
Aspect-Oriented Multi-View Modeling

Jörg Kienzle, Wisam Al Abed
School of Computer Science, McGill University

Montreal, Canada

Joerg.Kienzle@mcgill.ca,
Wisam.Alabed@mail.mcgill.ca

Jacques Klein
Laboratory of Advanced Software Systems

University of Luxembourg, Luxembourg

Jacques.Klein@uni.lu

ABSTRACT

Multi-view modeling allows a developer to describe a soft-
ware system from multiple points of view, e.g. structural
and behavioral, using different modeling notations. Aspect-
oriented modeling techniques have been proposed to address
the scalability problem within individual modeling nota-
tions. This paper presents RAM, an aspect-oriented mod-
eling approach that provides scalable multi-view modeling.
RAM allows the modeler to define stand-alone reusable as-
pect models using 3 modeling notations. The aspect models
support the modeling of structure (using UML class dia-
grams) and behavior (using UML state and sequence dia-
grams). RAM supports aspect dependency chains, which al-
lows an aspect providing complex functionality to reuse the
functionality provided by other aspects. The RAM weaver
can create woven views of the composed model for debug-
ging, simulation or code generation purpose, as well as per-
form consistency checks during the weaving and on the wo-
ven model to detect inconsistencies of the composition.

Categories and Subject Descriptors

D.2.2 [Software: Design Tools and Techniques]:

Keywords

aspect-oriented modeling, class diagrams, sequence diagrams,
state diagrams, aspect dependencies, instantiation, binding

1. INTRODUCTION
Multi-view modeling allows a developer to describe a sys-

tem under development from multiple points of view, e.g.
structural and behavioral, using different modeling nota-
tions. As a result, the developer can use the modeling nota-
tion that is most appropriate to describe the individual rel-
evant facets of the system under development. In practice,
multi-view modeling faces two important challenges: scala-
bility and consistency. Models of complex applications tend
to grow in size, to a point where even individual views are
not readily understood anymore. Keeping different views of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

a system consistent is also challenging for the developer, and
even sophisticated tools face algorithmic challenges when at-
tempting to analyze models of considerable size.

Aspect-oriented techniques have been successfully used
to identify and separate crosscutting concerns, which al-
lows a developer to reason about each concern individually.
Aspect-orientation also draws special attention to the com-
position of concerns, which allows the developer to focus on
the intricacies of concern interactions and conflicts. Aspect-
orientation therefore has the potential to address the scala-
bility and consistency issues in multi-view modeling.

Existing aspect-oriented modeling (AOM) approaches have
mostly focussed on separation and composition of models
within the same modeling notation, e.g., within class di-
agrams, sequence diagrams, state diagrams, SDL, live se-
quence charts, etc. [1]. In the context of multi-view mod-
eling, these existing techniques can be applied within indi-
vidual views to achieve scalability. Unfortunately doing so
makes guaranteeing consistency between views even harder,
since each AOM approach defines its own way of model
weaving or model composition.

This paper presents Reusable Aspect Models (RAM), an
aspect-oriented multi-view modeling approach that 1) inte-
grates existing class diagram, sequence diagram and state
diagram AOM techniques into one coherent approach; 2)
packages aspect models for easy and flexible reuse; 3) sup-
ports the creation of elaborate aspect dependency chains;
4) performs elaborate consistency checks to verify correct
aspect composition and reuse; 5) defines a detailed weav-
ing algorithm that resolves aspect dependencies to generate
independent aspect models and ultimately the final applica-
tion model1.

The rest of the paper is structured as follows. Section 2
presents the AOM techniques that RAM is based on. Sec-
tion 3 introduces the core concepts of RAM. Section 4 shows
how we applied RAM to the AspectOptima case study. Sec-
tion 5 presents related work and the last section draw some
conclusions.

2. AOM BACKGROUND
This section briefly introduces the class diagram, sequence

diagram and state diagram weaving approaches that our
reusable aspect model approach is based on.

2.1 Composition of Class Diagrams
The symmetric model composition technique proposed by

1An initial version of RAM addressing only class and se-
quence diagrams has been introduced in [18].

+ addToStream()
!

FileStream

fstream

+ addToStream()
!

FileStream

bfstream

+ start()
!

System

+ write()
!

Buffer

buffer

+ writeLine()
!

Writer

Base CD
Context-Specific
Buffering Aspect

+ writeLine()
!

Writer

+ addToStream()
!

FileStream

+ start()
!

System

bfstream

+ write()
!

Buffer

buffer

Result

+ writeLine()
!

Writer

fstream!!!!

Figure 1: Merging Class Diagrams with Kompose

France et al. [10, 20] supports composition of model el-
ements that present different views of the same concept.
This composition technique has been implemented in a tool
called Kompose [9, 2]. The model elements to be composed
must be of the same syntactic type, that is, they must be
instances of the same meta model class. An aspect view
may also describe a concept that is not present in a target
model, and vice versa. In these cases, the model elements
are included in the composed model.

The process of identifying model elements to compose is
called element matching. To support automated element
matching, each element type (i.e., the element’s meta-model
class) is associated with a signature type that determines the
uniqueness of elements in the type space: two elements with
equivalent signatures represent the same concept and thus
are composed. Currently, Kompose focuses mainly on the
merging of class diagrams.

Fig. 1 shows an example of class diagram composition
(taken from [20]) using Kompose. In the example, a mod-
eler creates a target model in which an output producer
(an instance of Writer) sends outputs directly to the out-
put device to which it is linked (instance of FileStream).
The modeler then decides to incorporate a buffering feature
into the model by composing a buffering aspect model. The
aspect model describes how entities that produce outputs
(represented by instantiations of Buffer) are decoupled from
output devices through the use of buffers. The result of the
composition is the class diagram entitled Composed Class di-
agram where the model elements with the same name have
been merged. Note that France et al. also propose a lan-
guage of directives to modify the models before and after the
composition step. This language is useful to adapt a generic
aspect model to a specific target model or to improve the
composed model.

2.2 Weaving of State and Sequence Diagrams
In RAM we use the state and sequence diagram weav-

ing technique provided by GeKo [19] (Generic weaving with
Kermeta), a generic model weaver that can easily be used
to weave any kind of models. In GeKo, an aspect is defined
as a pair of models. For instance, if we want to weave an
aspect state diagram into a target state diagram, the aspect
state diagram is composed of a pair of state diagrams: one
state diagram for the pointcut (specification of the behav-
ior to detect), and the other state diagram for an advice
representing the expected behavior at the join point. Simi-

: User : Server

login()

Base SD

tryAgain()

login()

alt loggedIn()

rejected()

*

: User : Server

login()

Pointcut

: User : Server

login()

*

Advice

!

notify()

: Display

update()

: User : Server

login()

tryAgain()

Result SD

!

notify()

: Display

update()

login()

alt loggedIn()
!

notify()

update()

rejected()
!

notify()

update()

Figure 2: Sequence Diagram Weaving Example

lar to AspectJ, where an aspectual behavior can be inserted
’around ’, ’before’ or ’after ’ a join point, an advice in the
GeKo weaving approach may extend the matched behavior,
replace it with a new behavior, or remove it entirely.

GeKo defines a two-phased process weaving: 1) a generic
detection where the pointcut is used to determine all the
join points in the target model and 2) a generic composition
mechanism where the advice model is composed with the
target model at the join points previously detected.

An example of the use of GeKo is illustrated on sequence
diagrams in Fig. 2. The base/target sequence diagram shows
a possible interaction sequence between a user and a server.
The user first sends a login message to the server. The
server answers with tryAgain and the user performs a new
attempt. The sequence diagram then shows an alt compart-
ment that describes what messages are sent next, depending
on whether the login succeeds or fails.

The aspect specified in Fig. 2 consists of a pointcut and an
advice. The pointcut states that any message exchange be-
tween a user and a server starting with the message login is
of interest. Note that in the specification of the pointcut, it
is possible to use regular expressions on the message names:
a message labeled with a * means that any message from
a server to a user is of interest. The advice states that a
message notify and a message update on an object of type
Display are to be added after the return message from the
server. The result of the weaving is shown on the right hand
side of Fig. 2.

3. REUSABLE ASPECT MODELS
This section describes the core concepts of RAM. Before

going into details, it is important to define what we call an
aspect. In our approach, any concern or functionality that is
reusable is modeled as an aspect. Even if an aspect is only
used once in the same application, it is (or can be) reused
again in other applications. Therefore, the structure and
behavior models of a reusable aspect cut across the models
of the application(s) in which the aspect is reused.

3.1 Aspect Packaging - Grouping Structure,
State and Message Behavior

In RAM, the model of a concern or functionality contains
up to 3 different kinds of views – a structural view, state
views and message views – which are grouped together in
an aspect model, a special UML package.

Structural View. The structural view is the first compart-
ment of the aspect model. It is expressed using a UML class

aspect Copyable

+ |Copyable clone()
- |Copyable create()
+ replaceStateWith(|Copyable from)

!

|Copyable

|caller: |Caller |original: |Copyable

|copy: |Copyable

|copy := clone()

|copy := create()

replaceStateWith(|original)

structural view

message view clone

|caller: |Caller |original: |Copyable

|copy := clone()

Pointcut Advice
|original, |copy
|Caller, |caller

|Copyable

state view |Copyable Pointcut

|CloneAllowed

Advice

|ReplaceAllowed

replaceStateWith |CloneAllowed
|Replace
Allowed|ReplaceAllowed |CloneAllowed

clone

Figure 3: The Copyable Aspect Model

diagram, and therefore contains classes with attributes and
methods, and associations that relate the classes. Public
methods, i.e. methods that can be used from outside the
aspect package, should be annotated with the “+” charac-
ter. The classes in the structural view do not necessarily
have to be complete, i.e., they only need to specify the at-
tributes, methods and associations that are relevant within
the concern that is modeled. The classes may later be com-
posed by the weaver with other classes when the aspect is
instantiated or bound to a base model (see subsection 3.2
for details on instantiation and binding) to yield a complete
class. Incomplete classes, i.e. entities that are not directly
or indirectly bound to model elements of some other aspect
model, and methods whose name and signature are yet to
be determined, are termed mandatory instantiation param-
eters. Mandatory instantiation parameters are identified by
prepending a “|” character to their name, and have to be
rendered prominent by depicting them as UML template
parameters on the right hand side of the structural view
compartment.

Fig. 3 defines an aspect called Copyable that provides the
functionality of making identical copies of objects, often also
called cloning. The structural view defines one incomplete
class named |Copyable with one public method called clone

that provides the cloning functionality. |Copyable is desig-
nated as a mandatory instantiation parameter of the struc-
tural view and hence shows up as a UML template param-
eter.

State View. In the aspect package, the structural compart-
ment is followed by several state view compartments, one
for each class (complete or incomplete) defined in the struc-
tural view. Using a UML state diagram, the state view of
an entity describes the internal states of that entity that are
relevant within the concern. A state is relevant if it affects
the messages that the entity is capable of processing. In
UML terms, the state view compartment describes the us-
age protocol of the entity. To be complete, the state diagram
must contain each method defined in the structural view for
the entity at least once.

When a state view describes the protocol of a standard
class defined in the structural view, it takes the form of a
standard state diagram. For incomplete classes, however, an
aspect state diagram has to be defined. An aspect state di-
agram consists of two parts: a pointcut and an advice. The
pointcut defines the states and transitions that have to ex-
ist in the target state diagram, i.e. the state diagram with

which the aspect state diagram is composed. The advice
part defines the (refined) state diagram that replaces the
occurrence of the pointcut in the target state diagram. Just
like in the structural view, states that are not directly or in-
directly bound to states defined in a standard state diagram
are mandatory instantiation parameters of the state view
compartment, highlighted by prepending a “|” character to
their name and emphasized as UML template parameters
on the right hand side of the compartment.

The Copyable aspect in Fig. 3 only has one state view
since the structural view only defines one entity. This entity
being a mandatory instantiation parameter (and therefore
an incomplete class), the state view takes the form of an
aspect state diagram. The pointcut in the state view states
that there are two relevant states within the Copyable as-
pect. The advice states that the relevant states are the states
in which a call to clone or replaceStateWith are possible.
The states |CloneAllowed and |ReplaceAllowed are desig-
nated mandatory instantiation parameters of the state view,
meaning that they have to eventually be mapped to states
in a standard state diagram using instantiation.

Message View. After the state view compartments, the as-
pect package contains message view compartments, at most
one for each public method defined in the structural view.
Each message view describes, using a UML sequence dia-
gram, the sequencing of message interchanges that occur
between entities when providing the functionality offered by
the public method. Hence, if the functionality does not in-
volve any message exchanges, but only computation internal
to the entity, no message view compartment is shown for
that method.

A message view compartment contains an aspect sequence
diagram, which again has two parts: a pointcut and an
advice. The pointcut defines the entities and message ex-
changes that have to exist in the target sequence diagram,
whereas the advice specifies the sequence diagram that re-
places the occurrence of the pointcut in the target diagram.
Typically, for standard methods, the pointcut shows a tem-
plate caller that calls the method on a template instance of
the entity that defines the method. The advice then shows
the details of the execution of that method. Nevertheless, in
special cases, the pointcut can represent more complex be-
haviors, e.g., sequences of messages between several objects.
In these cases, the advice shows how additional messages
are added to the behavior specified in the pointcut or even
how the matched messages are replaced.

aspect Checkpointable depends on Copyable

+ establish()
+ restore()
+ discard()

!int level
|Checkpointable

|caller: |Caller |target: |Checkpointable myStack: Stack

establish()

push(newCheckpoint)

structural view depends on Copyable

message view establish depends on Copyable

|caller: |Caller |target: |Checkpointable

establish()

Pointcut Advice

+ push(|Checkpointable e)
+ |Checkpointable getLast()
+ discardLast()

!

Stack

1

myStack

0..*

!

!!! newCheckpoint := clone()

Copyable.clone instantiation

clone.|original !|target

clone.|copy ! newCheckpoint

clone.|Caller !|Checkpointable

clone.|caller !|target

|target
|Caller, |caller

|Checkpointable

Copyable instantiation

Copyable.|Copyable !|Checkpointable

(1)
(2)
(3)
(4)

state view |Checkpointable depends on Copyable

Pointcut Advice

Any CheckpointingAllowed

Any Ready

establish/level++ establish/level++

restore/level--

Established

discard/level--

Copyable.|Copyable instantiation
|Copyable.|CloneAllowed

! Established
|Copyable.|RemoveAllowed

! Ready

|Any

restore[level>0]/level--

discard[level>0]/level--

restore and discard skipped for space reasons...

Figure 4: The Checkpointable Aspect Depends On Copyable

The Copyable aspect has two public methods, but only the
clone method involves message exchanges between objects.
This is the reason why Fig. 3 only contains one message view.
Since the sequencing defined in the clone message view is
likely to be reused many times, potentially with different
target objects, caller instances and classes, and return refer-
ences, the message view defines 4 mandatory instantiation
parameters.

3.2 Aspect Dependencies and Reuse - Binding
and Instantiation

One of the goals of our approach is to address the scala-
bility problem of multi-view modeling. To keep our aspect
models reasonably small, aspects providing complex func-
tionality have to be able to reuse simpler functionality pro-
vided by other aspects. If an aspect A reuses models pro-
vided by an aspect B, then A depends on B. Dependencies
have to be listed in the heading of an aspect package.

Fig. 4 describes the aspect Checkpointable that provides
objects with the functionality to establish, restore and dis-
card checkpoints of their state. To do that, it depends on
the clone and replaceStateWith functionality provided by
Copyable. Therefore, the Checkpointable aspect has to de-
clare the dependency on Copyable in the aspect package
heading.

Instantiation. In the RAM approach, if A depends on B, A
explicitly states that it reuses the functionality provided by
B by instantiating B, one or several times, if needed. Within
the structural view, A must provide at least one instantia-
tion directive that maps at least all mandatory instantiation
parameters from B’s structural view to entities in A’s struc-
tural view. Classes in B that are not designated manda-
tory instantiation parameters can be instantiated, but do
not need to be. For each incomplete class Y (or |Y) of B
that is merged with an entity X (or |X) of A, A must also
map all mandatory template states from B’s state view of
Y to states in A’s state view of X using an instantiation

directive in the state view X. Finally, all mandatory tem-
plate parameters from B’s message views that are reused
within one of A’s message views have to be mapped to the
corresponding entities with one or multiple instantiation di-
rectives in A’s message views2. The instantiation directive
for one template parameter is of the form:
SourceAspect.IncompleteEntityName → EntityName3

Fig. 4 illustrates how the Checkpointable aspect can reuse
the functionality offered by Copyable. First, the structural
view of Copyable is instantiated into the structural view of
Checkpointable by mapping the |Copyable incomplete class
to the |Checkpointable incomplete class. The semantics of
this is the following: all instances of |Checkpointable, in
addition to providing the establish, restore and discard

methods also provide the methods, attributes and associa-
tions defined by |Copyable. The |Checkpointable state view
specifies that an instance of the incomplete |Checkpointable
class accepts any number of calls to establish followed by at
most the same number of calls to restore or discard. The
instantiation that maps |CloneAllowed to Established en-
sures that clone can only be called after a call to establish.
Likewise, replaceStateWith can only be called after a call
to restore or discard. Finally, the instantiation directive
in the message view establish illustrates how the messag-
ing specified in the message view clone can be reused. By
mapping both |caller and |original to |target, |Caller
to |Checkpointable, and the |copy return parameter to
newCheckpoint, the weaver elegantly inserts the message
sequencing specified in the clone message view into the es-
tablish message view at the point where the |target object
invokes clone on itself. Note that since the message view
clone is an aspect sequence diagram, if the method clone

would have appeared several times in the establish mes-

2In case of multiple instantiations within the same state or
message view, increasing numbers specify the order in which
the instantiations shall be performed by the weaver.
3Of the model where the instantiation is located.

sage view on the |target object, then the message sequenc-
ing specified in the clone message view would have been
woven several times into the establish message view.

Binding. In the case where an aspect A depends on an as-
pect B, it can happen that an incomplete class X (or |X)
in the structural view of an aspect A needs to be composed
with a complete class Y defined in B (or in one of the as-
pects that B depends on). In this case, the state view X in
A might also need to refine the state view Y in order to take
into account the functionality of A. Likewise, A might need
to refine or override the message sequencing specified in a
message view of the aspect that defines Y to take into ac-
count the functionality provided by A. In this case, A has to
define a binding directive that maps the incomplete entities
of A’s structural view, state view or message view into the
structural view, state view or message view of the aspect
defining Y. The binding directive syntax for one template
parameter is as follows:
IncompleteEntityName4

→ Target.EntityName

Whenever a view contains a binding directive, the bound
model elements cannot appear at the same time as manda-
tory instantiation parameters of the view. This makes per-
fect sense: since there are binding directives that tell the
weaver how to map the incomplete model elements to com-
plete model elements, instantiation directives that specify
the mapping are not mandatory anymore.

Instantiations and binding directives can be one-to-many
or many-to-one, if needed. In this case, wild cards can be
used as a shortcut to instruct the weaver to perform pattern
matching on model elements at weave time to determine the
set of model elements that are to be used in the directive.

Reuse. One of the main goals of RAM is to allow the mod-
eler to design highly reusable aspect models. Reusability is
at the very heart of aspect-oriented modeling: it should be
possible to reuse an aspect providing a simple functional-
ity within a base model or an aspect model that provides
a more complex functionality whenever and wherever the
simple functionality is needed, thus preventing scattering of
model elements providing related functionality, and tangling
of model elements providing different functionalities.

To make reuse possible, it is important that instantiations
and bindings observe strict rules: if an aspect A provides
a functionality whose design needs a simpler functionality
provided by an aspect B, then A depends on B. In this case,
and only then, A is allowed to instantiate views of B, or bind
A’s model elements to model elements defined in B. Circular
dependencies are forbidden.

If these simple rules are followed, individual reuse of as-
pects is possible. In our example where A depends on B, it
is possible to reuse B in isolation, or reuse A (which implies
that indirectly B is also reused). Indirect dependencies of
aspects are hidden from the user of an aspect: when a de-
veloper reuses A by instantiating it, the weaver takes care
of all the indirect instantiations and bindings.

To fully exploit the benefits of reuse, aspect dependencies
should be kept unresolved until the aspects are woven with
the final application model. Only then the full potential of
reuse is achieved: if A depends on B, then a change that is
made to B is automatically propagated to A.

4Of the model where the binding is located.

aspect Z

aspect A

aspect Bi

aspect Ci

aspect B!!!i-1 aspect B!!!i+1

aspect C!!!i-1 aspect C!!!i+1

... ...

... ...

Figure 5: Aspect Dependencies

3.3 Aspect Weaving
Before an aspect A that depends on other aspects can suc-

cessfully be woven with a base application model or reused
in another aspect, the weaver first has to create an indepen-
dent model of A, i.e. an aspect model that contains all the
structural entities, states and message exchanges defined in
the aspects it depends on. In general, an aspect A can have
complex dependencies in form of a directed acyclic graph
(DAG). In oder to resolve these complex dependencies, our
weaving algorithm is recursive. It processes the DAG step by
step in depth-first order. A weaving step is always executed
on a pair of aspects: if A depends on B, then B is woven
with A in order to yield a model of A that is independent
of B. The weaving directives are obtained by combining the
instantiation and binding directives.

In order to formally describe the weaving algorithm, we
need the following definitions:

• The higher aspect set of an aspect A is composed of
the aspects that (directly or indirectly) depend on A.

• The dependency set of an aspect A is composed of all
the aspects that A directly or indirectly depends on.

• The direct dependency set of an aspect A is composed
of all the aspects that A depends on directly.

• The indirect dependency set of an aspect A is com-
posed of all the aspects that are in the dependency set
of the aspects in the direct dependency set of A.

For example, in the context illustrated in Fig. 5, the higher
aspect set of A includes Z, the dependency set of A includes
all Bi and all Ci, the direct dependency set of A includes all
Bi (but not any Ci), and the indirect dependency set of A
includes all Ci (but not any Bi).

When asking to create an independent aspect model of
A, Z provides as a parameter a set of binding directives
Dhigher defined within Z (or the higher aspect set of Z) that
apply to aspects in the dependency set of A. To obtain an
independent aspect model of A conforming to these binding
directives, the weaving algorithm processes as follows:

Recursive Weaving Algorithm

Initialize the set of binding directives Dupdated to an empty
set. For each aspect Bi within the direct dependency set of
A perform the following 6 steps:

1. If there are binding directives defined in A that have
the same left hand side as a binding directive within
Dhigher, perform a consistency check (as described in
subsection 3.4), then discard the binding defined in A.

2. Assemble the set of binding directives Dlower to be
passed on to Bi. Dlower is composed of all binding
directives defined in A that bind into aspects within
the dependency set of Bi and all binding directives in
Dhigher that apply to aspects within the dependency
set of Bi. For each binding directive in Dlower that

on the left hand side of the binding refers to a model
element X in A and for which A also defines an instan-
tiation directive that maps a model element Y defined
in Bi to X, apply the instantiation directive in the in-
verse direction to the left hand side of the binding to
obtain a binding directive that refers to Y. For exam-
ple, assume that Dlower contains the directive A.X →

C.Z, and A defines the instantiation B.Y → X, then
applying the instantion directive in the inverse direc-
tion results in the new directive B.Y → C.Z.

3. Create an independent aspect model of Bi (i.e. apply
this algorithm recursively) using the binding directives
Dlower. In addition to creating an independent aspect
model of Bi, the recursive application of the algorithm
produces an updated list of bindings Dlower_updated,
that now only contains bindings to model elements de-
fined in Bi.

4. Assemble the set of binding directives Dweave. Dweave

is composed of A’s binding directives to Bi, if any, and
any binding directives within Dlower_updated that bind
from A to Bi. Remove the latter binding directives
from Dlower_updated.

5. Weave the views of the independent aspect model of
Bi obtained in step 2 with the views of A as follows:

• For each view Y in Bi, apply A’s instantiation
directives to the model elements of Y.

• For each view Y in Bi, apply the binding direc-
tives Dweave to the model elements within Y.

• For each view X in A, weave the views Y in B that
X depends on with X using class diagram, state
diagram or sequence diagram weaving techniques.

6. For each binding directives in Dlower_updated of step 4
that on the right hand side binds to a model element
Y in Bi and for which A also defines an instantiation
directive that maps Y to a model element X in A, apply
the instantiation directive to the right hand side of the
binding to obtain a new binding that binds to X. Add
the obtained binding to Dupdated.

Now that the independent aspect model is created, addi-
tional consistency checks are performed as described in sub-
section 3.4. If no consistency violations are detected, return
the aspect model and the set of binding directives Dupdated

to Z.
Fig. 6 shows a simple example in which the above weaving

algorithm creates an independent aspect model of an aspect
A that depends on B which in turn depends on C. First,
an independent aspect model of B is created by weaving C
with B according to the binding defined in B. Then, the in-
dependent aspect model of A is created by weaving B with A
according to the instantiation and binding directives defined
in A. For space reasons, only the structural view is shown.

3.4 Consistency Checks
In multi-view modeling it is important to ensure that the

different views are consistent with each other. In RAM con-
sistency checks are performed at multiple levels.

The first level of consistency checks is performed within
each individual aspect model separately. Each class in the
structural view of an aspect model has to have a correspond-
ing state view. The state view has to define the complete
protocol state diagram describing the acceptable sequencing
of all the methods that the class declares in the structural

aspect B
|Y1

+ my1()
+ mz1()

!

|Y1+Z1

aspect A depends on B
|X1

+ mx1()
!

|X1

+ mx2()
!

X2

B instantiation

B.|Y1 ! X3

B binding

X2 ! B.Y2

aspect B depends on C
|Y1

+ my2()
!

Y2

aspect A

aspect C

+ mx1()
!

|X1

+ mx2()
+ my2()

!

X2+Y2

+ mx3()
+ my1()
+ mz1()

!

X3+Y1+Z1

|X1

+ my2()
!

Y2+ mx3()
!

X3

+ my1()
!

|Y1

C binding

|Y1 ! C.Z1

+ mz1()
!

Z1

Figure 6: Structural Weaving Example

view. Any fields used in the state view diagram (e.g., level
in Fig. 4) have to be declared as attributes of the correspond-
ing class in the structural view. For each public method of
a class in the structural view, the aspect model has to de-
fine a corresponding message view. Finally, it is possible to
compare the behavior expressed in the message views and
the state views within each aspect model. For each object
life line in a sequence diagram, the incoming messages to
that object are presented in sequence to the (partial) state
diagram describing the protocol of the corresponding class.
If the state diagram refuses a message, then the two views
are inconsistent. This first level of check is not novel. Other
multi-view modeling approaches suggest similar checks.

The second level of consistency check is performed between
aspect models by checking the adherence to the instantia-
tion and binding rules. The weaver makes sure that when A
instantiates B, all mandatory instantiation parameters are
supplied. Furthermore, the weaver ensures that the bind-
ings in A conform to eventual bindings declared in B. This
check is performed during step 1 of the weaving algorithms
described in section 3.3. For structural model elements, if
the instantiation directive in A maps an entity Y in B to X
in A, then the binding in A has to map X to the same en-
tity as the binding in B maps Y to. For states, the binding
in A must be a sub-binding of the binding in B. A binding
X → S (or X → ∪Si) is a sub-binding of a binding X → T

(or X → ∪T) if either S = T or S is a substate of T (or
∀Si∃Ti(Si = Ti or Si is a substate of Ti)). This level of con-
sistency check is novel. For message views, the binding in A
must map to the same or a subset of the objects used in the
binding defined in B. These conformance rules make sure
that A reuses B correctly, i.e. that the expected operation
conditions of the reused aspect B are preserved within A.

The last level of consistency checks is performed within the
independent aspect model and within the final base model,
where the sequencing of message exchanges expressed in the
final sequence diagram is checked against the final protocol
state machines in the same way in which it was done for
each individual aspect. For each object life line in the se-
quence diagram, the incoming messages to that object are
presented in sequence to the state diagram describing the
protocol of the corresponding class. If the state diagram re-

0..1

myContext

aspect Context

structural view

+ Context getContext()
* setContext(Context)
+ createAndEnterContext()
+ leaveContext()

!

|ContextParticipant

0..1 participant

caller: Caller target:
|ContextParticipant

newContext:
Context

createAndEnterContext()
newContext := create()

addParticipant(|target)

message view createAndEnterContext

caller: Caller target:
|ContextParticipant

createAndEnterContext()

Pointcut

Advice

!

!!! setContext(newContext)

|ContextParticipant

|Idle |Working

createAndEnterContext

leaveContext

Pointcuts Advice

Any

getContext

|Idle |Working

createAndEnter
Context

leaveContext

Entering
setContext

Leaving
setContext

Idle Active

create

contextCompleted!!!!!!!!

addParticipant

removeParticipant

destroy
Completed

state view Context

+ Context create()
+ destroy()
+ addParticipant(|ContextParticipant p)
+ removeParticipant(|ContextParticipant p)
* contextCompleted()

!

Context

state view |ContextParticipant

Any

Binding

Any ! *

leaveContext skipped for space reasons...

Binding

caller ! *

Caller ! *

target ! *

|Idle, |Working

Figure 7: The Context Aspect Models

fuses a message, consistency is violated. This signals to the
developer that the instantiations and bindings (or the order-
ing of the instantiations and bindings) of the state and mes-
sage views contradict each other and have to be revisited.
To our knowledge, no AOM approach has so far proposed
such a powerful consistency check.

4. CASE STUDY: ASPECTOPTIMA
AspectOptima [15, 14] is an aspect-oriented framework

providing customizable transaction support to applications.
The current AspectJ implementation of AspectOptima [6]
consists of 29 aspects that modularize and implement critical
transaction system features in a reusable way. The aspects
can be combined in different ways to create different imple-
mentations of transaction models, concurrency control and
recovery strategies.

To demonstrate the effectiveness of RAM, we applied our
approach to model the design of parts of the AspectOptima
framework. The feature diagram model that specifies the
possible ways to build a transaction is shown in Fig. 8. Each
of the features has been modeled as one RAM aspect model.
For space reasons we can not present all the aspect mod-
els in this paper. We therefore concentrate on a subset of
the aspects, in particular on Recovering. Recovering imple-
ments the atomicity property of transactions, which states
that either all the changes performed in a transaction are
reflected in the application state, or none is, i.e., the appli-
cation state is identical to the state that was valid before
the transaction started. Recovery can be implemented in
two ways: based on a technique called in-place update and
checkpointing, or using deferred update. We will concen-
trate on the checkpointing alternative. Recovering therefore
depends (directly or indirectly) on OutcomeAware, Check-
pointing, Tracing, Checkpointable, Copyable, Traceable, Ac-
cessClassified and Context. In the following subsections we
present parts of these aspects, and then demonstrate how a
base model can be woven with the Recovering aspect.

Optimistic Validation

Transaction

RecoveringNested

Deferring

2-Phase-Locking

CopyableContext

Traceable

AccessClassified LockableSemanticClassified

Shared

OutcomeAware

Checkpointing

TracingCheckpointable Deferrable

Legend

Mandatory

Optional

!

Alternative

Figure 8: Feature Diagram of AspectOptima

4.1 AspectOPTIMA Aspects

Context. The Context aspect is one of the base aspects of
AspectOptima. A context are best described as an area of
computation. Contexts structure the execution of an appli-
cation. They give identity to the set of operations executed
by threads on objects over a given period of time in the
pursuit of a goal. A transaction is an example of a context
that exhibits additional properties, i.e., the Atomicity, Con-
sistency, Isolation and Durability (ACID) properties [11].

The structural view of our RAM context model presented
in Fig. 7 defines a Context class, together with a permanent
association to a (to be determined) |ContextParticipant

class. The createAndEnter message view describes the func-
tionality that allows a context participant to instantiate a
context and add itself as a participant. The |ContextPartic-
ipant state view shows that any class that wants to par-
ticipate in a context must eventually follow each call to
createAndEnter with a call to leaveContext. The Con-
text state view describes the usage protocol of the Context

class: it specifies, for instance, that in order to complete
there must be no active participants.

OutcomeAware. OutcomeAware shown in Fig. 9 extends
the functionality offered by Context. According to the struc-

|Working

aspect OutcomeAware depends on Context

structural view

+ Outcome getOutcome()
+ setOutcome(Outcome o)

Outcome myOutcome
ContextWithOutcome

|OutcomeControlling
Participant

message view createAndEnterContext is Context.createAndEnterContext

Context instantiation

Context.|ContextParticipant !
|OutcomeControllingParticipant

+ createAndEnterContext()
+ voteAndLeaveContext(Outcome vote)

!

|OutcomeControlling
Participant

caller: Caller target:
|OutcomeControlling

Participant
myContext:

Context
WithOutcome

voteAndLeaveContext(o)

setOutcome(o)

caller: Caller target:
|OutcomeControlling

Participant

voteAndLeaveContext(o)

Pointcut

!

myContext :=

getContext()

leaveContext()

Advice

Context.leaveContext instantiation

leaveContext.target ! target

leaveContext.Caller ! Caller

leaveContext.caller ! caller

Undecided

setOutcome

Any

getOutcome
Context binding

Undecided ! Context.Active

Decided ! Context.Active

Any ! Context.*

Pointcut Advice

Undecided

|Idle |Working

createAndEnterContext

voteAndLeaveContext

Pointcut

Advice

|Idle Busy

createAndEnterContext

!!!!!!!!!!!!!!!voteAndLeaveContext

Voting
leaveContext

|Idle, |Working

Context.|ContextParticipant instantiation

|ContextParticipant.|Idle ! |Idle

|ContextParticipant.|Working ! |Working

DecidedDecided

Context binding

ContextWithOutcome !
Context.Context

message view voteAndLeaveContext depends on Context

Any

state view ContextWithOutcome depends on Context

state view |OutcomeControllingPartcipant depends on Context

Binding

caller ! *

Caller ! *

target ! *

Figure 9: The OutcomeAware Aspect Model

opt [myContext != null]

aspect Checkpointing depends on Tracing, Checkpointable

caller:
|Checkpointing

Participant

callee: |Checkpointed

structural view

caller:
|Checkpointing

Participant

callee:
|Checkpointed

m(..)

Pointcut Advice

+ * m(..)
!

|Checkpointed

+ restoreCheckpoints()
- contextCompleted

!

CheckpointingContext

!

!!! myContext := getContext()

myContext:
CheckpointingContext

secondTime := wasModified(callee)

m(..)

opt [not secondTime]

establish()

Checkpointable.establish instantiation

establish.target ! callee

establish.Caller ! Caller

establish.caller ! caller

Tracing.traceMethod instantiation

 traceMethod.caller ! caller

 traceMethod.callee ! callee

traceMethod.m ! m
Tracing.wasModified instantiation

 wasModified.target ! myContext

wasModified.Caller ! Caller

 wasModified.caller ! caller

 wasModified.result ! secondTime

message view checkpointMethod depends on Tracing, Checkpointable

|CheckpointingParticipant
|Checkpointed

+ createAndEnterContext()
+ leaveContext()

!

|CheckpointingParticipant

Checkpointable instantiation

Checkpointable.|Checkpointable !
|Checkpointed

Tracing instantiation

Tracing.TracingContext !
CheckpointingContext

Tracing.|TracingParticipant !
|CheckpointingParticipant

Tracing.|Traced ! |Checkpointed

CheckpointingContext, |CheckpointingParticipant, |Checkpointed, enterAndCreateContext, leaveContext,
contextCompleted, restoreCheckpoints skipped for space reasons...

Checkpointable binding

 caller ! *

m !
Checkpointable.+ * *(..)

Figure 10: The Checkpointing Aspect Model

aspect Recovering depends OutcomeAware, Checkpointing

structural view

+ createAndEnterContext()
+ voteAndLeaveContext()

!

|RecoveringParticipant
|RecoveringParticipant

|Recoverable

OutcomeAware instantiation

OutcomeAware.ContextWithOutcome !
RecoveringContext

OutcomeAware.|OutcomeControllingParticipant !
|RecoveringParticipant

- contextCompleted()
!

RecoveringContext

Checkpointing instantiation

Checkpointing.CheckpointingContext !
RecoveringContext

Checkpointing.|CheckpointingParticipant !
|RecoveringParticipant

Checkpointing.|Checkpointed ! |Recoverable

+ * m(..)
!

|Recoverable

message view prepareRecovery is Checkpointing.checkpointMethod

ActiveIdle

Pointcut

|Idle

|Active
Advice

BeforeVote AfterVote

Checkpointing.CheckpointingContext instantiation

CheckpointingContext.Active ! BeforeVote

CheckpointingContext.Idle ! Idle

CheckpointingContext.Completed ! Completed

CheckpointingContext.RestoreAllowed !
Completed

Context binding

Active ! Context.Active

Idle ! Context.Idle

Completed ! Context.Completed

removeParticipant
removeParticipant

Completed

context
Completed

|Completed

context
Completed

OutcomeAware.ContextWithOutcome instantiation

ContextWithOutcome.Undecided ! BeforeVote

ContextWithOutcome.Decided ! AfterVote

state view RecoveringContext depends on CheckpointingContext, ContextWithOutcome

|RecoveringParticipant, |Recoverable, voteAndLeaveContext, contextCompleted skipped for space reasons...

Figure 11: The Recovering Aspect Model

tural view, a ContextWithOutcome has an outcome (positive
or negative), and offers operations to query or set the out-
come. The state view shows that a context is first in an
Undecided state, and then moves to a Decided state when
the outcome of the context is set. An |OutcomeControlling-

Participant must decide on the outcome of the context
when leaving by invoking the voteAndLeaveContext method.
After setting the outcome, the voteAndLeaveContext mes-
sage view reuses the leaveContext functionality provided
by Context.

AccessClassified, Traceable and Tracing are not shown for
space reasons. Checkpointable and Copyable have already
been presented in section 3.

Checkpointing. Checkpointing shown in Fig. 10 makes sure
that whenever a modifying operation is invoked on a Check-
pointable object for the first time within the current con-
text, a checkpoint is established. To do this, Checkpointing
depends on Tracing to keep track of the operations that
are invoked, and on Checkpointable to establish the actual
snapshot of the state of the Checkpointable object. How this
happens is modeled in the message view checkpointMethod.
Whenever an operation m is invoked by a checkpointing par-
ticipant on a checkpointed object, the current checkpointing
context, which is also a tracing context, is asked if the target
object has already been modified from within the context.
If not, the establish method of the checkpointable object
is called before proceeding with the call to m. Note that the
binding directive m → Checkpointable.+ * *(..) makes
sure that all calls to public methods of checkpointable ob-
jects are taken care of.

Recovering. Recovering shown in Fig. 11 finally depends
on Checkpointing and OutcomeAware. The structural view
instantiates the RecoveringContext to also be a Checkpoin-

tingContext as well as a ContextWithOutcome. The Recov-
eringContext state view integrates the two dependent state
views into its own state view. The message view prepar-

+ Thread create()
+ destroy()!

!

Thread

+ Account create()
+ destroy()
+withdraw(int amount)
+deposit(int amount)

int balance
Account

Base Class Diagram Base Sequence Diagram

t: Thread a: Account

withdraw(100)

b: Account

deposit(100)

!

 !!!!!!!!!!!!!createAndEnterContext()

!

 !!!!!! voteAndLeaveContext(o)

Ouside Inside

create
createAndEnterContext

voteAndLeaveContext
destroy

sd Thread

Base State Diagram of Thread

Figure 12: A Simple Base Model

eRecovery makes sure that all method calls to recoverable
objects are checkpointed.

4.2 Applying Recovering to a Base Model
Fig. 12 depicts a simple base model of a banking appli-

cation where a thread object t transfers some money from
account a to account b. By instantiating the Recovering as-
pect into this base model, the transfer can be made atomic.
The instantiation directives are as follows:

Recovering.|RecoveringParticipant → Thread
Recovering.|Recoverable → Account
|RecoveringParticipant.|Idle → Outside
|RecoveringParticipant.|Working → Inside
If the modeler does not want to add the instantiation di-

rectives directly to the base model, it is also possible to com-
pletely separate the base model from the Recovering aspect
and vice versa. This can be done by modeling a Recovery-
Introduction aspect that instantiates Recovering and binds
it into the base model.

The resulting application structural view, 2 of the inter-
esting application state views and the beginning of the appli-
cation sequence diagram that are obtained after the weaving

of these instantiation instructions are shown in Fig. 13. In
all three views it is (graphically) obvious that the different
concerns (context, tracing, checkpointing, recovery) are tan-
gled. Looking, for example, at the structure diagram it is
not obvious to say which entities and methods are involved
in, for example, establishing checkpoints. The annotations
on the left hand side of the sequence diagram also show that,
for example, functionality provided by Tracing is scattered
throughout the diagram. Finally, the generated models are
considerably bigger than the individual aspect models. The
complete final sequence diagram, for example, is 4 times
longer, but had to be truncated to fit on to the page.

It is also interesting to note here that during our model-
ing effort, we were able to detect subtle errors in our models
thanks to the consistency checks between the final sequence
diagram and the state views. In our sequence diagrams, Re-
covering specified that the restoration of checkpoints was to
be performed after the context completes. We had forgotten
that Checkpointing specified that all checkpoints should be
discarded when the context completes. We discovered that
mistake because the state view of |Checkpointable refused to
accept a restore message after a discard had already been
processed (see Fig. 4).

5. RELATED WORK
Our RAM approach is based on the class diagram com-

position approach [10] (called Kompose) and the generic as-
pect model weaving approach (called GeKo) [19] to weave
both state and sequence diagrams as presented in section 2.
However, we believe that the RAM approach could be easily
adapted to run on other model weavers that support model
composition and model weaving. The major related aspect-
oriented modeling tools and approaches are briefly described
in this subsection.

Clarke and Baniassad [7] define the Theme/UML approach.
It introduces a theme module that can be used to represent
a concern at the modeling level. Themes are declaratively
complete units of modularization, in which any of the dia-
grams available in the UML can be used to model one view of
the structure and behavior the concern requires to execute.
In Theme/UML, class diagrams and sequence diagrams are
typically used to describe the structure and behavior of the
concern being modeled. Just like in our approach, the bind-
ing to a base model is done by template parameter instan-
tiation. In contrast to our approach, Theme/UML does not
support model weaving, and hence does not allow the weaver
to perform consistency checks between different views.

Similarly to our approach, Whittle and Araujo [22] repre-
sent behavioral aspects with scenarios. Aspectual scenarios
are modeled as interaction pattern specifications and are
composed with specification scenarios. The weaving process
is performed in two steps. First state machines are gener-
ated from the aspects and from the specification. The weav-
ing is then performed by composing the obtained state ma-
chines. Their approach differs from ours since it focusses on
sequence diagrams only. We propose in [17, 16] a semantics-
based weaver for sequence diagrams. This weaver allows the
detection of join points which cannot be detected if only the
syntax of the model is used.

The Motorola WEAVR approach [8] and tool have been
developed in an industrial setting. Behavior is modeled with
SDL, a formalism related to state diagrams and activity di-
agrams. In order to be able to reuse aspects, mappings have

to be defined (equivalent to our instantiations) that link a
reusable aspect to the application-specific context in which
it is to be deployed. The WEAVR approach differs from our
approach since it exclusively focusses on SDL.

Whittle and Jayaraman [23] have recently proposed an in-
teresting aspect-oriented modeling tool called MATA. This
tool uses graph transformations to specify and weave aspects
at the modeling level. MATA can be applied to any model-
ing language with a well-defined meta model, and some case
studies have been proposed using mainly class, sequence,
and state diagrams. With MATA, both pointcut and advice
are specified on the same model, whereas with our approach
both pointcut and advice are separately specified. At first
glance, the composition and weaving mechanisms offered by
MATA seems powerful enough to implement the RAM ap-
proach. Similarly, Groher and Voelter [12] have proposed
a weaver based on the Eclipse Modeling Framework (EMF)
Ecore meta meta model [4]. This means that the approach
can weave models that are instances of Ecore (meta mod-
els). XWeave weaves crosscutting concerns encapsulated as
aspect models into (non-AO) base models. This is a form of
asymmetric model weaving (similary to GeKo), where there
is a designated base model into which a number of aspect
models are woven (as opposed to symmetric weaving, where
there is no designated base model). Weaving is done based
on matching names of elements in the aspect and the base
model. Additionally, pointcuts based on the openArchitec-
tureWare (oAW) expression language [3] can be defined to
select sets of model elements as join points. XWeave cannot
remove, change, or override existing base model elements
using aspects. XWeave thus currently supports essentially
only additive weaving, where additional elements are added
to the base model.

In [21], Stein et al. introduce a way to express various
conceptual models of pointcuts (called JPDDs for Join Point
Designation Diagrams) in aspect-oriented design. Structural
and behavioral modeling is achieved by employing for in-
stance class diagrams, state charts, and sequence diagrams.
In contrast to our approach, their objective is not to perform
the weaving at the modeling level, but rather to generate
code for aspect-oriented programs from an aspect-oriented
design as shown in [13]. Again, it would be possible to
change the notation used in our approach and express point-
cuts using JPDDs, if modelers find them more intuitive.

6. CONCLUSION AND FUTURE WORK
This paper presented Reusable Aspect Models (RAM), an

aspect-oriented multi-view modeling approach. The main
contributions of RAM are:

• RAM is the first AOM approach that integrates class
diagram, sequence diagram and state diagram AOM
techniques. As a result, RAM aspect models can de-
scribe the structure and the behavior of a concern un-
der study.

• Reuse of aspect models in RAM is simple and flexible.
Flexibility is achieved by allowing any model element
to optionally be composed or extended through bind-
ings. Correct reuse is enforced by the weaver, which
makes sure that compatible model elements are pro-
vided for all mandatory instantiation parameters when
an aspect is instantiated, and eventual bindings de-
fined in a higher aspect are compatible with the bind-
ings in the reused aspect.

• RAM supports the creation of elaborate aspect depen-
dency chains. This makes it possible to model aspects
that provide complex functionality by decomposing
them into aspects that provide simpler functionality.
Vice versa, aspects providing simpler functionality can
be reused in several aspects of complex functionality.
As a result, scattering and tangling of models can be
prevented at all complexity levels.

• The RAM weaver performs extensive consistency checks
during the weaving and on the final woven model to
ensure that the composition directives of the state and
message views are consistent.

• RAM defines a detailed weaving algorithm that re-
solves aspect dependencies recursively to generate in-
dependent aspect models and ultimately generate the
final application model. Dependencies are resolved at
weave-time only in order to maximize the benefits of
reuse.

We have shown that the RAM approach can handle the mod-
eling of complex aspect frameworks by applying it to model
AspectOptima, an aspect-oriented framework for the gener-
ation of transaction middleware. Even though we only mod-
eled the part of AspectOptima that deals with providing the
atomicity property of transactions, the obtained RAM mod-
els of the individual aspects were a magnitude smaller than
the woven final models.

The case study leads us to believe that RAM provides
scalable and consistent multi-view modeling. Support for
aspect-orientation and for dependencies among aspects al-
lows the developer to modularize concerns at multiple lev-
els. Enforcement of correct aspect reuse, and model check-
ing performed on the views of the final woven model ensure
global view consistency. In order to make a conclusive state-
ment, however, further experiments are necessary.

We already have implemented tool support for RAM in
Eclipse based on Kompose [2] and GeKo [9]. It can be
downloaded from [5]. So far, however, only class and se-
quence diagrams are supported. In this restricted context
we have also developed a technique that allows the RAM
weaver to automatically handle aspect conflicts for users of
aspect models, if the developer of the aspect model has pre-
viously identified and resolved the conflict by providing an
aspect conflict resolution model. We are currently working
on extending the approach to also include state diagrams.

Finally, we believe that in order to be complete, RAM
aspect models should be extended by adding yet another
kind of view that describes the detailed execution paths for
individual methods. Detailed method algorithms could be
expressed, for instance, with UML activity diagrams or SDL.
With this additional view, RAM would be capable of gener-
ating final application models that are fully executable.

7. REFERENCES

[1] Aspect-Oriented Modeling Workshop Series.
http://www.aspect-modeling.org/.

[2] Kompose. http://www.kermeta.org/mdk/kompose/.

[3] openArchitectureWare.
http://www.eclipse.org/gmt/oaw/.

[4] The Eclipse Modeling Framework.
http://www.eclipse.org/emf/.

[5] AspectOPTIMA Webpage:
http://aspectoptima.cs.mcgill.ca/, 2007.

[6] Bölükbaşi, G. Aspectual Decomposition of
Transactions. Master’s thesis, School of Computer
Science, McGill University, Montreal, Canada, 2007.

[7] Clarke, S., and Baniassad, E. Aspect-Oriented
Analysis and Design: The Theme Approach. Addison
Wesley, 2005.

[8] Cottenier, T., v.d. Berg, A., and Elrad, T.
Stateful aspects: the case for aspect-oriented
modeling. In 10th Aspect-Oriented Modeling Workshop
(2007), ACM Press.

[9] Fleurey, F., Baudry, B., France, R., and
Ghosh, S. A generic approach for automatic model
composition. In 11th Aspect-Oriented Modeling
Workshop (2007).

[10] France, R., Ray, I., Georg, G., and Ghosh, S.
Aspect-oriented approach to early design modelling.
IEE Proceedings Software (August 2004), 173–185.

[11] Gray, J., and Reuter, A. Transaction Processing:
Concepts and Techniques. Morgan Kaufmann, 1993.

[12] Groher, I., and Voelter, M. Xweave: Models and
aspects in concert. In 10th Aspect-Oriented Modeling
Workshop (2007).

[13] Hanenberg, S., Stein, D., and Unland, R. From
aspect-oriented design to aspect-oriented programs:
tool-supported translation of JPDDs into code. In
AOSD (2007), pp. 49–62.

[14] Kienzle, J., Duala-Ekoko, E., and Gélineau, S.
AspectOPTIMA: A Case Study on Aspect
Dependencies and Interactions. TAOSD (to be
published).

[15] Kienzle, J., and Gélineau, S. AO Challenge:
Implementing the ACID Properties for Transactional
Objects. In AOSD (2006), ACM Press, pp. 202 – 213.

[16] Klein, J., Fleurey, F., and Jézéquel, J. M.
Weaving multiple aspects in sequence diagrams.
TAOSD LNCS 4620 (2007), 167–199.

[17] Klein, J., Hélouet, L., and Jézéquel, J.-M.
Semantic-based weaving of scenarios. In AOSD
(2006), ACM Press, pp. 27–38.

[18] Klein, J., and Kienzle, J. Reusable Aspect
Models. In 11th Aspect-Oriented Modeling Workshop
(September 2007).

[19] Morin, B., Klein, J., Barais, O., and Jezequel,
J.-M. A generic weaver for supporting product lines.
In Early Aspects Workshop at ICSE (2008).

[20] Reddy, R., Ghosh, S., France, R. B., Straw,
G., Bieman, J. M., Song, E., and Georg, G.
Directives for composing aspect-oriented design class
models. TAOSD LNCS 3880 (2006), 75–105.

[21] Stein, D., Hanenberg, S., and Unland, R.
Expressing different conceptual models of join point
selections in aspect-oriented design. In AOSD (2006),
ACM Press, pp. 15–26.

[22] Whittle, J., and Araújo, J. Scenario modelling
with aspects. IEE Proceedings - Software 151, 4
(2004), 157–172.

[23] Whittle, J., and Jayaraman, P. Mata: A tool for
aspect-oriented modeling based on graph
transformation. In 11th Aspect-Oriented Modeling
Workshop (2007).

+
 A

c
c
o
u
n
t
c
re

a
te

()
+

 d
e
s
tr

o
y
()

+
 w

it
h
d
ra

w
(i
n
t
a
m

o
u
n
t)

+
 d

e
p
o
s
it
(i
n
t
a
m

o
u
n
t)

-
K

in
d
 g

e
tA

c
c
e
s
s
K

in
d
(M

e
th

o
d
 m

)
-

A
c
c
o
u
n
t
c
lo

n
e
()

-
c
o
p
y
S

ta
te

(A
c
c
o
u
n
t
fr

o
m

)
-

T
ra

c
e
 c

re
a
te

T
ra

c
e
(M

e
th

o
d
 m

)
-

e
s
ta

b
lis

h
()

-
re

s
to

re
()

-
d
is

c
a
rd

()

!

A
c
c
o

u
n

t

1

m

y
T

ra
c
e

+
 C

o
n
te

x
t
c
re

a
te

()
+

 d
e
s
tr

o
y

-
a
d
d
P

a
rt

ic
ip

a
n
t(

T
h
re

a
d
 t
)

-
re

m
o
v
e
P

a
rt

ic
ip

a
n
t(

T
h
re

a
d
 t
)

-
O

u
tc

o
m

e
 g

e
tO

u
tc

o
m

e
()

-
s
e
tO

u
tc

o
m

e
(O

u
tc

o
m

e
 o

)
-

b
o
o
le

a
n
 w

a
s
M

o
d
ifi

e
d
(A

c
c
o
u
n
t
o
b
j)

-
A

c
c
o
u
n
t[
]
g
e
tM

o
d
ifi

e
d
()

-
a
d
d
T

ra
c
e
(T

ra
c
e
 t
)

-
a
d
d
T

ra
c
e
s
(T

ra
c
e
 t
[]
)

-
T

ra
c
e
[]
 g

e
tT

ra
c
e
s
()

-
re

m
o
v
e
T

ra
c
e
(T

ra
c
e
 t
[]
)

-
re

s
to

re
C

h
e
c
k
p
o
in

ts
()

!

C
o

n
te

x
t

+
 i
n
s
e
rt

(T
ra

c
e
 t
)

+
 T

ra
c
e
[]
 fi

n
d
T

ra
c
e
s
(A

c
c
o
u
n
t
o
)

+
 T

ra
c
e
[]
 g

e
tT

ra
c
e
s
()

!

T
ra

c
e
L

is
t

+
 c

re
a
te

(M
e
th

o
d
 m

,
K

in
d
 k

,
A

c
c
o
u
n
t
t)

+
 b

o
o
le

a
n
 w

a
s
A

p
p
lie

d
T
o
(A

c
c
o
u
n
t
t)

+
 b

o
o
le

a
n
 i
s
M

o
d
if
y
()

!

T
ra

c
e

0
..

*

 e
le

m
e

n
ts

1 o
b

j
+

 p
u
s
h
(A

c
c
o
u
n
t
e
)

+
 A

c
c
o
u
n
t
g
e
tL

a
s
t(

)
+

 d
is

c
a
rd

L
a
s
t(

)

!

S
ta

c
k

m
y
S

ta
c
k

1

0
..

*

m
y
C

o
n

te
x
t

1

0
..

1

p
a

rt
ic

ip
a

n
t

+
 T

h
re

a
d
 c

re
a
te

()
+

 d
e
s
tr

o
y
()

+
 R

e
c
o
v
e
ri
n
g
C

o
n
te

x
t
g
e
tC

o
n
te

x
t(

)
+

 c
re

a
te

A
n
d
E

n
te

rC
o
n
te

x
t(

)
+

 v
o
te

A
n
d
L
e
a
v
e
C

o
n
te

x
t(

)
-

s
e
tC

o
n
te

x
t(

R
e
c
o
v
e
ri
n
g
C

o
n
te

x
t
c
)

-
le

a
v
e
C

o
n
te

x
t(

)

!

T
h

re
a
d

In
s
ta

n
ti

a
te

d

s
d

 T
h

re
a

d

In
s
id

e

O
u

ts
id

e
W

o
rk

in
g

c
re

a
te

A
n
d

E
n
te

rC
o
n
te

x
t

!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!v

o
te

A
n
d
L
e
a
v
e

!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
C

o
n
te

x
t

V
o

ti
n

g
s
e
tC

o
n
te

x
tc
re

a
te

d
e
s
tr

o
y

A
n

y

g
e
tC

o
n
te

x
t

E
n

te
ri

n
g

L
e
a
v
in

g
le

a
v
e

C
o
n
te

x
t

s
e
tC

o
n
te

x
t

In
s
ta

n
ti

a
te

d

A
c
ti

v
e

c
o
n
te

x
t

C
o
m

p
le

te
d

a
d
d
P

a
rt

ic
ip

a
n
t

s
d

 C
o

n
te

x
t

A
c
ti

v
e

B
e
fo

re
V

o
te

A
ft

e
rV

o
te

re
m

o
v
e

P
a
rt

ic
ip

a
n
t

s
e
tO

u
tc

o
m

e

c
re

a
te

A
n

y

g
e
tM

o
d
ifi

e
d

g
e
tT

ra
c
e
s

w
a
s
M

o
d
ifi

e
d

a
d
d
T

ra
c
e

a
d
d
T

ra
c
e
s

Id
le

C
o

m
p

le
te

d

d
e
s
tr

o
y

!!
!!
!!
!!
!!
re

s
to

re
C

h
e
c
k
p
o
in

ts

!

!!
!

a

c
c
e

s
s
K

in
d

 :
=

 g
e

tA
c
c
e

s
s
K

in
d

(m
)

!

!!
!

!!
!!
!!
!!
!!
!c

re
a

te
A

n
d

E
n

te
rC

o
n

te
x
t(

)

t:
 T

h
re

a
d

a
:

A
c
c
o

u
n

t

!

!!
!

 m
y
C

o
n

te
x
t

:=
 g

e
tC

o
n

te
x
t(

)n
e
w

C
o

n
te

x
t:

R

e
c
o

v
e
ri

n
g

C
o

n
te

x
t

s
e

c
o

n
d

T
im

e
 :
=

 w
a

s
M

o
d

ifi
e

d
(a

)

w
it
h

d
ra

w
(1

0
0

)

o
p

t
[n

o
t

s
e

c
o

n
d

T
im

e
]

e
s
ta

b
lis

h
()

m
y
S

ta
c
k
:

S
ta

c
k

p
u

s
h

(n
e

w
C

h
e

c
k
p

o
in

t)

!

!!
!

 n

e
w

C
h

e
c
k
p

o
in

t
:=

 c
lo

n
e

()

n
e
w

C
h

e
c
k
p

o
in

t:
 A

c
c
o

u
n

t
n

e
w

C
h

e
c
k
p

o
in

t
:=

 c
re

a
te

()

c
o

p
y
S

ta
te

(a
)

 i
n

c
lu

d
e

 :
=

 w
a

s
A

p
p

lie
d

T
o

(o
)

o
p

s
 :
=

 fi
n

d
T

ra
c
e

s
(o

)

t:
 T

ra
c
e

lo
o

p
 [
t
w

it
h

in
 e

le
m

e
n

ts
]

lo
o

p
 [
i
w

it
h

in
 o

p
s
,
fo

u
n

d
 "

 t
ru

e
]

i:
 T

ra
c
e

fo
u

n
d

 :
=

 i
s
M

o
d

if
y
()

!

!!
!

m

y
C

o
n

te
x
t

:=
 g

e
tC

o
n

te
x
t(

)

tr
a

c
e

d
O

p
 :

=
 c

re
a

te
T

ra
c
e

(|
m

)

a
d

d
T

ra
c
e

(t
ra

c
e

d
O

p
)

in
s
e

rt
(t

ra
c
e

d
O

p
)

tr
a
c
e
d

O
p

:
T

ra
c
e

 t
ra

c
e

d
O

p
 :
=

 c
re

a
te

(m
,
a

c
c
e

s
s
K

in
d

,
|t
a

rg
e

t)

n
e

w
C

o
n

te
x
t

:=
 c

re
a

te
()

a
d

d
P

a
rt

ic
ip

a
n

t(
t)

!

!!
!

 s

e
tC

o
n

te
x
t(

n
e

w
C

o
n

te
x
t)

m
y
T

ra
c
e
:

T
ra

c
e
L

is
t

Context Checkpointing

TracingTracing

Traceable

Checkpointable

Copyable

AC

--
-

d
e
p
o
s
it
 a

n
d
 v

o
te

A
n
d
L
e
a
v
e
C

o
n
te

x
t
s
k
ip

p
e
d
 f
o
r

s
p
a
c
e
 r

e
a
s
o
n
s
 -

--

Figure 13: Woven Application Model

