vector.

GCAE improves the performance by 1.1% to

2.5% compared with ATAE-LSTM. First, our

model incorporates GTRU to control the sentiment

information flow according to the given aspect in-

formation at each dimension of the context vec-

tors. The element-wise gating mechanism works

at fine granularity instead of exerting an alignment

score to all the dimensions of the context vectors

in the attention layer of other models. Second,

GCAE does not generate a single context vector,

but two vectors for aspect and sentiment features

respectively, so that aspect and sentiment informa-

tion is unraveled. By comparing the performance

on the hard test datasets against CNN, it is easy

to see the convolutional layer of GCAE is able to

differentiate the sentiments of multiple entities.

Convolutional neural networks CNN and GCN



2520

Positive Negative Neutral Conflict

Train Test Train Test Train Test Train Test

Restaurant-Large 2710 1505 1198 680 757 241 - -

Restaurant-Large-Hard 182 92 178 81 107 61 - -

Restaurant-2014 2179 657 839 222 500 94 195 52

Restaurant-2014-Hard 139 32 136 26 50 12 40 19

Table 2: Statistics of the datasets for ACSA task. The hard dataset is only made up of sentences having

multiple aspect labels associated with multiple sentiments.

Positive Negative Neutral Conflict

Train Test Train Test Train Test Train Test

Restaurant 2164 728 805 196 633 196 91 14

Restaurant-Hard 379 92 323 62 293 83 43 8

Laptop 987 341 866 128 460 169 45 16

Laptop-Hard 159 31 147 25 173 49 17 3

Table 3: Statistics of the datasets for ATSA task.

are not designed for aspect based sentiment anal-

ysis, but their performance exceeds that of ATAE-

LSTM.

The performance of SVM (Kiritchenko et al.,

2014) depends on the availability of the features

it can use. Without the large amount of sentiment

lexicons, SVM perform worse than neural meth-

ods. With multiple sentiment lexicons, the perfor-

mance is increased by 7.6%. This inspires us to

work on leveraging sentiment lexicons in neural

networks in the future.

The hard test datasets consist of replicated sen-

tences with different sentiments towards differ-

ent aspects. The models which cannot utilize

the given aspect information such as CNN and

GCN perform poorly as expected, but GCAE has

higher accuracy than other neural network mod-

els. GCAE achieves 4% higher accuracy than

ATAE-LSTM on Restaurant-Large and 5% higher

on SemEval-2014 on ACSA task. However, GCN,

which does not have aspect modeling part, has

higher score than GCAE on the original restaurant

dataset. It suggests that GCN performs better than

GCAE when there is only one sentiment label in

the given sentence, but not on the hard test dataset.

6.3.2 ATSA

We apply the extended version of GCAE on ATSA

task. On this task, the aspect terms are marked

in the sentences and usually consist of multi-

ple words. We compare IAN (Ma et al., 2017),

RAM (Chen et al., 2017), TD-LSTM (Tang et al.,

2016a), ATAE-LSTM (Wang et al., 2016b), and

our GCAE model in Table 5. The models other

than GCAE is based on LSTM and attention

mechanisms. IAN has better performance than

TD-LSTM and ATAE-LSTM, because two atten-

tion layers guides the representation learning of

the context and the entity interactively. RAM also

achieves good accuracy by combining multiple at-

tentions with a recurrent neural network, but it

needs more training time as shown in the follow-

ing section. On the hard test dataset, GCAE has

1% higher accuracy than RAM on restaurant data

and 1.7% higher on laptop data. GCAE uses the

outputs of the small CNN over aspect terms to

guide the composition of the sentiment features

through the ReLU gate. Because of the gating

mechanisms and the convolutional layer over as-

pect terms, GCAE outperforms other neural mod-

els and basic SVM. Again, large scale sentiment

lexicons bring significant improvement to SVM.

6.4 Training Time

We record the training time of all models un-

til convergence on a validation set on a desktop

machine with a 1080 Ti GPU, as shown in Ta-

ble 6. LSTM based models take more training

time than convolutional models. On ATSA task,

because of multiple attention layers in IAN and

RAM, they need even more time to finish the

training. GCAE is much faster than other neural

models, because neither convolutional operation

nor GTRU has time dependency compared with

LSTM and attention layer. Therefore, it is easier

for hardware and libraries to parallel the comput-
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Models
Restaurant-Large Restaurant 2014

Test Hard Test Test Hard Test

SVM* - - 75.32 -

SVM + lexicons* - - 82.93 -

ATAE-LSTM 83.91±0.49 66.32±2.28 78.29±0.68 45.62±0.90

CNN 84.28±0.15 50.43±0.38 79.47±0.32 44.94±0.01

GCN 84.48±0.06 50.08±0.31 79.67±0.35 44.49±1.52

GCAE 85.92±0.27 70.75±1.19 79.35±0.34 50.55±1.83

Table 4: The accuracy of all models on test sets and on the subsets made up of test sentences that have

multiple sentiments and multiple aspect terms. Restaurant-Large dataset is created by merging all the

restaurant reviews of SemEval workshops within three years. ‘*’: the results with SVM are retrieved

from NRC-Canada (Kiritchenko et al., 2014).

Models
Restaurant Laptop

Test Hard Test Test Hard Test

SVM* 77.13 - 63.61 -

SVM + lexicons* 80.16 - 70.49 -

TD-LSTM 73.44±1.17 56.48±2.46 62.23±0.92 46.11±1.89

ATAE-LSTM 73.74±3.01 50.98±2.27 64.38±4.52 40.39±1.30

IAN 76.34±0.27 55.16±1.97 68.49±0.57 44.51±0.48

RAM 76.97±0.64 55.85±1.60 68.48±0.85 45.37±2.03

GCAE 77.28±0.32 56.73±0.56 69.14±0.32 47.06±2.45

Table 5: The accuracy of ATSA subtask on SemEval 2014 Task 4. ‘*’: the results with SVM are retrieved

from NRC-Canada (Kiritchenko et al., 2014)

Model ATSA

ATAE 25.28

IAN 82.87

RAM 64.16

TD-LSTM 19.39

GCAE 3.33

Table 6: The time to converge in seconds on ATSA

task.

Gates
Restaurant-Large Restaurant 2014

Test Hard Test Test Hard Test

GTU 84.62 60.25 79.31 51.93

GLU 84.74 59.82 79.12 50.80

GTRU 85.92 70.75 79.35 50.55

Table 7: The accuracy of different gating units on

restaurant reviews on ACSA task.

ing process. Since the performance of SVM is re-

trieved from the original paper, we are not able to

compare the training time of SVM.

6.5 Gating Mechanisms

In this section, we compare GLU (X ∗W + b)×
σ(X ∗Wa +Vva + ba) (Dauphin et al., 2017),

Average to good Thai food but terrible delivery

food

delivery

Figure 3: The outputs of the ReLU gates in GTRU.

GTU tanh(X∗W+ b)×σ(X∗Wa+Vva+ ba)
(van den Oord et al., 2016), and GTRU used in

GCAE. Table 7 shows that all of three gating

units achieve relatively high accuracy on restau-

rant datasets. GTRU outperforms the other gates.

It has a convolutional layer generating aspect fea-

tures via ReLU activation function, which controls

the magnitude of the sentiment signals according

to the given aspect information. On the other hand,

the sigmoid function in GTU and GLU has the up-

per bound +1, which may not be able to distill

sentiment features effectively.

7 Visualization

In this section, we take a concrete review sen-

tence as an example to illustrate how the proposed

gate GTRU works. It is more difficult to visualize
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the weights generated by the gates than the atten-

tion weights in other neural networks. The atten-

tion weight score is a global score over the words

and the vector dimensions; whereas in our model,

there are Nword ×Nfilter ×Ndimension gate outputs.

Therefore, we train a small model with only one

filter which is only three word wide. Then, for

each word, we sum the Ndimension outputs of the

ReLU gates. After normalization, we plot the val-

ues on each word in Figure 3. Given different

aspect targets, the ReLU gates would control the

magnitude of the outputs of the tanh gates.

8 Conclusions and Future Work

In this paper, we proposed an efficient convolu-

tional neural network with gating mechanisms for

ACSA and ATSA tasks. GTRU can effectively

control the sentiment flow according to the given

aspect information, and two convolutional layers

model the aspect and sentiment information sep-

arately. We prove the performance improvement

compared with other neural models by extensive

experiments on SemEval datasets. How to lever-

age large-scale sentiment lexicons in neural net-

works would be our future work.
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