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Abstract

Due to their inherent capability in semantic

alignment of aspects and their context words,

attention mechanism and Convolutional Neu-

ral Networks (CNNs) are widely applied for

aspect-based sentiment classification. How-

ever, these models lack a mechanism to ac-

count for relevant syntactical constraints and

long-range word dependencies, and hence may

mistakenly recognize syntactically irrelevant

contextual words as clues for judging aspect

sentiment. To tackle this problem, we pro-

pose to build a Graph Convolutional Network

(GCN) over the dependency tree of a sentence

to exploit syntactical information and word

dependencies. Based on it, a novel aspect-

specific sentiment classification framework is

raised. Experiments on three benchmarking

collections illustrate that our proposed model

has comparable effectiveness to a range of

state-of-the-art models1, and further demon-

strate that both syntactical information and

long-range word dependencies are properly

captured by the graph convolution structure.

1 Introduction

Aspect-based (also known as aspect-level) senti-

ment classification aims at identifying the senti-

ment polarities of aspects explicitly given in sen-

tences. For example, in a comment about a laptop

saying “From the speed to the multi-touch gestures

this operating system beats Windows easily.”, the

sentiment polarities for two aspects operating sys-

tem and Windows are positive and negative, re-

spectively. Generally, this task is formulated as

predicting the polarity of a provided (sentence, as-

pect) pair.

Given the inefficiency of manual feature refine-

ment (Jiang et al., 2011), early works of aspect-

∗Corresponding author.
1Code and preprocessed datasets are available at

https://github.com/GeneZC/ASGCN.

based sentiment classification are mainly based on

neural network methods (Dong et al., 2014; Vo

and Zhang, 2015). Ever since Tang et al. (2016a)

pointed out the challenge of modelling semantic

relatedness between context words and aspects, at-

tention mechanism coupled with Recurrent Neu-

ral Networks (RNNs) (Bahdanau et al., 2014; Lu-

ong et al., 2015; Xu et al., 2015) starts to play a

critical role in more recent models (Wang et al.,

2016; Tang et al., 2016b; Yang et al., 2017; Liu

and Zhang, 2017; Ma et al., 2017; Huang et al.,

2018).

While attention-based models are promising,

they are insufficient to capture syntactical depen-

dencies between context words and the aspect

within a sentence. Consequently, the current

attention mechanism may lead to a given as-

pect mistakenly attending to syntactically un-

related context words as descriptors (Limitation

1). Look at a concrete example “Its size is ideal

and the weight is acceptable.”. Attention-based

models often identify acceptable as a descriptor of

the aspect size, which is in fact not the case. In or-

der to address the issue, He et al. (2018) imposed

some syntactical constraints on attention weights,

but the effect of syntactical structure was not fully

exploited.

In addition to the attention-based models, Con-

volutional Neural Networks (CNNs) (Xue and Li,

2018; Li et al., 2018) have been employed to dis-

cover descriptive multi-word phrases for an as-

pect, based on the finding (Fan et al., 2018) that

the sentiment of an aspect is usually determined

by key phrases instead of individual words. Never-

theless, the CNN-based models can only perceive

multi-word features as consecutive words with

the convolution operations over word sequences,

but are inadequate to determine sentiments de-

picted by multiple words that are not next to

each other (Limitation 2). In the sentence “The
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staff should be a bit more friendly” with staff as

the aspect, a CNN-based model may make an in-

correct prediction by detecting more friendly as

the descriptive phrase, disregarding the impact of

should be which is two words away but reverses

the sentiment.

In this paper, we aim to tackle the two lim-

itations identified above by using Graph Con-

volutional Networks (GCNs) (Kipf and Welling,

2017). GCN has a multi-layer architecture, with

each layer encoding and updating the representa-

tion of nodes in the graph using features of imme-

diate neighbors. Through referring to syntactical

dependency trees, a GCN is potentially capable of

drawing syntactically relevant words to the target

aspect, and exploiting long-range multi-word re-

lations and syntactical information with GCN lay-

ers. GCNs have been deployed on document-word

relationships (Yao et al., 2018) and tree struc-

tures (Marcheggiani and Titov, 2017; Zhang et al.,

2018), but how they can be effectively used in

aspect-based sentiment classification is yet to be

explored.

To fill the gap, this paper proposes an Aspect-

specific Graph Convolutional Network (ASGCN),

which, to the best of our knowledge, is the

first GCN-based model for aspect-based sentiment

classification. ASGCN starts with a bidirectional

Long Short-Term Memory network (LSTM) layer

to capture contextual information regarding word

orders. In order to obtain aspect-specific features,

a multi-layered graph convolution structure is im-

plemented on top of the LSTM output, followed

by a masking mechanism that filters out non-

aspect words and keeps solely high-level aspect-

specific features. The aspect-specific features are

fed back to the LSTM output for retrieving infor-

mative features with respect to the aspect, which

are then used to predict aspect-based sentiment.

Experiments on three benchmarking datasets

show that ASGCN effectively addresses both lim-

itations of the current aspect-based sentiment clas-

sification approaches, and outperforms a range of

state-of-the-art models.

Our contributions are as follows:

• We propose to exploit syntactical dependency

structures within a sentence and resolve the

long-range multi-word dependency issue for

aspect-based sentiment classification.

• We posit that Graph Convolutional Network

(GCN) is suitable for our purpose, and pro-
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Figure 1: An example of GCN layer.

pose a novel Aspect-specific GCN model. To

our best knowledge, this is the first investiga-

tion in this direction.

• Extensive experiment results verify the im-

portance of leveraging syntactical informa-

tion and long-range word dependencies, and

demonstrate the effectiveness of our model

in capturing and exploiting them in aspect-

based sentiment classification.

2 Graph Convolutional Networks

GCNs can be considered as an adaptation of the

conventional CNNs for encoding local informa-

tion of unstructured data. For a given graph with

k nodes, an adjacency matrix2 A ∈ R
k×k is ob-

tained through enumerating the graph. For conve-

nience, we denote the output of the l-th layer for

node i as hl
i, where h0

i represents the initial state

of node i. For an L-layer GCN, l ∈ [1, 2, · · · , L]
and hL

i is the final state of node i. The graph con-

volution operated on the node representation can

be written as:

hl
i = σ(

k
∑

j=1

AijW
lhl−1

j + bl) (1)

where Wl is a linear transformation weight, bl is

a bias term, and σ is a nonlinear function, e.g.

ReLU. For a better illustration, an example of

GCN layer is shown in Figure 1.

As the graph convolution process only encodes

information of immediate neighbors, a node in the

graph can only be influenced by the neighbour-

ing nodes within L steps in an L-layer GCN. In

2
Aij indicates whether the i-th token is adjacent to the

j-th token or not.
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this way, the graph convolution over the depen-

dency tree of a sentence provides syntactical con-

straints for an aspect within the sentence to iden-

tify descriptive words based on syntactical dis-

tances. Moreover, GCN is able to deal with the

circumstances where the polarity of an aspect is

described by non-consecutive words, as GCN over

dependency tree will gather the non-consecutive

words into a smaller scope and aggregate their fea-

tures properly with graph convolution. Therefore,

we are inspired to adopt GCN to leverage syntac-

tical information and long-range word dependen-

cies for aspect-based sentiment classification.

3 Aspect-specific Graph Convolutional

Network

Figure 2 gives an overview of ASGCN. The com-

ponents of ASGCN will be introduced separately

in the rest of the section.

3.1 Embedding and Bidirectional LSTM

Given a n-word sentence c = {wc
1, w

c
2, · · · , w

c
τ+1

, · · · , wc
τ+m, · · · , wc

n−1, w
c
n} containing a cor-

responding m-word aspect starting from the

(τ + 1)-th token, we embed each word to-

ken into a low-dimensional real-valued vector

space (Bengio et al., 2003) with embedding

matrix E ∈ R
|V |×de , where |V | is the size of

vocabulary and de denotes the dimensionality of

word embeddings. With the word embeddings

of the sentence, a bidirectional LSTM is con-

structed to produce hidden state vectors Hc =
{hc

1,h
c
2, · · · ,h

c
τ+1, · · · ,h

c
τ+m, · · · ,hc

n−1,h
c
n},

where hc
t ∈ R

2dh represents the hidden state

vector at time step t from the bidirectional LSTM,

and dh is the dimensionality of a hidden state

vector output by an unidirectional LSTM.

3.2 Obtaining Aspect-oriented Features

Different from general sentiment classification,

aspect-based sentiment classification targets at

judging sentiments from the view of aspects, and

thus calls for an aspect-oriented feature extraction

strategy. In this study, we obtain aspect-oriented

features by applying multi-layer graph convolu-

tion over the syntactical dependency tree of a sen-

tence, and imposing an aspect-specific masking

layer on its top.

3.2.1 Graph Convolution over Dependency

Trees

Aiming to address the limitations of existing ap-

proaches (as discussed in previous sections), we

leverage a graph convolutional network over de-

pendency trees of sentences. Specifically, af-

ter the dependency tree3 of the given sentence is

constructed, we first attain an adjacency matrix

A ∈ R
n×n according to the words in the sen-

tence. It is important to note that dependency trees

are directed graphs. While GCNs generally do not

consider directions, they could be adapted to the

direction-aware scenario. Accordingly, we pro-

pose two variants of ASGCN, i.e. ASGCN-DG on

dependency graphs which are un-directional, and

ASGCN-DT concerning dependency trees which

are directional. Practically, the only difference

between ASGCN-DG and ASGCN-DT lies in

their adjacency matrices: The adjacency matrix

of ASGCN-DT is much more sparse than that of

ASGCN-DG. Such setting is in accordance with

the phenomenon that parents nodes are broadly

influenced by their children nodes. Furthermore,

following the idea of self-looping in Kipf and

Welling (2017), each word is manually set adja-

cent to itself, i.e. the diagonal values of A are all

ones.

The ASGCN variants are performed in a multi-

layer fashion, on top of the bidirectional LSTM

output in Section 3.1, i.e. H0 = Hc to make

nodes aware of context (Zhang et al., 2018). Then

the representation of each node is updated with

graph convolution operation with normalization

factor (Kipf and Welling, 2017) as below:

h̃l
i =

n
∑

j=1

AijW
lgl−1

j (2)

hl
i = ReLU(h̃l

i/(di + 1) + bl) (3)

where gl−1
j ∈ R

2dh is the j-th token’s representa-

tion evolved from the preceding GCN layer while

hl
i ∈ R

2dh is the product of current GCN layer,

and di =
∑n

j=1Aij is degree of the i-th token in

the tree. The weights Wl and bias bl are trainable

parameters.

It is worth noting that we do not have hl
i imme-

diately fed into successive GCN layer, but conduct

a position-aware transformation in the first place:

gl
i = F(hl

i) (4)

3We use spaCy toolkit: https://spacy.io/.
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Figure 2: Overview of aspect-specific graph convolutional network.

where F(·) is a function assigning position

weights, widely adopted by previous works (Li

et al., 2018; Tang et al., 2016b; Chen et al., 2017),

for augmenting the importance of context words

close to the aspect. By doing so we aim at re-

ducing the noise and bias that may have natu-

rally arisen from the dependency parsing process.

Specifically, the function F(·) is:

qi =

⎧

⎪

⎨

⎪

⎩

1− τ+1−i
n 1 ≤ i < τ + 1

0 τ + 1 ≤ i ≤ τ +m

1− i−τ−m
n τ +m < i ≤ n

(5)

F(hl
i) = qih

l
i (6)

where qi ∈ R is the position weight to i-th token.

The final outcome of the L-layer GCN is HL =
{hL

1 ,h
L
2 , · · · ,h

L
τ+1, · · · ,h

L
τ+m, · · · ,hL

n−1,h
L
n},

hL
t ∈ R

2dh .

3.2.2 Aspect-specific Masking

In this layer, we mask out hidden state vectors of

non-aspect words and keep the aspect word states

unchanged:

hL
t = 0 1 ≤ t < τ + 1, τ +m < t ≤ n (7)

The outputs of this zero-masking layer are the

aspect-oriented features HL
mask = {0, · · · ,hL

τ+1,
· · · ,hL

τ+m, · · · ,0}. Through graph convolution,

these features HL
mask have perceived contexts

around the aspect in such a way that considers both

syntactical dependencies and long-range multi-

word relations.

3.3 Aspect-aware Attention

Based on the aspect-oriented features, a refined

representation of the hidden state vectors Hc

is produced via a novel retrieval-based attention

mechanism. The idea is to retrieve significant

features that are semantically relevant to the as-

pect words from the hidden state vectors, and ac-

cordingly set a retrieval-based attention weight for

each context word. In our implementation, the at-

tention weights are computed as below:

βt =

n
∑

i=1

hc⊤
t hL

i =

τ+m
∑

i=τ+1

hc⊤
t hL

i (8)

αt =
exp(βt)

∑n
i=1 exp(βi)

(9)

Here, the dot product is used to measure the

semantic relatedness between aspect component

words and words in the sentence so that aspect-

specific masking, i.e. zero masking, could take

effect as shown in Equation 8. The final repre-

sentation for prediction is therefore formulated as:
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r =
n
∑

t=1

αth
c
t (10)

3.4 Sentiment Classification

Having obtained the representation r, it is then fed

into a fully-connected layer, followed by a soft-

max normalization layer to yield a probability dis-

tribution p ∈ R
dp over polarity decision space:

p = softmax(Wpr+ bp) (11)

where dp is the same as the dimensionality of sen-

timent labels while Wp ∈ R
dp×2dh and bp ∈ R

dp

are the learned weight and bias, respectively.

3.5 Training

This model is trained by the standard gradient de-

scent algorithm with the cross-entropy loss and

L2-regularization:

Loss = −
∑

(c,p̂)∈C

logpp̂ + λ‖Θ‖2 (12)

where C denotes the collection of data sets, p̂ is

the label and pp̂ means the p̂-th element of p, Θ
represents all trainable parameters, and λ is the co-

efficient of L2-regularization.

4 Experiments

4.1 Datasets and Experimental Settings

Our experiments are conducted on five datasets:

one (TWITTER) is originally built by Dong et al.

(2014) containing twitter posts, while the other

four (LAP14, REST14, REST15, REST16) are

respectively from SemEval 2014 task 4 (Pontiki

et al., 2014), SemEval 2015 task 12 (Pontiki et al.,

2015) and SemEval 2016 task 5 (Pontiki et al.,

2016), consisting of data from two categories,

i.e. laptop and restaurant. Following previous

work (Tang et al., 2016b), we remove samples

with conflicting4 polarities or without explicit as-

pects in the sentences in REST15 and REST16.

The statistics of datasets are reported in Table 1.

For all our experiments, 300-dimensional pre-

trained GloVe vectors (Pennington et al., 2014)

are used to initialize word embeddings. All model

weights are initialized with uniform distribution.

The dimensionality of hidden state vectors is set

to 300. We use Adam as the optimizer with a

4An opinion target is associated with different sentiment
polarities.

Dataset # Pos. # Neu. # Neg.

TWITTER
Train 1561 3127 1560

Test 173 346 173

LAP14
Train 994 464 870

Test 341 169 128

REST14
Train 2164 637 807

Test 728 196 196

REST15
Train 912 36 256

Test 326 34 182

REST16
Train 1240 69 439

Test 469 30 117

Table 1: Dataset statistics.

learning rate of 0.001. The coefficient of L2-

regularization is 105 and batch size is 32. More-

over, the number of GCN layers is set to 2, which

is the best-performing depth in pilot studies.

The experimental results are obtained by aver-

aging 3 runs with random initialization, where Ac-

curacy and Macro-Averaged F1 are adopted as the

evaluation metrics. We also carry out paired t-

test on both Accuracy and Macro-Averaged F1 to

verify whether the improvements achieved by our

models over the baselines are significant.

4.2 Models for Comparison

In order to comprehensively evaluate the two

variants of our model, namely, ASGCN-DG and

ASGCN-DT, we compare them with a range of

baselines and state-of-the-art models, as listed be-

low:

• SVM (Kiritchenko et al., 2014) is the model

which has won SemEval 2014 task 4 with

conventional feature extraction methods.

• LSTM (Tang et al., 2016a) uses the last hid-

den state vector of LSTM to predict senti-

ment polarity.

• MemNet (Tang et al., 2016b) considers con-

texts as external memories and benefits from

a multi-hop architecture.

• AOA (Huang et al., 2018) borrows the idea of

attention-over-attention from the field of ma-

chine translation.

• IAN (Ma et al., 2017) interactively models

the relationships between aspects and their

contexts.
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Model
TWITTER LAP14 REST14 REST15 REST16

Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1

SVM 63.40♯ 63.30♯ 70.49� N/A 80.16� N/A N/A N/A N/A N/A

LSTM 69.56 67.70 69.28 63.09 78.13 67.47 77.37 55.17 86.80 63.88

MemNet 71.48 69.90 70.64 65.17 79.61 69.64 77.31 58.28 85.44 65.99

AOA 72.30 70.20 72.62 67.52 79.97 70.42 78.17 57.02 87.50 66.21

IAN 72.50 70.81 72.05 67.38 79.26 70.09 78.54 52.65 84.74 55.21

TNet-LF 72.98 71.43 74.61 70.14 80.42 71.03 78.47 59.47 89.07 70.43

ASCNN 71.05 69.45 72.62 66.72 81.73 73.10 78.47 58.90 87.39 64.56

ASGCN-DT 71.53 69.68 74.14† 69.24† 80.86‡ 72.19‡ 79.34†‡ 60.78†‡ 88.69† 66.64†

ASGCN-DG 72.15† 70.40† 75.55†‡ 71.05†‡ 80.77‡ 72.02‡ 79.89†‡ 61.89†‡ 88.99† 67.48†

Table 2: Model comparison results (%). Average accuracy and macro-F1 score over 3 runs with random initial-

ization. The best two results with each dataset are in bold. The results with ♮ are retrieved from the original papers

and the results with � are retrieved from Dong et al. (2014). The marker † refers p < 0.05 by comparing with

ASCNN in paired t-test and the marker ‡ refers p < 0.05 by comparing with TNet-LF in paired t-test.

• TNet-LF (Li et al., 2018) puts forward

Context-Preserving Transformation (CPT) to

preserve and strengthen the informative part

of contexts.

In order to examine to what degrees GCN would

outperform CNN, we also involve a model named

ASCNN in the experiment, which replaces 2-layer

GCN with 2-layer CNN in ASGCN5.

4.3 Results

As is shown in Table 2, ASGCN-DG consistently

outperforms all compared models on LAP14 and

REST15 datasets, and achieves comparable results

on TWITTER and REST16 datasets compared with

baseline TNet-LF and on REST14 compared with

ASCNN. The results demonstrate the effective-

ness of ASGCN-DG and the insufficiency of di-

rectly integrating syntax information into attention

mechanism as in He et al. (2018). Meanwhile,

ASGCN-DG performs better than ASGCN-DT

by a large margin on TWITTER, LAP14, Rest15

and REST16 datasets. And ASGCN-DT’s result

is lower than TNet-LF’s on LAP14. A possi-

ble reason is that the information from parents

nodes is as important as that from children nodes,

so treating dependency trees as directed graphs

leads to information loss. Additionally, ASGCN-

DG outperforms ASCNN on all datasets except

REST14, illustrating ASGCN is better at capturing

long-range word dependencies, while to some ex-

tent ASCNN shows an impact brought by aspect-

specific masking. We suspect REST14 dataset is

5In order to ensure the length of input and output is con-
sistent, kernel length is set to 3 and padding is 1.

not so sensitive to syntactic information. More-

over, the sentences from TWITTER dataset are less

grammatical, restricting the efficacy. We conjec-

ture this is likely the reason why ASGCN-DG and

ASGCN-DT get sub-optimal results on TWITTER

dataset.

4.4 Ablation Study

To further examine the level of benefit that each

component of ASGCN brings to the performance,

an ablation study is performed on ASGCN-DG.

The results are shown in Table 3. We also present

the results of BiLSTM+Attn as a baseline, which

uses two LSTMs for the aspect and the context re-

spectively.

First, removal of position weights (i.e.

ASGCN-DG w/o pos.) leads to performance

drops on LAP14, REST15 and REST16 datasets

but performance boosts on TWITTER and REST14

datasets. Recall the main results on REST14

dataset, we conclude that the integration of posi-

tion weights is not helpful to reduce noise of user

generated contents if syntax is not crucial for the

data. Moreover, after we get rid of aspect-specific

masking (i.e. ASGCN-DG w/o masking), the

model could not keep as competitive as TNet-LF.

This verifies the significance of aspect-specific

masking.

Compared with ASGCN-DG, ASGCN-DG w/o

GCN (i.e. preserving position weights and aspect-

specific masking, but without using GCN layers)

is much less powerful on all five datasets except F1

metric on TWITTER dataset. However, ASGCN-

DG w/o GCN is still slightly better than BiL-
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Model
TWITTER LAP14 REST14 REST15 REST16

Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1

BiLSTM+Attn 71.24 69.55 72.83 67.82 79.85 70.03 78.97 58.18 87.28 68.18

ASGCN-DG 72.15 70.40 75.55 71.05 80.77 72.02 79.89 61.89 88.99 67.48

ASGCN-DG w/o pos. 72.69 70.59 73.93 69.63 81.22 72.94 79.58 61.55 88.04 66.63

ASGCN-DG w/o mask 72.64 70.63 72.05 66.56 79.02 68.29 77.80 57.51 86.36 61.41

ASGCN-DG w/o GCN 71.92 70.63 73.51 68.83 79.40 69.43 79.40 61.18 87.55 66.19

Table 3: Ablation study results (%). Accuracy and macro-F1 scores are the average value over 3 runs with random

initialization.

STM+Attn on all datasets except REST14 dataset,

due to the strength of the aspect-specific masking

mechanism.

Thus it could be concluded that GCN con-

tributes to ASGCN to a considerable extent since

GCN captures syntatic word dependencies and

long-range word relations at the same time. Nev-

ertheless, the GCN does not work well as expected

on the datasets not sensitive to syntax informa-

tion, as we have seen in TWITTER and REST14

datasets.

4.5 Case Study

To better understand how ASGCN works, we

present a case study with several testing examples.

Particularly, we visualize the attention scores of-

fered by MemNet, IAN, ASCNN and ASGCN-

DG in Table 4, along with their predictions on

these examples and the corresponding ground

truth labels.

The first sample “great food but the service was

dreadful!” has two aspects within one sentence,

which may hinder attention-based models from

aligning the aspects with their relevant descrip-

tive words precisely. The second sample sentence

“The staff should be a bit more friendly.” uses

a subjunctive word “should”, bringing extra diffi-

culty in detecting implicit semantics. The last ex-

ample contains negation in the sentence, that can

easily lead models to make wrong predictions.

MemNet fails in all three presented samples.

While IAN is capable of differing modifiers for

distinct aspects, it fails to infer sentiment polari-

ties of sentences with special styles. Armed with

position weights, ASCNN correctly predicts the

label for the second sample as the phrase should

be is close to the aspect staff, but failed for the

third one with a longer-range word dependency.

Our ASGCN-DG correctly handles all the three

samples, implying that GCN effectively integrates

syntactic dependency information into an enriched

semantic representation. In particular, ASGCN-

DG makes correct predictions on the second and

the third sample, both having a seemingly biased

focus. This shows ASGCN’s capability of captur-

ing long-range multi-word features.

5 Discussion

5.1 Investigation on the Impact of GCN

Layers

As ASGCN involves an L-layer GCN, we investi-

gate the effect of the layer number L on the final

performance of ASGCN-DG. Basically, we vary

the value of L in the set {1,2,3,4,6,8,12} and check

the corresponding Accuracy and Macro-Averaged

F1 of ASGCN-DG on the LAP14 dataset. The re-

sults are illustrated in Figure 3.

Figure 3: Effect of the number of GCN layers. Accu-

racy and macro-F1 scores are the average value over 3

runs with random initialization.

On both metrics, ASGCN-DG achieves the best

performance when L is 2, which justifies the selec-

tion on the number of layers in the experiment sec-
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Model Aspect Attention visualization Prediction Label

MemNet

food great food but the service was dreadful ! negative✗ positive

staff The staff should be a bit more friendly . positive✗ negative

Windows 8
Did not enjoy the new Windows 8 and

touchscreen functions .
positive✗ negative

IAN

food great food but the service was dreadful ! positive✓ positive

staff The staff should be a bit more friendly . positive✗ negative

Windows 8
Did not enjoy the new Windows 8 and

touchscreen functions .
neutral✗ negative

ASCNN

food great food but the service was dreadful ! positive✓ positive

staff The staff should be a bit more friendly . negative✓ negative

Windows 8
Did not enjoy the new Windows 8 and

touchscreen functions .
positive✗ negative

ASGCN-DG

food great food but the service was dreadful ! positive✓ positive

staff The staff should be a bit more friendly . negative✓ negative

Windows 8
Did not enjoy the new Windows 8 and

touchscreen functions .
negative✓ negative

Table 4: Case study. Visualization of attention scores from MemNet, IAN, ASCNN and ASGCN-DG on test-

ing examples, along with their predictions and correspondingly, golden labels. The marker ✓ indicates correct

prediction while the marker ✗ indicates incorrect prediction.

tion. Moreover, a dropping trend on both metrics

is present as L increases. For large L, especially

when L equals to 12, ASGCN-DG basically be-

comes more difficult to train due to large amount

of parameters.

5.2 Investigation on the Effect of Multiple

Aspects

In the datasets, there might exist multiple aspect

terms in one sentence. Thus, we intend to measure

whether such phenomena would affect the effec-

tiveness of ASGCN. We divide the training sam-

ples in LAP14 and REST14 datasets into different

groups based on the number of aspect terms in the

sentences and compute the training accuracy dif-

ferences between these groups. It is worth noting

that the samples with more than 7 aspect terms are

removed as outliers because the sizes of these sam-

ples are too small for any meaningful comparison.

It can be seen in Figure 4 that when the num-

ber of aspects in the sentences is more than 3, the

accuracy becomes fluctuated, indicating a low ro-

bustness in capturing multiple-aspect correlations

and suggesting the need of modelling multi-aspect

Figure 4: Accuracy versus the number of aspects (#

Aspects) in the sentences.

dependencies in future work.

6 Related Work

Constructing neural network models over word

sequences, such as CNNs (Kim, 2014; Johnson

and Zhang, 2015), RNNs (Tang et al., 2016a) and

Recurrent Convolutional Neural Networks (RC-
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NNs) (Lai et al., 2015), has achieved promising

performances in sentiment analysis. However, the

importance but lack of an effective mechanism

of leveraging dependency trees for capturing dis-

tant relations of words has also been recognized.

Tai et al. (2015) showed that LSTM with depen-

dency trees or constituency trees outperformed

CNNs. Dong et al. (2014) presented an adaptive

recursive neural network using dependency trees,

which achieved competitive results compared with

strong baselines. More recent research showed

that general dependency-based models are diffi-

cult to achieve comparable results to the attention-

based models, as dependency trees are not capable

of catching long-term contextualized semantic in-

formation properly. Our work overcomes this lim-

itation by adopting Graph convolutional networks

(GCNs) (Kipf and Welling, 2017) .

GCN has recently attracted a growing attention

in the area of artificial intelligence and has been

applied to Natural Language Processing (NLP).

Marcheggiani and Titov (2017) claimed that GCN

could be considered as a complement to LSTM,

and proposed a GCN-based model for semantic

role labeling. Vashishth et al. (2018) and Zhang

et al. (2018) used graph convolution over depen-

dency trees in document dating and relation classi-

fication, respectively. Yao et al. (2018) introduced

GCN to text classification utilizing document-

word and word-word relations, and gained im-

provements over various state-of-the-art methods.

Our work investigates the effect of dependency

trees in depth via graph convolution, and develops

aspect-specific GCN model that integrates with

the LSTM architecture and attention mechanism

for more effective aspect-based sentiment classifi-

cation.

7 Conclusions and Future Work

We have re-examined the challenges encountering

existing models for aspect-specific sentiment clas-

sification, and pointed out the suitability of graph

convolutional network (GCN) for tackling these

challenges. Accordingly, we have proposed a

novel network to adopt GCN for aspect-based sen-

timent classification. Experimental results have

indicated that GCN brings benefit to the overall

performance by leveraging both syntactical infor-

mation and long-range word dependencies.

This study may be further improved in the fol-

lowing aspects. First, the edge information of the

syntactical dependency trees, i.e. the label of each

edge, is not exploited in this work. We plan to de-

sign a specific graph neural network that takes into

consideration the edge labels. Second, domain

knowledge can be incorporated. Last but not least,

the ASGCN model may be extended to simultane-

ously judge sentiments of multiple aspects by cap-

turing dependencies between the aspects words.
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