
Aspect-Oriented Compilers

Oege de Moor

Oxford University Computing Laboratory

oege@comlab.ox.ac.uk

Simon Peyton{Jones

Microsoft Research Cambridge

simonpj@microsoft.com

Eric Van Wyk

Oxford University Computing Laboratory

evanwyk@comlab.ox.ac.uk

Abstract

Aspect-oriented programming provides the programmer with

means to cross-cut conventional program structures, in par-

ticular the class hierarchies of object-oriented programming.

This paper studies the use of aspect orientation in structur-

ing syntax directed compilers.

Syntax-directed compilers are often speci�ed by means of

attribute grammars. Such speci�cations are typically struc-

tured by production | it is hard to structure them by

semantic aspects such as `environment', `lexical level' and

`type checking'. Even if such structuring is allowed at a

syntactic level, it is certainly not possible to parameterise

compiler aspects, and to treat them as �rst-class objects in

the speci�cation language.

In this paper we propose a technique for making compiler

`aspects' �rst-class objects, that can be stored, manipulated

and combined. We propose a modest set of combinators

that achieve this task in the functional programming lan-

guage Haskell. The combinator library is an application of

recent work on polymorphic type systems for record opera-

tions, in particular that of Gaster and Jones, and also of a

technique due to R�emy, which types symmetric record con-

catenation `for free'. It is hoped that this embedding of

an aspect-oriented programming style in Haskell provides a

stepping stone towards a more general study of the seman-

tics of aspect-oriented programming.

1 Introduction

Compilers are often structured by recursion over the ab-

stract syntax of the source language. For each production

in the abstract syntax, one de�nes a function that speci�es

how a construct is to be translated. The method of structur-

ing compilers in this syntax{directed manner underlies the

formalism of attribute grammars [1, 15, 19]. These provide

a convenient notation for specifying the functions that deal

with each of the production rules in the abstract syntax.

The compiler writer need not concern himself with parti-

tioning the compiler into a number of passes: the order of

computation is derived automatically. One way of achiev-

ing that ordering is to compute the attribute values in a

demand-driven fashion. Indeed, attribute grammars can be

viewed as a particular style of writing lazy functional pro-

grams [12, 20].

Unfortunately, however, compilers written as attribute

grammars su�er from a lack of modularity [17]. In their

pure form, the only way in which attribute grammars are

decomposed is by production. It is not possible to sepa-

rate out a single semantic aspect (such as the `environment')

across all productions, and then add that as a separate en-

tity to the code already written. The compiler writer is thus

forced to consider all semantic aspects simultaneously, with-

out the option of separating his concerns. Many specialised

attribute grammar systems o�er decomposition by aspect,

but only at a syntactic level, not at a semantic one. In par-

ticular, aspects cannot be parameterised, and the compiler

writer cannot de�ne new ways of combining old aspects into

new.

For the purpose of this paper, let us de�ne an aspect as a

set of de�nitions of one or more related attributes. This pa-

per proposes an implementation of aspects that makes them

independent semantic units, that can be parameterised, ma-

nipulated and compiled independently.

Figure 1 highlights the di�erence between the traditional

`syntactic view' of provided by grouping attribute de�nitions

by production with the `semantic view' provided by grouping

attribute de�nitions by aspect. This image is a compressed

view of the example attribute grammar code used in this

paper written in the two styles with the de�nitions of the

`code' attribute shaded in gray. On the left is the tradi-

tional attribute grammar program in which the de�nitions

of the `code' attribute is distributed across the translation

functions associated with each production. On the right is

the attribute grammar written as an aspect oriented pro-

gram. Here, the de�nitions of the `code' attributes have

been gather into a single aspect. Such a semantic view of

an attribute grammar is helpful when additional `semantic

layers' are to be added without a�ecting existing aspects.

The implementation of compiler aspects that we propose

here is illustrated in a variant of the programming language

1

Figure 1: Syntactic and Semantic views

Haskell, augmented with extensible records. It is this highly

exible type system which allows us to give a type to each

aspect. In particular, its use ensures that each attribute

is de�ned precisely once | an important feature when at-

tribute grammars are composed from multiple components.

It is assumed that the reader is familiar with program-

ming in Haskell [5]. In fact, the L

A

T

E

X source of this paper

is itself an executable Haskell program. The lines preceded

by the > symbol are the Haskell program that is this pa-

per. Note however, that some unenlightening portions of

the program code appear in L

A

T

E

X comments and are thus

not visible in the paper.

2 A polymorphic type system for extensible records

In the course of this paper, we shall make extensive use

of record operations, and their associated types. Here we

introduce the notation that we shall use, which is known as

the Trex extension of Haskell.

A record maps �eld names to values. In essence, it is

merely an association list, but by using a carefully crafted

type discipline, one can avoid run-time errors of the kind

\�eld not present" or \�eld multiply de�ned". The type

discipline sketched below is due to Mark Jones and Benedict

Gaster [8]. We chose this type discipline rather than any of

the other proposals in the literature (e.g. [26, 28, 27, 34])

because an implementation is readily available.

In the Trex extension of Haskell, a record with three

�elds called x, y and z may be written

(x = 0, y = 'a', z = "abc")

The type of this expression is

Num a => Rec (x :: a, y :: Char, z :: String)

The phrase Num a => is a type class restriction on the type

variable a and states that a must be one of the Haskell nu-

meric types. The order of �elds in a record does not matter,

but no �eld should appear more than once. For each �eld

name, there is a selection function, named by pre�xing with

a #. We thus have, for example,

#y (x = 0, y = 'a', z = "abc") = 'a'

This is the minimum set of record operations, found in any

language that supports records.

Extensible records are needed when we wish to dynam-

ically add a new �eld to an existing record. For example,

the following function f extends its argument r with a �eld

named z:

f r = (z = "abc" | r)

The intention is that, for instance,

f (x = 0, y = 'a') =

(x = 0, y = 'a', z = "abc")

But what is the type of f? As said before, no �eld should

appear twice in the same record, so f should not be applied

to records r that already have a z �eld. The type of f ought

to re
ect the absence of z in r. We write r\z to signify a

row of �elds r that does not include z. In that notation, the

type of f reads

f :: r\z => Rec r -> Rec (z :: String | r)

It is important to realise that r is a new kind of type variable,

which stands for a row of (�eld label, type) pairs. A row

becomes an ordinary type by applying the Rec constructor to

it. The above type of f should therefore be read as follows:

for each row r that lacks z, f takes a record with �elds

described by r to a record that has one more �eld, namely

z, whose value is a string.

Since records can be extended, it is natural to consider a

starting point for such extensions, namely the empty record,

which is written (rather unattractively) EmptyRec in Haskell.

Its type is Rec EmptyRow.

Pattern matching is an important feature of Haskell, and

it also applies to extensible records. We can thus de�ne our

own selection functions as follows:

sely :: Rec (x :: a, y :: b, z:: c) -> b

sely (x=_, y=b, z=_) = b

or indeed more generally

sely' :: r\y => Rec (y :: b | r) -> b

sely' (y=b | r) = b

This last function sely' is identical to the built-in selection

function #y.

Later in this paper, we shall often have occasion to over-

ride existing �eld values. This is achieved by �rst removing

the relevant �eld, and then extending the reduced record

again. For example, the function newx overrides the exist-

ing �eld x in its argument record, and replaces it by the

string "abc":

newx :: s\x =>

Rec (x :: a | s) ->

Rec (x :: String | s)

newx r = (x="abc" | nox r)

where nox (x=_ | s) = s

3 Algol 60 scope rules

We shall now introduce a motivating example for the re-

mainder of the paper. In contrast to a good many of its

successors, Algol 60 has very clear and uniform scope rules.

A simpli�cation of these scope rules is a favourite example to

illustrate the use of attribute grammars [17]. A de�nition of

an identi�er x is visible in the smallest enclosing block with

the exception of inner blocks that also contain a de�nition of

x. Here we shall study these scope rules via a toy language

that has the following abstract syntax:

2

>type Prog = Block

>type Block = [Stat]

>data Stat = Use String |

> Dec String |

> Local Block

That is, a program consists of a block, and a block is a list

of statements. A statement can be one of three things: an

applied occurrence of an identi�er, a de�ning occurrence of

an identi�er, or a local block. An example of a program is

>example = [Use "x", Use "y",

> Local [Dec "y", Use "y", Use "x"],

> Dec "x", Use "x", Dec "y"]

Note that x is used before it is declared, and that the inner

block declares a second variable y. Consequently, the second

applied occurrence of y refers to that inner declaration at

lexical level 1, and not to the outer declaration at level 0.

We aim to translate programs to a sequence of instruc-

tions for a typical stack machine. The type of instructions

is

>data Instr = Enter Int Int |

> Exit Int |

> Ref (Int,Int)

Each block entry is marked with its lexical level and the

number of local variables declared in that block. Each block

exit is marked with the lexical level only. Finally, each ap-

plied occurrence of an identi�er is mapped to a (level, dis-

placement) pair, consisting of the lexical level where the

identi�er was declared, and the displacement, which is the

number of declarations preceding it at that level. To wit,

we wish to program a function

>trans :: Prog -> [Instr]

so that, for instance, we have

trans example

= [Enter 0 2, Ref (0,0), Ref (0,1),

Enter 1 1, Ref (1,0), Ref (0,0), Exit 1,

Ref (0,0), Exit 0]

At lexical level 0, we have declared two identi�ers, namely

x and y. Entry to the block at level 0 is followed by applied

occurrences of both x and y. Then we have a block entry

to level 1, and here only one identi�er has been declared,

namely y. That new declaration is referred to, followed by

a reference to x (which was declared at level 0). Level 1 is

exited. There is one more reference to x at level 0, and the

program concludes by exiting level 0.

4 A traditional compiler

We now proceed to write a program for trans, in the tra-

ditional attribute grammar style, especially as suggested in

[4, 12, 20, 30, 32]. This means that we will not be con-

cerned with slicing the computations into a minimal num-

ber of passes over the abstract syntax: such a division into

passes comes for free by virtue of lazy evaluation. While this

section only reviews existing techniques for writing attribute

grammars, we write trans using the extensible record nota-

tion to set the stage for Section 5 where extensible records

are a key component of our new modular approach to de�n-

ing attribute grammars.

First we need to be a bit more explicit about the context{

free grammar for the source language:

Program: Prog -> Block

List: Block -> SList

SList0: SList ->

SList1: SList -> Stat SList

Use: Stat -> String

Dec: Stat -> String

Local: Stat -> Block

This context{free grammar is very close to the type de�ni-

tions we stated earlier. Roughly speaking, types correspond

to nonterminals, and constructors correspond to production

rules. Note, however, that there is a subtle di�erence: we

have explicitly written out productions for statement lists,

although these productions are not explicit in the type def-

initions.

Our strategy for writing a compiler consists of three

steps, namely the de�nition of semantic domains, seman-

tic functions, and translators:

� For each nonterminal symbol S we de�ne a correspond-

ing semantic domain S' (Section 4.1). The compiler

will map values of type S to values of type S'. These

types will likely include the generated code, as in

>type Prog' = Rec (code :: [Instr])

but for nonterminals other than Prog they will also

include attributes such as the lexical level.

� For each production P: X -> Y Z, we de�ne a seman-

tic function p: Y' -> Z' -> X' that combines seman-

tic values of appropriate type (Section 4.2). For exam-

ple, we shall de�ne a function

program :: Block' -> Prog'

associated with the Program production above. For

binary productions consider the function

slist1 :: Stat' -> SList' -> SList'

that takes the translations of a statement and a state-

ment list, and produces the translation of the compos-

ite statement list. The two arguments, and the result

appear in reverse order, when compared to the pro-

duction Slist1.

� For each nonterminal S, we de�ne a translator of type

transS :: S -> S' that maps values of type S to the

corresponding semantic domain S' (Section 4.3). For

example, the function that translates programs has the

type

transProg :: [Stat] -> Rec (code::[Instr])

and the statement translation function lists has the

type

transSList :: SList -> SList'

Given the above three components, the de�nition of the

compiler itself reads:

3

>trans = #code . transProg

Recall the type of trans is trans :: Prog -> [Instr]. It

now remains to de�ne a semantic domain for each nonter-

minal, a semantic function for each production, and a trans-

lator for each nonterminal.

4.1 Semantic domains

We shall describe each semantic domain via record types,

where the �elds represent various aspects of the seman-

tics. As we saw above, the semantic domain of programs

has only one such aspect, namely the generated code. For

other grammar symbols, however, a mere record type will

not su�ce, because their semantics depends on the context

in which they occur. That motivates semantic domains that

are functions between record types: the input record de-

scribes attributes of the context, and the output record de-

scribes resulting attributes of the grammar symbol itself.

For example, we have

>type Block' = Rec (level :: Int, env :: Envir) ->

> Rec (code :: [Instr])

That is, given the lexical level and environment (which maps

identi�ers to (level,displacement) pairs), a block will yield

code, which is a list of instructions. Readers who are familiar

with attribute grammars will recognise level and env as

inherited attributes, whereas code is a synthesised attribute.

Assigning attributes to nonterminals is the same activity as

designing their corresponding semantic domains [12, 20].

Statement lists are similar to blocks, but here we also

compute a list of the local variables that are declared: this

aspect is called locs. The semantic domain of statement

lists is therefore

>type SList'

> = Rec (level :: Int, env :: Envir) ->

> Rec (code :: [Instr], locs :: [String])

It remains to de�ne a semantic domain for statements them-

selves, which happens to be the same as for statement lists:

>type Stat' = SList'

4.2 Semantic functions

Before we can proceed to de�ne the semantic functions that

make up the compiler, we �rst need some primitive opera-

tions for manipulating environments. An environment is an

association list from identi�ers to (level,displacement) pairs,

and we shall write Envir for the type of environments. There

are two operations de�ned on environments: apply and add.

>apply :: Envir -> String -> (Int,Int)

>add :: Int -> [String] -> Envir -> Envir

The function apply e x �nds the �rst occurrence of x in

e, and returns the corresponding (level,displacement) pair.

We shall build up the environment by adding all local def-

initions at a given lexical level. This is the purpose of the

function add: it takes a level, a list of local de�nitions, and

an environment, and it adds the local de�nitions to the en-

vironment.

We are now in a position to de�ne the semantic func-

tions, one for each production in the grammar. The se-

mantic function program for the corresponding production

Program de�nes the code aspect of programs, and also the

level and env aspects of its descendant Block. Its type is

(again note the reversal)

>program :: Block' -> Prog'

Now, as explained before, Block' is a function type, taking

a record with level and env �elds to a record with a single

code �eld. These type considerations lead to the following

de�nition:

>program block = (code = #code blockOut)

> where blockIn = (level=0, env=[])

> blockOut = block blockIn

That is, the outermost block of a program has lexical level

0 and an empty environment. The code generated for the

program is the code generated for the outermost block.

The type of list is again obtained by reversing sides of

the corresponding production rule:

>list :: SList' -> Block'

Recall that the semantic domains of statement lists and

blocks only di�er in the presence of a locs �eld (of local

variables) in statement lists. The local variables have to be

added to the environment of the block. These considerations

yield the program:

>list slist blockIn

> = (code = [Enter (#level blockIn)

> (length (#locs slistOut))]

> ++ #code slistOut ++

> [Exit (#level blockIn)])

> where slistIn = (level = #level blockIn,

> env = add(#level blockIn)

> (#locs slistOut)

> (#env blockIn))

> slistOut = slist slistIn

It is worthwhile to note the seeming circularity in the argu-

ment and result of slist. Such de�nitions are only accept-

able because of lazy evaluation. If we programmed the same

computation in a strict language, we would have to remove

such pseudo-circularities by introducing multiple passes over

the abstract syntax.

The de�nitions of the other semantic functions are sim-

ilar and we omit details. To avoid confusion, we mention

that our notion of `semantic function' is di�erent from that

in the attribute grammar literature. There, a semantic func-

tion is understood to be the right-hand side of the de�nition

of a single attribute, and what we call a semantic function

is simply termed a `production'.

4.3 Translators

Assuming the existence of a semantic function for each pro-

duction, we can de�ne a translator for each type in the ab-

stract syntax by

>transProg p = program (transBlock p)

4

>transBlock b = list (transSList b)

>transSList [] = slist0

>transSList (s:ss) = slist1 (transStat s)

> (transSList ss)

>transStat (Use x) = use x

>transStat (Dec x) = dec x

>transStat (Local b)= local (transBlock b)

In more realistic examples the di�erence between the gram-

mar and the syntax types may be greater, and in such cases,

one could say that trans parses the program tree according

to the grammar. In our example, we only need to parse

statement lists.

4.4 Evaluation of the traditional approach

This section has presented the traditional style of writing

compilers as attribute grammars expressed in a functional

language. This style does however have much to commend

it. Unlike the multi-pass compilers in strict programming

languages, we do not need to concern ourselves with a divi-

sion into a minimal number of passes, and the dependencies

between such passes. Because the translation is completely

syntax-directed, there is strong guidance on how to proceed,

and the result is quite readable and neatly decomposed by

production in the abstract syntax. However, its main de-

�ciency lies in precisely that decomposition: the notion of

lexical level makes perfect sense, independent of the partic-

ular translation problem considered here. Indeed, the envi-

ronment is a well-de�ned notion and has nothing to do with

the particular kind of code we generate. And yet all these

aspects are irretrievably intertwined in the compiler. This

was illustrated in the left hand side of Figure 1 by the high-

lighted and fragmented sections of code de�ning the `code'

attribute. Although the independence of the aspects is clear,

we cannot describe (and re-use) the aspects as separate en-

tities. It would be nicer if we could build up the semantic

domains and the semantic functions piecewise, leaving the

choice whether to decompose along productions or aspects

up to the programmer. The lack of modularity in attribute

grammars is a well-known problem and [17] surveys some

of the techniques that have been employed to overcome it.

Most of these techniques are however of a syntactic nature,

and do not allow a separation into modules that can be sep-

arately compiled or even separately type checked.

5 An aspect{oriented compiler

So far, we have only reviewed existing mechanisms for writ-

ing attribute grammars by using extensible records in or-

der to provide a background for our new modular approach

to composing attribute grammars described in this section.

The approach is to embed the attribute de�nition language

as a combinator library into Haskell. To some extent, we al-

ready did that in the previous section, but to obtain a truly

modular design, we propose making nonterminals, attribute

de�nition rules, semantic functions and aspects �rst-class

objects. We then use polymorphic operations on extensible

records to give types to these objects and the combining

forms for these objects. As we shall see below, the most

tricky problem is to �nd an appropriate type of attribute

de�nition rules.

As in the traditional approach above, we de�ne a trans-

lator trans' with type

>trans' :: Prog -> [Instr]

so that as before

trans' example

= [Enter 0 2, Ref (0,0), Ref (0,1),

Enter 1 1, Ref (1,0), Ref (0,0), Exit 1,

Ref (0,0), Exit 0]

As in Section 4.3, trans' is de�ned using a collection of

translators, one for each production in the abstract syntax.

The semantic functions used in these translators are not the

named semantic functions program, list, etc. used in the

traditional approach, but are extracted from the �elds of the

attribute grammar ag (). (The dummy argument () to ag

is required on account of a technicality in the type system

of Haskell, known as the monomorphism restriction.)

>trans'

> = #code . transProg'

> where

> transProg' p = #program g (transBlock' p)

> transBlock' b = #list g (transSList' b)

> transSList' [] = #slist0 g

> transSList' (s:ss)= #slist1 g (transStat' s)

> (transSList' ss)

> transStat' (Use x) = #use g x

> transStat' (Dec x) = #dec g x

> transStat' (Local b)= #local g (transBlock' b)

> g = ag ()

Thus, ag () is a record with a �eld for each abstract syntax

production which contains its semantic function. The �elds

of this record have the same names and types used for the

semantic functions in the traditional approach. The type of

ag () is:

Rec (program:: Block' -> Prog',

list :: SList' -> Block',

slist0 :: Stat',

slist1 :: Stat' -> SList' -> SList',

use :: String -> Stat',

dec :: String -> Stat',

local :: Block' -> Stat')

The important distinction is that the semantic functions in

ag () are built using an aspect{oriented approach. That

is, they are constructed by grouping attribute de�nitions by

aspect instead of by production.

5.1 Combining aspects

In our example, the aspects are named levels, envs, locss

and code and de�ne, respectively, the attributes lexical level,

environment, local variable, and target code. Given these

aspects, we combine them into an attribute grammar ag ()

in the following way:

>ag () = knit (levels () `cat`

> envs () `cat`

> locss () `cat`

> codes ())

5

Here, knit and cat are functions for combining aspects

into attribute grammars and are de�ned completely below.

Given this framework, it is clear that we can write new

aspects and add them into our attribute grammar using

these combinators. (The aspects, like ag, are a�ected by

the monomorphism restriction and are written as functions

which take the dummy argument (). This technicality al-

lows us to avoid writing the type signatures of the aspects in

the program. While this is not technically di�cult, for large

grammars it is tedious and far outweighs the inconvenience

of writing the dummy argument ().)

5.2 Aspect de�nitions

Given a context{free grammar, a rule grammar is a record

whose �elds consist of rules, one for each production. Be-

cause of the monomorphism restriction mentioned above, we

de�ne an aspect as a function taking the dummy argument

() and returning a rule grammar. Many aspects involve

only a tiny subset of the productions. Think, for exam-

ple, of operator priorities: these only a�ect productions for

expressions. A rule grammar involves all productions, by

de�nition. Therefore, de�nitions of aspects are written so

that only the rules being de�ned by an aspect are explicitly

written and default rules are provided for the rest.

Before we de�ne the aspects, let us be a bit more precise

about attributes. There are two kinds of attribute, namely

inherited and synthesised attributes. Inherited attributes

describe information about the context in which a construct

appears. Examples of inherited attributes are level and

env. Synthesised attributes describe information computed

from attributes of a constructs components, and examples

of such attributes are locs and code.

The semantic function of a production Pmust de�ne each

of the synthesised attributes of the parent of P, and each of

the inherited attributes of P's children (Section 4.2). To-

gether we refer to these attributes as P's output attributes.

To produce the output attributes, the semantic function

takes as arguments all of P's input attributes, that is the

synthesised attributes of P's children, and the inherited at-

tributes of P's parent. The trouble with the traditional ap-

proach is that we are forced to de�ne all P's output attributes

simultaneously | just look at the de�nition of list in Sec-

tion 4.2. Our new, modular approach is to express each

semantic function as a composition of one or more rules.

Each rule for a production P de�nes a subset of P's output

attributes and is implemented as a function which takes the

input attributes from the parent and children of P.

Our �rst concrete example of an aspect is lexical level.

The level attribute is inherited, and it is explicitly de�ned

in two productions, namely program and local:

>levels ()

> = (program= inh1 (\b p -> (level = 0 | #x b)) ,

> local = inh1 (\b p -> (level = level p + 1

> | (nolevel (#x b))))

> | grammar)

> where nolevel (level=_ | r) = r

> (program=_, local=_ | grammar) = none ()

As we will see, the default behaviour for rules for inherited

attributes is to copy the parents attribute value to the chil-

dren. Thus, we don't write explicit rules for the other pro-

ductions. This is accomplished by the phrase (program=_,

local=_ | grammar) = none () which �rst �lls the �elds in

grammar with the default copy rules pulled from the identity

rule grammar, named none (). These defaults are added to

the de�nitions of rules for program and local seen above to

create a complete rule grammar. The given rules are writ-

ten using lambda expressions (the \ above can be read as �)

and in the case of the rule for local, the de�ned function

takes the parent p and child block b and generates a record

de�ning the level �eld as 1 more than the level of p.

The record generated by a rule keeps track of the at-

tribute de�nitions made so far; above, we are adding the

level attribute de�nition to the attribute de�nitions al-

ready made to the block b. These attribute de�nitions are

stored in the x �eld of the record describing the parent and

children of the production program. As we will see in sec-

tion 5.3, each attribute also has an attribute selection func-

tion, named by the attribute name, for accessing attributes

values in the parent or children. This is seen above in the

expression level p. In the de�nition of the rule for local

we override the default de�nition of level, by removing it

with the function nolevel, and then adding a fresh level

�eld. The functions inh1 above and syn0, syn1, and syn2

below provide a useful shorthand notation for converting

rules which de�ne only inherited or synthesised attributes

into the more general type of rule expected by over. These

functions are de�ned in the following section. The type of

levels is given at the end of Section 5.3.3 after all the con-

stituent types have been introduced. Apart from the fact

that the above de�nition of levels is re-usable, we also �nd

it easier to read: the
ow of the level computation over the

abstract syntax tree is crystal clear at a glance, especially

because the default copy rules allow us to leave out all irrel-

evant detail.

The local variables aspect of the compiler records the

local variables declared at each lexical level. The locs at-

tribute is synthesised, and it is adjoined to �ve rules. Be-

cause locs is synthesised, we cannot rely on default copy

rules, so this aspect is somewhat more complex than the

previous two, which both dealt with inherited attributes.

>locss ()

> =(slist0= syn0 (\p ->(locs= [] | #x p)),

> slist1= syn2 (\a as p ->(locs= locs a

> `union`

> locs as

> | #x p)),

> use = \a -> syn0 (\p->(locs= [] | #x p)),

> dec = \a -> syn0 (\p->(locs= [a] | #x p)),

> local = syn1 (\b p ->(locs= [] | #x p))

> | grammar)

> where (slist0=_, slist1=_,use=_, dec=_,

> local=_ | grammar) = none ()

Here we see that use and dec are special: they are functions

that take a string and yield an empty rule of arity 0. This

is the usual way of dealing with grammar symbols (such as

identi�ers) that fall outside an attribute grammar.

5.3 Attribute de�nition rules

We now show the development of the rules used to compose

semantic functions. The type of a rule has been alluded to

above as a function which maps a subset of a productions

input attributes to a subset of its output attributes. In this

section we provide a precise de�nition of rules.

We build a semantic function by composing rules. When

we compose rules, the type system will ensure that no at-

tribute is de�ned twice; when we assert that a composition of

6

rules de�nes a complete semantic function, the type system

will ensure that every attribute that is used is also de�ned.

Finally, the order in which we compose rules will not matter.

For example, we will be able to construct the list se-

mantic function of Section 4.2 thus:

list = knit1 (list_level `cat1`

list_env `cat1`

list_locs `cat1`

list_code)

Here list_level etc. are rules, cat1 composes rules, and

knit1 transforms a composed rule into a semantic function.

The \1" su�xes refer to the fact that the List production

has just one child; we have to de�ne variants of knit and

cat for productions with a di�erent number of children.

The rest of this section develops our compositional sche-

me in detail. We take three bites at the cherry, rejecting two

simpler designs before adopting a third. The development

is necessarily technical and some readers may with to skip

this section on their �rst reading.

5.3.1 First attempt at de�ning rules

What is the type of a rule like list_level? The simplest

thought is this: it takes as arguments all P's input attributes,

and produces as output only the inherited level attribute

for P's child.

list_level

:: (parentInh\level) =>

Rec childSyn ->

Rec (level :: Int | parentInh) ->

(Rec (level :: Int), EmptyRow)

list_level c p = ((level = #level p), EmptyRec)

That is, list_level takes a record of synthesised attributes

from the child (which it does not use), and of inherited at-

tributes from the parent (from which it extracts the level).

It produces a partial record of inherited attributes for the

child (here containing only a level �eld), and of synthesised

attributes for the parent (here empty). It is clear that this

rule does not completely de�ne the List production.

In general, the shape of a unary rule is this:

type Rule1 child parent childInh parentSyn

=

Rec child ->

Rec parent ->

(Rec childInh, Rec parentSyn)

where all four parameters are understood to be row vari-

ables. As a slightly more interesting example than the type

of list_level, consider the type of list_code:

list_code ::

(childSyn\locs, childSyn\code,

parentInh\level) =>

Rule1 (locs :: [String],

code :: [Instr] | childSyn))

(level :: Int | parentInh)

EmptyRow (code :: [Instr])

Indeed, this type re
ects that the rule for code makes use

of two synthesised attributes of the child, namely locs and

code. It also records the dependence on the level attribute

of the parent itself. Finally, from the last line in the type we

can see that this rule de�nes no inherited attributes of the

child, and that it de�nes precisely one synthesised attribute

of the parent, namely code. One could give similar types for

the other rules that make up the semantic function list.

There is a problem with this view of rules, however. As

explained before, we need an operator cat1 to compose rules

by taking their union. With the proposed representation of

rules, that operator would have to be de�ned as follows:

cat1 ::

(disjoint inh1 inh2, disjoint syn1 syn2) =>

Rule1 child parent inh1 syn1 ->

Rule1 child parent inh2 syn2 ->

Rule1 child parent (inh1 @ inh2)(syn1 @ syn2)

cat1 f g c p = (inh1 @ inh2, syn1 @ syn2)

where (inh1,syn1) = f c p

(inh2,syn2) = g c p

Here (@) is symmetric concatenation, both on row variables

and on records. Unfortunately the Trex type system does

not directly support record concatenation; we are not even

able to express evidence for disjointness of row variables as a

type constraint (the predicate disjoint in the pseudo-code

above).

5.3.2 Second attempt at de�ning rules

This lack of a concatenation operator is in fact a well-known

problem when providing type systems for polymorphic ex-

tensible records, and a solution has been suggested by R�emy

[28, 27]. Instead of directly concatenating records, we com-

pose the functions that build up those records. The idea is

very similar to the representation of lists by functions that

aims to make list concatenation a constant time operation

[11].

To apply R�emy's technique in the particular example of

attribution rules, a rule takes two more parameters, which

represent the existing output attributes. A rule does not

return �xed records of de�ned attributes; instead it trans-

forms existing de�nitions. For example, consider the rule

list_level:

list_level cs pi ci ps

= ((level = #level pi | ci), ps)

Its type is

list_level ::

(parentInh\level,childInh\level) =>

Rec childSyn ->

Rec (level :: Int | parentInh) ->

Rec childInh ->

Rec parentSyn ->

(Rec (level :: Int | childInh), Rec parentSyn)

That is, this rule contributes the de�nition of level to the

inherited attributes of the child, whereas it leaves the syn-

thesised attributes of the parent unchanged.

Note that for a rule with n children, the number of argu-

ments in this representation will become 2�(n+1). To have

so many arguments is somewhat clumsy, so we shall pair up

the inherited and synthesised attributes of each symbol, in

a type of nonterminals:

type NT ai as = Rec (i :: Rec ai, s :: Rec as)

7

Note that both arguments to this type de�nition, ai and as,

are row variables. The �elds in these rows are the attributes

themselves. Consequently we can de�ne a projection func-

tion for each attribute in our example, as shown below:

>level t = #level (#i t)

>env t = #env (#i t)

>locs t = #locs (#s t)

>code t = #code (#s t)

It will later become clear that the de�nition of NT has to be

subtly revised by adding the x �eld for attribute de�nition

contributions that was mentioned above.

Returning to the problem of de�ning a type of rules, we

can now use a subtle adaptation of our earlier de�nition:

type Rule1 child parent childInh parentSyn

=

child ->

parent ->

(Rec childInh, Rec parentSyn)

Here child and parent are understood to be nonterminals,

whereas childInh and parentSyn are row variables. The

list_level rule can be written

list_level c p = ((level = level p | #i c),

#s p)

and its type is

list_level ::

(childInh\level,parentInh\level) =>

Rule1 (NT childInh childSyn)

(NT (level :: Int | parentInh) parentSyn)

(level :: Int | childInh)

parentSyn

With this new de�nition of rules, it is straightforward to

de�ne the concatenation operator as suggested by R�emy's

work:

cat1

:: Rule1 (NT ci cs) (NT pi ps) ci' ps' ->

Rule1 (NT ci' cs) (NT pi ps') ci'' ps'' ->

Rule1 (NT ci cs) (NT pi ps) ci'' ps''

cat1 f g c p = g (i=ci', s= #s c)(i= #i p, s=ps')

where (ci',ps') = f c p

This de�nition encodes the sequential composition of rule f

followed by g.

Unfortunately, however, this last de�nition of cat1 fails

as well, for rather more subtle reasons than our previous

attempt. It is quite common for synthesised attributes to

be de�ned in terms of each other. This does not happen in

the attribute grammar of Section 4, but we have to cater for

the possibility. As an example, consider the two rules

f = (\c p -> (#i c, (a = #b (#s p)) +1 | #s p))

g = (\c p -> (#i c, (b = 0 | #s p))

Rule f de�nes attribute a in terms of another synthesised

attribute, named b. The type of f re
ects this dependency:

f :: (ps\b,ps\a) =>

Rule1 (NT ci cs)

(NT pi (b :: Int | ps))

ci

(a :: Int, b:: Int | ps)

The type of g is

g :: (ps\b) =>

Rule1 (NT ci cs)

(NT pi ps)

ci

(b :: Int | ps)

Attempting to concatenate these rules by cat1 f g results

in a type error, because the type of g insists on the absence of

the b �eld, whereas that �eld is present in the result of f, on

account of its use. Paradoxically, concatenation in reverse

order cat1 g f does not lead to a type error. Clearly it

is unacceptable that composition of rules requires intimate

knowledge of their dependencies.

5.3.3 Third attempt at de�ning rules

Close examination of the above example reveals the true

source of the problem: we use the same records for applied

occurrences (i.e. uses) and for de�ning occurrences of at-

tributes. Instead of merely having records of inherited and

synthesised attributes, we should separately keep track of

the newly de�ned attributes of each nonterminal. We there-

fore revise our original de�nition of nonterminals, by adding

an extra �eld named x:

>type NT ai as ax

> = Rec (i :: Rec ai, s :: Rec as, x :: Rec ax)

The i and s �elds record applied occurrences of attributes.

The new x �eld records attribute de�nitions. If a nontermi-

nal occurs as a child in a production, these are de�nitions

of inherited attributes, and so we would expect ax to be a

subset of ai. By contrast, if a nonterminal occurs as the

parent in a production, the x �eld will record de�nitions of

synthesised attributes, and thus ax is a subset of as.

The implementation of the type of rules is the same as

before,

>type Rule1 child parent childInh parentSyn

> =

> child ->

> parent ->

> (Rec childInh, Rec parentSyn)

but the reading has changed. Now the results are extensions

of the x �elds of the child and parent respectively. Again

consider the rule that de�nes the level of a child to be the

level of the parent:

list_level c p = ((level = level p | #x c),

#x p)

Instead of extending (#i c) (as we did before), we now ex-

tend (#x c). The type of this rule is

list_level ::

(childX\level,parentInh\level) =>

Rule1 (NT childInh childSyn childX)

(NT (level :: Int | parentInh)

parentSyn

parentX)

(level :: Int | childX) parentX

The type now makes a clear distinction between applied and

de�ning occurrences of level.

Concatenation is de�ned as suggested before, but this

time it realises concatenation of x �elds:

8

>cat1 ::

> Rule1 (NT ci cs cx) (NT pi ps px) cx' px' ->

> Rule1 (NT ci cs cx')(NT pi ps px')cx'' px'' ->

> Rule1 (NT ci cs cx) (NT pi ps px) cx'' px''

>cat1 f g c p = g (i= #i c, s= #s c, x= cx')

> (i= #i p, s= #s p, x= px')

> where (cx',px') = f c p

Let us now pause and consider the little counterexample

that caused us to abandon the previous proposal for rule

concatenation. Rule f de�nes a synthesised attribute a in

terms of another synthesised attribute called b. That second

attribute is de�ned in rule g:

f = (\c p -> (#i c, (a = #b (#s p)) +1 | #x p))

g = (\c p -> (#i c, (b = 0 | #x p))

The type of f now accurately re
ects that b is used, but not

de�ned in this rule:

f :: (ps\b,px\a) =>

Rule1 (NT ci cs cx)

(NT pi (b :: Int | ps) px)

cx

(a :: Int | px)

The type of g is

g :: (px\b) =>

Rule1 (NT ci cs cx)

(NT pi ps px)

cx

(b :: Int | px)

Concatenation of f and g in either order will result in a new

rule of type

f `cat1` g ::

(ps\b,px\a,px\b) =>

Rule1 (NT ci cs cx)

(NT pi (b :: Int | ps) px)

cx

(a:: Int, b::Int | px)

The new version of rule concatenation is indeed symmetric,

as it ought to be. It follows that rules can be composed with-

out knowledge of their dependencies. The concatenation op-

erator does of course have an identity element, namely the

rule that leaves all attribute de�nitions unchanged:

>none1 :: Rule1 (NT ci cs cx) (NT pi ps px) cx px

>none1 c p = (#x c, #x p)

As promised in Section 5.2, we can now provide the type

for the aspect levels.

() ->

Rec(program::Rule1(NT ci cs cx) (NT pi ps px)

(level::Int | cx) px,

local:: Rule1(NT ci cs (level::Int | cx'))

(NT (level::Int | pi') ps' px)

(level::Int | cx') px,

list:: Rule1(NT ci1 cs1 cx1) (NT pi1 ps1 px1)

cx1 px1,

slist0:: Rule0(NT ci2 cs2 cx2) cx2,

slist1:: Rule2(NT ci3 cs3 cx3) (NT ci4 cs4 cx4)

(NT pi2 ps2 px2) cx3 cx4 px2,

dec:: t->Rule0(NT ci5 cs5 cx5) cx5,

use:: t->Rule0(NT ci6 cs6 cx6) cx6)

We now see clearly that levels is a function mapping the

dummy argument () to a rule grammar. The resulting rule

grammar de�nes Rule1 rules for the program and local

�elds. The type shows that the program rule adds a def-

inition of level to the childs x �eld and the local rule

updates the childs level �eld using the level �eld from the

parents inherited attributes. The types of the other rules

are the default types.

5.4 Semantic functions

Once we have de�ned all the requisite attribute values by

composing rules, we can turn the composite rule into a se-

mantic function. In e�ect, this conversion involves connect-

ing attribute de�nitions to attribute applications. We shall

call the conversion knitting. The type of semantic functions

of arity 1 is

>type Semfun1 childInh childSyn

> parentInh parentSyn

> =

> (Rec childInh -> Rec childSyn) ->

> (Rec parentInh -> Rec parentSyn)

All the unary semantic functions of Section 4.2 are values of

this type, in particular list is.

The operation knit1 takes a rule, and it yields a seman-

tic function. Let us call the two symbols involved c and p,

short for child and parent respectively. The function that

results from knit1 takes the semantics of c (which is of type

Rec ci -> Rec cs) as well as the inherited attributes for

p (a value of type Rec pi). It has to produce the synthe-

sised attributes of p. This is achieved by applying the rule,

which builds up the inherited attributes of c starting from

the inherited attributes of p, and it builds up the synthesised

attributes of p starting from the empty record. This implies

that inherited attributes of p are copied to c, unless other-

wise speci�ed. There is no such default behaviour, however,

for synthesised attributes.

>knit1 :: Rule1 (NT ci cs pi)

> (NT pi ps EmptyRow)

> ci

> ps

> -> Semfun1 ci cs pi ps

>knit1 rule c pi

> = ps

> where (ci,ps) = rule (i=ci,s=cs,x=pi)

> (i=pi,s=ps,x=EmptyRec)

> cs = c ci

The type of knit1 shows that the rule must transform the

inherited attributes pi into the inherited attributes ci of the

child. Furthermore, the rule is required to yield the synthe-

sised attributes ps, starting from the empty record. When

the resulting semantic function is applied to the semantics

of the child c, and to the inherited attributes of the parent,

pi, it returns the synthesised attributes ps. The inherited

attributes ci of the child, and the synthesised attributes ps

are the joint result of applying rule. The arguments of rule

are nonterminals: the applied occurrences of the attributes

are �lled in recursively, and the x �elds are �lled in as pi

and EmptyRec respectively.

Note that the output attributes ci and ps are recursively

de�ned in terms of themselves. It follows that the values of

9

synthesised attributes can depend on each other | which

was the point of including the x �eld in the type of nonter-

minals. It is also possible for the inherited attributes of the

child to be de�ned in terms of each other. There is a school

of thought in the attribute grammar community which holds

that such dependencies are bad style, and that one should

use so{called local attributes instead to avoid repeated at-

tribute computations in the same production. For us, local

attributes are just synthesised attributes that are removed

from the result of a semantic function, immediately after

knitting.

Finally, the start symbol of the grammar does not have

any inherited attributes, so we de�ne a specialised knitting

function for that:

>start f i = knit1 f i EmptyRec

This completes the set of basic combinators for manipulating

rules and semantic functions of arity 1. There are similar

combinators for other arities, and we omit details.

5.5 Derived combinators

Often rules de�ne only inherited or only synthesised at-

tributes. In those cases, the syntax for manipulating rules is

somewhat cumbersome: one has to explicitly state that ei-

ther set of attributes remains unchanged. It is useful, there-

fore, to have shorthands for rules that de�ne inherited at-

tributes only. The type of inheriting rules is

>type IRule1 child parent childX

> =

> child ->

> parent ->

> Rec childX

and the injection injection function from inheriting rules to

ordinary rules is given by

>inh1 :: IRule1 (NT ci cs cx)

> (NT pi ps px)

> cx' ->

> Rule1 (NT ci cs cx)

> (NT pi ps px)

> cx'

> px

>inh1 f c p = (f c p, #x p)

As can be seen from these de�nitions, inheriting rules leave

the synthesised attributes of the parent unchanged. The

rule list_level, which de�nes the level of the child to

be the level of the parent, could have been written as an

inheriting rule:

list_level =

inh1 (\c p -> (level = level p | #x c))

Similarly we have a type of synthesising rules, with a corre-

sponding injection function syn1.

5.6 Lifted combinators

We do not always wish to compose single rules, as the granu-

larity of our compositions would then be too small. Instead

we would prefer to compose rules at the level of grammars.

This is in fact what we did in Section 5.1 where we de�ned

the attribute grammar ag () by composing aspects, not sin-

gle rules. One can lift the combinators that we have de�ned

above to rule grammars, applying them �eld by �eld.

For example, here is the lifting of none:

>none() = (program = none1,

> list = none1,

> slist0 = none0,

> slist1 = none2,

> use = \a -> none0,

> dec = \a -> none0,

> local = none1)

Again, we see that use and dec are special, because they

take a string a and return an empty rule of arity 0.

Concatenation is similarly lifted to operate on all pro-

ductions simultaneously, by pairing up corresponding �elds,

and again treating use and dec as special cases:

>cat u v

> = (program = #program u `cat1` #program v,

> list = #list u `cat1` #list v,

> slist0 = #slist0 u `cat0` #slist0 v,

> slist1 = #slist1 u `cat2` #slist1 v,

> use = \a -> #use u a `cat0` #use v a,

> dec = \a -> #dec u a `cat0` #dec v a,

> local = #local u `cat1` #local v)

Finally, we lift the knitting operation. Note, however, that

we need to use the specialised knitting operation start for

the root production program:

>knit u

> = (program = start (#program u),

> list = knit1 (#list u),

> slist0 = knit0 (#slist0 u),

> slist1 = knit2 (#slist1 u),

> use = \a -> knit0 (#use u a),

> dec = \a -> knit0 (#dec u a),

> local = knit1 (#local u))

Admittedly these lifted combinators reveal a shortcom-

ing of our encoding using records. It would be nice if the

lifted versions could be de�ned once and for all, using map

and zip operations on records, taking the underlying context-

free grammar as a parameter. It is however impossible to

give types to these operations in the type system we have

chosen to employ. As a consequence, each of the lifted com-

binators needs to be modi�ed when a new production is

added to the underlying context-free grammar. It is for this

reason that we have chosen to lift only the minimum set of

operations, and not to lift (for example) inh1.

6 Discussion

6.1 Aspect oriented programming

The inability to separate aspects is not exclusive to the area

of compiler writing, and it has received considerable atten-

tion in other areas of programming, such as distributed sys-

tems, avionics and database programming. Indeed, Gregor

Kiczales and his team at Xerox have initiated the study

of aspect oriented programming in general terms [18], and

the notion of adaptive object oriented programming of Karl

10

Lieberherr et al. shares many of these goals [24]. Don Ba-

tory and his team at UTA have studied ways to describe

aspects in software generators that cut across traditional

object class boundaries [3]. The present paper is a modest

contribution to these developments, by showing how com-

pilers can be structured in an aspect oriented style. We are

hopeful that the techniques we employed here can be ap-

plied to writing aspect oriented programs in other problem

domains as well.

It is worthwhile to point out a number of deviations from

Kiczales' original notion of aspect oriented programming

(AOP). The notion of aspect in this paper is highly restric-

tive, and only covers those examples where the \weaving"

of aspects into existing code is purely name-based, and not

dependent on sophisticated program analyses. For exam-

ple, in Kiczales' framework, one might have an aspect that

maintains an invariant relationship between variables x and

y. Whenever either of these is updated, the invariant must

be restored by making an appropriate change to the other

variable. To weave the aspect into existing code, we have to

�nd places where either x or y is changed: the techniques

in this paper have nothing to say about such sophisticated

aspects. In fact, to avoid all forms of program analysis, we

require that the original attribute grammar is written as a

rule grammar, and not in its knitted form.

Another seeming di�erence is one of style. In AOP, the

traditional method of composing programs is not replaced,

but is complemented by the introduction of aspects. The ex-

ample we used in this paper is misleading, because we took

an extreme approach, and sliced up the original attribute

grammar completely in terms of aspects, thus abandoning

the primary composition method. That was done purely for

expository purposes, and there is no reason why one could

not write a rule grammar in the traditional style, and then

add one or two aspects later. Indeed, that is likely to be the

norm when writing larger attribute grammars. Therefore,

we do not suggest that the `production' method of compo-

sition be replaced by the aspect, but simply augmented by

it. Aspects are a useful tool for creating attribute gram-

mars that in many instances is superior to composition by

production.

In summary, we expect that the techniques of this pa-

per are relevant to other applications of aspect oriented pro-

gramming, but only those where the weaving is purely name-

based. Because our de�nitions are in a simple functional

programming language, one could also view our contribu-

tion as a �rst step towards a semantics of aspects.

6.2 Attribute grammar systems

An obvious objection to the work presented here is that

many attribute grammar based compiler generators o�er

the factorisation we seek, but at a purely syntactic level

[7, 29, 32]. The programmer can present attribution rules in

any order, and a preprocessor rearranges them to group the

rules by production. The situation is akin to the dichotomy

between macros and procedures: while many applications of

procedures can be coded using macros, the concept of a pro-

cedure is still useful and important. In contrast to macros,

procedures o�er sound type checking, and they are indepen-

dent entities that can be stored, compiled and manipulated

by a program. The bene�ts deriving from having aspects as

explicit, �rst-class entities in a programming language are

the same.

The type system guarantees that all attributes are de-

�ned, and that they are de�ned only once. These guaran-

tees are of course also ensured in specialised attribute gram-

mar systems. Such systems usually also test for cycles in

attribute de�nitions [19, 13]. In moving from a dedicated

attribute de�nition language to a general programming lan-

guage, this analysis is a feature one has to give up. Cy-

cle checks are only an approximation, however, so they in-

evitably rule out attribute grammars that can be evaluated

without problems.

Readers who are familiar with attribute grammar based

compiler generators may wonder whether some of the more

advanced features found in such systems can be mimicked

in our setting [9, 14, 16, 29, 21]. While we are still investi-

gating this issue, a more substantial case study has already

shown how our technique admits concepts such as local at-

tributes and higher-order attribute grammars in a natural

manner. That case study is the topic of a companion to the

present paper [6]. Although an attribute grammar for the

complete semantics of a production language has not been

completed, we are con�dent (but not yet certain) that this

method will scale to handle these larger attribute grammars.

There is one extension to the type system that will enable us

to de�ne many more useful combinators, namely �rst-class

labels. There is no theoretical di�culty with that extension,

as shown in [8]. The de�nitions in the present paper would

also look prettier if this feature were available. For example,

we would be able to de�ne

inh1 l f c p = ((l = f c p | # x c),#x p)

and hence the syntax for attribute de�nitions would be much

less noisy.

It might appear from our path to the current set of com-

binators that a type system allowing record concatenation

as a primitive would also simplify the code. This would

however entail a loss of
exibility: by representing rules as

de�nition transformers, we allow overriding of default de�-

nitions, which is not an option in the direct encoding using

record concatenation.

6.3 Modular interpreters

The functional programming community has lately seen a lot

of e�ort on the topic of modular interpreters and modular

compilers [10, 22, 23]. In those works, the aim is to separate

features such as the existence of side e�ects in the de�ni-

tion of semantic domains. Eugenio Moggi observed that the

notion of monads is useful in making such a factorisation

[25], and that idea was further explored by Phil Wadler and

others in the context of functional programming [33]. The

factorisation of compilers shown in this paper is somewhat

di�erent in nature. We wish to separate the description of

aspects, even when they intimately depend on each other.

Such separation is achieved by using the naming features

of extensible records, and it is orthogonal to the separation

achieved by means of monads.

6.4 Intentional programming

The ultimate aim of this work is to provide a suitable meta-

language for rapid prototyping of domain-speci�c languages

in the Intentional Programming (IP) system under devel-

opment at Microsoft Research [31]. Roughly speaking, an

intention is a collective name both for productions and as-

pects as discussed in this paper. The aim of the IP system

is to enable applications programmers to tailor program-

ming languages to the needs of a particular domain. Its

model of translation is entirely demand-driven, and the rules

11

for accessing information in the abstract syntax tree are

very similar to those in attribute grammars. Until now, it

was accepted that attribute grammars, though similar, were

not su�ciently modular to be the basis of a meta-language

(for specifying translations) in IP. In this paper we have

presented a generalisation of attribute grammars that goes

some way toward the criteria set out by Charles Simonyi in

[31]. Some of the features we have proposed here (for ex-

ample the default handling of inherited attributes) have a

direct counterpart in the latest design of IP. There is cur-

rently some doubt whether demand-driven translation can

be e�ciently implemented in the IP project. Augusteijn (of

Philips Research Laboratories) has built an attribute gram-

mar evaluator based on lazy evaluation, and demonstrated

its e�ciency in industrial-strength applications [2]. We are

con�dent, therefore, that the combination of lazy evaluation

with strong typing will prove to be successful in IP as well.

Acknowledgements

The research reported in this paper was sparked by Paul

Kwiatkowski, in his presentation of the new reduction en-

gine in IP. Will Aitken explained the design of that reduction

engine in more detail during a very fruitful visit to Oxford,

and he provided several helpful insights on an early draft

of this paper. Charles Simonyi set out the design crite-

ria for aspect-oriented compilers that this work aspires to.

Kevin Backhouse, Ivan Sanabria-Piretti, and Doaitse Swier-

stra pointed out many obscurities and suggested several im-

provements. Oege de Moor would like to thank Doaitse

Swierstra for many illuminating discussions on the subject

of attribute grammars over the past decade.

References

[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers:

Principles, Techniques, and Tools. Addison-Wesley,

1986.

[2] A. Augusteijn. Functional programming, program trans-

formations and compiler construction. PhD thesis, De-

partment of Computing Science, Eindhoven University

of Technology, The Netherlands, 1993. See also:

http://www.research.philips.com/generalinfo/

special/elegant/elegant.html.

[3] D. Batory, V. Singhal, J. Thomas, S. Dasari, B. Geraci,

and M. Sirkin. The GenVoca model of software-system

generators. IEEE Software, 11(5):89{94, 1994.

[4] R. S. Bird. A formal development of an e�cient super-

combinator compiler. Science of Computer Program-

ming, 8(2):113{137, 1987.

[5] R. S Bird. Introduction to Functional Programming

in Haskell. International Series in Computer Science.

Prentice Hall, 1998.

[6] O. De Moor. First-class attribute grammars. 1999.

Draft paper available from URL

http://www.comlab.ox.ac.uk/oucl/users/

oege.demoor/homepage.htm

[7] P. Deransart, M. Jourdan, and B. Lorho. Attribute

grammars | De�nitions, systems and bibliography,

volume 322 of Lecture Notes in Computer Science.

Springer Verlag, 1988.

[8] B. R. Gaster and M. P. Jones. A polymorphic type sys-

tem for extensible records and variants. Technical re-

port NOTTCS-TR-96-3, Department of Computer Sci-

ence, University of Nottingham, UK, 1996. Available

from URL

http://www.cs.nott.ac.uk/Department/Staff/

mpj/polyrec.html.

[9] R. W. Gray, V. P. Heuring, S. P. Levi, A. M. Sloane,

and W. M. Waite. Eli: A complete,
exible compiler

construction system. Communications of the ACM,

35:121{131, 1992.

[10] W. L. Harrison and S. N. Kamin. Modular compilers

based on monad transformers. In Proceedings of the

IEEE Conference on Computer Languages 1998. IEEE

Press, 1998.

[11] R. J. M. Hughes. A novel representation of lists, and its

application to the function `Reverse'. Technical report

PMG-38, Programming Methodology Group, Chalmers

Technological University, Sweden, 1984.

[12] T. Johnsson. Attribute grammars as a functional pro-

gramming paradigm. In G. Kahn, editor, Functional

Programming Languages and Computer Architecture,

volume 274 of Lecture Notes in Computer Science,

pages 154{173. Springer-Verlag, 1987.

[13] M. Jourdan. Strongly non-circular attribute gram-

mars and their recursive evaluation. SIGPLAN Notices,

19:81{93, 1984.

[14] M. Jourdan, D. Parigot, C. Juli�e, O. Durin, and

C. Le Bellec. Design, implementation and evaluation of

the FNC-2 attribute grammar system. In Conference on

Programming Languages Design and Implementation,

pages 209{222, 1990. Published as ACM SIGPLAN

Notices, 25(6).

[15] U. Kastens. Attribute grammars in a compiler construc-

tion environment. In Proceedings of the International

Summer School on Attribute Grammars, Applications

and Systems, volume 545 of Lecture Notes in Computer

Science, pages 380{400, 1991.

[16] U. Kastens, B. Hutt, and E. Zimmermann. GAG: A

Practical Compiler Generator, volume 141 of Lecture

Notes in Computer Science. Springer Verlag, 1982.

[17] U. Kastens and W. M. Waite. Modularity and reusabil-

ity in attribute grammars. Acta Informatica, 31:601{

627, 1994.

[18] G. Kiczales. Aspect-oriented programming. ACM Com-

puting Surveys, 28A(4), 1996. See also:

http://www.parc.xerox.com/spl/projects/aop.

[19] D. E. Knuth. Semantics of context-free languages.

Mathematical Systems Theory, 2:127{146, 1968.

[20] M. Kuiper and S. D. Swierstra. Using attribute gram-

mars to derive e�cient functional programs. In Com-

puting Science in the Netherlands CSN '87, 1987. Avail-

able from:

ftp://ftp.cs.ruu.nl/pub/RUU/CS/techreps/

CS-1986/1986-16.ps.gz.

12

[21] M. Kuiper and J. Saraiva. LRC | A Generator for In-

cremental Language-Oriented Tools. In K. Koskimies,

editor, 7th International Conference on Compiler Con-

struction, pages 298-301. volume 1383 of Lecture Notes

in Computer Science. Springer Verlag, 1998.

[22] S. Liang and P. Hudak. Modular denotational seman-

tics for compiler construction. In H. R. Nielson, editor,

Programming Languages and Systems { ESOP '96, 6th

European Symposium on Programming, volume 1058

of Lecture Notes in Computer Science, pages 219{234.

Springer Verlag, 1996.

[23] S. Liang, P. Hudak, and M. P. Jones. Monad trans-

formers and modular interpreters. In Proceedings of the

ACM Symposium on Principles of Programming Lan-

guages (POPL '95), pages 333{343. ACM Press, 1995.

[24] K. J. Lieberherr. Adaptive Object-Oriented Software:

The Demeter Method with Propagation Patterns. PWS

Publishing Company, 1996.

[25] E. Moggi. Notions of computation and monads. Infor-

mation and Computation, 93(1):55{92, 1991.

[26] A. Ohori. A polymorphic record calculus and its compi-

lation. ACM Transactions on Programming Languages

and Systems, 17(6):844{895, 1995.

[27] D. R�emy. Typechecking records and variants in a natu-

ral extension of ML. In Proceedings of the ACM Sympo-

sium on Principles of Programming Languages (POPL

'89), pages 77{88. ACM Press, 1989.

[28] D. R�emy. Typing record concatenation for free. In

C. A. Gunter and J. C. Mitchell, editors, Theoretical

Aspects of Object-Oriented Programming: Types, Se-

mantics and Language Design, Foundations of Comput-

ing Series. MIT Press, 1994.

[29] T. W. Reps and T. Teitelbaum. The Synthesizer Gener-

ator: A system for constructing language-based editors.

Texts and Monographs in Computer Science. Springer-

Verlag, 1989.

[30] D. Rushall. An attribute evaluator in Haskell. Technical

report, Manchester University, 1992. Available from

URL

http://www-rocq.inria.fr/oscar/www/

fnc2/AG.html.

[31] C. Simonyi. Intentional programming: Innovation in

the legacy age. Presented at IFIP Working group 2.1,

1996. Available from URL

http://www.research.microsoft.com/research/ip/.

[32] S.D. Swierstra, P. Azero and J. Saraiva. Designing and

implementing combinator languages. In S. D. Swierstra,

editor, 3rd International Summer School on Advanced

Functional Programming, Lecture Notes in Computer

Science. Springer Verlag, 1999. See also URL

http://www.cs.uu.nl/groups/ST/

Software/index.html.

[33] P. Wadler. Monads for functional programming. In

Program Design Calculi, volume 118 of NATO ASI Se-

ries F: Computer and systems sciences. Springer Ver-

lag, 1992.

[34] M. Wand. Type inference for record concatenation and

multiple inheritance. Information and Computation,

93:1{15, 1991.

13

