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Abstract: Developers of modern software systems are often required to build software that
addresses security, fault-tolerance and other dependability concerns. A decision to address a
dependability concern in a particular manner can make it difficult or impossible to address other
concerns in software. Proper attention to balancing key dependability and other concerns in the
early phases of development can help developers better manage product risks through early
identification and resolution of conflicts and undesirable emergent behaviours that arise as a result
of interactions across behaviours that address different concerns. The authors describe an aspect-
oriented modelling (AOM) approach that eases the task of exploring alternative ways of addressing
concerns during software modelling. The paper focuses on use of the AOM approach to produce
logical, aspect-oriented architecture models (AAMs) that describe how concerns are addressed
in technology-independent terms. An AAM consists of a set of aspect models and a base
architecture model called the primary model. An aspect model describes how a dependability
concern is addressed, and a primary model describes how other concerns are addressed.
Composition of the aspect and primary models in an AAM produces an integrated view of the
logical architecture described by the AAM. Composition can reveal conflicts and undesirable
emergent properties. Resolving these problems can involve developing and analysing alternative
ways of addressing concerns. Localising the parts of an architecture that address pervasive and
nonorthogonal dependability concerns in aspect models allows developers to more easily evolve
and replace the parts as they explore alternative ways of balancing concerns in the early stages of
development.

1 Introduction

The pervasiveness of computer systems highlights the need
to engineer software that delivers services in a dependable
manner. Designs of dependable software must address
multiple, possibly interdependent, dependability concerns
such as access control, confidentiality and data integrity.
The manner in which a dependability concern is addressed
can affect how other concerns are addressed. Balancing
concerns during software development can involve devel-
oping and analysing alternative ways of addressing the
concerns. Lack of attention to balancing dependability and
other concerns in the early software development phases can
lead to major rearchitecting of the design in later stages of
development.

In this paper, a concern is a problem coupled with a
desired goal [1, 2], where the goal determines acceptable
solutions to the problem. For example, the problem of
prohibiting unauthorised access to protected resources in a
banking system is a dependability concern that must be
addressed by banking software that manipulates the
protected resources. A model that describes how a concern
is addressed is called a concern solution model. In
particular, a model that describes how a dependability
concern is addressed is called a dependability solution
model. For example, a role based access control (RBAC)

model [3] can be used to describe a solution to the banking
system’s access control concern. A decision to address a
concern in a particular manner can give rise to other
concerns. For example, the RBAC solution to the access
control problem gives rise to new concerns pertaining to the
management of roles and permissions.

This paper focuses on addressing dependability concerns
during logical architecture modelling of software.
The concern solution models are expressed in high-
level, technology-independent terms. Current software
development techniques allow developers to structure
logical architectures in terms of modules that can be
composite classes (i.e. classes that have an internal class
structure), subsystems or interfaces. These modules typi-
cally localise solutions that address key functional concerns.
Addressing nonorthogonal dependability concerns results in
dependability solutions that are spread across the modules
of the architecture and tangled with functionality described
in the modules. These solutions are said to crosscut the
primary structure of the architecture model.

Balancing concerns that are addressed by crosscutting
solutions in the early phases of development can be
challenging, primarily because of the difficulty of consist-
ently changing or replacing the crosscutting solutions in an
architecture model. A modelling approach that supports
localising the descriptions of crosscutting dependability
solutions can significantly ease the task of evolving and
replacing the solution descriptions in an architecture model.
In this paper we describe an aspect-oriented modelling
(AOM) approach that allows developers to conceptualise,
describe and communicate logical dependability solutions
in isolation. The dependability solution models are called
aspect models. An aspect-oriented architecture model
(AAM) produced by the AOM approach consists of a set
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of aspect models and a base architecture model called the
primary model. The primary model describes concern
solutions that determine the base structure of the architec-
ture model. Each aspect model describes a dependability
solution that crosscuts the primary model. An integrated
view of the architecture is obtained by composing aspect and
primary models to produce a composed AAM. Conflicts
and undesirable emergent properties can be identified during
composition of aspect and primary models and
during analysis of the composed AAM. Addressing
these deficiencies can lead to consideration of
alternative ways of addressing concerns. Use of the AOM
approach in the early stages of software development can
help reduce software product risks through early
identification and resolution of conflicts and undesirable
behaviours that emerge as a result of integrating concern
solutions.

2 Aspect-oriented modelling

In the aspect-oriented programming (AOP) language
AspectJ, an aspect is a type that crosscuts a program
structure [4]. An aspect contains information typically
found in a class (i.e. data members and methods) in addition
to behaviour that is executed at a specified point in a
program’s execution. The well defined points are called join
points and the specifications of join points are called
pointcuts. In the modelling community there has been some
work on describing aspect-oriented programs using model-
ling languages such as the Unified Modelling Language
(UML) [5]. AOM, as described in this paper, is not
concerned with describing aspect-oriented programs.
Rather, the AOM approach described in this paper provides
support for modelling of concern solutions in isolation and
for integrating the concern solution models with models
describing the primary structure of software.

Modelling languages such as the UML provide some
support for multidimensional separation of concerns
through the use of different diagram types that can be
used to describe nonorthogonal views of a system. AOM
approaches allow developers to define additional dimen-
sions of separation based on system-specific concerns. In an
AOM approach, aspects localise concern solutions that
crosscut views described by different diagrams in a system
model.

The separation of crosscutting elements is a characteristic
that is common to AOP and AOM, but differences between
the artefacts (models versus code) can give rise to
differences in techniques. For example, at the code level
there is a single representation of functionality (the source
code), while a model can describe a system from multiple
views using different diagrams. The views can be
nonorthogonal; for example, a UML sequence diagram
that describes how a set of class instances interact to
accomplish a task crosscuts the class diagram view of a
system. In the AOM approach described in this paper,
aspects describe solutions that crosscut UML model views.

Another difference between AOM and AOP is that code
level aspect weaving is concerned primarily with inserting
functionality at well defined points in a program’s
execution. The points at which functionality can be inserted
are determined by the join point model of the AOP
language. Software models are typically static descriptions
of structure and behaviour. In the cases where the semantics
of a modelling language supports execution of models, one
can conceivably create a join point model for the modelling
language to support an AOP-like notion of weaving. In the

absence of such semantics, weaving at the model level is
essentially a static composition of model views.

2.1 Supporting aspect-oriented modelling

The AOM approach described in this paper provides support
for (i) describing crosscutting concern solutions as model-
ling views called aspects, (ii) synthesising an integrated
model by composing aspect and primary model views,
and (iii) identifying and resolving conflicts and undesirable
emergent properties that arise as a result of integrating
aspect and primary models.

Two broad types of concerns can be identified [2]:
A concrete concern has solutions that can be expressed in
functional and structural terms in a model (i.e. there are
model elements that specifically address the concern), and a
qualitative concern is based on qualities or attributes of a
system. Access control and error recovery are examples of
concrete concerns, while concerns pertaining to system
performance and memory utilisation are examples of
qualitative concerns. The AOM approach described in this
paper is applicable to concrete concerns only. Henceforth,
a concrete concern is referred to simply as a concern.

Aspect models in our AOM approach describe cross-
cutting dependability solutions in logical (i.e. high-level and
technology-independent) terms. A crosscutting concern
solution can be isolated if its distributed elements have
common structural and behavioural characteristics.
A generalised form of the solution can then be represented
as a pattern, where the pattern describes common charac-
teristics of the distributed solution parts. A pattern view of
crosscutting solutions screens out context-specific details
and makes it possible to conceive, describe and understand
the solutions in isolation. In our AOM approach an aspect
model is a pattern that characterises a family of logical
concern solutions. The patterns are described using UML
model templates, as is also done in the Theme approach [6].
The template notation used in our work is an adaptation of a
UML-based pattern language, called the Role-Based
Metamodeling Language (RBML) [7]. Composing an
aspect model with a primary model requires that one first
instantiates the pattern by binding template parameters to
application-specific values. An instantiated aspect model is
called a context-specific aspect model. This approach paves
the way for the development and systematic use of design
patterns that capture logical solutions to dependability
concerns.

Model composition technologies that automate signifi-
cant parts of the AOM composition activity are needed if
AOM is to scale-up to models of complex ‘real-world’
software systems. At one extreme are composition tools that
take in aspect and primary models and produce composed
models without further input from developers. This fixed
composition approach provides very little flexibility in how
aspect models are composed with primary models. At the
other extreme, developers also provide composition pro-
cedures that detail how the aspect models are to be
composed with primary models. This approach is very
flexible, but requires more effort from developers. More
practical solutions are likely to lie between these two
approaches. For example, a tool can codify a default
composition procedure and allow developers to vary some
aspects of the procedure using composition directives. This
is the approach taken in our work.

Context-specific aspect, primary and composed models
are analysed to uncover flaws. Analysis of the composed
model can reveal conflicts and undesirable emergent
properties. Analysis can also be carried out to determine
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the extent that dependability solutions meet their objectives
when integrated with other concerns.

2.2 Overview of AOM approach

The major components of the AOM approach are shown in
Fig. 1. An AAM of an application consists of (i) a primary
model, (ii) aspect models and the bindings used to
instantiate them in the application context, and (iii)
composition directives that determine how the instantiated
aspect models are composed with the primary model to
produce a composed AAM.

A primary model consists of UML diagrams that each
describe a view of the base architecture. The primary
models in this paper consist of two types of diagram: UML
classifier and interaction diagrams. Aspect models describe
patterns of logical dependability solutions as UML diagram
templates. An AAM presents logical views of a software
architecture.

Figure 2 illustrates how an AAM consisting of two aspect
models and a primary model is composed. The aspect
models are instantiated by binding template parameters to
application-specific values. We refer to the namespace from
which binding values and names of elements in the primary

model are drawn as the application domain namespace. An
aspect model can be instantiated multiple times to produce
multiple context-specific aspects. Composition of context-
specific aspect and primary models produces a model
consisting of UML diagrams obtained by merging corre-
sponding UML diagrams in the context-specific aspect and
primary models. The AOM approach provides a basic
composition procedure that can be altered in restricted ways
by composition directives. For example, a composition
directive can (i) specify that properties in aspect models
override conflicting properties in primary models (or vice
versa), (ii) specify that particular primary (or aspect) model
elements must be removed or that new elements be added
during composition, and (iii) determine the order in which
two or more aspects are composed with a primary model.

The Model Analysis component in Fig.1 is responsible for
analysing the composed model to identify errors and to
determine the extent that dependability objectives are met.
The focus of this paper is on aspect representation and
model composition. We illustrate how identified conflicts
can be resolved using composition directives, but a detailed
account of techniques for analysing UML models is outside
the scope of this paper.

composed

AAM

model

composition

model

analysis

address
deficiencies

aspect-oriented architecture model

bindings bindings

(AAM)

aspect model 1
&

aspect model 2 

&

primary model
composition
directives

Fig. 1 Components of AOM approach

composecomposition directives

instantiate

instantiate

values used in bindings

model element names

values used in bindings

primary (base) model

aspect model 1 

aspect model 2

application domain namespace

composed model

context-specific aspects

context-specific aspects

Fig. 2 Overview of composition in AOM approach
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3 Representing aspect models

In this Section we describe how aspect models can be
represented as template UML diagrams representing
patterns of concern solutions. The template diagrams in
this paper produce UML diagrams describing logical
architectural views of solutions when instantiated.

In the UML, template models are described by para-
meterised packages that explicitly list the parameters in the
package header. We have found this notation to be unwieldy
when a large number of parameters are involved. In this
paper the parameters are explicitly marked in the template
diagrams using the symbol ‘j’.

Figure 3 shows an aspect model, Auth, characterising
logical solutions in which access to a service is restricted to
authorised clients. The aspect model consists of two diagram
templates: a class diagram template that describes structural
properties of the concern solutions, and a collaboration
diagram template that describes interactions among solution
elements. Instantiating the class diagram template shown in
Fig. 3a results in a class diagram that consists of composite
classes representing logical architectural views of clients,
servers with services under access control, and authorisation
repositories. A service under access control is represented by
two operations in a server class:

. An operation that checks whether a client that requests the
service is authorised to execute the service. The operation
signature is obtained by instantiating the operation template
joperation. The operation takes in as arguments the client’s
identifier (represented by the operation argument template
jmid : jmgrid) and zero or more values needed by the

service (represented by the argument template jparams1�).
The template parameter params1� is referred to as a
collection parameter, indicating that it must be bound to a
collection of values.
. An operation that performs the required service. This
operation is obtained by instantiating the operation template
jdoOperation. The use of the jparams1� collection par-
ameter in both the operation and doOperation templates
indicates that the same value (i.e. the same set of arguments)
must be used to instantiate the collection parameter in both
of the templates.

The class template jAuthorisationRepository consists of the
operation template jcheckAuth that produces an operation
that performs authorisation checks when instantiated.
A jcheckAuth operation uses the client identifier
(represented by jq : jmgrid), an operation identifier (rep-
resented by jop : jOpType), and possibly other information
passed in as arguments (represented by the collection
parameter jparams2�), to determine whether the client
is authorised to access the operation or not. If the client is
authorised, then the operation returns a value that is
an instantiation of jvalid; otherwise it returns a value that
is an instantiation of jinvalid.

Operation templates may be associated with template
forms of pre- and postconditions, referred to as constraint
templates, that produce OCL specifications when instan-
tiated. These constraint templates are presented separately
from the diagrams to reduce diagram clutter. If an operation
template is not associated with a constraint template, then
an operation produced by the template must be specified in
the primary model or its behaviour is to be specified or

|Client |Server
〈〈class template〉〉

|doOperation(|params1*)

|operation(|mid:|mgrid,|params1*)

〈〈association template〉〉
|accessAuthRep

|checkAuth(|q:|mgrid,|op:|OpType,|params2*):{|valid,|invalid}

|n|m

|q

|p

|accesses

〈〈class template〉〉

|n.1: |auth := |checkAuth(|id,|opid,|other*)

|n: |operation(|id,|opParams*)

:|AuthorisationRepository

:|Server:|Client
collaboration role template

object template

message template |n.2A [|auth=|valid]: |doOperation(|opParams*)

|n.2B [|auth=|invalid]: |error

a

b

〈〈association template〉〉

|AuthorisationRepository
〈〈class template〉〉

bound to params1* in |operation

must be exactly the values

indicates that values bound to this

parameters

indicates a set of 0 or more

postconditions (not shown)

template forms of pre- and

operation templates include

Fig. 3 Authorisation-based access control aspect model

a Class diagram template for an authorisation aspect model
b Collaboration diagram template for an authorisation aspect model
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implemented in a subsequent refinement or detailing of the
logical model. The operation templates jdoOperation and
jcheckAuth do not have constraint templates associated with
them. The following is the commented constraint template
associated with the joperation template. The notation is based
on the Object Constraint Language (OCL) version 2 [8]:

Context jServer::joperation(jmid:jmgrid,
(jp: jT)*):

Pre:
-- This operation can be invoked at any

time.
true

Post:
=� The service is carried out if and only

if the client is authorised to invoke
the service. �=

let authmessage : OclMessage ¼
jAuthorisationRepository^j

checkAuth(jmid,jopid,jp*) in
(authmessage.hasReturned() and

authmessage.result() ¼ valid
implies jServer^jdoOperation(jp*)) and

(jServer^jdoOperation(jp*) implies
authmessage.hasReturned() and

authmessage.result() ¼ valid)

The collaboration diagram template shown in Fig. 3b
consists of template forms of participants (e.g. : jClient) and
messages (e.g. n :joperationðjid; jopParams�Þ. An instan-
tiated participant template produces either a named or
anonymous participant; for example, binding UserMgmt to
the parameter Server in the : jServer participant template
produces the anonymous participant :UserMgmt. In a
participant template, the type parameter (e.g. jServer in
: jServer) must be a classifier template in a corresponding
classifier diagram template. Participant type parameters and

the corresponding classifier templates must be instantiated
with the same value.

Message templates consist of parameterised message
sequence expressions and parameterised message
expressions. For example, jn:1 : jauth :¼ jcheckAuthðjid;
jopid; jother�Þ consists of a parameterised sequence
expression, jn:1; in which n is a parameter that can be
substituted by a sequence expression (e.g. substituting 2.1.3
for n gives the sequence expression 2.1.3.1), and a
parameterised message expression jauth :¼ jcheckAuthðjid
; jopid; jother�Þ with parameters auth, checkAuth, id, opid
and an optional set of arguments indicated by the collection
parameter other�. The message expression response :¼
IDcheckðuserid; updateOp; userstatus; usersessionÞ can be
obtained from this template by binding response to auth,
IDcheck to checkAuth, userid to id, updateOp to opid and
{userstatus, usersession} to other�.

The collaboration diagram template for the Auth aspect
model describes the following interaction pattern:

. Message jn: A client requests a service on a server by
calling an instantiation of joperation.
. Message jn:1: An authorisation check is requested by
calling an instantiation of jcheckAuth in the authorisation
repository linked with the server.
. Message jn:2A: If authorisation is granted, then the
service is performed by invoking an instantiation of
jdoOperation.
. Message jn:2B: If authorisation is not granted the client is
informed that access is not allowed.

The aspect model shown in Fig. 3 produces concern solution
models that can be integrated with architecture models in
which modules are composite classes (see [9] for more
details on UML composite classes). Logical architectures
can also be described using UML subsystems and interfaces
as modules. The access control solution expressed in terms
of subsystem templates is shown in Fig. 4a, and the logical

a

b

〈〈provided〉〉

〈〈interface template〉〉
|IAuthorisationRepository

|checkAuth(|q:|mgrid,|op:OpType,|params2*):{|valid,|invalid}

〈〈subsystem template〉〉
|AuthorisationRepository

|checkAuth(|q:|mgrid,|op:OpType,|params2*):{|valid,|invalid}

〈〈subsystem template〉〉
|Server

|doOperation(|params1*)
|operation(|mid:|mgrid,|params1*)

〈〈provided〉〉

〈〈required〉〉
|checkAuth(|q:|mgrid,|op:OpType,|params2*):{|valid,|invalid}

〈〈interface template〉〉
|IServer

|operation(|mid:|mgrid,|params1*)
|doOperation(|params1*)

〈〈interface template〉〉
|IClient

〈〈subsystem template〉〉
|Client

〈〈required〉〉

|operation(|mid:|mgrid,|params1*)

Fig. 4 Examples of subsystem and interface based access control aspect models

a Subsystem diagram template for an authorisation aspect model
b Interface diagram template for an authorisation aspect model
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solution expressed in terms of interface templates is shown
in Fig. 4b. The collaboration diagram templates in these
aspect models are syntactically identical to the collaboration
diagram template shown in Fig. 3b and thus are not shown.

The three access control aspect models shown in Figs. 3
and 4 are specialisations of the aspect model shown in Fig. 5.
The collaboration diagram of the generalised aspect is
syntactically identical to the collaboration diagram shown in
Fig. 3b. The generalised aspect model cannot be directly
instantiated because it is based on abstract UML constructs
(classifiers and relationships). This type of aspect model is
called an abstract aspect model. An abstract aspect model
must be specialised to a concrete aspect model (i.e. one
based on concrete UML constructs) before it can be
instantiated.

The remainder of this paper uses architecture models in
which modules are composite classes to illustrate the AOM
approach. The internal structures of the composite classes
are hidden in the architectural views presented in this paper.

4 Composing aspect and primary models

Composing an aspect model with a primary model involves
(i) instantiating the aspect model, using bindings, to produce
a context-specific aspect model, and (ii) integrating the
context-specific aspect model with the primary model. In
this Section we illustrate how composition can be carried
out using a small example.

4.1 Composition example

Figure 6b shows a primary model that describes a user
management system in which Manager objects are linked
to a UserMgmt object that controls access to a repository of

user information (a UserRepository object). The UserMgmt
class defines operations for adding a user to the repository
(addUser) and for deleting a user from the repository
(deleteUser). Access to the addUser and deleteUser
operations by Manager objects is unrestricted in the primary
model. To restrict access to these operations the instantiated
Auth aspect model shown in Fig. 6a is composed with the
primary model to obtain the composed model shown in
Fig. 6c.

The context-specific aspect model in Fig. 6a is obtained
by instantiating the Auth aspect model using bindings that
define the values that are to be substituted for parameters in
the Auth diagram templates. A binding relates an aspect
model element to a model element and can be expressed
as a pair of the form (aspect element name, model element
name). The model element name can be the name of a
primary model element or the name of an application-
specific element that is to be added to the composed model
during composition. The type of the construct named by
model element name must be the same as the parameter
type; for example, a class template can only be bound to a
model element that is a class. Some of the bindings used to
produce the context-specific aspect model shown in Fig. 6a
are given below:

(jClient, Manager); (jmgrid, MgrID);
(jaccesses, accesses); (jm, 1..*); ((jn, jp, jq),1)[Note 1];

(jdoOperation, doDeleteUser),
(jdoOperation, doAddUser);
(jServer,UserMgmt); (jAuthorisationRepository,

SystemMgmtAuthRep).

a

b

|operation(|mid:|mgrid,|params1*)

|doOperation(|params1*)

〈〈classifier template〉〉
|Server

〈〈relationship template〉〉

〈〈relationship template〉〉

|n.2B [|auth=|invalid]: |error

|n.2A [|auth=|valid]: |doOperation(|opParams*)

:|Client :|Server

:|AuthorisationRepository

|n: |operation(|id,|opParams*)

|n.1: |auth := |checkAuth(|id,|opid,|other*)

|checkAuth(|q:|mgrid,|op:OpType,|params2*):{|valid,|invalid}

〈〈classifier template〉〉
|AuthorisationRepository

〈〈classifier template〉〉
|Client

Fig. 5 Generalised access control aspect model

a Classifier diagram template for an authorisation aspect model
b Collaboration diagram template for an authorisation aspect model

Note 1: This is an abbreviated form of three pairs that respectively map n, p
and q to the multiplicity 1.
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Note that a single parameter may be instantiated more than
once; for example, the operation template doOperation is
instantiated twice to produce doAddUser and doDeleteUser
operations. An instantiation multiplicity can be associated
with a template to restrict the number of times a template can
be instantiated; for example, a template of the form
jTemp 1..1 indicates that Temp can only be instantiated
once. If a template is not associated with a (instantiation)
multiplicity, then the number of instantiations possible is
not restricted (as is the case in the aspect models given in
this paper).

Sometimes it is more convenient to express bindings as
relationships between structures. For example, the bindings
for operation templates can be expressed as follows:

((joperation,jmid,jparams1*), (addUser, mid,fu:UIDg));
((joperation,jmid,jparams1*), (deleteUser, mid,fu:UIDg));
((jcheckAuth, jq, jop, jOpType, jparams2*),

(checkSysAuth, mid, op, String, fg)).
Bindings also determine how constraint templates are

instantiated. For example, the above bindings are used to

produce the following OCL definitions of the addUser
and deleteUser operations in the context-specific aspect
model:

Context UserMgmt::
addUser(mid:MgrID,u:UID):

Pre:
true

Post:
=� doAddUser() is called if and only if

the Manager object is authorised to add
users.�=

let authmessage : OclMessage ¼
SystemMgmtAuthRep^

checkSysAuth(mid,?:String) in
(authmessage.hasReturned() and
authmessage.result() ¼ True

implies self^doAddUser(u)) and

m : MgrID
Manager

addUser(in mid : MgrID, in u : UID)
deleteUser(in mid : MgrID, in u : UID)
doAddUser(in u : UID)
doDeleteUser(in u : UID)

UserMgmt

〈〈datatype〉〉
MgrID

〈〈datatype〉〉
UID

1..* 1

accesses

checkSysAuth(in mid : MgrID, in op : String)

SystemMgmtAuthRep

1

1

accessAuthRep

m : MgrID
Manager

addUser(in u : UID)
deleteUser(in u : UID)

UserMgmt

〈〈datatype〉〉
MgrID

〈〈datatype〉〉
UID

1..* 1

accesses

UserRepository

1

1

accessUserRep

Auth context-specific

aspect class diagram

User Management

primary class diagram

Composition directives

Rename Primary::UserMgmt::addUser() to doAddUser()

Rename Primary::UserMgmt::deleteUser() to doDeleteUser()

m : MgrID
Manager

〈〈datatype〉〉
MgrID

〈〈datatype〉〉
UID

1..* 1

accesses

checkSysAuth(in mid : MgrID, in op : String)

SystemMgmtAuthRep

1

1

accessAuthRep

UserRepository

1

1

accessUserRep

Composed class

diagram

b

c

a

addUser(in mid : MgrID, in u : UID)
deleteUser(in mid : MgrID, in u : UID)
doAddUser(in u : UID)
doDeleteUser(in u : UID)

UserMgmt

Integrated aspect and primary view

〈〈merge〉〉

〈〈merge〉〉

Fig. 6 Example of composing a context-specific aspect class diagram and a primary class diagram
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(self^doAddUser(u) implies
authmessage.hasReturned() and
authmessage.result() ¼ True)

Context UserMgmt::
deleteUser(mid:MgrID,u:UID):

Pre:
true

Post:
=� doDeleteUser() is called if and only if

the Manager object is authorised to
delete users.=�

let authmessage : OclMessage ¼
SystemMgmtAuthRep^

checkSysAuth(mid,?:String) in
(authmessage.hasReturned() and
authmessage.result() ¼ True
implies self^doDeleteUser(u)) and

(self^doDeleteUser(u) implies
authmessage.hasReturned() and
authmessage.result() ¼ True)

The AOM approach uses a basic name-based composition
procedure in which elements with the same name are merged
to form a single diagram element in the composed
model. For example, merging the aspect and primary class
diagram views of the Manager class results in a class
that integrates information from both views. Some of the
rules that determine how information associated with
matching elements is combined are given below (these
rules can be modified using composition directives, as
indicated below):

. If the matching elements are operations with operation
specifications, the operation specification in the composed
model is the conjunction of the operation specifications
associated with the matching operations. A composition
directive can be used to vary how the specifications are
logically connected.
. If the matching elements are attributes (or other elements)
with constraints, the constraint associated with the attribute
in the composed model is the conjunction of the constraints
associated with the matching attributes. A composition
directive can be used to vary how the constraints are
logically connected.
. If the matching elements are associations, then the
stronger (more restrictive) multiplicity at an association
end is used in the composed model. A composition directive
can be used to override this rule.

Unmatched model elements (i.e. model elements that only
occur in either the aspect model or the primary model) are
included in the composed class diagram.

Using the basic composition procedure to compose the
UserMgmt aspect and primary model views results in a
conflict for the addUser and deleteUser operations because
they have the same names but different specifications in the
two views; the addUser and deleteUser in the context-
specific aspect model carry out authorisation checks, while
the operations with the same names in the primary model
add and delete users, respectively (the primary model
specifications are not given in this paper). Furthermore, the
operations doAddUser and doDeleteUser in the context-
specific aspect model have the same specifications as those
provided for addUser and deleteUser operations, respect-
ively, in the primary model. Composition directives are used
to resolve the conflict by renaming the addUser and
deleteUser operations in the primary model to doAddUser

and doDeleteUser. The renaming removes the conflict and
allows the primary model operations to be merged with the
doAddUser and doDeleteUser operations in the context-
specific aspect model. The result is that the doAddUser and
doDeleteUser operations in the context-specific aspect
model are respectively merged with the original addUser
and deleteUser operations in the primary model as shown in
Fig. 6.

In general, a composition directive can (i) determine the
order in which multiple aspect models are composed with a
primary model, (ii) define precedence or override relation-
ships between matching aspect and primary model elements
with conflicting properties and (iii) determine the
elements that are renamed (e.g. to resolve conflicts),
added, or deleted during composition. Adding new elements
or deleting existing elements may be necessary to correctly
compose aspect and primary models. For example, a
security access control aspect may restrict access to an
object by prohibiting particular relationships between the
object and other objects. This can be done by identifying
undesirable relationships in the aspect models and deleting
them if found in the primary model. Elements marked for
deletion in an aspect model are referred to as prohibited
elements. Later in this Section we give an example of a
situation that requires composition directives that add and
delete model elements.

In summary, composition directives allow one to vary
how aspect and primary models are composed. Conse-
quently, aspect models do not need to capture all possible
variations. In Section 4.2 we show how composition
directives can be used to obtain variants of solutions
described by aspect models.

4.2 Using composition directives to obtain
variants of composed models

Using the same aspect and primary models, different
composed models can be produced by varying the
bindings and composition directives. Figure 7 shows a
composed model obtained by composing the Auth aspect
class diagram and the User Management primary class
diagram using a different set of bindings and composition
directives. We do not give the bindings for this case; they
can be inferred from the context-specific aspect model
shown in Fig. 7a.

The two systems described by the composed AAMs
shown in Fig. 6c and in Fig. 7c accomplish the same
tasks but do so differently. In Fig. 7c the authorisation
operations and the services are located in separate
classes. Rather than treating the UserMgmt class as a
jServer class, a new server class is introduced by the
context-specific aspect model (see Fig. 7a)). The intent is
that the addUser and deleteUser operations in the
UserAuth class would call the corresponding operations
in UserMgmt after a successful authorisation. To create a
class diagram that reflects this intent, composition
directives are defined that (i) add an association between
the UserAuth and the UserMgmt classes, (ii) remove the
association between the client and the UserMgmt class,
(iii) remove the doAdduser and doDeleteUser operations
from the UserAuth class, and (iv) replace references to
doAdduser and doDeleteUser with references to addUser
and deleteUser, respectively, in UserMgmt. The first
directive is depicted by the association between the
classes in the aspect and the primary model shown in
Fig. 7. The second, third and fourth directives are
captured by the following expressions:
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Replace Primary::Manager::accesses by
Aspect::Manager::uaccesses
- removes the accesses association

between Manager and UserMgmt in the
primary model (graphically indicated
by placing an X on the association in
the class diagram) and replaces all
references to the association in
Manager to the uaccesses association
in the aspect model.

Replace Aspect::UserAuth::doAddUser() by
Primary::UserMgmt::addUser()
- removes doAddUser (graphically indi-

cated by placing an X on the operation
in the class diagram) and replaces all
references to it by references to
addUser in the primary model.

Replace Aspect::UserAuth::doDeleteUser()
by Primary::UserMgmt::deleteUser()
- removes doDeleteUser and replaces

all references to it by references to
addUser in the primary model.

The replacement of references is needed to ensure that the
constraint definitions that refer to the deleted elements refer
to their replacements in the composed model. For example,
the above directives produce a composed model that
includes the following operation definitions for addUser
and deleteUser in UserAuth (this is obtained by replacing
references to self^doAddUser(u) by UserMgmt^

addUser(u), and self^doDeleteUser(u) by
UserMgmt^deleteUser(u) in the OCL definitions of
addUser and deleteUser given earlier for the primary model
in Fig. 6b):

m : MgrID
Manager

addUser(in mid : MgrID, in u : UID)
deleteUser(in mid : MgrID, in u : UID)
doAddUser(in u : UID)
doDeleteUser(in u : UID)

UserAuth

〈〈datatype〉〉
MgrID

〈〈datatype〉〉
UID

1..*

1

uaccesses

checkSysAuth(in mid : MgrID, in op : String)

SystemMgmtAuthRep

1

1

accessAuthRep

m : MgrID
Manager

addUser(in u : UID)
deleteUser(in u : UID)

UserMgmt

〈〈datatype〉〉
MgrID

〈〈datatype〉〉
UID

1..* 1

accesses

UserRepository

1

1

accessUserRep

1
1

Auth context-specific

aspect class diagram

User Management

primary class diagram

X

X
X

prohibited elements are marked with an X 

Composition directives
Replace Primary::Manager::accesses by Aspect::Manager:uaccesees

Replace Aspect::UserAuth::doAddUser() by Primary::UserMgmt::addUser()

Replace Aspect::UserAuth::doDeleteUser() by Primary::UserMgmt::deleteUser()

m : MgrID
Manager

addUser(in mid : MgrID, in u : UID)
deleteUser(in mid : MgrID, in u : UID)

UserAuth

〈〈datatype〉〉
MgrID

〈〈datatype〉〉
UID

1..* 1

uaccesses

checkSysAuth(in mid : MgrID, in op : String)

SystemMgmtAuthRep

1

1

accessAuthRep

addUser(in u : UID)
deleteUser(in u : UID)

UserMgmt

UserRepository

1

1

accessUserRep

1

Composed diagram

ba

c

Integrated aspect and primary view

〈〈call〉〉

〈〈call〉〉

Fig. 7 Alternative composition of Auth and User Management class diagrams
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Context UserAuth::
addUser(mid:MgrID,u:UID):

Pre:
true

Post:
=�UserMgmt.addUser() is called if and
only if the Manager object
is authorised to add users.�=

let authmessage : OclMessage ¼
SystemMgmtAuthRep^

checkSysAuth(mid,?:String) in
(authmessage.hasReturned() and
authmessage.result() ¼ True
implies UserMgmt^addUser(u)) and

(UserMgmt^addUser(u) implies
authmessage.hasReturned() and
authmessage.result() ¼ True)

Context UserAuth::
deleteUser(mid:MgrID,u:UID):

PreCondition:
true

PostCondition:
=�UserMgmt deleteUser() is called if and
only if the Manager object is authorized
to delete users.�=

let authmessage : OclMessage ¼
SystemMgmtAuthRep^

checkSysAuth(mid,?:String) in
(authmessage.hasReturned() and
authmessage.result() ¼ True
implies UserMgmt^deleteUser(u)) and

(UserMgmt^deleteUser(u) implies
authmessage.hasReturned() and
authmessage.result() ¼ True)

In summary, we have shown how aspect and primary
models can be composed and how composition directives
can be used to resolve conflicts. One can view primary
models and context-specific aspect models as views of an
architecture, and thus their composition can be considered
to be a view composition activity. We also show how
composition directives and bindings can be used to produce
different composed models from the same aspect and
primary models. The example illustrates how bindings and
composition directives can be used to reflect architectural
decisions.

5 Limitations and open issues

In this Section we discuss some of the issues that are not yet
addressed by our AOM approach, and outline our plans for
addressing the issues.

5.1 Identifying aspects

It may not be desirable to model all crosscutting concern
solutions as aspects. An AOM approach should provide
guidelines that help developers determine the crosscutting
concern solutions that can beneficially be localised in
aspects. Our AOM approach targets crosscutting depend-
ability solutions that may need to be balanced against other
concern solutions, and those that are expected to evolve
significantly during development. The localisation of these
solutions can ease evolution of the solutions and provide
support for rigorous tradeoff analysis. Currently, our AOM
approach does not provide a set of detailed guidelines for

determining the crosscutting solutions that should be
localised as aspects. Good guidelines should be based on
experience and data collected on projects that utilise the
AOM approach. Such experience and data are not yet
available.

5.2 Developing composition strategies

When multiple aspect models are composed with a primary
model, one has to be concerned with (i) the order in which
the aspect models are composed and (ii) identifying and
resolving conflicts or compromised behaviours. A conflict
arises when a property in one aspect model contradicts a
property in another aspect model. Composing a single
aspect model with a primary model can also result in
conflicts that need to be resolved (as shown in the preceding
Section).

A behavior defined by an aspect model is compromised
when it cannot be performed as specified because some of
its sub-behaviours have been modified (or deleted) after
merging with behaviours defined in other aspect models or
the primary model. For example, (i) an aspect model may
remove a relationship between two entities that is needed by
a behaviour defined in another aspect model, or (ii) an
operation replacement introduced by a composition direc-
tive results in behaviour that violates requirements pre-
viously satisfied by the operation being replaced. These
problems can be resolved by making tradeoffs based on the
relative importance of satisfying the conflicting require-
ments. Resolving problem (i) requires one to tradeoff the
requirement that needs the relationship against the require-
ment that necessitates its deletion. Problem (ii) can be
resolved by restoring the overridden operation and renam-
ing the operation replacement.

It may be possible to apply prior experience in addressing
concerns to constrain composition such that the occurrences
of conflicts and compromised behaviours are minimised.
Such experience can be captured in composition strategies.
A composition strategy is influenced by domain knowledge
pertaining to aspects (e.g. security and fault tolerance
expertise), past experiences in addressing concerns, results
of tradeoff analyses, and the properties (e.g. idempotency,
commutativity, associativity and monotonicity) of the
aspect models. Consider, for example, two security aspect
models: one for authentication and the other for authoris-
ation. Doing authorisation without authentication is mean-
ingless. To get the desired result, an authentication aspect
model must be composed with a primary model before an
authorisation aspect model.

In summary, a composition strategy should be based on
the properties of the aspect models, the constraints imposed
by the domains of the aspect models, the results of tradeoff
analyses, and the past experiences based on realising
multiple, competing aspect models. A challenge is to
develop a language for expressing composition strategies
and techniques for obtaining composition directives from
strategies. We are currently addressing these problems in
our AOM research.

5.3 Analysing composed models

For large complex systems, the result of composition may
be a complex model that may be difficult to comprehend.
On the other hand, the composed model provides the detail
needed to identify conflicts and undesirable emergent
properties that arise as a result of interactions between
model elements described by aspect and primary models. In
the AOM approach, composition is carried out primarily to
support analysis that uncovers conflicts and other defects
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that arise as a result of integrating aspect and primary model
views.

Analysis can be performed at three levels: unit analysis is
concerned with analysing a single context-specific aspect
model, integration analysis occurs when context-specific
aspect models are composed sequentially with a primary
model, and system analysis occurs when all aspect models
have been composed with a primary model. When multiple
aspect models are composed sequentially with a primary
model, one must test that no existing capabilities were
broken and that the capability of the newly composed aspect
was preserved in the composition. System analysis is
concerned with determining whether the composed AAM
satisfies the requirements.

To support dynamic evaluation of composed models, an
operational semantics for UML models is needed. We are
currently adapting a systematic technique for testing and
exercising UML designs to our AOM approach [10–12].
State exploration techniques, such as model-checking
(e.g. see [13, 14]), can also be used to analyse composed
models.

We are also developing a system analysis technique that
involves evaluating composed models against a representa-
tive set of usage scenarios. The scenarios describe both
proper and improper uses of the system. Scenarios
describing improper usages are called misuse scenarios.
For example, to evaluate the impact of security concern
solutions on an application, misuse scenarios that describe
malicious attacks can be developed. Misuse scenarios are
used to determine if the mechanisms defined by the security
aspect models are sufficient to prevent the attacks from
compromising protected resources. Scenarios describing
authorised interactions are used to determine if the
authorised activities are adversely affected by behaviours
described by the aspect models. Scenarios are expressed in
terms of UML behavioural models (e.g. sequence diagrams)
and can be based on use cases that describe authorised
behaviours and on misuse cases that describe behaviours
that should not be present in a correct system implemen-
tation. Analysis involves composing the scenario descrip-
tions with the composed AAM and evaluating the result.
If correct composition of a misuse scenario and an AAM
produces a consistent model, then the AAM has a flaw.
Similarly, if correct composition of a scenario describing
authorised interactions and an AAM produces an inconsist-
ent model, then the AAM has a flaw.

5.4 Evolving aspect-oriented models

Support for extracting aspect and primary model views from
composed models can help ease the task of evolving AAMs.
For example, changing a context-specific aspect model or
primary model after composition has been carried out can be
accomplished by extracting the model view from the
composed model and changing the model. Reintegration
of the view involves propagating the changes to the other
parts of the composed model. Similarly, developers should
be able to add new composition directives or modify
composition directives and bindings in order to resolve
conflicts and fix other defects in the composed model.
Extraction of model views or composition related infor-
mation, and their reintegration, requires tool support if this
approach is to scale-up to large system models. Automated
support for view extraction and reintegration also eases
exploration of solution alternatives carried out to support
tradeoff analysis.

Extracting views and other information used to compose
models requires maintaining relationships among aspect

models, the primary model and the composed model. The
problem is similar to tracking the evolution of complex
composite parts in discrete manufacturing. We are currently
investigating the use of a standard framework, the product
data management (PDM) framework [15], that was devel-
oped for managing the evolution of complex products in the
discrete manufacturing area to support storing and evolving
AAMs.

5.5 Process support for architectural
modelling using AOM

AOM can be carried out in the context of an iterative and
incremental architecture development process. In the first
iteration an initial primary model is developed. This model
reflects early decisions pertaining to the concerns that
determine the modular structure of the architecture. The
AOM approach described in this paper supports the
development of an architecture model in which the modules
can be composite classes, subsystems or logical
components.

An initial set of context-specific aspects that describe
logical solutions to a subset of dependability concerns that
crosscut the primary model are also developed in the first
iteration. The initial aspect and primary models are
composed to produce a composed AAM, which is then
analysed. The following activities are carried out in each
subsequent iteration:

. If the analysis performed in the previous iteration
uncovers problems, the aspect models, primary model or
the composition directives are modified accordingly.
. New aspect models for dependability concerns not
covered in previous iterations can be introduced, and the
primary model can also be extended to take into account
functionality not considered in previous iterations.
. If needed, new composition directives are created.
. The modified aspect and primary models are composed
and analysed.

5.6 Tool support for AOM

We are developing a prototype integrated toolset that
supports (i) creation and cataloging of aspect models, (ii)
composition of aspects and primary models, and (iii)
rigorous analysis of composed models. To date, our work
on tool development has produced the following:

. An architectural design of a toolset that supports creation
of aspect models, composition of aspects and primary
models, and analysis of composed models has been
developed [16].
. A prototype editor for creating aspect model class
diagram templates has been developed. The editor was
built using the Eclipse modelling framework (see http://
www.eclipse.org/emf). The prototype does not support
instantiation of the templates.
. A tool, built on top of Rational Rose, that generates
instantiations from template forms of UML class diagrams
(generic aspects) has been developed.
. A prototype model composer that takes primary model
and context-specific aspect class diagrams and composes
them has been developed.

We are currently integrating and extending the above tools
to form an integrated AOM tool set.

6 Related research

Aspect-oriented programming (AOP) supports multi-
dimensional separation of concerns (MDSoC) at the
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programming level [4, 17–24] An AOP aspect is an
implementation or design concern that crosscuts the primary
functional units of a program (e.g. concerns that crosscut
classes of an object-oriented program). A few researchers
have started to address the problem of defining and
composing aspects at an abstraction level higher than the
programming language level (for example, see [6, 25–29].

Fiadeiro and Lopes [25] specify aspects related to system
co-ordination using an algebraic approach. Their approach is
applicable to detailed design and code, and utilises a notation
that is not widely known by system developers. Gray et al.
[26] use aspects to represent aspects in domain-specific
models. Their research is part of the model-integrated
computing (MIC) initiative that targets embedded software
systems specifically. MIC extends the scope and usage of
models such that they form the backbone of a development
process for building embedded software systems. Require-
ments, architecture and the environment of a system is
captured in the form of formal high-level models that allow
the representation of concerns. Our work on MDSoC can
complement the MIC efforts by providing UML-based
techniques for representing and composing aspects, and
making tradeoff decisions. Suzuki and Yamamoto [29]
extend the UML so that it can be used to model code level
aspects. Their approach is restricted to design aspects that
can be represented as aspects in an aspect-oriented program.

In the AOM approach proposed by Clarke [30], and
Clarke and Walker [31, 32], a design called a Subject is
created for each system requirement. A comprehensive
design is a composition of subjects. Subjects are expressed
as UML model views. Composition relationships specify
how models are to be composed by identifying overlapping
concepts in the subjects and specifying how models are
integrated. The UML metamodel is extended to support
composition relationships and describe well-formedness
rules for composition. Two types of integration strategies
are used: override and merge. Override integration is used
when existing behaviour in a subject needs to be updated to
reflect new requirements. Merge integration is used when
subjects for different requirements are to be integrated.
Operations in related subjects may need to be merged into a
unified operation. Reconciliation strategies are use to
resolve conflicts between property values of corresponding
subject elements. Precedence relationships, transformation
functions applied to conflicting elements, explicit specifica-
tion of reconciled elements, and default values may be used
for reconciliation.

As part of the Early Aspects initiative, Rashid and
co-workers have targeted multi-dimensional separation
throughout the software cycle [27, 28, 33, 34]. This work
supports modularisation of broadly scoped properties at the
requirements level to establish early tradeoffs, provide
decision support and promote traceability to artefacts at
later development stages.

The work described in this paper extends our previous
work (for example, see [35–37]) by refining the aspect
modelling notation and the instantiation process, and
refining the notion of composition directives to support
conflict resolution and modelling of solution variants.

7 Conclusion

Current modelling approaches provide good support for
modularising systems along a few dimensions. AOM can
significantly enhance support for separation of concerns
targeted at tackling growing software complexity. The
AOM approach described in this paper can help developers
better manage the complexity of creating and evolving

complex software that must address multiple dependability
concerns.

Our research goal is to develop an AOM approach that
addresses three factors that contribute to the complexity of
software development: (i) the complexity inherent in the
required functionality of the software system; (ii) the
pervasiveness and variety of interdependent concerns that
must be addressed in an architecture; and (iii) the need to
balance forces when addressing competing system con-
cerns. The above factors can be addressed in an AOM
approach that integrates work on model-driven develop-
ment, MDSoC, and value-based assessment. Model-driven
development addresses factor (i) by raising the level of
abstraction at which functionality is developed. Approaches
that support MDSoC address factor (ii) by providing the
means for isolating, composing and analysing crosscutting
solutions. Value-based assessment techniques address
factor (iii) by providing a base for rigorous tradeoff
analysis. The work described in this paper addresses factors
(i) and (ii). We are currently developing support that
explicitly addresses factor (iii). Tradeoff analysis is desired
when crosscutting solutions interact in ways that compro-
mise the accomplishment of concern objectives. In such
situations the system developer must make tradeoffs based
on prioritisations of objectives. The challenge is to
(i) develop systematic and quantitative tradeoff analysis
techniques that allow developers to assess alternative
solutions, (ii) develop techniques for capturing and
representing experience related to making tradeoffs across
a set of aspect models, and (iii) use the captured experience
to guide how aspect models are composed with other
models. The captured experience can take the form of
composition strategies that determine the set of aspect
models and composition directives that produce a composed
model that best meets the requirements. Composition
strategies and the decisions they drive should be based on
information about the value and importance of the
architectural choices represented in alternative aspect
models. Our ongoing work in this area involves adapting
existing approaches to tradeoff analysis – for example, the
DDP approach [38–40].
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