
L.-J. Zhang and M. Jeckle (Eds.): ECOWS 2004, LNCS 3250, pp. 168–182, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Aspect-Oriented Web Service Composition with
AO4BPEL

Anis Charfi* and Mira Mezini

Software Technology Group
Darmstadt University of Technology

{charfi,mezini}@informatik.tu-darmstadt.de

Abstract. Web services have become a universal technology for integration of
distributed and heterogeneous applications over the Internet. Many recent
proposals such as the Business Process Modeling Language (BPML) and the
Business Process Execution Language for Web Services (BPEL4WS) focus on
combining existing web services into more sophisticated web services.
However, these standards exhibit some limitations regarding modularity and
flexibility. In this paper, we advocate an aspect-oriented approach to web
service composition and present AO4BPEL, an aspect-oriented extension to
BPEL4WS. With aspects, we capture web service composition in a modular
way and the composition becomes more open for dynamic change.

Keywords: Adaptive web service composition, aspect-oriented programming,
separation of concerns, BPEL.

1 Introduction

When the Web first emerged, it was mainly an environment for publishing data.
Currently, it is evolving into a service-oriented environment for providing and
accessing not only static pages but also distributed services. The Web Services [1]
framework embodies the paradigm of Service-Oriented Computing (SOC) [2]. In this
model, applications from different providers are offered as services that can be used,
composed and coordinated in a loosely-coupled manner.

Web services are distributed autonomous applications that can be discovered,
bound and interactively accessed over the Web. Although there can be some value in
accessing a single web service, the greater value is derived from assembling web
services into more powerful applications. Web service composition does not involve
the physical integration of all components: The basic components that participate in
the composition remain separated from the composite web service. As in Enterprise
Application Integration (EAI), specifying the composition of web services means
specifying which operations need to be invoked, in what order, and how to handle
exceptional situations [1].

* Supported by the German National Science Foundation (DFG) as part of the PhD program

“Enabling Technologies for Electronic Commerce” at Darmstadt University of Technology.

Aspect-Oriented Web Service Composition with AO4BPEL 169

Several composition languages have been proposed e.g., WSCI [3], BPML [4] and
BPEL4WS [5]. These languages are process-based and have their origins in Workflow
Management Systems (WFMS) [6]. A process defines the logical dependencies
between the web services to be composed by specifying the order of interactions
(control flow) and rules for data transfer between the invocations (data flow). In this
paper, we identify two major problems of current composition languages.

The first problem concerns the modularity of the composition specification. A real-
life composite web service usually offers several composite operations, each of which
is specified as a business process that in turn aggregates other more elementary
operations. Such hierarchical modularization of the composition specification
according to the aggregation relationships between the involved business processes
might not be the most appropriate modularization schema for some aspects of the
composition that address issues such as classes of service, exception handling, access
control, authentication, business rules, auditing, etc. The code pertaining to these
concerns often does not fit well into the process-oriented modular structure of a web
service composition, but rather cuts across the process boundaries. Without support
for modularizing such crosscutting concerns [7] (this term is used to describe
concerns whose implementation cuts across a given modular structure of the software)
their specification is scattered around the processes and tangled with the specification
of other concerns within a single process. This makes the maintenance and evolution
of the compositions more difficult. When a change at the composition level is needed,
several places are affected – an expensive and error-prone process.

The second problem that we identify with process-oriented composition languages
concerns support for dynamic adaptation of the composition logic. Such languages
assume that the composition logic is predefined and static, an assumption that does
not hold in the highly dynamic context of web services. In fact, new web services are
offered and others disappear quite often. In addition, the organizations involved in a
web service composition may change their business rules, partners, and collaboration
conditions. This motivates the need for more flexible web service composition
languages, which supports the dynamic adaptation of the composition.

In order to tackle these limitations, we propose to extend process-oriented
composition languages with aspect-oriented modularity mechanisms. The aspect-
oriented programming (AOP for short) paradigm [9] provides language mechanisms
for improving the modularity of crosscutting concerns. Canonical examples of such
concerns are authorization and authentication, business rules, profiling, object
protocols, etc. [10]. The hypothesis underlying AOP is that modularity mechanisms
so far support the hierarchical decomposition of software according to a single
criterion, based e.g., on the structure of data (a.k.a. object-based decomposition) or on
the functionality to be provided (a.k.a. functional decomposition). Crosscutting
modularity mechanisms [7] supported by AOP aim at breaking with this tyranny of a
single decomposition [11] and support modular implementation of crosscutting
concerns. Furthermore, with support for dynamic weaving [12, 13, 14], aspects can be
activated/deactivated at runtime. In this way, aspects can also be used to adapt the
application’s behavior dynamically.

In this paper we present an aspect-oriented extension to BPEL4WS (BPEL for
short) and show how this extension is useful for both improving the modularity of
web service composition specifications and supporting dynamic adaptations of such
compositions. Our approach is not specific to BPEL, though, and can be applied to
any process-oriented composition language that supports executable business

170 A. Charfi and M. Mezini

processes. BPEL was chosen as the basis technology merely because it is becoming
the standard language for web service composition.

The remainder of the paper is organized as follows. Sec. 2 gives a short overview
of how web service compositions are expressed in BPEL and discusses the limitations
of this approach. Sec. 3 gives an overview of our aspect-oriented extension to BPEL
and discusses how the limitations identified in Sec. 2 are addressed by it. We report
on related work in section 4. Sec. 5 concludes the paper.

2 Process-Based Web Service Composition

In this section, we shortly introduce web service composition with BPEL as a
representative for process-oriented web service composition languages and then
consider its limitations.

2.1 Introduction to BPEL4WS

BPEL is a workflow-based composition language. In traditional workflow
management systems, a workflow model represents a business process that consists of
a set of basic and structured activities and the order of execution between them [15].
BPEL introduces control structures such as loops, conditional branches, synchronous
and asynchronous communications. The building blocks of business processes are
activities. There are primitive activities such as <invoke> and structured activities that
manage the overall process flow and the order of the primitive activities. Variables
and partners are other important elements of BPEL. Variables are used for data
exchange between activities and partners represent the parties that interact with the
process. Executable BPEL processes can run on any BPEL-compliant execution
engine such as BPWS4J [16]. The execution engine orchestrates the invocations of
the partner web services according to the process specification.

For illustration, Listing 1 shows a simple BPEL process from [16]. This process
returns a string parameter back to the client whenever the operation echo is called. It
consists of a <sequence> activity that contains two basic activities. The activity
<receive> specifies that the process must wait until the client calls the operation
echo. The activity <reply> specifies that the process has to send the message
contained in the variable request to the client.

<process name = “echoString” …/>
 <variables>
 <variable name="request" messageType="StringMessageType"/>
 </variables>
 <partners>
 <partner name="caller" serviceLinkType="tns:echoSLT"/>
 </partners>
 <sequence name="EchoSequence">
 <receive partner="caller" portType="tns:echoPT"

 operation="echo" variable="request"

Aspect-Oriented Web Service Composition with AO4BPEL 171

 createInstance="yes" …/>
 <reply partner="caller" portType="tns:echoPT"

 operation="echo" variable="request"
 name="EchoReply"/>

 </sequence>
</process>

Listing 1. A simple process in BPEL4WS

2.2 Limitations of BPEL4WS

BPEL exhibits two major shortcomings: (a) lack of modularity for modeling
crosscutting concerns and (b) inadequate support for changing the composition at
runtime. In the following we elaborate on each of them.

2.2.1 Lack of Modularity in Modeling Crosscutting Concerns. As already
mentioned in the introduction, a hierarchical modularization of the web service
composition according to the aggregation relationships between the involved business
processes might not be the most appropriate modularization schema for aspects of the
composition that address issues such as classes of service, exception handling, access
control, authentication, business rules, auditing, etc. Let us illustrate by the example
of a simple travel service shown in Figure 1 how the code pertaining to these concerns
cuts across the process boundaries and is not modularized. Our example travel web
service provides the operations getFlight and getHotel which are specified as BPEL
business processes (schematically represented by the vertical bars in Figure 1). A
production web service usually provides several composite operations targeting
different market segments.

Now, let us consider auditing [17] - an essential part of any workflow management
system concerned with monitoring response times, logging, etc. An organization that
composes external partner services is interested in measuring the response times of its
partners because the response time of its service depends on those of the partners. The
code needed for performing various auditing tasks will be scattered around the
processes for composite operations, tangled in all these places with other concerns
pertaining to these operations. This is because BPEL does not provide means to
express in a modular way (in a dedicated module) at which points during the
execution of various processes of a composite web service to gather, what auditing
information. The resulting composition definition becomes complex and difficult to
reason about it.

Similar modularity deficiencies can also be observed if we consider the calculation
of the price for using the composite travel service in Figure 1. The code for the price
calculation can certainly be encapsulated in some externalized web service. Both
operations getFlight and getHotel in Figure 1 do indeed share such a common billing
web service, ws1. What is not encapsulated, though, is the decision about “where” and
“when” to trigger the billing functionality, i.e., the protocol that needs to be
established between the operations getFlight and getHotel and the billing service. The
code that is responsible for invoking the billing service is not modularized in one
place: It crosscuts the modular process-based structure of the composition, as

172 A. Charfi and M. Mezini

illustrated by the grey area cutting across the boundaries of the vertical bars
(processes) in Figure 1. As a consequence, if the billing service ws1 is replaced by
some other billing service ws2, or the billing policy changes, we would have to
change both process specifications for getFlight and getHotel. The problem is much
more critical if we have more than two composite operations, which is to be expected
in real complex web services. In general, one has to find out all the code that pertains
to a certain concern and change it consistently. This is unfortunate especially because
business rules governing pricing policies can be expected to change often.

Fig. 1. Crosscuts in process-based web service composition

In general, business rules are typical examples of crosscutting concerns [18] in web
service compositions. In the very competitive business context worldwide, business
rules evolve very often (new partners, strategies…). Currently business rules are not
well modularized in BPEL process specifications. Thus, when new business rules are
defined, they get scattered over several processes. The resulting application is badly
modularized, which hampers maintenance and reusability [18].

Again, the problem is that implementing business rules effects, in general, sets of
points in the execution of the web services which transcend process boundaries. At
present, BPEL does not provide any concepts for crosscutting modularity. This leads
to tangled and scattered process definitions: One process addresses several concerns
and the implementation of a single concern appears in many places in the process
definition. If crosscutting concerns were well separated, process designers could
concentrate on the core logic of process composition and process definitions become
simpler. One would be able e.g., to exchange security policies without modifying the
functional part (independent extensibility).

2.2.2 Changing the Composition at Runtime. When a BPEL process is deployed,
the WSDL files of all the services participating in the composition must be known
and once a process has been deployed, there is no way to change it dynamically. The
only flexibility in BPEL is dynamic partner binding. This static view of the world is
inherited from traditional workflow management systems from which the process-
oriented web service composition model emerged; WFMS exhibit a major deficiency,

calcprice

Process 2

 calcprice

Travel
web service

Process 1

Pricing
ws2

Pricing
ws1

getHotelgetFlight

crosscutting
concern

Aspect-Oriented Web Service Composition with AO4BPEL 173

namely the inadequate support of evolutionary and on-the-fly changes demanded by
practical situations [19].

However, web service compositions implement cross-organizational
collaborations, a context in which several factors call for evolution of the
composition, such as changes in the environment, technical advances like updating of
web services, addition or removal of partner web services, and variation of non-
functional requirements. Some of these changes require dynamic adaptation, i.e., the
composition must be open for dynamic modification, which is not possible in BPEL.

One might argue that if a runtime process change is required, we just have to stop
the running process, modify the composition, and restart. This is actually the only
way to implement such changes in BPEL. However, this is not always a feasible
solution for several reasons. First, stopping a web service may entail a loss of
customers. Second, especially in B2B scenarios, a composite operation may run very
long, which may prevent us from stopping it. If we stop such a long-running
transaction, we must roll back or compensate all previously performed activities.
Third, the modification of the composition schema on a case-by-case basis leads to all
kinds of exceptions. Last but not least, several situations require runtime ad-hoc
derivation from the original planned business process. In general, such derivations are
necessary if users are involved in making decisions and also if unpredictable events
occur [19]. Such changes should affects only some process instances at runtime.

To illustrate the issues, consider a travel agency portal which aggregates
information from partner web services (airline companies and hotel chains). The
resulting travel portal is a composite web service exposing three composite operations
as shown in Figure 2. Each of these operations is specified as a business process in
BPEL e.g., the operation getTravelPackage aggregates two airline web services and a
hotel web service.

Fig. 2. A Travel portal as a composite web service

Assume that we want to add car rental to the composite operations
getTravelPackage and getFlight. This way, when the client requests a flight or a
travel package, she also gets propositions for car rental. One can also envisage
variations of this adaptation, where such an offer is only made to frequent customers

Lufthansa

searchFlight(..)

findFlight(..)

Travel Portal

findRoom(..)

showHotels(..)

getTravelPackage(..)

getFlight(..)

hotels.com

Air France

BPEL Process

174 A. Charfi and M. Mezini

or to those clients that have specified interest in the offer in their profiles. In this case,
the adaptation should be effective only for specific business process instances.

It should be noted that the adaptations of the composition logic such as the one
illustrated here require, in general, a semantic adaptation mechanism to bridge the
compositional mismatch [15]. In component composition languages [20] this kind of
adaptation is enabled by glue code. Similarly, when we compose web services, we
have to adapt their interfaces by writing glue code. BPEL supports only data
adaptability by means of the <assign> activity. This activity allows one to create new
messages or modify existing ones, using parts of other messages, XPath expressions,
or literal values. Data adaptability deals with the structure of data. Glue code support
is still missing in BPEL.

3 Aspect Oriented Web Service Composition

Aspect-Oriented Programming (AOP) [9] is a programming paradigm explicitly
addressing the modularization of crosscutting concerns, which makes AOP the
technology of choice to solve the problems discussed in Sec. 2. While it has been
mostly applied to object-oriented programming, it is applicable to other programming
styles [21], including the process-oriented style. We propose to use aspects as a
complementary mechanism to process-oriented web service composition and argue
that the definition of dynamic aspects at the BPEL level allows for more modularity
and adaptability.

3.1 Introduction to Aspect-Oriented Programming

AOP introduces a new unit of modularity called aspect aimed at modularizing
crosscutting concerns in complex systems. In this paper, we will use the terminology
of AspectJ [22], the most mature AOP language today. In this terminology, there are
three key concepts of AOP: join points, pointcuts and advice. Join points are points in
the execution of a program [22]. In object-oriented programs, examples of join points
are method calls, constructor calls, field read/write, etc.

In order to modularize crosscuts, a means is needed to identify related join points.
For this purpose, the notion of a pointcut is introduced – a predicate on attributes of
join points. One can select related method execution points, e.g., by the type of their
parameters or return values, by pattern matching on their names, by their modifiers,
etc. Similar mechanisms are available to select sets of related setter / getter execution
points, sets of constructor calls / executions, exception handlers, etc. Current AOP
languages come with predefined pointcut constructs (pointcut designators) in AspectJ.

Finally, behavioral effect at join points identified by a pointcut is specified in an
advice. The advice code is executed when a join point in the set identified by the
pointcut is reached. It may be executed before, after, or instead, the join point at hand,
corresponding to before, after and around advice. The code specified in a before,
respectively after advice is executed before, respectively after the join points in the
associated pointcut have executed. With the around advice the aspect can control the

Aspect-Oriented Web Service Composition with AO4BPEL 175

execution of the original join point: It can integrate the further execution of the
intercepted join point in the middle of some other code to be executed around it.

An aspect module consists in general, of several pointcut definitions and advice
associated to them. In addition, it may define state and methods which in turn can be
used in the advice code. Listing 2 shows a simple logging aspect in AspectJ, which
defines a pointcut loggableMethods specifying where the logging concern should be
integrated into the execution of the base functionality – in this case, the interesting
join points are the executions (the call pointcut designator) of all public methods
called bar, independent of the class they are defined in, their return type, as well as
the number and type of the parameters (wildcards * and ..). The aspect also defines an
advice associated to the pointcut loggableMethods that prints out a logging message
before any of the points in loggableMethods is executed. The advice specifies when
and what behavior must execute at the selected join points.

 public aspect Logging{

 pointcut loggableMethods(): call(public * *.bar(..)) ;

 before() : loggableMethods()
 {
 System.out.println("foo called");
 }
 }

Listing 2. A logging aspect in AspectJ

Integrating aspects into the execution of the base functionality is called weaving. In
static AOP approaches, as e.g., in AspectJ, at compile-time/load-time pointcuts are
mapped to places in the program code whose execution might yield a join point at
runtime. The latter are instrumented to add calls to advice and eventually dynamic
checks that the identified places in code do actually yield a join point at runtime [23].
In dynamic AOP [12, 13, 14] languages, aspects can be (un)deployed at application
runtime, the behavior of which can thus be adapted dynamically.

3.2 Overview of AO4BPEL

Here we present AO4BPEL, an aspect-oriented extension to BPEL4WS, in which
aspects can be (un)plugged into the composition process at runtime. Since BPEL
processes consist of a set of activities, join points in our model are well-defined points
in the execution of the processes: Each BPEL activity is a possible join point.
Pointcuts in AO4BPEL are a means for referring to (selecting) sets of join points that
span several business processes at which crosscutting functionality should be
executed. The attributes of a business process or of a certain activity can be used as
predicates to choose relevant join points. E.g., to refer to all invocations of a partner
web service, we use the attributes partnerLink and portType of the activity <invoke>.
Since BPEL processes are XML documents, XPath [24] – a query language for XML
documents – is a natural choice as the pointcut language. In an AO4BPEL aspect, the
element <pointcut> is an XPath expression selecting those activities where the

 Where ?

 When ?

 What ?

176 A. Charfi and M. Mezini

execution of additional crosscutting functionality will be integrated. XPath provides
logical operators, which can be used to combine pointcuts.

Like AspectJ, we support before, after and around advice. An advice in AO4BPEL
is an activity specified in BPEL that must be executed before, after or instead of
another activity. The around advice allows replacing an activity by another (dummy)
activity. Sometimes we need to define some advice logic which cannot be expressed
in BPEL4WS. One could use code segments in a programming language like Java in
Collaxa’s JBPEL [25] for this purpose. However, this breaks the portability of BPEL
processes, which is the reason for us to use what we call infrastructural web services.
Such services provide access to the runtime of the orchestration engine. We set up a
Java code execution web service, which invokes an external Java method in a similar
way to Java Reflection. Each code snippet that is required within an AO4BPEL
advice can be defined as a static method in a Java class.

Figure 3 sketches the overall architecture of our aspect-aware BPEL orchestration
engine. The system consists of five subcomponents: the process definition and
deployment tool, the BPEL runtime, the aspect definition and deployment tool, the
aspect manager, and the infrastructural services. The core components are the BPEL
runtime and the aspect manager. The BPEL runtime is an extended process
interpreter. It manages process instances, message routing and takes aspects into
account. The aspect definition and deployment tool manages the registration and
activation of aspects. The aspect manager controls aspect execution.

Fig. 3. Architecture of an aspect-aware web service composition system

In our first implementation, we intend to support only <invoke> and <reply> join
points because basic activities represent the interaction points of the composition with
the external partners. The most straightforward way to implement a dynamic aspect-
aware orchestration engine is to extend the process interpreter function to check if
there is an aspect before and after the interpretation of each activity. If this is the case,
the aspect manager executes the advice and then returns control to the process
interpreter. We believe that for the first prototype, the performance overhead induced
by these local checks is negligible compared to the cost of interacting with an external
web service.

BPEL
Runtime

Java Platform
Infrastructural
web services

Aspect Manager

Process
definition and

deployment tool

Process
Interpreter

Aspect
definition and

deployment tool

Aspect
repository

Aspect-Oriented Web Service Composition with AO4BPEL 177

3.3 Examples Revisited

In this section, we show how the examples from Section 2 are modeled in AO4BPEL.

3.3.1 Modularizing Non-functional Concerns. To illustrate the modularization of
crosscutting concerns, consider the AO4BPEL aspect Counting in Listing 3 which
collects auditing data: It counts how many times the operation searchFlight of
Lufthansa has been invoked. The counting advice must execute after each call to that
operation. Ideally, we have to save this information into a file in order to evaluate it
later, i.e., we need to access the file system. This cannot be done in BPEL and some
programming logic is necessary. The Java code execution web service comes into
play here. This web service provides the operation invokeMethod which takes as
parameters the class name, the method name, and the method parameters as strings. It
supports only primitive parameter types i.e., integers and strings. When the process
execution comes to a join point captured by the pointcut Lufthansa Invocations, the
static method increaseCounter is called, which opens a file, reads the number of
invocations, increments it and then saves the file to disk.

<aspect name="Counting">
<partnerLinks>
 <partnerLink name="JavaExecWSLink" …/>
</partnerLinks>
<variables>
 <variable name="invokeMethodRequest" …/>
</variables>
<pointcutandadvice type="after">
 <pointcut name="Lufthansa Invocations">
 //process//invoke[@portType ="LufthansaPT" and
 @operation ="searchFlight"]
 </pointcut>
 <advice>
 <sequence>
 <assign>
 <copy>
 <from>increaseCounter</from>
 <to variable="invokeMethodRequest" part="methodName"/>
 </copy>…
 </assign>
 <invoke partnerLink="JavaExecWSLink" portType="JavaExecPT"

 operation="invokeMethod"
 inputVariable="invokeMethodRequest"/>

 </sequence>
 </advice>
</pointcutandadvice>
</aspect>

Listing 3. The counting aspect

This aspect shows how crosscutting concerns can be separated from the core of the
composition logic. The monitoring functionality is not intertwined with the process
definition. Moreover, we can define several monitoring aspects implementing
different policies and weave the appropriate one according to the context.

178 A. Charfi and M. Mezini

3.3.2 Changing the Composition. In Section 2, we wanted to add car rental business
logic into the composite operations getTravelPackage and getFlight, and argued that
such an adaptation cannot be performed dynamically with BPEL. For achieving the
same goal in AO4BPEL, the administrator defines the aspect AddCarRental shown in
Listing 4. This aspect declares a pointcut, which captures the accommodation
procurement activity in the getTravelPackage and the flight procurement activity in
getFlight. The car rental activity must be executed after the join point activities
referred to by the pointcut (after advice). This aspect also declares partner links,
variables, and assignment activities. The <assign> activity is required to transform
the data returned by the operations getTravelPackage and getFlight.

<aspect name="AddCarRental">
<partnerLinks>
 <partnerLink name="carRentalPortal" …/>
</partnerLinks>
<variables>
 <variable name="getCarRequest" …/>
 <variable name="getCarResponse" …/>
</variables>
<pointcutandadvice type= "after">
<pointcut name="accommodation procurement">
 //process[@name="getTravelPrcs"]//sequence[@name="FlightHotel"]
 //invoke[@portType ="HotelPT" and @operation ="findRoom"] or
 //process[@name="getFlightPrcs"]//flow[@name="FlightSearchFlow"]
</pointcut>
<advice>
 <invoke partnerLink="CarRentPortal" portType="carRentPT"

 operation="getCar" inputVariable="getCarRequest"
 ouputVariable="getCarResponse"/>

 <assign>
 …
 </assign>
</advice>
</pointcutandadvice>
</aspect>

Listing 4. The car rental aspect

The administrator must register the aspect with the BPEL execution engine. During
the registration, the aspect definition and deployment unit of our BPEL engine
requests the programmer to input the WSDL and the port address of the car rental
web service. This step also requires the partnerLinkTypes that are used by the aspect.
The aspect becomes active only after explicit deployment. The aspect activation can
be performed dynamically while the respective process is running. This way, we
apply the adaptation behavior at runtime.

One can conclude that this aspect tackles the problem outlined in Section 2. It
allows for dynamic change. We specified the new business rule in a modular way as
an aspect. If business rules change, we only have to activate/deactivate the
appropriate aspect at execution time.

Aspect-Oriented Web Service Composition with AO4BPEL 179

4 Related Work

Several research works recognize the importance of flexible and adaptive
composition. Self-Serv [26] is a framework for dynamic and peer-to-peer provisioning
of web services. In this approach, web service composition is specified declaratively
by means of state charts. Self-Serv adopts a distributed decentralized, peer-to-peer
orchestration model, whereby the responsibility of coordinating the execution of a
composite service is distributed across several coordinators. This orchestration model
provides greater scalability than a centralized one w.r.t. performance. In addition,
Self-Serv introduces the concept of service communities, which are containers for
alternative services. Separating the service description from the actual service
provider increases the flexibility. However, unlike our approach, Self-Serv does not
support dynamic process changes such as adding new web service type to the
composition (cf. Sec.2).

Örriens et a.l [27], present a framework for business rule driven composition
providing composition elements like activities and composition rules. Due to the
separation of the activities from the specification of their composition, the latter can
easily evolve by applying new composition rules. With AO4BPEL aspects, we
achieve a similar effect of separating the main activities from their composition logic,
while remaining compliant with BPEL4WS - a de-facto composition standard. In
contrast to AO4BPEL, the approach presented in [27] does not support dynamic
change and is rather geared towards the service composition lifecycle.

Adaptive workflow [19, 28, 29] provides flexible workflow models that are open
for change. Similar to these works, AO4BPEL aims at making process-based
composition more open for change. In addition, it addresses the issue of process
modularity. We think that many concepts and results from adaptive workflow remain
valid for our work e.g., the verification and correctness of workflow modifications.

Casati et. al, [29] present eFlow, which is a platform for specifying, enacting, and
monitoring composite e-services (a predecessor of web services). eFlow models
composite web services using graphs. It supports dynamic process modifications and
differentiates ad hoc change (applies to a single process instance) and bulk change
(applies to many or all process instances). Unlike AO4BPEL, eFlow supports change
by migration of process instances from a source schema to a destination schema. This
migration obeys several consistency rules. The advantage of our approach over eFlow
is that we do not have to migrate the whole process instance from a source schema to
a destination schema, we just weave sub-processes or advices at certain join points.

Dynamic AOP [12, 13, 14, 30] has been recognized as a powerful technique for
dynamic program adaptation also by other authors. In [31], dynamic aspects are used
for third-party service integration and for hot fixes in mobile communication systems.
The idea of using AOP for increasing the flexibility of workflows was identified in
[32], where the authors propose to model workflow according to different
decomposition perspectives (dataflow, control flow, and resources). Along the same
lines, Bachmendo and Unland [33] propose using dynamic aspects for workflow
evolution within an object-oriented workflow management system.

There are two important differences between the approaches cited in the foregoing
paragraph and the work presented here. First, none of the works presented in [31, 32,
33] directly targets the domain of web services. Second, all these approaches (mis)use
dynamic AOP merely as an adaptation (patch) technique and do not use it as a

180 A. Charfi and M. Mezini

modularization technique for crosscutting concerns, which it actually is. The second
argument also applies to [34] – the only work that intends to apply dynamic AOP to
web service composition known to the authors of this paper. In [34], dynamic aspects
are used to hot-fix workflow and to configure and customize the orchestration engine.
This approach is more interceptor-based than really aspect-oriented. Similar to [32,
33], the proposal in [34] uses dynamic AOP merely as an adaptation technique and
not as a modularization technique for crosscutting. The advantage of our approach
over these works is the quantification [35] i.e., the pointcut language of AO4BPEL
which allows us to capture join points that span several processes in a modular and
abstract way. We illustrated the crosscutting nature of functional and non-functional
concerns especially observable when several processes are considered.

WSML [36] is a client-side web service management layer, which realizes
dynamic selection and integration of services. WSML is implemented using the
dynamic AOP language JAsCo [37]. Our work on AO4BPEL and the work on
WSML nicely complement each other, since WSML does not address the problem of
web service composition, while AO4BPEL is not concerned with the middleware
issues of web-service management.

5 Conclusion

In this paper, we discussed limitations of web-service composition languages with
respect to modularity and dynamic adaptability. We argued that the overall static
model of the web-service composition languages inherited from the workflow
management systems is not able to address issues resulting from the highly dynamic
nature of the world of web services. To address these limitations, we presented an
aspect-oriented extension to BPEL4WS where aspects and processes are specified in
XML. We discussed how our approach improves process modularity and increases
the flexibility and adaptability of web service composition.

The major contribution of our work is to elucidate why AOP is the right technique
to address the problems of BPEL by arguing that these problems emerge due to the
lack of crosscutting modularity. BPEL processes are the counterpart to classes in
OOP. That is, similar to OO which mainly supports hierarchical decomposition in
objects that are composed of other simpler objects the process-oriented languages
support hierarchical decomposition of systems into processes that are recursively
composed of other processes. Such a single decomposition schema while appropriate
for expressing the process structure in a modular way, is, however, not well-suited for
expressing other concerns that cut across module boundaries. With its ability to
quantify over given module boundaries [35] by means of pointcuts that span several
processes, AO4BPEL is able to capture such concerns in a modular way. This is
actually the key message put forward in this paper.

Currently, we are still working on a first prototype of the aspect-aware
orchestration engine, which manages BPEL aspects and processes. In the future, we
intend to enhance the interface for context passing between BPEL aspects and the
base processes. We will also examine the correctness properties of process adaptation.
Another direction for future research is to investigate whether semantic web and
ontologies may enable semi-automatic generation of adaptation aspects in case of
dynamic changes.

Aspect-Oriented Web Service Composition with AO4BPEL 181

Acknowledgements. We would like to thank D. Karastoyanova, M. Haupt, and S.
Kloppenburg for comments on earlier drafts of this paper. We also thank the
anonymous reviewers for their suggestions for improving this paper.

References

1. G. Alonso, F. Casati, H. Kuno,V. Machiraju. Web Services: Concepts, Architectures, and
Applications. Springer, 2004.

2. M. P. Papazoglou. Service-Oriented Computing: Concepts, Characteristics and
Directions. 4th Int. Conference on Web Information Systems Engineering (WISE'03), Italy,
2003.

3. A. Arkin et al., Web Service Choreography Interface 1.0, W3C, 2002.
4. A. Arkin et al., Business Process Modeling Language- BPML 1.0, 2002.
5. T. Andrews et al., Business Process Execution Language for Web Services 1.1, May 2003.
6. D. Georgakopoulos, M. Hornick, A. Sheth. An Overview of Workflow Management: from

process modeling to workflow automation infrastructure. Distributed and Parallel
Databases, April 1995.

7. H. Masuhara, G. Kiczales. Modeling Crosscutting in Aspect-Oriented Mechanisms. In
8. Proceedings of ECOOP2003, LNCS 2743, pp.2-28, Darmstadt, Germany, 2003.
9. G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Loingtier, J. Irwin.

Aspect-oriented Programming. In ECOOP'97, LNCS 1241, pp. 220-242, 1997.
10. R. Laddad. AspectJ in Action. Manning Publications, 2003.
11. P. Tarr, H. Ossher, W. Harrison, S.M. Sutton. N degrees of Separation: Multidimensional

separation of concerns. Proc. ICSE 99, pp. 107-119, 1999.
12. C. Bockisch, M. Haupt, M. Mezini, K. Ostermann. Virtual Machine Support for Dynamic

Join points. Proceedings of the 3rd AOSD conference, Lancaster, UK, 2004.
13. R. Pawlak, L. Seinturier, L. Duchien, G. Florin. JAC: A Flexible Solution for Aspect-

Oriented Programming in Java. Proceedings of the 3rd International Conference on
Metalevel Architectures and Separation of Crosscutting Concerns, Japan, 2001.

14. B. Burke, M. Flury. JBoss AOP, http://www.jboss.org/developers/projects/jboss/aop.jsp.
15. R. Khalaf, N. Mukhi, S. Weerawarana. Service-Oriented Composition in BPEL4WS.

WWW2003 conference, Budapest, Hungary, 2003.
16. The IBM BPEL4WS JavaTM Run Time, http://www.alphaworks.ibm.com/tech/bpws4j.
17. V. Tosic, W. Ma, B. Pagurek, B. Esfandiari . Web Services Offerings Infrastructure(WSOI)

- A Management Infrastructure for XML Web Services. Proc. of NOMS 2004, Seoul,
2004.

18. M. D'Hondt, V. Jonckers. Hybrid Aspects for Weaving Object-Oriented Functionality and
Rule-Based Knowledge. Proceedings of the 3rd AOSD conference, Lancaster, UK, 2004.

19. Y. Han, A. Sheth, C. Bussler. A Taxonomy of Adaptive Workflow Management. CSCW’98
Workshop on Adaptive Workflow, USA, 1998.

20. F. Achermann, O. Nierstrasz. Applications = Components + Scripts — A Tour of Piccola.
Software Architectures and Component Technology, Kluwer, 2001.

21. Y. Coady, G. Kiczales. AspectC, http://www.cs.ubc.ca/labs/spl/projects/aspectc.html.
22. G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, W. Griswold. An overview of

AspectJ. In Proceedings of the ECOOP 2001, Budapest, Hungary, 2001.
23. E. Hilsdale, J. Hugunin. Advice Weaving in AspectJ. Proceedings of the 3rd AOSD

conference, Lancaster, UK, 2004.
24. J. Clark. XML path language (XPATH), 1999 http://www.w3.org/TR/xpath.
25. Collaxa BPEL Server, http://www.collaxa.com

182 A. Charfi and M. Mezini

26. B. Benatallah, Q. Sheng, M. Dumas. The Self-Serv Environment for Web Services
Composition. IEEE Internet Computing, January / February 2003.

27. B. Orriëns, J. Yang, M.P. Papazoglou. A Framework for Business Rule Driven Web
Service Composition. ER (Workshops), Chicago, USA, 2003.

28. C. Bussler. Adaptation in Workflow management. Proceedings of the Fifth International
Conference on the Software Process, CSOW, Illinois, USA, June 1998.

29. F. Casati, S. Ilnicki, L. Jin, V. Krishnamoorthy, M.Shan. Adaptive and Dynamic Service
Composition in eFlow. In Proc. of the Int. Conference on Advanced Information Systems
Engineering (CAiSE), Sweden, June 2000.

30. Y. Sato, S. Chiba, M. Tatsubori. A Selective Just-in-Time Aspect Weaver. Proceedings of
the GPCE 03 conference, LNCS 2830, Erfurt, September 2003.

31. R. Hirschfeld, K. Kawamura. Dynamic Service Adaptation. 4th International Workshop on
Distributed Auto-adaptive and Reconfigurable Systems, Tokyo, Japan, 2004.

32. R. Schmidt, U.Assmann. Extending Aspect-Oriented-Programming in order to flexibly
support Workflows. AOP Workshop, ICSE 98, USA, 1998.

33. B. Bachmendo, R. Unland. Aspect-based Workflow Evolution. Workshop on AOP and
separation of concerns, Lancaster, UK, 2001.

34. C. Courbis, A. Finkelstein. Towards an Aspect-Weaving BPEL-engine. ACP4IS
Workshop, 3rd AOSD conference, Lancaster, UK, 2004.

35. R.E. Filman, D.P. Friedman. Aspect-Oriented Programming is Quantification and
Obliviousness. Advanced Separation of Concerns Workshop, OOPSLA 2000,
Minneapolis, USA, 2000.

36. B. Verheecke, M. Cibran. AOP for Dynamic Configuration and Management of Web
Services. International Conference on Web Services Europe 2003, Erfurt, 2003.

37. D. Suvee, W. Vanderperren, V. Jonckers. JAsCo: an aspect-oriented approach tailored for
component based software development. 2nd AOSD conference, Boston, USA, 2003.

	1 Introduction
	2 Process-Based Web Service Composition
	3 Aspect Oriented Web Service Composition
	4 Related Work
	5 Conclusion
	Acknowledgements. We would like to thank D. Karastoyanova, M. Haupt, and S. Kloppenburg for comments on earlier drafts of this paper. We also thank the anonymous reviewers for their suggestions for improving this paper.
	References

