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In this thesis we investigate applications of holography in the context of condensed

matter physics. We study crossover solutions related to understanding the singular be-

haviour of hyperscaling violating (HSV) geometries within an Einstein-Maxwell-dilaton

theory with curvature squared corrections. This theory has three couplings ηi for the three

R2 invariants and two theory functions: a dilaton potential V (φ) and a dilaton-dependent

gauge coupling f(φ). We find solutions of this theory, parametrized by a dynamical crit-

ical exponent z and HSV parameter θ. We obtain restrictions on the form of the theory

functions required to support HSV-type solutions using three physical inputs: the null

energy condition (NEC), causality z ≥ 1, and deff ≡ d− θ lying in the range 0 < deff ≤ d.

The NEC constraints are linear in the ηi and polynomial in d, z, θ. The allowed ranges

of z, θ change depending on the signs of ηi. For the case of Einstein-Weyl gravity, we

further narrow down the theory functions and solution parameters required for crossover

solutions interpolating between HSV, AdSd+2 near the boundary, and AdS2 × R
d in the

interior.

We study aspects of holographic disorder by considering a model of perturbatively

charged disorder in D = 4 dimensions. Starting from initially uncharged AdS4, a ran-

domly fluctuating boundary chemical potential is introduced by turning on a bulk gauge

field parameterized by a disorder strength V and a characteristic scale k0. Accounting for

gravitational backreaction, we construct an asymptotically AdS solution perturbatively
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in the disorder strength. The disorder averaged geometry displays unphysical divergences

in the deep interior. We explain how to remove these divergences and arrive at a well

behaved solution. The disorder averaged DC conductivity is calculated and is found to

contain a correction to the AdS result. The correction appears at second order in the

disorder strength and scales inversely with k0. We discuss the extension to a system with

a finite initial charge density. The disorder averaged DC conductivity may be calculated

by adopting a technique developed for holographic lattices.
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Chapter 1

Introduction

1.1 Overview and Synthesis

This thesis is concerned with applications of gauge/gravity duality, which is one of the

most remarkable advances in theoretical physics of the last quarter century. Broadly

speaking, the idea is that some quantum field theories (QFT) without gravity are equiv-

alent to a different theory with gravity in one higher dimension. This assertion has

wide reaching implications for various branches of physics, including condensed matter

physics, particle physics, cosmology, gravitational physics and even fluid dynamics. Many

of these topics will be explored in more detail throughout this thesis. Firstly though, it

is important to place the contents of this thesis within the broader context of physics.

As will be explained in detail in section 1.2.1, many of the celebrated results of

gauge/gravity duality (a.k.a holography) are born out of string theory. The original

example of a holographic duality, called the AdS/CFT correspondence, is a conjectured

equivalence between a type IIB superstring theory on a certain gravitational background

called anti de Sitter space (AdS) and a field theory with a specific type of symmetry

(conformal field theory or CFT ) [1]. At first glance, such an assertion may seem absurd-

how can a theory with gravity be equivalent to a theory without gravity? While there is

1
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as of yet no general formal proof of this particular equivalence, the conjecture has passed

such an astounding number of non-trivial checks that the current general attitude is that

it is correct. We will review this duality and its checks in greater detail below as well

as discuss other examples of holographic dualities which have also passed equally (or in

some cases more) impressive non-trivial checks.

The fact that string theory makes an appearance in holographic duality is not sur-

prising. While string theory started out as a proposed model for the strong nuclear force

[2], it was eventually realized that it contains gravity, making it a potential theory of

quantum gravity. There are actually five perturbative string theories which live in ten

dimensions, which are all related by string duality and to an eleven dimensional theory

called M-theory.

Generically, string theory contains a massless spin two graviton (which describes

gravity) as well as other states corresponding to gauge bosons, fermions, etc. On top of

fundamental open and closed strings, string theory also contains non-perturbative objects

called Dp-branes which arise as loci where open strings end. These objects are extended

along p spatial dimensions. At low energies, string theory recovers general relativity

[2]. This observation suggests that string theory may be useful for understanding one of

the deepest problems of modern theoretical physics, namely, how does gravity behave at

extremely small scales.

General relativity breaks down at extremely small distance (Planck scale: lp ≈

1.6× 10−33cm). Near a curvature singularity, general relativity ceases to provide a valid

description of physics and some new theory must take over, requiring new physics. For

this reason, black holes make prototypical playgrounds for exploring the consequences

of new physics at small distance scales. The expectation is that quantum effects some-

how come in and “cure” the singular behaviour; this can happen quite broadly in string

theory. Some geometries which appear singular in general relativity are regular in string

theory due to the extended nature of strings.



Chapter 1. Introduction 3

It is natural to wonder how much more string theory can teach us about quantum

gravity. Gravitational string theory aims at understanding exactly this question. This

programme has led to a number of successes over the years, prime among which is the

derivation of the entropy of a black hole from a microscopic perspective [3]. This original

construction has been generalized to other kinds of black holes, see [4] for a review. The

origin of the entropy of a black hole is a longstanding problem in general relativity and

strikes at the heart of quantum gravity, where a theory which accounts for the microscopic

degrees of freedom is needed. Taking this a step further, the fuzzball programme takes

the perspective that conventional black hole geometries emerge as a coarse-graining over

string theoretic microstates [5], [6]. The picture which emerges is that black holes should

be thought of as being made up of string theory ingredients. One message to take away

from this picture is that string theory tools unlock the entropy for black holes; these very

same tools led to the discovery of the AdS/CFT correspondence.

The original AdS/CFT correspondence was discovered by studying the dynamics of

a stack of coincident D3-branes. In this system, there are open strings with endpoints

on the branes as well as closed strings living in the full ten dimensions. In a certain low

energy limit, the open and closed strings decouple and the brane system is equally well

described by the closed strings or the open strings. The closed string side is described by

a gravitational theory whereas the open string side is described by a field theory. Both

models are describing the same system, hence they should be equivalent. In other words,

both theories offer a “dual” description of the same physics. This picture repeats itself

in other systems, giving other examples of holographic dualities.

Gauge/gravity dualities contain another surprisingly useful feature; they are weak/strong

dualities. In other words, when the string theory is weakly coupled, the QFT is strongly

coupled and vice versa. Strongly coupled quantum field theories are not well understood.

The standard textbook approach to understanding QFTs is to work at weak coupling

where we can understand the behaviour of the theory perturbatively. This approach does
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not work at strong coupling and it can be difficult to say much about a field theory in

this limit. The string dual is described by general relativity at weak coupling, which

we understand quite well. In this way, we can use the duality to understand strongly

coupled field theories by studying related quantities in Einstein gravity.

This approach has been applied to many systems by now. Holography has been used

to describe aspects of QCD, in particular the exotic state of matter called the quark-gluon

plasma, which is a state of matter made up of asymptotically free quarks and gluons at

high temperatures. Holographic techniques provide a calculation for the shear viscosity

of such a plasma [7], model a confinement-deconfinement transition [8], as well as model

the effects of drag as quarks move through the plasma [9], [10], [11]. Such a state of

matter is the focus of experimental efforts at the Relativistic Heavy Ion Collider (RHIC)

as well as at the Large Hadron Collider (LHC).

Strongly coupled field theories arise frequently in condensed matter physic contexts,

often making theoretical calculations difficult. Holography has been applied to several

contemporary condensed matter systems such as high temperature superconductors and

strange metals. Holographic superconductors are a class of asymptotically AdS black

holes which, in conjunction with gauge/gravity duality, describe a superconducting state

in the dual theory [12]. Such constructions may be useful in understanding the physics of

strongly coupled high temperature superconductors. Furthermore, strange metals com-

prise a class of materials which deviate from the standard Fermi liquid theory description.

Their physics is largely controlled by a strongly coupled fixed point, described by a finite

temperature conformal field theory. Holographic models have been used to approach

these systems with the aim of capturing broad features of their behaviour [13], [14].

Both holographic superconductors and strange metals will be discussed in more detail in

sections 1.4.4 and 1.5.5 respectively.

String theory also contains de Sitter (dS) vacua [15]. dS describes an expanding

spacetime and is described by a solution to general relativity with a positive cosmolog-
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ical constant, like our own expanding universe, motivating applications of string theory

to cosmology. In the context of holography, cosmological applications have led to the for-

mulation of a dS/CFT correspondence which aims at relating quantum gravity on dS to

a conformal field theory [16]. This particular duality is currently not as well understood

as the AdS/CFT correspondence.

A particularly surprising application of holography is to fluid mechanics. It turns out

that the Einstein equations in five dimensions (with a negative cosmological constant)

contain the four dimensional Navier-Stokes equations, leading to a fluid/gravity corre-

spondence. For every fluid solution there is a corresponding black hole solution with a

temperature and a velocity field which matches the fluid [17]. Using this formalism, a new

pseudovector contribution to the charge current of a charged fluid was discovered [18], [19]

which corrects old classic textbook results [20]. The fluid/gravity correspondence is an

active area of investigation with one aim being shedding light on longstanding problems

of turbulence in fluid mechanics. More details about the fluid/gravity correspondence

will be given in section 1.4.3.

Increasingly realistic holographic models necessitates new, less symmetric, gravita-

tional solutions. As such, the advent of holography has also sparked renewed interest

in finding and classify solutions of general relativity and more complex theories, e.g.

supergravity and theories with more interesting matter content. Prominent examples

include asymptotically AdS hairy black holes discovered in the context of holographic

superconductors [12] as well as numerically constructed black hole solutions which display

turbulent horizons [21].

Principles of quantum information theory make an important apperance in holo-

graphic constructions. In [22], a proposal for computing the entanglement entropy be-

tween regions in a CFT from the gravitational dual is given. Entanglement entropy is

a measure of the degree to which quantum states are correlated, i.e. entangled. The

conjecture states that entanglement entropy in a conformal field theory is encoded in the
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area of the minimal surfaces in the dual spacetime geometry. This conjecture was sub-

sequently proved in [23]. By now, other entanglement probes have been considered and

found to have geometric interpretations in a gravity dual. Examples include differential

entropy [24], and entanglement negativity [25]. These observations suggest that many of

the details about the structure of spacetime in the dual gravity theory are encoded in

the entanglement properties of the field theory.

It is a tempting question to ask how much the duality can tell us about the black hole

information paradox. Hawking discovered that black holes radiate [26], [27] and that the

quanta emitted by black holes do not carry carry information about anything behind the

horizon; only information associated with conserved charges can be measured at infinity

like mass and charge. In this sense, black holes eat information; any information about

a state which falls into a black hole appears to be lost. This is in sharp contrast to

quantum mechanics where time evolution is unitary and information is not lost.

Gauge/gravity duality tell us that the entire description of a collapsing black hole

can be formulating in terms of a unitary gauge theory, meaning that the entire collapse

process itself should be unitary and information cannot be lost. This argument does

not resolve the information paradox [28], however, as it does not provide a mechanism

by which information can be returned. It turns out that the situation is richer than

previously imagined. By appealing to the monogamy of entanglement, [29] showed that

the following three statements are incompatible: information is not lost (i.e. unitary

evolution), effective field theory works near the black hole horizon, and nothing bad

happens to an observer falling through the horizon. The second statement about effective

field theory is tantamount to trusting general relativity near the horizon. If we do,

the third point is where things go wrong: the infalling observer encounters something

dramatic at the horizon called a “firewall”. Whether or not a firewall does occur is a

question aimed at understanding just how good of an effective theory general relativity

is near a horizon; this question remains unsettled. An interesting potential resolution to
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the problem is centred on arguments from quantum information theory. In [30], it was

argued that quantum information theory places constraints on getting information out

of a black hole and that limits on quantum computing may prevent an observer from

being able to detect a firewall. However this eventually turns out, the picture which has

developed in recent years is that quantum information theory constraints are crucial for

understanding quantum gravity.

The nexus for all of these interesting themes in physics is holography. At the most

basic level, it provides us with a set of tools to address questions related to all of the

topics discussed above and as such makes up one of the corner stones of modern theoretical

physics. In the next section 1.2 we will begin by motivating the existence of a holographic

principle from the perspective of gravitational physics before launching into details about

the original string theory construction of the AdS/CFT correspondence. Our ultimate

goal in the first chapter will be to map out the lay of the land for modern holography,

to introduce the set of tools which make gauge/gravity duality powerful for applications,

and to orient ourselves in the vast literature on applied holography. Our aim will be to

set up the necessary context to introduce our novel results presented in chapters 2 and 3.

Finally, chapter 4 will strive to point out some fruitful directions for future explorations

in applied holography.

1.2 Gauge/Gravity duality

Gauge/gravity duality has its roots in the holographic principle [31], [32] which asserts

that the physics of a gravitational theory may be encoded in a lower dimensional field

theory. A simple way to motivative this picture is through black hole thermodynamics.

The entropy of a black hole is given by the Bekenstein-Hawking formula

SBH =
AH
4GN

, (1.2.1)
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where AH is the area of the black hole horizon and GN is the Newton constant. In other

words, the entropy of a black hole is proportional to an area rather than a volume as

might be näıvely expected 1. The maximum amount of entropy in a region V is equal

to the entropy, SBH , of the biggest black hole that can fit inside the region. To see why

this is true, consider a setup in which there is some mass, less than the mass required to

form a black hole, and an entropy greater than that of a black hole. Start adding mass

to the system; this causes both the total mass and the entropy to increase. Continuing

in this way, a black hole will eventually form, at which point the entropy of the system

will need to decrease down to SBH , violating the second law of thermodynamics. This

behaviour is in stark contrast with a regular field theory where the maximum entropy

in a region scales like the volume of the region. This observation hints at the notion

that the dual field theory will need to live in one lower dimension than the gravitational

theory in order to get the entropy on both sides to scale correctly.

A model of exactly this kind of duality is described by the now famous AdS5/CFT4

correspondence between type IIB superstring theory on the product space AdS5 × S5

and 3 + 1 dimensional N = 4 supersymmetric Yang-Mills (SYM) [1]. Here, AdS5 refers

to 4 + 1 dimensional anti de Sitter space. This specific duality will be discussed in

some detail in section 1.2.1. Other examples were also conjectured in [1] including a

duality between a 1+ 1 dimensional N = (4, 4) CFT and type IIB superstring theory on

AdS3 × S3 ×M4, where the four dimensional manifold M4 is either a four torus T 4 or

K3. Also conjectured was a duality between M-theory on AdS4 × S7/Zk and AdS7 × S4

being dual to a 2 + 1 dimensional N = 6 Chern-Simons theory and a 5 + 1 dimensional

N = (2, 0) CFT, respectively. Recently, holographic dualities have also been conjectured

between Vasiliev higher spin theories and vector model CFTs in 2 + 1 dimensions [34]

and a minimal coset CFT in 1 + 1 dimensions [35].

1Our units follow the conventions of [33]. This will be the case throughout the rest of this thesis
unless explicitly stated.
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Notably, gauge/gravity correspondence defines a weak/strong duality; when the field

theory is strongly coupled the gravity theory reduces to classical type IIB supergravity.

The weak/strong nature of the duality sits at the heart of its applicability as it provides

an avenue for investigating strongly coupled phenomena. This thesis will be interested in

applications of gauge/gravity duality where an exact understanding of the theories used

in the duality may be lacking, so it is important to understand how such a duality can be

taken seriously on general grounds. A useful review in this context is [36]. Broadly, the

gauge/gravity duality conjecture states that under the right circumstances, a quantum

field theory may be described by an equivalent gravitational theory in one higher dimen-

sion. More specifically, a gravitational theory on some background geometry is physically

equivalent to a quantum field theory (QFT) without gravity living on the boundary of

the spacetime. Consider a bulk geometry which is asymptotically AdSd+1

ds2 =
z2

L2

(
−dt2 + dx2i

)
+
L2

z2
dz2 , (1.2.2)

where L is the radius of curvature of AdS and z is the radial coordinate. In these

coordinates the boundary is at z → ∞. Asymptotically AdS spaces have a number of

features which make a holographic duality likely. In particular, partial waves do not fall

off asymptotically as z → ∞ as they do in flat space, suggesting that the boundary can

know what is happening in the rest of the spacetime and vice versa. Also, this geometry

is conformally flat as can be seen by switching coordinates to r = L2/z. The boundary

is conformal to Minkowski space and this is where the dual field theory will be thought

to live. Furthermore, in 2 + 1 dimensions, the symmetry algebra of asymptotically AdS3

spacetimes reduces to the Virasoro algebra at the boundary. In fact, this result was

known for some time before the advent of the AdS/CFT correspondence [37].

The AdS metric (1.2.2) is scale invariant under the transformation xµ → λxµ and

z → z/λ, where xµ denotes all of the coordinates other than the radial coordinate z,

and λ is a constant. In fact, the isometries of AdSd+1 encode full conformal invariance,

so the dual field theory must be a conformal field theory (CFT) [36]. A CFT is scale
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invariant, so under the transformation xµ → λxµ of the boundary coordinates any energy

scale E must transform as E → E/λ by dimensional analysis. Comparing this with the

transformation required of the bulk radial coordinate suggests that E ∼ z, meaning

that the radial direction in the bulk encodes the energy scale of the dual field theory.

This statement will be made more precise in section 1.2.1 when we discuss the UV/IR

relations. At this point, it suffices to see that z → ∞ corresponds to the UV in the dual

field theory, while z → 0 corresponds to the IR, suggesting a renormalization group (RG)

flow interpretation of the radial direction in the bulk. This correspondence can be seen

within a radial Hamilton-Jacobi framework [38].

Anti de Sitter space is a solution to Einstein gravity with a negative cosmological

constant. At the very minimum then, the bulk gravitational theory should be described

by the Einstein-Hilbert action with a negative cosmological constant plus some possible

matter sector. Examples of possible matter sectors will be discussed in section 1.2.1 as

well as in sections 1.4 and 1.5 in the context of applied holography. Nothing has been

assumed about the geometry in the interior towards decreasing z. The duality may be

understood by fixing the asymptotic condition that the spacetime geometry approaches

AdS (1.2.2) at large z. The existence of a large class of possible interior solutions is central

to the applicability of holography to modelling the phenomenology associated with the

boundary theory. Relaxing the requirement of having a negative cosmological constant

has also been studied leading to a dS/CFT correspondence for positive cosmological

constant [16]. As of yet, there is no microscopic derivation of this duality and it seems to

require a non-unitary dual field theory. There is also a proposed dual between the extreme

Kerr black hole and a chiral two-dimensional CFT with central charge proportional to

the angular momentum of the Kerr black hole [39]. The black hole geometry in this

duality is extreme in the sense that its angular momentum J is maximally large. For

reviews, see [40] and [41].

The next feature to understand is how the number of degrees of freedom in the bulk
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match up with that of the boundary theory. In line with the holographic principle, the

maximum entropy described by the bulk theory is the entropy of the largest black hole

that can fit inside. This corresponds to a black hole whose event horizon is right at the

boundary of the geometry. In this case

AH =

∫
dd−1x

(
zd−1

Ld−1

)

z→∞, t=const

→ ∞ . (1.2.3)

The fact that the integral diverges is not surprising; it indicates that a regularization

protocol is necessary. This is in line with the expectation from the field theory which

may suffer from divergences. In section 1.3.2 a detailed prescription for holographic

renormalization will be discussed.

The field theory may be regularized by putting it in a box of side length L and

introducing a lattice with a spacing ǫ. Suppose that at each lattice site there are N b

degrees of freedom, where b is a positive constant. The precise value of b is, at the

moment, not important. For the AdS5/CFT4 it will turn out that b = 2. For M2-brane

holography, b = 3/2, while for M5-branes b = 3. In the more exotic higher spin/vector

model dualities discussed in section 1.2.3 it will turn out that b = 1 in 3 + 1 bulk

dimensions. It follows that the total number of degrees of freedom in the boundary

theory is then (L/ǫ)d−1N b.

In order to regulate the horizon area, a radial cutoff near the boundary is introduced.

It is convenient to change coordinates to r = L2/z, as this will make comparison with

the field theory result easier. To this end, the boundary cutoff is placed at r = ǫ and the

Bekenstein-Hawking entropy is

SBH =
AH
4GN

=
Ld−1

4GN

(
L

ǫ

)d−1

. (1.2.4)

Comparing this result to the number of degrees of freedom from the regulated boundary

theory we find that Ld−1/GN ∼ N b [36].

Throughout this discussion, the bulk theory has been assumed to be, at a minimum,

Einstein gravity. To stay within this classical regime, the radius of curvature of AdS
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should be very large compared to the Planck length. Recall that in D = d+1 dimensions,

16πGN = (2π)d−2ld−1
D , where lD is the D-dimensional Planck length [42]. Hence, we insist

that Ld−1/GN ≫ 1, meaning that N ≫ 1 in the dual field theory.

As we will see, this large N condition will fit in naturally with the ’t Hooft limit

in the dual theory and will serve as the basis for understanding the weak/strong na-

ture of gauge/gravity duality. In other words, when the bulk theory is classical gravity,

the dual field theory is strongly coupled. This property is central to the applicability

of holography; it provides us with a powerful tool for studying strongly coupled field

theories.

With the general idea of holography in mind, we now describe some explicit examples.

1.2.1 String origins: AdS5/CFT4

The AdS5/CFT4 duality states that type IIB superstring theory with N units of five form

flux on AdS5×S5 is dual to N = 4 super Yang-Mills (SYM) in four spacetime dimensions

with gauge group SU(N) [1]. While there is as of yet no full path integral proof of this

conjecture, it can nevertheless be motivated by studying the dynamics of D3-branes and

may be studied in particular regions of parameter space as we will describe below. By

now, there are many reviews on this subject including [43], [44], [45], [46].

In order to motivate the duality, it is useful to study the dynamics of D3-branes and

see that their dynamics may be described equivalently from a gravity perspective or from

the perspective of the gauge theory living on their worldvolume.

The gravity theory in this duality is type IIB superstring theory. In the low energy

limit, an effective description of the gravitational physics (i.e. closed strings) is provided

by type IIB supergravity. The theory lives in D = 10 and has N = 2 chiral supersym-

metries. The field content includes the graviton GMN , a two-form B2 and the dilaton Φ,

an axion C0, a two-form C2, a four-form C4 (which has a self-dual field strength), two

Majorana-Weyl gravitinos ψMa and two Majorana-Weyl dilatinos λa [2]. Recall that the
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dilaton controls the string coupling gs = eφ with φ = 〈Φ〉.

In what follows, capital lettersM,N, . . . will denote ten dimensional spacetime indices

and small letters a, b, . . . label the supersymmetries, a = 1, . . . ,N . Starting from the

equations of motion, it is possible to construct an action for this theory provided that

the self-duality of the field strength associated with C4 is imposed separately

SIIB =
1

2κ210

∫ √
−Ge−2Φ

(
RG + 4∂MΦ∂MΦ− 1

2
|H3|2

)
(1.2.5)

− 1

4κ210

∫ [√
−G

(
|F1|2 + |F̃3|2 +

1

2
|F̃5|2

)
+ C4 ∧H3 ∧ F3

]
+ fermions ,

where

|Fp|2 =
1

p!
GM1N1 · · ·GMpNpFM1...Mp

FN1...Np , (1.2.6)

The new quantities in (1.2.5) are defined as: Fn+1 = dCn, H3 = dB2, F̃3 = F3 − C0H3

and F̃5 = F5 − (1/2)C2 ∧H3 + (1/2)B2 ∧ F3 and RG is the Ricci scalar associated to the

ten dimensional metric GMN [2].

In order to see how the correspondence is manifested, we will focus on a stack of N

D3-branes. In this case, the spacetime metric (the bulk) sourced by the stack is [46]

ds210 = H(r)−1/2
(
−dt2 + dx21 + dx22 + dx23

)
+H(r)1/2

(
dr2 + r2dΩ2

5

)
, (1.2.7)

where the xi are the directions along the branes, while the radial coordinate r denotes the

transverse directions. dΩ2
5 is the metric on the unit five sphere. The harmonic functions

H(r) are given by

H(r) = 1 +
L4

r4
, (1.2.8)

with

L4 = 4πgsNl
4
s . (1.2.9)

The solutions for the bosonic fields are gs = eφ = constant, C = constant, B = A2 = 0,

F5µνραβ = ǫµνραβη∂
ηH(r), where the indices here run over the directions transverse to the

stack [44]. Notice that the dilaton is constant here.
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There are two interesting limits to study, r ≫ L and r ≪ L. In the former limit

H(r) ≈ 1 and this corresponds to a flat R1,9 region of the geometry. Conversely, taking

the limit r ≪ L leads to a bulk AdS5 × S5 geometry which can be seen by changing the

radial coordinate to z = L2/r with the resulting metric

ds210 =
L2

z2
(
−dt2 + dz2 + dx21 + dx22 + dx23

)
+ L2dΩ5

5 , (1.2.10)

where the radius of the AdS geometry and of five sphere is L in (1.2.9). This limit

will be of primary interest to the duality. Notice that the AdS5 part of the geometry

is conformally flat. The boundary of the AdS5 is at z → ∞ (r = 0 in the original

coordinates) the conformally related Minkowski space at this radial position is where the

dual field theory will be thought to live. This limit corresponds to zooming in very close

to the stack of branes. The stack of N D3-branes may also be studied from the point

of view of open string physics, which leads to the identification of a worldvolume gauge

theory.

Dp-branes contain a gauge theory living on their worldvolume. Recall that open

strings may end on Dp-branes and that the endpoints of strings are charged. This

immediately suggests that the worldvolume theory living on the Dp-brane should contain

a gauge field. For a single brane, this is a U(1) gauge field. There are a variety of other

process that may occur as well, for example a closed string may interact with a brane

and become an open string with its endpoints attached to the brane. Similarly, an open

string may form closed strings and break off from a brane. There are also other degrees

of freedom associated to the brane; they correspond to deformations and rigid motions

of the brane [46]. These are parameterized in terms of the coordinates transverse to the

(p + 1) dimensions of the Dp-brane. For each of the 9 − p spatial directions, there is a

scalar Xr which lives on the Dp-brane world volume. We will be primarily interested in a

stack of N D3-branes. It is possible for open strings to start on one brane in the stack and

end on another. In this case, the gauge field described by the string endpoints is not just

a U(1) field but is promoted to U(N). The gauge field and scalars Xr transform under
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the adjoint representation of the U(N) gauge field. In this case, the low energy effective

action which accounts for these excitations is the non-Abelian DBI (Dirac-Born-Infeld)

action. For a single brane, the Abelian DBI action is [2]

S = SDBI + SWZ , (1.2.11)

where

SDBI = − 1

gs(2π)pl
p+1
s

∫
dp+1σe−Φ

√
−detP [GMN + (2πα′FMN +BMN)] , (1.2.12)

where P denotes the pullback to the worldvolume and σ are the worldvolume coordinates.

Also

SWZ = − 1

(2π)plp+1
s

∫
P exp(2πα′F2 +B2) ∧ ⊕nCn . (1.2.13)

Note that the DBI action is not the full effective action for the theory. The DBI action

only concerns powers of the field strength. In particular, for the non-Abelian case, it

neglects terms involving covariant derivatives of the field strength. The DBI action should

be thought of as a valid low energy approximation to the dynamics of a D-brane when

the background fields and worldvolume gauge fields are slowly varying with respect to the

string scale. The non-Abelian case also displays some peculiar behaviour compared to

the Abelian action such as the Myers effect [47]. In the Abelian case, the scalar fields Xr

are interpreted as the transverse coordinates on the brane. In the U(N) case, these fields

are described by N ×N matrices, making this interpretation unclear. Myers considered

an example of N D0-branes in the background of a constant four-form flux and showed

that this inherent uncertainty results in a fuzzy description of the brane positions. The

mean-square value of the coordinates defines a fuzzy sphere; a non-commutative sphere.

There is a U(1) subgroup that describes an overall translation of the entire stack.

This is not a particularly interesting feature and may be decoupled from the rest leaving

a SU(N) gauge theory living on the worldvolume of the brane.

In the D3-brane case, there are six scalar fields Xr as the worldvolume has 3 + 1

dimensions. The DBI action in this case may be expanded in powers of Fµν and ∂µX
q
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and the resulting action is identified as N = 4 SYM with an SU(N) gauge group plus

α′ = l2s and gs corrections. The Yang-Mills coupling in terms of gs is [46]

g2YM = 4πgs . (1.2.14)

The Lagrangian for N = 4 SYM is [44]

L =
1

gYM2

tr

{
−1

2
F 2 +

θI
8π2

FijF̃
ij −

∑

a

iλ̄aσ̄iDiλa −
∑

r

DiX
rDiXr

+
∑

a,b,r

Cab
r λa[X

r, λb] +
∑

a,b,r

C̄rabλ̄
a[Xr, λ̄b] +

1

2

∑

r,s

[Xr, Xs]2

}
, (1.2.15)

where the parameter θI ∈ [0, 2π] is the instanton angle. The constants Cab
r are the

Clifford matrices for SO(6)R ∼= SU(4)R associated to the R-symmetry of the theory. The

index conventions used here are that i , j are 3 + 1 dimensional spacetime indices, r , s

label the scalar fields (there are six), a = 1, . . . , 4 label the supercharges (i.e. N = 4).

Also, Di is the usual covariant derivative and F̃ is the Hodge dual of F . The σi are the

Pauli matrices.

The theory contains a gauge field, Ai, six scalar fields Xr and four two-component,

complex Weyl spinors λa. The fields transform under the adjoint representation of

SU(N). This can be understood by noting that the theory describes the dynamics as-

sociated to the endpoints of open strings which connect the D3-branes. The Lagrangian

(1.2.15) may be obtained from D = 10, N = 1 SYM by dimensional reduction on a

six-torus T 6.

By construction, the theory described by (1.2.15) is invariant under N = 4 Poincaré

supersymmetry in the superconformal phase [44]. This phase is characterized by mini-

mizing the potential
∑

r,s[X
r, Xs]2 in (1.2.15). The easiest way to do this is to set the

vacuum expectation value (vev) of each scalar field Xr to vanish. This vacuum preserves

the full conformal invariance of the Lagrangian (1.2.15). Invariance under translations,

Lorentz transformations, dilations and special conformal transformations combine into

full conformal symmetry. Furthermore, the theory contains Poincaré supersymmetries
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generated by supercharges and their complex conjugates, R-symmetry, and conformal su-

persymmetries. The latter are generated since special conformal transformations and the

Poincaré supersymmetries do not commute. Putting all the pieces together, the overall

symmetry group is the supergroup SU(2, 2|4) [44].

By combining the Yang-Mills coupling with N , the ’t Hooft coupling here is λ =

g2YMN . By taking the simultaneous limit gYM → 0 and N → ∞, non-planar diagrams

become suppressed by powers of 1/N . This limit will be interesting in what follows.

Thus far, the dynamics of the D3-brane stack is described by an open string part in

the form of the worldvolume theory, a bulk closed string part given by the gravity action,

and potential interactions between the brane and bulk parts which arise from couplings

between the bulk R-R fields and the SU(N) field strength on the brane worldvolumes.

Comparing the gravity and gauge theory descriptions of the stack of D3-branes leads

to the identification of (1.2.9) and (1.2.14). This is a crucial step as we still need to

determine over what range it is valid to compare SYM theory to the supergravity solution.

Supergravity is a good approximation to string theory when dilaton and string tension

corrections are small. Solving for gs and rearranging gives

(
L

ls

)4

= λ . (1.2.16)

Using (1.2.14) and the definition of λ gives

gs =
λ

4πN
. (1.2.17)

The next step is to take the limit that N ≫ 1 while holding λ fixed. From (1.2.17), this

means that dilaton corrections, which correspond to string loop corrections, are small.

Furthermore, taking λ ≫ 1, it follows from (1.2.16) that L is much larger than the

string scale and string tension corrections are suppressed. This is called the decoupling

limit. As a consequence, using (1.2.16) and the definition of the ten dimensional Planck

constant, the AdS radius is much larger than the Planck scale L≫ lp.
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In the decoupling limit, the interactions between the open strings ending on the D3-

branes and the closed strings in the bulk are turned off. After taking this limit, N = 4

SYM remains on the D3-branes and the bulk is described by the supergravity solution in

the near horizon limit. Since the stack of D3-branes may be described in either language,

the two are declared to be same, leading to the statement of the AdS/CFT conjecture.

In summary, what we have seen is that there exists an equivalent description of the

stack of N D3-branes, from the point of view of gravitational (closed string) physics and

the worldvolume N = 4 SYM theory (open string). This relation looks valid so long

as N ≫ 1, λ ≫ 1, meaning that strongly coupled N = 4 SYM in the planar limit is

described by type IIB supergravity on AdS5×S5. The field theory side is characterized by

an expansion in λ−1/2, whereas the gravity side has an expansion in α′. It is conjectured

that the duality is true for all N and gYM on the field theory side, being dual to full type

IIB string theory on AdS5 ×S5 on the gravity side which is called the strong form of the

duality. [44].

In section 1.2, it was hinted that the radial direction in the bulk geometry corresponds

to the energy scale of the dual field theory. Importantly, this means that in order to

understand the dual field theory at all energy scales, it is necessary to utilize the entire

bulk geometry. Moving away from the boundary region, the geometry may deviate away

from AdS. This radial evolution reflects how the dual field theory behaves at different

energy scales. This observation emphasizes the importance of AdS asymptotics in setting

up the duality. It is through this boundary condition that the correspondence between

bulk and boundary observables is established.

Within the AdS5/CFT4 duality, the relationship between the radial direction and the

energy scale of the dual field theory may be established by considering a string stretched

between two D3-branes. By slowly pulling one of the branes off of the stack, the string

is stretched out. The tension of a string is just T = 1/2πα′. For a relativistic string,

the tension is a linear mass (energy) density, so T ∼ E/r. Hence, E ∼ r. While this
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argument gets the point across, the result may be established more rigourously. In fact,

an important point is that not every bulk supergravity probe will respect exactly the

same energy-radius relation. For the case here of D3 branes it turns out that conformal

invariance fixes the scaling E ∼ r. The coefficients may be fixed by studying how

supergravity probes propagate in the background sourced by the stack of branes, leading

to the UV/IR relations [1], [48], [49].

It is also easy to establish that the symmetries on both sides of the duality match.

In the superconformal phase of N = 4 SYM that we have discussed above, the full sym-

metry group is SU(2, 2|4) which has a maximal bosonic subgroup SU(2, 2)× SU(4)R ∼=

SO(2, 4) × SO(6)R [44], where the subscript R identifies the group associated to the

R-symmetry of the theory. The bosonic symmetry group matches the symmetries of

AdS5 × S5 since the group of isometries of AdS5 is SO(2, 4) and the S5 encodes the

usual group of rotations SO(6), hence the bulk geometry has a full isometry group

SO(2, 4)×SO(6), matching the bosonic symmetries on the field theory side. The gravity

solution also contains the right number of fermionic symmetries. AdS5 × S5 is a max-

imally supersymmetric solution of type IIB theory with 32 preserved supersymmetries,

matching the 32 supercharges of N = 4 SYM which is also maximally supersymmetric

[46]. When combined with the bosonic symmetries encoded in the spacetime geometry,

the full symmetry group on the bulk side is SU(2, 2|4), precisely matching the field theory

side.

The correspondence may be generalized by adding finite temperature of the field

theory [50], [51]. This corresponds to including a black hole in the bulk geometry. The

field theory temperature is dual to the Hawking temperature of the black hole. Note that

by adding a black hole to the geometry, a special radial position is introduced, namely

the position of the horizon. This is sensible, as adding temperature to the field theory

breaks the conformal invariance as there is now a scale. This scale is encoded by the

appearance of the horizon position on the gravity side.
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The role of the S5 part of the bulk geometry may be understood by noting that any

field on AdS5 × S5 can be expressed as a tower of fields purely in AdS5. This can be

seen by performing a dimensional reduction on the S5. The resulting bulk action for a

ten dimensional matter field with gravity is schematically [46]

S =
1

16πG5

∫
d5x

[√−g
(
R5 +

12

L2

)
+ Lmatter

]
, (1.2.18)

where G5 and R5 are the five dimensional Newton constant and Ricci scalar, respectively.

The second term in the action is the cosmological constant for an asymptotically AdS

spacetime. Lmatter is the matter Lagrangian in five dimensions. An instructive example

is a massless scalar in ten dimensions. Note that by taking the α′ → 0 limit, we are

essentially left with only massless modes on the supergravity side. Massive modes result

from dimensional reduction on the S5 following the Kaluza-Klein procedure [46]. For a

massless scalar, the resulting five dimensional equations of motion are �φ − m2φ = 0,

where m2 = l(l + 4)/L4 with l = 0, 1, 2, . . . are the eigenvalues of the Laplacian on S5.

The final step is to construct an actual one-to-one mapping between operators and

states on both sides of the duality. A procedure for how to accomplish this is outlined in

[50] and [51]. A large list of some of the various correspondences may be found in [44]. A

few examples include the axion C ∼ tr(FF̃ ) and the gravitino ψ ∼ tr (λXr) with r ≥ 1.

Note that in the correspondence described above, the gravity side metric is the

Poincaré patch of AdS. The duality may also be formulated in global AdS where the

dual theory lives on the boundary R × S3, which is the Einstein static universe [51].

Global time translations in the Einstein static universe are generated by a Hamiltonian

H which is linear combination of the generators of translations and special conformal

transformations on R
1,3. By redefining the Hamiltonian, the CFT can be thought of as

living on R× S3. The isometries of the bulk spacetime are dual to the conformal group

of the field theory. Changing to this new Hamiltonian means identifying the generator of

global time translations in the bulk. In other words, the bulk should be global AdS [43].

The particular example of the AdS5/CFT4 duality provides a powerful realization of
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the holographic principle. Other proposals include D1D5 [43], [52], M2 [53] and M5 [43]

dualities, as well as higher spin/vector model dualities in four [54] and three [35] bulk

dimensions . Further important developments include the breaking of supersymmetry

[55] as well as the connection to integrability [56].

1.2.2 ABJM theory

The degrees of freedom ofD-branes may be understood in terms of the strings that stretch

between them. Such an intuitive picture is not available in M-theory and understanding

the degrees of freedom associated with membranes is difficult. Early progress for multiple

M2-branes was made in [57] and later in [58] which lead to an important example of a

holographic duality between M-theory on AdS4 × C
4/Zk and an N = 6, U(N) × U(N)

Chern-Simons gauge theory with integer levels (k,−k), called ABJM theory (Aharony,

Bergman, Jafferis, Maldacena). It contains a matter sector with four matter supermulti-

plets in the bifundamental representation of the U(N)×U(N) gauge group. For reviews

see [53], [59] and [60]. For N = 1, the moduli space of ABJM is C
4/Zk. This is the

same moduli space as a single M2-brane probing the singular point of a C
4/Zk orbifold

[59]. This result carries through for general N , hinting at the possibility of the duality.

For ABJM theory, λ = N/k plays the role of the ’t Hooft coupling, so that the theory

becomes weakly coupled for N ≪ k. Conversely, for N ≫ k, the field theory is strongly

coupled and the gravity side reduces to 11-dimensional supergravity.

Consider a stack of N M2-branes. The extremal geometry sourced by the stack is

[53]

ds211 = H(r)−2/3
(
−dt2 + dx21 + dx22

)
+H(r)1/3

(
dr2 + r2dΩ2

7

)
, (1.2.19)

where dΩ2
7 is the metric on a unit seven sphere. Here, r denotes the direction transverse

to the stack while the directions along the branes are x1 and x2. The harmonic function

H(r) is given by

H(r) = 1 +
R6

r6
, (1.2.20)
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with R6 = 32π2Nl2p. Here, lp is the eleven dimensional Planck length. The solution for

the four-form (field strength) is [53]

F4 = d3x ∧ dH(r)−1 . (1.2.21)

The duality conjectures that placing the stack ofM2-branes at the singularity of a C4/Zk

orbifold in the near horizon limit, provides a gravity dual for ABJM theory. Note that

in this case, the dΩ2
7 → ds27 in the gravity solution (1.2.19), where ds27 is the metric on a

unit S7/Zk. The near horizon geometry is AdS4 × S7/Zk [59].

There is an interesting and puzzling feature about the proposed duality between M-

theory and ABJM theory. The duality predicts that, at strong coupling, the number of

degrees of freedom scales like N3/2. This is markedly different from the behaviour seen in

the original AdS5/CFT4 duality where the number of degrees of freedom scales like N2.

The latter result is easy to understand by labelling the endpoints of strings stretched

between the stack of N D3-branes. One way to see how the gravity dual makes this

prediction about strongly ABJM theory is to work at finite temperature. The gravity

solution in this case is [53]

ds211 = H(r)−2/3
(
−f(r)dt2 + dx21 + dx22

)
+H(r)1/3

(
dr2

f(r)
+ r2ds27

)
, (1.2.22)

where f(r) = 1 − r60/r
6, with r0 being the horizon position. H(r) and F4 are still given

by (1.2.20) and (1.2.21) respectively. A simple way to see that the number of degrees of

freedom scales like N3/2 is to compute the Bekenstein-Hawking entropy at large λ, the

leading order result is [53]

SBH =
27/3π2V2T

2k1/2N3/2

33
+ · · · , (1.2.23)

where V2 is the spatial volume of the stack of M2-branes. Another way to establish

this result is to compute the free energy, which can be obtained from the gravity dual

by evaluating the on-shell Euclidean action (note that it is important to take care to
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renormalize the action first). The result is [60]

F (S3) ≈ −
√

2π6

27Vol(S7/Zk)
N3/2 , (1.2.24)

where Vol(S7/Zk) is the volume of the unit S7/Zk. This result should be matched to the

free energy of (Euclidean) ABJM theory on S
3, since the partition function of a CFT on

S
3 encodes the number of degrees of freedom in the theory [51].

This exotic looking duality actually provides a powerful check on holography. Gen-

erally speaking, calculating anything on the field theory side of the duality at strong

coupling is difficult. Nevertheless, for some supersymmetric QFTs a technique called

path integral localization provides a tool for accessing strongly coupled results. The idea

is as follows [60]. Suppose S[ψ] is the action for some theory where the set of fields

described by this theory is collectively labeled as ψ. Suppose further that this theory

admits a Grassmann-odd symmetry, δ. Also, denote δ2 = Bs, which is a Grassmann-even

symmetry of the theory. The partition function of the theory is augmented by adding a

localizing term, that is

Z(ǫ) =

∫
Dψe−S[ψ]−ǫδG , (1.2.25)

where G is a Grassman-odd operator which is invariant under Bs. Assuming that the

path integral measure is invariant under δ, it follows that Z is independent of ǫ

dZ

dǫ
= −

∫
Dψδ

(
Ge−S[ψ]−ǫδG

)
= 0 , (1.2.26)

where the last equality follows from the assumption that δ is a symmetry of the integrand.

Therefore, Z may be evaluated at any value of ǫ. In particular, taking the large ǫ limit is

useful. If the δG has a positive definite bosonic part (δG)B, then the integral localizes to

configurations with (δG)B = 0, which allows the path integral to be expressed in terms

of a finite dimensional integral on this part of field space which can often be evaluated

[60].

In [61], the technique of path integral localization was used to compute the free
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energy of ABJM theory on S
3 at strong coupling and found remarkable agreement with

the holographic calculation, providing an honest path integral level check of the duality.

1.2.3 Higher spin: vector holography

A surprising class of holographic theories is the duality between a boundary CFT and

Vasiliev higher spin gauge theory in AdS. Vasiliev theory is an interacting model of

massless higher fields. For an up to date review see [62]. According to conventional

wisdom, such a theory does not a priori make sense, since the Weinberg-Witten theorem

and the Weinberg low-energy theorem tell us that there is no non-trivial S-matrix for

interacting fields of spin greater than two. Vasiliev theory gets around this by working

in a constant curvature background, namely AdS.

Working in a constant curvature background allows the theory to evade the standard

arguments against the existence of non-trivial higher spin interactions. The reason is that

the non-zero cosmological constant effectively imposes an IR cutoff on the theory and

the higher spin interactions, thereby circumventing the Weinberg low-energy theorem.

Furthermore, there are no asymptotic states in AdS, meaning that there is no well-

defined S-matrix to begin with. For a review geared towards addressing these concerns

see [63].

The result of this observation about curved spacetime leads to the Vasiliev equations.

These are a fully consistent set of non-linear equations of motion for higher spin fields

that describe interactions between particles of all spins. In AdS, the notion of massless is

set by the curvature of background spacetime. The addition of a non-zero cosmological

constant Λ defines a mass scale which scales like O(
√
Λ). In this sense, there should

be no difference between a massless particle and a particle with a Compton wavelength

greater than the AdS radius L ∼ 1/
√
Λ. In the Vasiliev theory, the gauge theory algebra

is extended to a higher spin algebra which does not close unless all spins are included.

In particular, the theory contains spin two, so gravity is always present. The theory
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also contains a scalar field which is massive in four dimensions and massless in three

dimensions. Actually, the Vasiliev equations are nominally background independent with

AdS and dS being vacuum solutions. It should be pointed out that it is not known if

the Vasiliev equations can be obtained from an action principle. Therefore, a precise

procedure for how to quantize such a theory is unknown meaning that the existence of

a higher spin gauge theory is only known at the classical level. It is an open question as

to whether or not such a quantum theory can be defined by using holography.

Seeing as an AdS solution exists, it is natural to wonder if a higher spin theory can

be dual to a CFT in the spirit of the AdS/CFT correspondence. This conjecture was

actually raised some time ago [34] and later verified in [64]. For a review see [54]. By

painstakingly evaluating correlation functions, it has been shown that an AdS4 higher

spin theory reproduces the results of both the bosonic and fermionic free and critical

O(N) vector models. The bosonic case is described by the so-called A-type minimal

Vasiliev model which describes a consistent truncation to fields of spin s = 0, 2, 4, . . . and

the additional massive scalar field is assigned even parity. The fermionic duality arises

from the B-type minimal Vasiliev model which also described fields of spin s = 0, 2, 4, . . .

and the additional massive scalar is assigned odd parity (i.e. it is a pseudoscalar). The

dualities have been extended to included all non-negative integer spins. The boundary

theories in this case are either the bosonic or fermionic U(N) vector models. There is

a less understood dS/CFT version as well, first proposed in [65], which suggests that

Vasiliev theory on dS4 is dual to a theory of anti-commuting scalars.

The fact that the dual field theories are free was actually previously predicted. It has

been shown in [66] that the existence of a conserved higher spin current places restrictions

on the structure of the correlation functions of the theory, so much so that they match

the results of a free theory.

The AdS4/CFT3 higher spin duality also encodes interesting gravitational physics.

The holographic dictionary in this case relates GN ∼ 1/N , which is in contrast the usual
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AdS/CFT setup where GN ∼ 1/N2. This scaling may be understood by the fact that

the bulk theory is a Vasiliev higher spin theory and not just Einstein gravity.

In [35], a duality between AdS3 Vasiliev higher spin theory and a minimal model coset

CFT with a WN symmetry was discovered for large N . While technically complicated,

the duality turns out to be extremely interesting as it was recently shown that the AdS3

version of Vasiliev higher spin gauge theory may be understood as a subsector of string

theory in the tensionless limit [67]. This is an important observation, suggesting the

Vasiliev higher spin theory may provide a new avenue for exploring quantum gravity

without appealing to full string theory. In other words, Vasiliev theory may provide an

in-between theory with more structure than the low-energy limit of Einstein gravity, but

less complex than the full string theory. It should be noted that this is believed to be

only possible within the AdS3 version of the Vasiliev higher spin theory. String theory

already contains a tower of higher spin fields, the Hagedorn tower, for which the density

of states grows exponentially with spin. For the Vasiliev theory in dimensions greater

than three, the density of states of the higher spin fields grows linearly with spin. It

is only in AdS3 that the density of states grows exponentially with spin, and so has a

possibility of describing a limit of string theory.

Considerably more is also understood about the gravitational physics encoded by

three dimensional higher spin theories. In particular, the existence of black holes has

been considered. For a review see [68]. Since the gauge group now contains spin two and

higher, black hole horizons are no longer gauge invariant objects. That is, the existence

of the horizon is not an invariant quantity under a higher spin gauge transformation.

Three dimensional gravity is special in that the graviton does not have any propagating

degrees of freedom. Nevertheless, in an asymptotically AdS space, there can still be

nontrivial dynamics and this is captured by the dual two-dimensional CFT living on

the boundary. It is possible to reformulate gravity in 2 + 1 dimensions in terms of a

Chern-Simons theory. By extending this construction to include higher spin fields, a
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holonomy condition is proposed which diagnoses the existence of a black hole horizon.

More specifically, it is shown that if this holonomy condition is satisfied, there exists a

higher spin gauge transformation which makes the solution a black hole, meaning that

there is a horizon and the higher spin fields are smooth there. This formulation has

been used to explore the thermodynamics of three dimensional black hole solutions with

higher spins as well as construct a generalization to the Cardy formula to include higher

spin fields in the boundary theory [68], [69].

Explicit examples of holographic dualities are interesting from a formal perspective,

shedding light on previously unknown relationships between seemingly unrelated theories.

The further development of full fledged examples will be central towards aiding our

understanding of what exactly quantum gravity is. For the kinds of applications we

have in mind throughout the rest of this thesis, it will be crucial to be able to calculate

quantities from one side of a gauge/gravity duality pair and translate them into concepts

on the other side. In the next section we will review the construction of the holographic

dictionary, given the minimal ingredients necessary for the existence of a duality.

1.3 Applications: how to compute quantities with

holography

In order to make holography useful for real world application, it is necessary to have a

well formed dictionary which allows us to translate concepts and quantities from one side

of the duality to the other. Aspects of the boundary theory are encoded in surprising

and not entirely obvious ways on the bulk gravity side. Often times, field theoretic

concepts become “geometrized” on the gravity side, meaning they are expressed by some

aspect of the bulk geometry. In this section we will review the construction of the

holographic dictionary, including aspects of renormalization, as well as explore a few

pertinent examples.
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1.3.1 The dictionary

The holographic principle asserts that some quantum field theories in d dimensions are

completely equivalent to a gravity theory in d + 1 dimensions. Exactly what the the-

ories on either side of the correspondence are is not fixed at this stage. We have seen

examples of how formal gauge/gravity dualities arise in section 1.2. For the purposes of

application, we will be less interested in complete examples of holographic dualities, and

more interested in extracting features of strongly coupled field theories. The holographic

dictionary is well established for spacetimes that are asymptotically AdS and we will

be interested in these kinds of geometries in this section. Note however that extensions

of the holographic dictionary to non-asymptotically AdS geometries do exist, as will be

discussed in section 1.5.3.

AdS is a maximally symmetric solution to pure Einstein gravity with a negative

cosmological constant and it is conformally flat. AdS is special in the sense that it has a

timelike boundary at spatial infinity. In fact partial waves don’t fall off in AdS as they

do in flat spacetime. In this way, the boundary of spacetime can “know” about what’s

happening the interior and vice versa. As in the AdS5/CFT4 case, the holographic radial

coordinate r encodes the energy scale of the dual field theory. Any asymptotically AdS

spacetime can be written in Fefferman-Graham coordinates [70]

ds2 =
L2

r2
(
dr2 + gab(r, ~x)dx

adxb
)
, (1.3.1)

where L is a constant which sets the curvature scale of AdS, r is the radial coordinate

which spans from r = 0 at the boundary and r = ∞ in the interior. gab(r, ~x) is the

boundary metric which can be a function of the boundary coordinates and the radial

coordinate (note, this is not the metric the dual field theory will live on) as r → 0 it

obeys an expansion

gab(r, ~x) = g(0)ab(~x) +
( r
L

)
g(1)ab(~x) +

( r
L

)2
g(2)ab(~x) + · · · . (1.3.2)

For pure gravity, plugging this expansion in the Einstein equations shows that the
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g(k)ab = 0 for k odd. The metric on the boundary is then the pullback of g(0)ab. Se-

lecting g(0)ab = ηab returns the Poincaré patch of AdS. g(0)ab is only fixed up to conformal

transformation, meaning that an asymptotically AdS geometry defines a conformal class

of boundary metrics, not a unique metric. This result is also true for Einstein gravity

coupled to matter, provided the matter contribution does not dominate over the cosmo-

logical constant so as not to destroy the asymptotic structure of the geometry. In terms

of holography, this means that the dual operators are either marginal or relevant, so as

not to disrupt the conformal UV fixed point.

A near boundary expansion, similar to (1.3.2), is true for other bulk field as well. In

general, the expansion takes the form [70]

F (r, ~x) =
( r
L

)m [
F(0)(~x) +

( r
L

)
F(1)(~x) +

( r
L

)2
F(2)(~x) + · · · (1.3.3)

+
( r
L

)n (
F(n)(~x) + F̃(n)(~x) ln

( r
L

)
+ · · ·

)]
.

The field equations are second order differential equations, so there will be two indepen-

dent solutions. These solutions scale differently asymptotically which is reflected in the

expansion (1.3.3) by the power rm and rn. The coefficient F(n) is the Dirichlet boundary

condition for the second solution which is independent of the one which starts at order

rm. Taking the expansion (1.3.3) and plugging in into the corresponding field equation

results in a series of equations for each power of r. The idea is to solve each equation

iteratively and constrain the coefficients in terms of lower order ones as much as possible.

The general result is that F(1), · · ·F(n−1) and F̃(n) all turn out to be uniquely determined

as functions of F(0) which itself is interpreted as a source term for a dual operator in

the boundary field theory via the holographic prescription. F(n) is not determined by

the near boundary expansion of the bulk field equations. Again, this is to be expected

as this coefficient is related to the second linearly independent solution. Finally, F̃n is

related to conformal anomalies of the dual theory [70]. For the metric, this will turn out

to be the corresponding Weyl anomaly of the dual CFT. As a example, a scalar of mass
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m behaves as

φ(r, ~x) =
( r
L

)d−∆
[
φ(0)(~x) +

( r
L

)
φ(1)(~x) + · · ·+

( r
L

)2∆−d (
φ(2∆−d)(~x) + · · ·

)]
,

(1.3.4)

where ∆ is a solution to m2L2 −∆(∆− d) = 0, or

∆ =
d

2
±
√
d2

4
+m2L2 . (1.3.5)

∆ turns out to be the scaling dimension of the dual operator. Requiring that ∆ be real

results in

m2 ≥ − d2

4L2
. (1.3.6)

This is the famous Breitenlohner-Freedman (BF) bound. Scalar fields in AdS can be a

bit tachyonic; below this bound AdS is unstable.

With an understanding of the bulk field in hand, the basic relation which provides

a means to construct a phrase book from the gravity side to the field theory side is the

Gubser-Klebanov-Polyakow-Witten (GKPW) relation [50], [51]. It relates the partition

function of the boundary theory to the partition function of the bulk gravity theory

ZQG(ψ(0)) = ZQFT (ψ(0)) =

〈
exp

(
i

∫

∂AdS

ddxψ(0)(x)O(x)

)〉

QFT

, (1.3.7)

for some bulk field (not necessarily a scalar) ψ → ψ(0) near the boundary. The integral

on the right hand side is taken over the boundary of AdS, ∂AdS. As it stands, this

relation is not particularly useful. It equates the partition function of a strongly coupled

field theory to the partition function of quantum gravity in AdS, neither of which we

can calculate. The relation becomes useful in the saddle point approximation, ZQG ≈

exp(iSbulk), where the bulk side reduces to classical gravity. Going to Euclidean signature

so that ZQG ≈ exp(−SE), where SE is the Euclidean bulk action, and evaluating on-shell

gives a relation to the generating function of connected graphs in the boundary theory

S(φ(0)) = WQFT [ψ(0)] , (1.3.8)
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where S(ψ(0)) is the on-shell Euclidean bulk action, evaluated on ψ(0). In principle,

we can now work out arbitrary correlation functions between field theory operators by

taking functional derivatives of (1.3.8). There is a technical caveat here; the results tend

to diverge, signalling the need for a renormalization scheme which will be discussed in

section 1.3.2. For example, for a bulk scalar φ, the expectation value of the dual operator

is [71]

〈O〉 = 2∆− d

L
φ(2∆−d) . (1.3.9)

As asserted, the coefficient of the second mode φ(2∆−d) is dual to the expectation value of

the boundary operator (up to a constant coefficient). This result is also consistent with

the expectation value of a CFT operator with scaling dimension ∆. Another way to see

that ∆ is the scaling dimension of O is to perform a scale transformation in the bulk

(r, ~x) → (ξr, ξ~x). This leaves φ unchanged. A near boundary analysis of φ then shows

that the dual operator transforms as O(~x) → ξ∆O(ξ~x).

For the scalar field example, the identification of φ(0) and φ(2∆−d) as the dual source

and expectation value, respectively, is a choice of boundary conditions. This assumes

that the leading order fall-off is d − ∆ (that is, we have chosen the positive sign in

(1.3.5)) . This does not necessarily need to be the case, and different choices of boundary

conditions will result in a reversed identification. Regardless of the choice, it can be

shown [36] that ∆ ≥ (d − 2)/2, which corresponds to the CFT unitarity bound. The

lesson is that a different choice of boundary condition leads to a different boundary CFT,

even though the bulk action is the same. In this sense, deriving a result from a particular

bulk action is deriving the corresponding result for a class of CFTs, all of which display

the same behaviour.

So far, the focus has been on scalar fields dual to scalar operators. The dictionary

extends beyond this to other quantities, many of which can be fixed purely by symmetry.

For example, a massless bulk gauge field Aµ is expanded near the boundary as [36]

Aµ = A(0)µ +
( r
L

)d−2

A(1)µ + · · · . (1.3.10)
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Here, the two leading order coefficients, dual to the source and expectation value, are

shown. There are, of course, other terms in the expansion as well as the possibility of a

logarithmic term, depending on the dimension d. Analyzing the Maxwell equations near

the boundary shows that the conformal dimension of the dual operator for the gauge

field is d − 1, as expected for a current in the dual CFT. In particular, for the time

component At, the source term is the chemical potential in the dual theory A(0) ∼ µ

and the expectation value is then the charge density A(1) ∼ ρ. These relations hold

up to some constants that we will fix after renormalization in sections 1.3.2 and 1.3.3.

Gauge fields play a special role in applications of holography. A global U(1) symmetry

of the field theory is dual to a gauged symmetry in the bulk [71]. This way, to describe a

boundary theory with a gobal U(1) symmetry, we must include a gauge field in the bulk

action.

A similar analysis applies to the bulk metric, gµν . This is dual to the boundary energy-

momentum tensor. This had to be the case, since the boundary energy-momentum tensor

encodes the response of the field theory to a change in the metric. In pure Einstein

gravity, this identification can be shown to lead to the correct Ward identities, namely

∇a〈Tab〉 = 0 and 〈T a
a 〉 = A, where A is related to the Weyl anomaly [70].

Turning on a finite temperature in the boundary theory corresponds to turning on a

temperature in the bulk, which is associated to an event horizon [71]. In other words, the

bulk spacetime now has a black hole. Turning on a temperature introduces a scale into

the problem, so full conformal symmetry must be broken. Insisting that the geometry

approach AdS near the boundary is tantamount to saying that in the deep UV, the

conformal symmetry of the dual field theory is restored. This makes sense; at a scale

much higher than the deformation introduced (in this case, temperature, but it may

also be a relevant operator), the effect should be washed out and conformal invariance

recovered. The geometric dual to this situation is the AdS-Schwarzschild spacetime

ds2 =
L2

r2

(
−f(r)dt2 + dr2

f(r)
+ dxidxi

)
, (1.3.11)
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where f(r) = 1− (r/rh)
d, rh being the horizon position. The corresponding temperature

is the Hawking temperature of (1.3.11) T = d/(4πrh). The AdS-Schwarzschild geometry

is a solution to pure Einstein gravity with a cosmological constant; no matter source

is required to support it. Note that, in these coordinates, the boundary is at r →

0. In this limit, the geometry approaches AdS asymptotically, as desired. As written

here, the solution is in the Poincaré patch. The corresponding global AdS-Schwarzschild

geometry is a bit different. In particular, below a certain critical temperature, the black

hole geometry becomes thermodynamically unfavourable compared to radiation in pure

(global) AdS. This transition, called the Hawking-Page transition, has been proposed to

be dual to a confinement/deconfinement transition in the dual theory [8].

Similarly, turning on finite charge density in the boundary theory implies a bulk gauge

field, meaning the bulk theory is, at a minimum, the Einstein-Maxwell model

SEM =

∫
dd+1x

√−g
[

1

16πGN

(
R +

d(d− 1)

L2

)
− 1

4e2
F 2

]
, (1.3.12)

where e is the electromagnetic coupling. If we assume no other charged matter in the

bulk, it may be set to one. Assuming a purely electric charge (so that only At is turned

on), the bulk solution is the Reissner-Nordström-AdS black hole [71]

ds2 =
L2

r2

(
−f(r)dt2 + dr2

f(r)
+ dxidxi

)
, (1.3.13)

where

f(r) = 1−
(
1 +

(d− 2)κ2µ2r2h
2(d− 1)L2e2

)(
r

rh

)d
+

(d− 2)κ2µ2r2h
2(d− 1)L2e2

(
r

rh

)2(d−1)

, (1.3.14)

where κ2 = 8πGN . The gauge field solution is

At = µ
(
1− (r/rh)

d−2
)
. (1.3.15)

The Hawking temperature in this case is

T =
1

4πrh

(
d− (d− 2)2κ2r2hµ

2

(d− 1)e2L2

)
. (1.3.16)
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Notice that it is possible for T = 0 while there is still a finite charge density. The

generalization to having a magnetic field turned on may be found in [71]. Once again, as

r → 0, the RN-AdS geometry approaches pure AdS.

To fully understand how to compute quantities via holography, we need a renormal-

ization scheme, which we will review in the next section 1.3.2.

1.3.2 Holographic renormalization

As pointed out in section 1.3.1, holographic calculations tend to diverge meaning we need

a renormalization scheme. The procedure closely parallels field theory renormalization

and results in finite answers. For a comprehensive review see [70]. The central quantity

is the on-shell Euclidean action of the bulk theory (the real time formalism will be

discussed below in section 1.3.4). The first step is to regularize the action. This is done

by restricting the range of integration of the radial coordinate r ≥ ǫ. Conceptually, this

cutoff makes sense; the boundary of the bulk spacetime is reached as ǫ → 0. According

to the holographic dictionary, this region of the bulk corresponds to the UV of the dual

field theory. Hence, imposing a radial cutoff is like imposing a UV cutoff in the field

theory, exactly as one would expect from a renormalization scheme. We the conclude

that gauge/gravity duality “geometrizes” the UV cutoff as ǫ↔ ΛUV . The idea is then to

break up the integral in the on-shell action into terms that diverge as ǫ → 0 and terms

which vanish since the bulk equations of motion are satisfied. The result is a regulated

action of the form [70]

Sreg =

∫

r=ǫ

dd+1x
√
g(0)

[
ǫ−ca(0) + ǫ−(c+1)a(1) + · · · − ln(ǫ)a(2c) +O(ǫ(0)

]
, (1.3.17)

where c is a positive constant (depending on the bulk field in question) and g(0) is the de-

terminate of the bulk metric evaluated at r = ǫ. Given the general asymptotic expansion

for a field (1.3.3), the a(i) are local functions of the leading order F0 term which plays

the role of the source term of the dual field theory operator.
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Before continuing, it should be pointed out that the bulk gravitational action needs

to be supplemented with a boundary action in order to make the variational principle

well defined. This is the familiar Gibbons-Hawking story; for an asymptotically AdS

spacetime with curvature radius L, the relevant boundary action is [71]

SGH =
1

8πGN

∫

∂M

ddx
√
γ

(
−K +

(d− 1)

L

)
, (1.3.18)

where γab is the induced metric on the boundary of the bulk spacetime, ∂M and K =

γµν∇µnν is the trace of the extrinsic curvature; nµ being an outward pointing normal

vector.

Neglecting the Gibbons-Hawking term can produce incorrect answers, depending on

the kind of boundary quantity being computed. For instance, it is absolutely necessary

in order to get the right boundary energy-momentum tensor [72].

With the regulated action (1.3.17) in hand, the second step is to identify the coun-

terterm action, Sct needed to remove the divergent pieces. This is conceptually easy; the

counterterm action is just the negative of the divergent terms in the regulated action

(1.3.17). To actually compute the counterterm action, it is first necessary to invert the

asymptotic field expansion (1.3.3). This is required in order to solve for the source term

F(0) = F(0) (F (ǫ, ~x)). The regulated action should then be expressed in terms of the

inverted F(0) and the induced metric on the regulated surface γab = (L/ǫ)2gab(ǫ, ~x) [70].

The reason why this is necessary is so that the counterterm action may be expressed

entirely in terms of local quantities living entirely on the regulated surface at r = ǫ.

The third step in the process is to calculate the subtracted action, that is the action

with the divergent pieces removed. Schematically, this is just

Ssub [F (ǫ, ~x); ǫ] = Sreg

[
F(0); ǫ

]
+ Sct [F (ǫ, ~x); ǫ] . (1.3.19)

The subtracted action has a finite limit as ǫ → 0 by construction. To obtain the renor-

malized action, just take the ǫ → 0 limit of the subtracted action (1.3.19). It should be

pointed out that the subtracted action is necessary as the variations needed to compute
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correlation functions must be done before taking the ǫ → 0 limit. We can now compute

to our heart’s content. For example the one point function of the boundary operator O,

dual to some bulk field F with an asymptotic expansion (1.3.3) is

〈O〉 = 1
√
g(0)

δSren

δF(0)

= lim
ǫ→0

(
Ld/2−m

ǫd/2−m
1√
γ

δSsub

δF (ǫ, ~x)

)
, (1.3.20)

where in the second equality, the bulk quantity has been re-expressed in terms of quan-

tities entirely on the regulated surface r = ǫ. When applied to the action of a massive

scalar (1.3.20) correctly reproduces (1.3.9), as claimed. As another example, we can ap-

ply this formalism to the electric RN − AdS solution (1.3.13) and compute the charge

density of the dual field theory. This can be done either directly, or by using the following

trick [71].

The relevant bulk action is

SE = −
∫
dd+1x

√
g

[
1

16πGN

(
R +

d(d− 1)

L2

)
+

1

4e2
F 2

]
+ SGH , (1.3.21)

where SGH is the Gibbons-Hawking term (1.3.18). Note that we are working with the

Euclidean action, so the F 2 term comes in with a plus sign. We are working with an

electric ansatz, so only At is turned on. It turns out that no additional counterterms are

necessary for the bulk gauge field as it falls off sufficiently fast near the boundary [71].

Instead of working through the full holographic RG procedure again, define a new scalar

field ψ = (r/L)At. The relevant part of the action (1.3.21) may be re-expressed in terms

of ψ to give

Sψ = − 1

2e2

∫
dd+1x

√
g

{
r2

L2

[
(∂rψ)

2 + (∂aψ)
2]+ 2Veff(ψ)

}
, (1.3.22)

where Veff(ψ) is an effective scalar potential for ψ which depends only on ψ2 and radial

derivatives of ψ. We are explicitly interested in quantities near the asymptotic AdS

boundary, so gµν ∼ (L2/r2). The expectation value for a scalar operator in this back-

ground with action

Sφ =
η

2

∫
dd+1x

√−g
[
(∂φ)2 + 2V (φ)

]
, (1.3.23)
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is (up to a normalization constant η) given by (1.3.9). Now, use the FG expansion

(1.3.10) on the solution for At in the RN −AdS background (1.3.15) to find that ψ(1) =

(−µLd−2)/(rd−2
h ) and that ψ has ∆ = d − 1. The action (1.3.22) can be brought into

the form of (1.3.23) by comparing the normalization between the actions and setting

η = −1/e2. Since ψ = (r/L)At, the coefficient ψ(1) is actually At(1), so the expectation

value of the operator dual to ψ is actually the dual charge density. Applying the result

for the expectation value of a scalar operator (1.3.9) gives

〈J t〉 = µ(d− 2)Ld−3

e2rd−2
h

, (1.3.24)

as the charge density of the dual field theory.

Holographic renormalization has also been approached in terms of a bulk Hamilton-

Jacobi formulation, first proposed in [38]. For reviews, see [73] and [74]. The idea is

to study the Hamilton-Jacobi equations for the various bulk fields and the metric. The

caveat is that instead of following the Hamiltonian evolution through time, like in classical

mechanics, the evolution is followed along the radial direction. The bulk radial direction

encodes the energy scale in the boundary field theory, so flowing along r is equivalent to

flowing in E. It turns out that the divergent terms in the bulk action can be identified

by imposing the Hamiltonian constraints on a bulk cut-off surface near the boundary,

meaning that the necessary counterterms may be identified. It turns out that by following

this procedure, the Callan-Symanzik equation for the dual field theory can be obtained.

1.3.3 Correlation functions

Armed with a holographic renormalization technique, we can now compute quantities as

desired. As an example, after a lengthy calculation, the scalar two point function in pure

AdS turns out to scale like

〈O(x)O(0)〉 ∼ |x|−2∆ , (1.3.25)
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as would be expected in a CFT where the scaling dimension of O is ∆. The coefficient

needed to make the equality in (1.3.25) exact may be found in [46].

Computing n-point functions goes through the same way as the two point function

(1.3.25). As in standard QFT, there is a way to visualize these computations in AdS,

analogous to Feynman diagrams, called Witten diagrams. In this context, the external

legs of a process connect to the boundary and represent the boundary behaviour of the

bulk field and as such, these lines are called “bulk-to-boundary” propagators. There are

also “bulk-to-bulk” propagators which connect possible internal lines in the AdS bulk,

representing possible bulk interactions. A comprehensive review may be found in [75].

So far, our focus has been on computing dual field theory properties starting from

a Euclidean bulk action and applying the technology of holographic renormalization.

This procedure may be long and cumbersome and we would also like to be able to say

something about real-time physics. To understand strong time dependence in the dual

field theory, it is necessary to work in a fully time-dependent gravitational background.

This is difficult and there is, as of yet, no well defined process for approaching this kind

of situation. In lieu of this, it is possible to consider small time dependent perturbations

around equilibrium and study the response of the system. This is just linear response

theory à la gauge/gravity duality.

In order to get a handle on real time physics, we need to compute the Green’s function

associated with the quantity of interest. There are many choices here as they are many

different types of Green’s functions. The most interesting choice is the retarded Green’s

function which encodes the causal response of a system to a perturbation. The first

proposal for how to calculate retarded Green’s functions using holography was presented

in [76] and was later shown to arise from a holographic version of the Schwinger-Keldysh

formalism in [77], [78] and [79]. Calculating the retarded Green’s function will also play

a crucial role in the next section 1.3.4 where transport properties will be discussed.

Consider a perturbation to the dual field theory by an operator Oψ and source δψ(0).
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Going to frequency space, the response of the system is [71], [36]

δ〈Oψ〉(ω, k~k) = GR
OψOψ(ω,

~k)δψ(0)(ω,~k) , (1.3.26)

where GR
OψOψ(ω,

~k) is the retarded Green’s function. The source, ψ(0) will be related to

a bulk field via the holographic dictionary. Since we are looking at a perturbation of the

boundary theory, this should correspond to a perturbation in the bulk. In other words,

given the dual bulk field ψ, we should look for perturbations around its background value

by

ψ → ψ + δψ(r) e−iωt+i
~k·~x . (1.3.27)

The added perturbation must still obey the Fefferman-Graham expansion in an asymp-

totically AdS geometry. That is, the boundary conditions on the perturbation are fixed

to δψ = (r/L)mδψ(0) + · · · . It is also necessary to impose boundary conditions in the

interior of the geometry; this is where the real time requirement comes in. The retarded

Green’s function must be related to a bulk field that is infalling into the geometry. This is

easier to understand in an asymptotically AdS geometry with a black hole in the interior.

Bulk matter can fall into the horizon, but it cannot come back out. Borrowing an apt

description from [36], the choice of infalling boundary conditions corresponds to an event

that can happen, rather than “unhappen”. Geometrically, this requires a future horizon

in the interior, which is where the boundary condition will be set. The future horizon is

a surface in the bulk. Once passed this surface, causal contact with asymptotically AdS

boundary is no longer possible. For a black hole geometry the future horizon is just the

event horizon. In the Poincaré patch of AdS, there is such a horizon at r → ∞.

With a perturbation satisfying the correct boundary conditions, the retarded Green’s

function can be essentially read off from (1.3.26)

GR
OψOψ =

δ〈Oψ〉
δψ(0)

. (1.3.28)

A value for 〈Oψ〉 is still required to make progress, the result for which was given for a

scalar operator (1.3.9). Recall that the calculation relied on the holographic renormaliza-
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tion procedure with the Euclidean action. The choice of working in Euclidean signature

is a computational crutch designed to get around the issue of imposing a boundary con-

dition on the future horizon, thereby breaking time reversal symmetry. In fact, this is

not necessary as long as the correct causal behaviour of the bulk fields is enforced, in

particular, the basic relation (1.3.7) is valid in Lorentzian and Euclidean signature. In

general, the expectation value can be computed in the classical bulk limit (large N in

the dual theory) [36]

〈Oψ〉 =
δW [ψ(0)]

δψ(0)

= lim
r→0

( r
L

)m
Π(r, ~x) . (1.3.29)

Note, no assumption about the signature of the bulk spacetime has been made. Here,

the quantity W [ψ(0)] should be thought of as already containing the required bulk coun-

terterms. Also Π is defined as

Π(r, ~x) =
∂L

∂(∂rψ)
. (1.3.30)

The quantity (1.3.30) is reminiscent of the bulk field momentum, except with the radial

coordinate r used in place of time. This is very much in line with the philosophy of

holographic renormalization in the Hamilton-Jacobi approach [38]. The momenta of

fields are also related to the variation of the action with respect to the initial value of the

field [36], hence the second equality in (1.3.29). Note also that near the boundary ψ ∼

(r/L)mψ(0), so ∂/∂ψ(0) ∼ r−m(∂/∂ψ)|r=ǫ. That is, the quantity Π should be computed

in the bulk, at a cutoff surface ǫ and then the limit to ǫ → 0 taken, taking into account

the hidden r dependence in the field derivative. Applying this formulation to the case of

a scalar field reproduces the result already obtained (1.3.9) [36].

With (1.3.29) and (1.3.30), the retarded Green’s function is

GR
OψOψ = lim

r→0

δΠψ

δψ
. (1.3.31)

This equation is valid for a general bulk mode. When applied to a scalar field, it returns

[71]

GR
OφOφ =

2∆− d

L

δφ(2∆−d)

δφ(0)

, (1.3.32)
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hence the retarded Green’s function is described by the ratio of the expectation value and

the source, as expressed via the bulk field. This will be true for the other examples which

will be described in section 1.3.4. In particular, this means that the retarded Green’s

function can computed directly from the bulk solution for the field. When applying linear

response theory, the bulk field is a perturbation, meaning that the equations of motion

should be expanded to linear order and solved. This is not always as tractable as it

sounds, and sometimes a numerical solution is required.

1.3.4 Transport properties

With an understanding of how to compute retarded Green’s functions, it is now possible

to calculate transport properties of the field theory using gauge/gravity duality. In the

hydrodynamic limit, transport properties are related to the retarded Green’s function by

a Kubo formula [46]

χ = − lim
ω→0

lim
~k→0

1

ω
ImGR(ω,~k) , (1.3.33)

where χ is the transport coefficient. Note that the order of limits is not arbitrary here,

the ~k → 0 limit must be taken first. Notice also that this formula is restricted to the case

where the transport coefficient is a constant, so χ could be, for example, the DC conduc-

tivity. In general, it is interesting to understand the frequency and spatial dependence

of transport properties of the system. This is also possible to access holographically via

(1.3.31), which makes no assumption about small ω or ~k. An example with frequency

dependence will be discussed shortly and an example where spatial dependence can show

up will be given in chapter 3.

To get a feel for how this process works, we can compute the conductivity dual to

pure AdS4. Explicitly, the metric is

ds2 =
L2

r2
(
−dt2 + dr2 + dx2 + dy2

)
, (1.3.34)

where the boundary is at r = 0. The first step is to compute ΠAx from the Lagrangian.
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AdS is a vacuum solution to the Einstein equations, so there is no initial bulk matter. To

compute the conductivity, we need to turn on a boundary electric field and measure the

response of the system. The applied field should be thought of as small, so that it may

be treated by the linear response techniques set up in section 1.3.3. The conductivity is

then really just a consequence of Ohm’s law, J = σE.

The metric (1.3.34) is homogeneous and isotropic along the boundary [x, y] directions,

so σxx = σyy ≡ σ, meaning we can turn on an electric field in any direction we chose and

get the same result. Turning on a perturbation δAx(t, r) then ensures an electric field

along the boundary x direction E = ∂tδA(x)|r→0. The relevant action for this perturbation

is then

SM = −ζ
∫
d4x

√−gF 2 , (1.3.35)

where ζ is a normalization constant. Computing ΠAx as in (1.3.30), gives

ΠAx = −4ζ∂rδAx . (1.3.36)

The perturbation must still obey the Fefferman-Graham expansion (1.3.10), so near the

boundary δAx = δAx(0)(t) + rδAx(1)(t) + · · · . The Green’s function then follows from

(1.3.31)

GR
JxJx = lim

r→0

ΠAx

δAx
. (1.3.37)

In order to make sure that we are getting the right retarded Green’s function, we must

ensure that the gauge field perturbation δAx respects infalling boundary conditions as

r → ∞, meaning we need to solve the linearized Maxwell’s equations in the AdS back-

ground for δAx(t, r). This can be done analytically with the result

δAx(t, r) = C0 exp(iωr) exp(−iωt) , (1.3.38)

where C0 is a constant. To prove that this is actually the correct infalling solution,

switch to ingoing coordinates in the metric (1.3.34), v = t − r for which the gauge field

solution is δAx = C0 exp(−ivω). The v coordinate is constant along null paths which
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are travelling into the geometry towards r → ∞. As t grows, so must r in order to

keep v constant along any null line. In this sense, v is the ingoing coordinate, following

trajectories of increasing r into the geometry a time evolves. Hence, δAx in (1.3.38)

describes an infalling mode.

Evaluating the limit in (1.3.37) and using the Kubo formula (1.3.33) gives the con-

ductivity. Choosing the usual normalization for the electromagnetic action ζ = 1/(4e2)

gives

σ = lim
ω→0

1

e2
=

1

e2
. (1.3.39)

The DC conductivity is a constant, set only by the coupling e2. Moreover, the AC

conductivity (i.e. before taking the ω → 0 limit in (1.3.39)) is also a constant, totally

independent of the frequency of the applied field ω.

The same result turns out to be true in the AdS-Schwarzschild background (1.3.11) as

well, even though the system is at finite temperature. This counter-intuitive result turns

out to be due to electric-magnetic duality in the bulk [80]. Given that the action for the

gauge field only contains FµνF
µν , either Fµν itself, or its dual ∗Fµν = −(1/2)ǫµνσλF

σλ

could be the fundamental field strength. In other words, the action is unchanged by

switching the electric and magnetic fields. For a dyonic black hole with electric charge

q and magnetic charge h, the duality transformation requires h → −q and q → h. The

original conductivity is constrained to be inversely related to the duality transformed

conductivity (up to a constant) [81]. A constraint on the conductivity of the uncharged

AdS geometry can then found by setting q = 0 and h = 0. Since there is no charge, the

duality transformation simply maps the conductivity to one over itself (up to a constant)

and so the conductivity as a whole must be a constant.

The same kind of calculation can be carried out for the RN −AdS geometry (1.3.13)

to find the dual conductivity when a background charge density is turned on. In this

case, it is necessary to include a metric perturbation δgtx on top of the gauge field

perturbation δAx. The reason is that the δAx perturbation of the gauge field can couple
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to the original At component in the baseline solution and show up at linear order in the

energy-momentum tensor. In order for the Einstein equations to remain consistent, a

metric perturbation δgtx must be sourced to compensate for this mixing. The linearized

Einstein and Maxwell equations may be solved numerically in this case [71]. The AC

conductivity approaches a delta function as ω → 0, meaning that the DC conductivity

diverges. This is the result of translational invariance along the boundary directions,

which means the momentum is conserved in the boundary theory and the resulting DC

conductivity is infinite. To remedy this situation, a mechanism to break translational

invariance in holography is needed. This will be discussed in more detail in section 1.5.

Note that the DC conductivity in pure AdS (and AdS-Schwarzschild) is finite even

though the boundary directions are translationally invariant. This is because there is no

net charge in these backgrounds, so the dual theory has particle-hole symmetry [71]. If a

particle collides with a hole head on and they are both at rest afterwards, then the total

current will relax to zero, but total momentum is still conserved (it was just zero to start

with). If there is a net charge density, then there will, on average, be some amount of

momentum left over as there is a surplus of one charge over its opposite. Since charge

is conserved, this means there will always be some finite current. When ω → 0 and the

applied electric field approaches a constant, the conductivity will inevitably diverge as

there is nothing to prevent the charges from accelerating infinitely.

Another powerful example of the application holographic of techniques is to calculate

the shear viscosity of the dual theory [7]. In the context of hydrodynamics, the shear

viscosity shows up as a dissipative term in the energy-momentum tensor. The energy-

momentum tensor itself is defined by the variation of the matter Lagrangian with respect

to the metric tensor. Therefore, to measure shear viscosity with holography, we need to

look at a metric perturbation, ḡµν = gµν + hµν , where gµν is the original metric and hµν

is the perturbation. Again, to ensure the validity of linear response theory, the metric

perturbation will be taken to be small and only contribute at linear order. We will
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work at finite temperature, so the background is the AdS-Schwarzschild metric (1.3.11).

Turning on a perturbation along the xy direction (L2/r2)hxy, the metric, at linear order,

takes the form

ds2 =
L2

r2

(
−f(r)dt2 + dr2

f(r)
+ dx2 +

L2

r2
(dy + hxydx)

2

)
. (1.3.40)

Plugging this ansatz into the Einstein equations results in the equations of motion for

the perturbation hxy which turns out to be [46]

Sh = − 1

32πGN

∫
dd+1x

√−g ḡµν(∂µhxy)(∂νhxy) . (1.3.41)

Note that the determinate of the metric here is with respect to the unperturbed metric.

The procedure is now the same as for the conductivity case above. Examining the

equations of motion resulting from the action (1.3.41) and imposing regularity here the

horizon r → rh results in a boundary condition for hxy

hxy ≈ C exp

(
− iω

4πT
ln(r − rh)

)
exp(−iωt) exp(i~k · ~x) . (1.3.42)

Again, by changing to ingoing coordinates v = t − r∗, where r∗ is the usual tortoise

coordinate, this boundary condition can be seen to be the correct infalling behaviour.

The field momentum in this case is

Πhxy = − 1

16πGN

(
L

r

)d−1

f(r)(∂rhxy)
2 , (1.3.43)

and so using the Kubo formula, the shear viscosity is

η = − lim
ω→0

lim
~k→0

lim
r→0

1

ω
Im

(
Πhxy

hxy

)
. (1.3.44)

It turns out [46] that Πhxy/(ωhxy) is independent of r and so can be evaluated anywhere

in the bulk. In particular, it is convenient to set r = rh, since the horizon encodes the

thermodynamic properties of the geometry. The viscosity is then

η =
1

4GN

(
L

rh

)d−1

. (1.3.45)
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The entropy density of the AdS-Schwarzschild geometry follows from the Bekenstein-

Hawking formula

s =
AH

4GNV
=

1

4GN

(
L

rh

)d−1

, (1.3.46)

where AH is the horizon area and V is the volume of the boundary region. The second

equality is the result for the AdS-Schwarzschild geometry. The ratio of shear viscosity

to entropy density for the holographic dual theory is then given by the famous KSS

(Kovtun-Son-Starinets) formula [7], [82]

η

s
=

1

4π
. (1.3.47)

There is nothing particularly special about the choice of the AdS-Schwarzschild geometry.

The result is true in any two derivative theory of gravity along with the modest assump-

tions that the bulk geometry is translationally invariant along the boundary directions,

asymptotically AdS (or any other geometry in which a sensible holographic prescription

may be set up) and that there is a an event horizon [36]. In this sense, (1.3.47) is a

universal bound valid at strong coupling. For other theories of gravity, the KSS bound

may be violated. For example, in Gauss-Bonnet gravity in D = 4 + 1 dimensions [83]

S =
1

16πGN

∫
d5x

√−g
[
R− 2Λ + ηGB

(
R2 − 4RµνR

µν +RµνλσR
µνλσ

)]
, (1.3.48)

where η2 is a constant coupling to the curvature squared terms. In this case, the KSS

bound becomes [84]

η

s
=

1

4π

(
1− 8ηGB

L2

)
≥ 1

4π

16

25
, (1.3.49)

where L is the AdS radius. The value on the right hand side comes from demanding

a well behaved bulk solution. Arbitrary values of ηGB may lead to the appearance of

ghosts in the gravity theory; they can be avoided in certain backgrounds for a restricted

range of ηGB. In chapter 2, curvature squared corrections will be studied in a different

holographic context where more comments about ghosts will be made.

Beyond transport properties, there is a slew of other quantities in the dual field theory

that are interesting to study. One such quantity is entanglement entropy which, over the
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course of the last several years, has shown that there is a deep connection between

quantum information theory on the boundary and the bulk geometry.

1.3.5 Entanglement Entropy

The holographic dictionary also allows us to access information related to non-local

probes of the dual field theory. A particularly pertinent example is a Wilson loop [85].

According to the holographic dictionary, the endpoints of strings on D3-branes are

to be thought of as quarks in the dual theory [46]. This way, the Wilson loop may be

represented by a string worldsheet, Σ, which extends into the bulk and ends on a D3-

brane. The boundary of the worldsheet, ∂Σ, which ends on the brane forms a closed

curve C, which is interpreted precisely as the closed curve around which the Wilson loop

is calculated in the dual theory. Taking the brane to the (Euclidean) AdS boundary

means that the closed curve C lies entirely on the AdS boundary. This limit corresponds

to the field theory UV, so the quarks are infinitely heavy. The vacuum expectation value

of the Wilson loop is [46]

〈W (C)〉 = Z(∂Σ = C) = exp(−SNG(C)) , (1.3.50)

where Z(∂Σ = C) is the string partition function subject to the boundary condition

that the worldsheet has a boundary C. In the last equality, the large ’t Hooft limit has

been used to express Z in terms of the on-shell Nambu-Goto action. This formalism has

been generalized to finite temperature and used to examine holographic quark-antiquark

potentials in strongly coupled N = 4 SYM where confining behaviour is observed. A

review of these results may be found in [46].

Another particularly interesting non-local probe of the boundary theory is entangle-

ment entropy, SEE. The entanglement entropy is a measure of how closely entangled a

given wave function is. For example, consider a quantum system described by a Hamilto-

nian Htot at a fixed time t = t0. Suppose the system is divided into two regions A and B
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such that the total Hamiltonian may be written as a direct product of two Hamiltonians,

one for each subsystem A and B, Htot = HA ⊗ HB. If an observer is restricted to only

being able to measure quantities in the subsystem A, then it will appear as if the total

system is described by a reduced density matrix

ρA = trB ρtot , (1.3.51)

where the trace is restricted to be taken over only the Hilbert space associated with the

subsystem B, HB. That is, any information about the state of the subsystem B is traced

out. An analogous result holds for the reduced density matrix on the subsystem B. The

entanglement entropy of the subsystem A is then defined as the von Neumann entropy

of the reduced density matrix associated to A [86]

SA = −trA [ρA log(ρA)] . (1.3.52)

The entanglement entropy is a measure of how correlated the subsystems A and B are with

each other. In other words, it counts the number of entangled bits between subsystems

A and B. In order to define the entanglement entropy for a finite temperature system, it

suffices to take the total density matrix to be ρtot = exp(−βH), with β = T−1. In this

case, when the subsystems A and B are chosen to overlap completely (i.e. they are the

same), the entanglement entropy as defined in (1.3.52) reduces to the thermal entropy

[86].

Entanglement entropy is an interesting quantity from the perspective of field theory.

A useful feature is that SEE does not vanish at zero temperature and so may be used to

probe the ground states of quantum systems. It may also be a useful order parameter

for zero temperature quantum phase transitions which will be discussed in more detail

in sections 1.4.2 and 1.5.5. Entanglement entropy is also an important quantity in the

context of quantum information theory. With regards to holography, it serves as a basis

for many modern studies on the emergence of spacetime, progress and future directions

on this front will be discussed in chapter 4.
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There are a variety of general properties that are satisfied by entanglement entropy.

These properties are generally encoded in terms of inequalities that place strong restric-

tions on quantum systems from the point of view of quantum information theory. For

example, on very general grounds, given any three non-intersecting subsystems, A, B and

C [87].

S(A ∪ B ∪ C) + S(B) ≤ S(A ∪B) + S(B ∪ C) , (1.3.53)

S(A) + S(C) ≤ S(A ∪ B) + S(B ∪ C) . (1.3.54)

By setting C to be empty in (1.3.53) and (1.3.54), a new quantity called the mutual

information may be defined with the property [86]

I(A,B) = S(A) + S(B)− S(A ∪ B) ≥ 0 . (1.3.55)

As we will discuss in more detail shortly and in chapter 4, some of these properties may

be translated directly into geometric constraints in any potential gravity dual.

Entanglement entropy is generally difficult to calculate in quantum field theories. One

technique is called the replica trick where n-copies of the theory are considered and the

entanglement entropy for a region A is calculated in the limit as n = 1 [86]

SA = − ∂

∂n
trAρ

n
A|n=1 . (1.3.56)

In some cases, the entanglement entropy may be exactly computed. For example, in a

2D CFT, the entanglement entropy of a strip of length l is [88]

SA =
c

3
log

(
l

a

)
, (1.3.57)

where c is the central charge of the CFT and a is a UV cutoff which is required to regulate

the entanglement entropy [86].

In [22] and [89], a proposal for how to compute entanglement entropy via holography

was proposed. The idea is to consider a CFT in d spacetime dimensions with a dual

in (static) AdSd+1. The boundary of the AdS geometry is split into two regions A and
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B and the entanglement entropy between the two regions is measured. The boundary

of the region A (∂A) is associated to a bulk surface which ends on the boundary and

is homologous to ∂A. The RT (Ryu, Takayanagi) proposal states that the area of the

minimal such bulk surface, γA, computes the entanglement entropy in the dual theory.

More specifically, the RT formula is

SA =
Area(γA)

4GN

, (1.3.58)

where GN is the Newton constant in d+1 dimensions. For a d+1 = 3 dimensional bulk

and by selecting an infinite strip region on the boundary, the RT prescription (1.3.58)

correctly reproduces the 2D CFT result (1.3.57). In higher dimensions, the holographic

entanglement entropy can be difficult to calculate since finding a minimal bulk surface

is not an easy task. In AdS3, the situation is a bit simpler as the bulk minimal surfaces

are just one dimensional spacelike geodesics. Recently, a proof of the RT formula has

become available via an implementation of the replica trick in the bulk [23].

The RT formula applies for a bulk gravity theory described by Einstein gravity. Ex-

tensions to to gravity theories with higher curvature corrections have been considered

in [90], [91], [92], [93] and [94], although a well established procedure is only currently

known for Gauss-Bonnet gravity.

A prescription to extend the RT formula to time dependent cases was made in [95]

called the HRT (Hubeny, Ryu, Takayanagi) proposal and is generally covariant in the

bulk. Here, the dual entanglement computes the dual entanglement entropy in the full

Lorentzian bulk geometry by finding the area of an extremal codimension 2 spacelike

surface. As of yet, there is no proof for the HRT proposal like there is for the RT

formula.

The RT formula may be used to show that the holographic entanglement entropy

satisfies the basic relations known from quantum information theory, for example strong

subadditivity (1.3.53) and (1.3.54) as well as the positivity of mutual information (1.3.55).

These relations follows from geometric properties of minimal surfaces in AdS, fullfilling
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one of the basic tenets of holography; boundary properties are geometrized in the bulk.

For a review of the many properties satisfied by holographic entanglement entropy and

their proofs, see [96].

As we will discuss in more detail in chapter 4, the holographic entanglement entropy

has motivated the study of many other information theoretic concepts in the context of

gauge gravity duality, residual entropy being a particularly popular example [97]. These

concepts, along with ideas about bulk locality suggest interesting and unexpected links

between the emergence of gravity and quantum information theory.

Holographic entanglement entropy is also an interesting quantity with regards to

thermalization. The idea is to model a quench in the boundary theory by studying

gravitational collapse in the theory. The collapsing geometry is sourced by a scalar

perturbation (sudden injection of energy) near the boundary and results in a Vaydia-

AdS spacetime. Ultimately, the geometry collapse into an AdS-Schwarzschild geometry.

The behaviour of a variety of probes may be studied before and after the quench and used

to establish timescales over which thermalization occurs. In [98], numerical simulations

in three, four and five bulk spacetime dimensions show that the entanglement entropy

thermalizes the slowest and thereby sets the overall equilibration time scale.

More recently, [99] and [100] studied the evolution of holographic entanglement en-

tropy after a global quench in the dual field theory. It is observed that the growth

of entanglement is characterized by an “entanglement tsunami” which carries entangle-

ment from the boundary into the bulk resulting in different regimes of equilibration times.

Based on these observations, a bound is conjectured on the maximal rate of the growth of

entanglement entropy in a relativistic systems. Understanding how and when a strongly

coupled field theory equilibrates is central to studying quantum many-body systems. We

will discuss further aspects of progress on holographic models of this phenomenon in

chapter 4.

We end this section with a short summary table of some of the important entries in
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the holographic dictionary.

Boundary Bulk

scalar operator scalar field

fermion fermion

conserved current gauge field

spin spin

conformal dimension mass

global symmetry local isometry

chemical potential finite charge density

energy-momentum tensor metric

finite temperature black hole horizon

deconfinement transition Hawking-Page transition

entanglement entropy minimal surface

multiparticle state product of operators at distinct points

O∆1
(x1) · · · O∆n(xn)

bound state product of operators at the same point

O∆1
(x) · · · O∆n(x)

1.4 AdS/CMT

A particularly useful feature of gauge/gravity duality is that, in the strong coupling

limit, the field theory is dual to classical gravity, providing a powerful tool for accessing

strong coupling phenomena that would otherwise be intractable. This feature motivates

the application of holographic techniques to problems of condensed matter physics and

QCD, to gain some degree of analytical control over strong coupling phenomena where

previously there was none. This program has enjoyed numerous successes over the last

decade. On the QCD front, gauge/gravity duality (known as AdS/QCD) has provided
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a prediction of the shear viscosity of a strongly coupled plasma, in agreement with the

value measured at RHIC [7]. For a review see [101].

In context of condensed matter physics, application of gauge/gravity duality (called

AdS/CMT ) has also revealed surprising results, including descriptions of holographic

superconducting phases, fluid mechanics, quantum criticality and even new solutions to

general relativity. Some highlights of this research program are described below. For

comprehensive reviews of AdS/CMT techniques see [71], [81], [36], as well as the more

recent overview [102].

1.4.1 Bottom up phenomenology versus top down

An immediate obstruction to using the AdS/CFT correspondence to study condensed

matter physics or QCD is that the dual field theory is N = 4 SYM. For starters, this field

theory is conformal, which is not true of almost any “real-world” systems. Secondly, the

theory is supersymmetric, which is certainly not a property of conventional condensed

matter models.

There is a long history of holographic symmetry reduction with a major focus being

the reduction of supersymmetry and the breaking of conformal invariance. For reviews

see [103] and [55]. The simplest thing to do is turn on a finite temperature in the gravity

background, which breaks conformal symmetry as a scale is introduced [43]. This also

breaks supersymmetry as periodic and anti-periodic boundary conditions around the

thermal period 1/T must be imposed on bosonic and fermonic fields respectively [104].

This leads to different mode expansions for the bosons and the fermions and breaks

supersymmetry.

Other studies have focused on modifications of the original AdS5×S5 correspondence

by putting the stack of D3-branes on a curved background [105], [106]. The net result

is that the geometry of the original duality is modified to AdS5 × M5, where M5 is a

manifold which depends on the background chosen. Near a conifold singularity, M5 =
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(SU(2) × SU(2))/U(1) and the dual field theory has N = 1 supersymmetry. These

constructions may be generalized to include both N regular and M fractional D3-branes

sitting at the conifold singularity [107], [108], [109]. The fractional D3-branes can be

thought of as D5-branes wrapped on S2. As the conifold singularity is approached, the

S2 shrinks away and two of the worldvolume directions are effectively lost. These branes

are stuck at the singularity of the background. The holographic result of this construction

is a non-conformal N = 1 supersymmetric dual theory with an SU(N +M) × SU(N)

gauge group. This construction displays chiral symmetry breaking and is confining in

the deep IR.

Another approach to reducing supersymmetry is to wrap higher dimensional branes

along sub-manifolds of the full ten dimensional geometry [110], [111]. These models are

dual to N = 1 SYM in the IR. Confinement and chiral symmetry breaking are also

present.

Flavour may be introduced in the AdS/CFT framework by including Nf ≪ N D7-

branes to the D3-brane background [112], [113], [114] which lead to holographic models

with dynamical quarks. It turns out that these models preserve N = 2 supersymmetry.

Conformal symmetry and supersymmetry breaking has also been approached by

building in other kinds of deformations of the original AdS5/CFT4 correspondence. In

[115], a family of solutions to type IIB supergravity which contains a non-constant S5

radius and a non-constant dilaton that approaches AdS5 × S5 asymptotically are con-

structed. The resulting dual field theory has N = 0 supersymmetry. The addition of

probe D7-branes in this setup is studied in [116]. In [117], finite mass perturbations

are added to the AdS5/CFT4 which break conformal invariance and supersymmetry in

the IR, resulting in N = 1. A holographic dual for four-dimensional SU(N) Yang-

Mills (i.e. without supersymmetry) was proposed in [8]. The gravity side contains N

D4-branes compactified on a circle with anti-periodic boundary conditions on the world-

volume fermions. By adding Nf probe D6-branes, this model was studied in [118] as
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a model of four dimensional QCD with Nf ≪ N flavours. This model was modified in

[119] to contain Nf D8-branes. For a review see [120]. Furthermore, a non-conformal

N = 2∗ dual field theory is obtained by including a mass deformation on top of the usual

conformal N = 4 SYM [121].

Motivated by these observations, “bottom-up” models that are inspired by theAdS/CFT

correspondence but do not descend from any particular full string theory construction

have been proposed to capture QCD phenomenology. This program is called AdS/QCD,

for a review see [122]. In a similar spirit, the AdS/CMT program is intended to use

gauge/gravity duality to point towards universal features of strong coupling behaviour,

and give us a window into what to expect for strongly coupled systems where a reliable

quasiparticle description is not available.

The approach then is to start from the bottom-up by constructing an effective gravi-

tational model with the kinds of ingredients necessary for capturing the strongly coupled

behaviour we are interested in. Only the minimal ingredients necessary for a holographic

duality are assumed. We need to know the dimensionality of the system, whether or not

the system is at finite temperature and/or charge density, and what kind of symmetries

we expect to find (for example, translational invariance). With these basic ingredients, a

spacetime which captures these properties and a model which contains the spacetime as a

solution is proposed. A variety of bulk models are available, starting with pure Einstein

gravity with a negative cosmological constant. Generalizations include adding matter

content such as scalars or fermions which are useful for studying condensates of the dual

operators, bulk gauge fields which can encode global symmetries of the boundary theory,

higher curvature corrections which describe 1/N corrections, and so on. These specific

models are not full fledged string theory on the bulk side, but rather contain components

common to all known holographic theories. The results, then, are expected to apply to

a wide class of holographic theories and help us understand a broad range of features of

strongly coupled field theories.
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With the model in hand, the idea is to use the known holographic dictionary to

compute properties of the strongly coupled dual field theory. Usually, the interesting

spacetime geometries are meant to be thought of as being asymptotically AdS (that is,

they approach an AdS solution near their boundary) so that the holographic dictionary

may be applied more reliably. Actually demonstrating that the a geometry has an AdS

completion can be tricky and we will discuss mechanisms by which this can occur in chap-

ter 2 for a certain class of holographic spacetimes. The bottom-up approach has proven

surprisingly useful for capturing broad classes of potentially interesting phenomenology.

Furthermore, it has sparked renewed interest in finding solutions to classical gravity

systems in novel settings, revealing a rich landscape of spacetimes with unconventional

properties

An obvious drawback to the bottom-up approach is that it does not provide a “top-

down” UV embedding of the model in full string theory, or even into a supergravity

theory. Actually constructing string embeddings can be a daunting task. While this has

been achieved in certain cases (some examples from the literature are provided below in

sections 1.5.2, 1.5.3 and 1.5.4), there is no known general procedure. Pursuing purely

bottom-up models does not generally point towards a top-down embedding, while starting

from the top-down is technically challenging. The idea then is to pursue both approaches

in parallel with the aim of meeting somewhere in the middle; using both bottom-up and

top-down models to motivate constructing full holographic solutions.

Below we will review a few important applications of holography which exemplify the

long reaching power of gauge/gravity duality. In the process, links between seemingly

unrelated systems will appear.

1.4.2 Quantum criticality

A quantum phase transition is a continuous (second order) transition that occurs at zero

temperature, driven by quantum fluctuations. Such transitions can occur in a variety of
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systems, see [123] for a description of some real world examples. Since the transition is

occurring at zero temperature, it is controlled by tuning some other external parameters,

such as the applied magnetic field or pressure. At a critical value of the coupling to the

external parameter, a measurable change to the ground state wavefunction can occur:

this is the quantum phase transition. As the phase transition is approached, any energy

gap in the system vanishes, and so the coherence length also diverges with a specific

scaling law. At the quantum critical point, the system is described by a quantum critical

theory [71]. The theory is scale invariant, but it is not necessarily relativistic, meaning

that space and time may scale differently. In some circumstances, the critical point may

be described by a fully relativistic CFT. The parameter which governs how space and

time scale differently is called the dynamical critical exponent, z; it will play a special role

when we discuss non-relativistic holography in sections 1.5.1-1.5.5. Within the context of

field theory, z sets the upper critical dimension of interactions [71]. It is also known that

in 2 + 1 dimensions, quantum critical theories are typically strongly coupled; a reliable

quasiparticle description is often not available and this is an opportunity for holography

[123].

The effects of a quantum critical point are not solely confined to zero temperature;

their imprint can be felt even at finite temperature. At the quantum critical point, the

system is not gapped and at T = 0 critical excitations require no energy to be excited.

Turning up the temperature is equivalent to adding a thermal noise with a characteristic

energy kBT , so any fluctuation with a smaller energy than this can be thermally excited.

As long as the correlation length of an excitation is long enough, it can still display

critical behaviour even though it has moved off of the critical point [124]. In fact, as the

temperature is increased, the imprint of the quantum critical point grows [123], [71].

Based on the presence of strong coupling, along with the observations about scale

invariance and in some case full conformal invariance, it is expected that gauge/gravity

duality may play an important role in understanding these systems. As we will see, using
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holography to model scale invariant systems without relativistic symmetry will lead to

new holographic dualities. An example of a quantum critical phase is the so called

“strange metal” phase in which properties of a metallic system, such as resistivity, differ

drastically from those predicted by standard Fermi liquid theory. This phase has gained

considerable attention in the holographic context and will be discussed more thoroughly

in section 1.5.5.

Quantum critical points seem almost tailor made for a holographic analysis, but they

are not the only interesting class of systems to explore. At sufficiently long wavelengths,

many systems, including quantum systems, can be effectively described by hydrodynam-

ics, even at strong coupling. Perhaps unsurprisingly then, gauge/gravity duality has

quite a bit to say about fluid mechanics.

1.4.3 Fluid/gravity

The relationship between gravity at long wavelengths and fluid dynamics, in the context

of gauge/gravity duality, goes back almost fifteen years to [125], which was interested

in studying the shear viscosity of strongly coupled plasmas. A flurry of active later

strengthened the linkage and gave rise of to notion of the fluid gravity correspondence.

Detailed reviews and a comprehensive list of references may be found in [82], [126] and

[127].

For a gas, collisions between the constituents will occur over a time scale set by the

mean free time τ and a length scale equal to the mean free path λ. If L is another

length scale which characterizes the scale of variations for temperature and velocity,

the the ratio K ≡ λ/L, called the Kundsen number, characterizes the scale over which

thermal equilibrium is achieved. When K ≪ 1, thermal equilibrium can be achieved

locally in a finite time and the gas is in the hydrodynamic regime. The local properties

of the system, such as temperature T , velocity ua and local density (of all conserved

charges), vary slowly over spacetime in this regime. It is believed that every non-trivial
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quantum field theory, even at strong coupling, equilibrates to such a fluid phase at high

temperatures [126].

The dynamics of the fluid are described by the conservation of the energy-momentum

tensor ∇aT̃
ab = 0 and conservation of any other conserved charges. In what follows, we

will imagine the indices a and b as being boundary indices, and so they do not include the

holographic radial coordinate. Supplementing these conservation conditions is a set of

constitutive relations which allow the energy momentum tensor to be expressed in terms

of the dynamical variables, T (x), ua(x), which are functions of the boundary coordinates.

If this system is to be described by a simple gravity dual, it should also have a conformal

symmetry which further restricts the form of the energy-momentum tensor.

A minimal requirement to having a gravitational dual is to find a spacetime solution

that describes the same set of dynamical variables as the fluid. A first guess at a solution

would be the static AdS-Schwarzschild solution (1.3.11) in 4 + 1 dimensions, boosted

along one of the boundary directions. This captures, via the holographic dictionary, the

requirement that the boundary fluid have a finite temperature, as well as the dependence

on the velocity field since this it is a boosted solution. It does not handle the fact that the

dual fluid is, globally, out of equilibrium since T and ua do not depend on the boundary

coordinates. Since the dynamical variables of the fluid are meant to be slowly varying

functions of the boundary coordinates, the dependence may be built into the solution

to the Einstein equations perturbatively, expanding the bulk equations of motion in a

derivative expansion of the dynamical variables and solving them order by order. This

was first done in [17]. For a review of the technical details, see [126].

The upshot to this procedure is that, at the fully nonlinear level, the constraint

equation coming from the off-diagonal [r, a] components of the Einstein equations (which

is now non-trivial since the temperature and velocity field now depend on the boundary

directions) turn into the Navier-Stokes equations – generalized to a relativistic conformal

fluid. The holographic dictionary can then be applied and the transport properties of
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the dual fluid can be read off. Generalizations of this construction to non-conformal and

non-relativistic as well as rotating fluids also exist [127].

Starting with the analysis in [19] and later complemented by [18] and [128], the

fluid/gravity correspondence was generalized to include a chemical potential in order to

study the dual dynamics of a fluid which preserves an additional U(1) charge. This

was accomplished within a bulk Einstein-Maxwell-Chern-Simons model which has the

charged RN − AdS geometry as a solution. Performing the same derivative expansion

as in the original AdS-Schwarzschild case, it was found that a new term appears in the

charge current, modifying the classic textbook result for a relativistic charged fluid.

There has also been interest in the fluid gravity correspondence from the gravity side.

In [129] and [130], it was shown that for every incompressible solution of the Navier-

Stokes equations, there is an associated dual solution of the Einstein equations in one

higher dimension. Moreover, the dual gravity solution is uniquely determined . For 2+1

dimensional incompressible fluids, it was shown that the associated spacetime falls under

the Petrov classification which is a class of spacetimes categorized by the symmetries

of their respective Weyl tensors. An algorithmic approach to reconstructing the dual

spacetime solutions was developed in [131] which also used to the gravity solution to

study the transport properties of the dual fluid.

The fluid/gravity correspondence may yet reveal other interesting facts about fluid

dynamics. It is still unclear how much can be learned in regards to long standing problems

of turbulence. Recently, [21] and [132] constructed numerical black hole solutions which

are asymptotically AdS4 and flat, respectively, which display a turbulent instability. In

both cases, an inverse energy cascade, reminiscent of Kolmogorov scaling, is observed.

Whether or not turbulence is related to the instability of global AdS, first observed in

[133], is still an open question.

The hydrodynamic regime is familiar territory with respect to the behaviour of matter.

We would like gauge/gravity duality to be useful for exploring less conventional phases;
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a prime example is superconductivity.

1.4.4 Holographic superconductors

The existence of superconducting phase transitions within holography is a spectacular

example of how gravitational physics in asymptotically AdS geometries can be substan-

tially different from asymptotically flat spacetime; no-hair theorems are different in AdS.

It is this difference that allows a superconducting phase transition in the dual theory to

occur. For example, a charged asymptotically AdS black hole can have charged scalar

hair [134]. Suppose the charged asymptotically AdS black hole has an initial charge

Q and there is a bulk scalar field with charge q living on the horizon, the total charge

is then qQ. Near the event horizon, the electric field is strong enough to pair produce

charged particle pairs out of the vacuum due to the Schwinger mechanism. The parti-

cle with charge opposite that of the black hole gets pulled into the event horizon while

the particle with the same sign charge as the black hole escapes. In asymptotically flat

spacetime, the particle with the same sign charge would escape off to infinite and the

geometry would be the standard Reissner-Nördstrom black hole. Asymptotically AdS

space behaves like a confining box due to the negative cosmological constant in which

the outgoing charged particles are trapped. Ultimately, they settle somewhere outside

the event horizon and make up the charged scalar hair [135].

Historically, early studies of holographic superconductors include [134], [12] and [136].

By now, there is a vast literature on this subject. A comprehensive review is provided

in [124]. For a recent review of bottom-up models see [137]. Here, we will review the

basics of constructing a holographic s-wave superconductor and discuss generalizations

to p and d -wave cases.

In order to have superconductivity, it is necessary to break a U(1) gauge symmetry

down to a discrete subgroup [138]. Specifically, consider a system with a gauge field Aµ(x)

and a fermion ψ(x) which is charged under the U(1) gauge group. For simplicity, we work
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in Euclidean signature, the coordinate x is meant to collectively define the coordinates

in this theory. Accordingly, the theory enjoys a gauge symmetry [124]

Aµ(x) → Aµ(x) + ∂µα(x) , (1.4.1)

ψ(x) → eiqα(x)ψ(x) , (1.4.2)

where α(x) is the gauge parameter and q is the electric charge of ψ(x). Consider the

spontaneous breaking of this gauge symmetry down to a discrete subgroup U(1) →

Zn by the formation of a charged condensate. According to Goldstone’s theorem, this

spontaneous symmetry breaking produces a Goldstone boson θ(x) which behaves as a

phase and transforms as θ(x) → θ(x) + α(x) under the original gauge transformation.

An action appropriate for describing the dynamics of the gauge field and the Goldstone

boson is

S = −1

4

∫
dd+1x

{
F 2 + L[A− dθ]

}
, (1.4.3)

where L[A − dθ] is the Lagrangian for the Goldstone boson, which does not need to be

precisely specified for this argument to work. The functional dependence of L on A− dθ

is required by gauge invariance. Given the action (1.4.3), the charge density then follows

from

J t =
δL

δAt
= − δL

δ(∂tθ)
. (1.4.4)

Notice that −J t is then the conjugate variable to θ meaning that, given a Hamiltonian

H, we have

∂tθ = − δH
δJ t

= −V (x) , (1.4.5)

where V (x) is the electric potential. The identification in the second equality follows

from noting that ∂tθ is proportional to the variation of the energy density (i.e. H) with

respect to the charge density. Consider now a stationary state so that there is no time

dependence in the system. Assume also that there is a steady current flowing through

the system which is given by

J i =
δL

δAi
. (1.4.6)
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This implies that V (x) = 0 by (1.4.5), so there is a net current while the electrical

potential vanishes. In other words, the DC conductivity (since we are considering a

stationary state) must be infinite, i.e. this is a superconducting state.

While this argument does not provide an explicit microscopic model of a supercon-

ductor, it does help point towards the minimal ingredients necessary to construct a

holographic superconductor. On top of the usual Einstein-Hilbert action, we need a bulk

gauge field which, in conjunction with the holographic dictionary entry (1.3.10), will

encode a finite chemical potential in the boundary theory, as well as a charged field in

the bulk. The role of the additional bulk charged field is to mock up the formation of

a non-zero vev for a charged operator in the dual theory due to spontaneous symmetry

breaking. There is more than one possible choice for the charged bulk field, depending on

whether or not the condensate in the boundary theory carries any angular momentum.

If it does not, then the condensate is a scalar and we have an s-wave superconductor.

The corresponding bulk field is then itself a scalar. Other choices for the bulk field can

lead to p and d -wave superconductors, depending on the symmetries of the vev of the

order parameter. A minimal bulk action for an s-wave holographic superconductor in

3 + 1 dimensions is then [71]

S =

∫
d4
√−g

{
1

16πGN

(
R +

6

L2

)
− 1

4e2
F 2 − |∇φ− iqAφ|2 −m2|φ|2

}
, (1.4.7)

where φ is a complex scalar (i.e. it is charged). If a superconducting transition exists

in this model, then there must be both a normal (i.e. non-superconducting) and a

superconducting phase that need to be identified. Since the onset of superconductivity

is signalled by the formation of a non-zero vev for the operator dual to φ, the normal

phase must correspond to a solution to the bulk equations to motion with φ = 0. In this

case, the bulk action is just the usual Einstein-Maxwell model and the solution is the

RN − AdS geometry (1.3.13).

The identification of the normal state as being dual to the RN − AdS geometry is a

crucial observation. In order for the superconducting transition to exist, there must be
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a critical temperature below which a solution with φ 6= 0 is possible. In other words,

the RN − AdS black hole must somehow be unstable to the formation of scalar hair.

This is precisely what happens and is an example of how gravitational physics in an

asymptotically AdS spacetime can be remarkably different from an asymptotically flat

geometry where no hair theorems would suggest that such a solution should not be

possible [139].

Ultimately, the mechanism responsible for this instability is the Breitenlohner-Freedman

(BF) bound (1.3.6). The scalar field, which vanishes in the normal phase, is treated as

a perturbation on top of the RN − AdS background. Since the scalar is meant to be

charged under the gauge field Aµ, the equations of motion for the scalar field couple the

mass parameter with the background charge via the gauge covariant derivative. Near

the horizon, this adds an overall negative contribution to the mass squared of the scalar

field. The net effect is that the effective mass squared of the scalar field may be different

near the horizon [71].

As the temperature is lowered, an AdS2 near horizon geometry appears in the RN −

AdS spacetime. Ultimately what this means is that even though the scalar field may

have a mass which satisfies the BF bound in 3 + 1 dimensions, the effective mass near

the horizon does not necessarily satisfy the analogous criterion for AdS2. In other words,

at low enough temperature, the near horizon geometry may become unstable to a scalar

perturbation. The precise combinations of parameter values for T , m and q for which

this instability occur are found numerically. For these values, holographic superconductor

solutions are possible.

In light of this instability, the spacetime solution must be different when φ 6= 0 and

the dual theory will have a non-zero vev for the corresponding scalar operator. The

solution may be found numerically and its conductivity calculated (also numerically)

using the same technique outlined in section 1.3.4. The end result is a divergent DC

conductivity in the superconducting geometry. As the frequency of the conductivity is
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increased, the normal state is approached. There is a caveat here that should be pointed

out. The normal state is dual to the RN − AdS geometry which itself has a divergent

DC conductivity due to momentum conservation along the boundary directions as we

discussed in section 1.3.4, so it is not immediately obvious that the superconducting

result is due to a different mechanism. In the probe limit for the charge density, the

normal state is effectively the AdS-Schwarzschild geometry (1.3.11). As discussed in

section 1.3.4, the dual theory does not suffer from a divergent DC conductivity. In [12] it

was shown that, even in this probe limit, the scalar instability persists and the resulting

geometry describes an infinite DC conductivity in the dual theory, characteristic of a

superconducting state.

By now, several top down and supergravity embeddings of the s-wave holographic

superconductor exist. In [139], instabilities similar to the bottom-up holographic s-

wave superconductor were found within M-theory and D = 11 supergravity [140]. The

formation of a condensate analogous to the holographic superconductor was found within

a dual to type IIB supergravity in [141].

The first extension to a holographic p-wave superconductor was given in [142]. Here,

the scalar field of the s-wave model is replaced by an SU(2) Yang-Mills field and the

gauge symmetry associated to a U(1) subgroup is spontaneously broken. In this context,

the superconducting state is described by a black hole solution with vector hair. Corre-

spondingly, the resulting conductivity is not necessarily isotropic. Generalizations to the

p-wave SU(2) model include the addition of curvature squared corrections to the gravity

action [143], [144], the addition of a Chern-Simons coupling [145] as well as accounting for

the backreaction of the gauge field on the metric [146]. p-wave holographic superconduc-

tors with helical order were constructed in [147] and [148]. Top down models have been

approached by adding probe D7-branes embedded in the AdS black hole background in

[149], [150] and [151].

A d -wave holographic superconductor was proposed in [152]. A natural approach
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is to introduce a minimal model which contains a massive, symmetric and traceless

rank-2 tensor coupled to a U(1) gauge field (i.e. it is complex). Starting from a AdS-

Schwarzschild background, a superconducting transition is observed within this model

at a critical temperature. Including another rank-2 tensor into the matter sector of the

theory can lead to the appearance of ghosts. To this end, a more refined model using the

same matter content as [152] was studied in [153] which is ghost free.

Numerous models which display the coexistence of multiple order parameters have

been proposed. By including multiple bulk fields which encode different order parameters

and including interactions amongst them, competition between s-wave, p-wave and d -

wave states can be achieved. Examples include the competition between two s-wave

orders [154], [155], [156], s-wave and p-wave orders [157], [158], two p-wave orders [159],

as well as s-wave and d -wave orders [160], [161]. A comprehensive list of references as

well as detailed descriptions of the models discussed in this section may be found in [137].

Pushing the boundaries of symmetry breaking in holography is the next step required

for modelling more realistic condensed matter systems. Impressive progress has been

made on this front and we dedicate the next section to describing some aspects of this

program.

1.5 Reducing symmetry

The applications of holography discussed in the previous section 1.4, while immensely

successful, are not general enough to model realistic condensed matter systems. In order

to make progess on this front, it is necessary to reduce the amount of symmetry in

holographic models.

Systems which possess too many symmetries display behaviours that are not desirable

in condensed matter models. A prime example is the DC conductivity calculated from the

RN −AdS black hole, dual to a system with finite charge density. Unlike the case of the
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AdS-Schwarzschild black hole, the dual optical conductivity is not a constant and does

depend on frequency ω. As ω → 0, the optical conductivity approaches a delta function,

signalling the divergence of the dual DC conductivity [162]. This is not a surprising

feature. The underlying RN − AdS geometry possesses translational invariance along

the boundary directions. This means that the charge carriers in the dual theory have

no means by which to dissipate momentum, resulting in an infinite DC conductivity.

Realistic condensed matter systems do not display this behaviour, so if a holographic

model is going to be useful for studying these kinds of problem, we need a way to break

translational invariance.

Translational invariance is only one example of the types of symmetries we might be

interested in breaking within holographic models and in this section we will discuss several

proposals for achieving reduced symmetry. Holographic models with reduced symmetry

should be expected to exist if we are going to take the AdS/CMT proposal seriously.

Low temperature phases of condensed matter systems display phase transitions in which

the symmetries of the system are different from those of the high temperature phase. In

this sense, a holographic model should, vis-a-vis the UV-IR relations, be able to connect

an asymptotically AdS (UV) region with lots of symmetry, to an interior geometry (IR)

where some of the symmetry is broken, signalling in the existence of a different low energy

phase. The types of accessible interior solutions and their classification is a subject

of ongoing study. Recent progress suggests that there may be a veritable zoo of new

solutions to be found. Below, we present some known solutions and proposals.

1.5.1 Breaking boost symmetry

As a first example, consider breaking boost symmetry. Generally, the low energy phases

of matter that holography may be useful for modelling do not typically possess relativistic

symmetry. Therefore, any realistic holographic model will need to take this reduction

of symmetry into account. Two major directions have been pursued in this context:
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spacetimes with Schrödinger symmetry [163] and spacetimes with Lifshitz symmetry

[164]. Extensions to holographic models to include violation of the hyperscaling relation

have also been proposed [165],[166]. In this section we will review the salient features

of these proposals, the models that give rise to them and their utility with regards to

AdS/CMT .

1.5.2 Schrödinger geometries

Historically, the first proposal for breaking relativistic symmetry in a holographic model

were geometries with Schrödinger symmetry [163], i.e. the symmetry group of the

Schrödinger equation in free space. The symmetry group describes a non-relativistic

extension of conformal symmetry and as such has generators corresponding to: temporal

translations H, spatial translations P i, rotations M ij, Galilean boosts Ki, dilatation D,

a special conformal transformation C and a mass operatorM , which encodes a conserved

rest mass or particle number. In order for the conservation of particle number to make

sense here, the dual field theory must not have particle production. Note that because

the group describes a non-relativistic symmetry, time and space behave differently under

the dilatation operator D, namely t → λ2t, xi → λxi [163]. The list of commutation

relations between the various generators may be found in [163] and [167]. Note that

the asymmetry between the scaling of time and space indicates that the model has a

dynamical critical exponent z = 2. Extensions to models with arbitrary z were proposed

in [167].

The motivation behind looking for a holographic model which encodes this kind of

symmetry rests in recent success with cold atom systems. These systems are experimental

realizations of a unitary Fermi gas, which respect Schrödinger symmetry, and provide a

window to the physics of strongly coupled fermions. A geometry which obeys Schrödinger
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symmetry with arbitrary z is [167]

ds2 = L2

(
−R2zdt2 +

dR2

R2
+R2(dxidxi + 2dξdt)

)
, (1.5.1)

whereR is the radial coordinate and xi are the boundary directions. In these coordinates,

the boundary is located at R → ∞. The coordinate ξ encodes the action of the mass

operator M in the Schrödinger symmetry group with the identification M = i∂ξ [167].

Schrödinger geometries have been found as solutions to Einstein gravity with a neg-

ative cosmological constant coupled to a massive vector field [163] as well as an Abelian

Higgs model [167]. Flows between Schrödinger geometries and an asymptotically AdS

region were constructed in [168]. Finite temperature counterparts to the Schrödinger

geometries as well as several supergravity and top-down string embeddings for various

values of z have been constructed over the years [169], [170], [171], [172].

There has also been some progress in constructing the holographic dictionary for the

Schrödinger geometries. In [173], the dictionary is studied as a perturbation about the

relativistic AdS case by an irrelevant operator. This was followed up in [174], [175] and

[176]. Later, non-perturbative constructions were given in [177] for z < 2 and in [178]

and [179] for z = 2.

1.5.3 Lifshitz geometries

The other major direction for breaking relativistic symmetry via holography focuses on

Lifshitz geometries. First proposed in [164], the metric takes the form

ds2d+2 = L2

(
−R2zdt2 +

dR2

R2
+R2dx2i

)
, (1.5.2)

where R is the radial coordinate, which ranges from R → 0 in the interior to R → ∞ at

asymptopia. The bulk spacetime respects Lifshitz scaling symmetry t → λzt , xi → λxi

with R → λ−1R. Here, d is the number of transverse dimensions xi and L sets the length

scale in the bulk.
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The difference between the Lifshitz geometry (1.5.2) and the Schrödinger geometry

(1.5.1) is the lack of the extra coordinate ξ, which is the holographic avatar of conservation

of particle number in the dual theory. In this sense, the Lifshitz geometry should be dual

to a non-relativistic field theory with no conserved particle number. A classic toy model

of a field theory with, z = 2, is the Lifshitz field theory with action [164]

S =

∫
d2x dt

(
(∂tφ)

2 − κ(∇2φ)2
)
, (1.5.3)

where κ is a dimensionless constant. Lifshitz critical behaviour arises at critical points

of many known systems, such as high Tc superconductors, liquid crystals and others.

Further discussion of systems where Lifshitz scaling arises may be found in [180].

Note that the value of the dynamical critical exponent, z, sets the effective speed of

light in the boundary theory. To see this, change the radial coordinate to ρ = ln(R). In

this way, the boundary corresponds to ρ→ ∞. The metric now reads

dss = L2
(
−e2zρdt2 + dρ2 + e2ρdx2i

)
. (1.5.4)

Consider a radial slice, Σ, at some ρ = ρ∗. The induced metric on this surface can be

viewed as a flat space with a speed of light dependent on ρ∗ [181]. The induced metric is

ds2Σ = L2e2ρ∗
(
−c2ρdt2 + dx2i

)
, (1.5.5)

where the effective speed of light is cρ = e(z−1)ρ∗ . In the limit that ρ∗ → ∞, the effective

speed of light then approaches infinity, as would be expected in a non-relativistic theory,

provided that z > 1. If z < 1, then superluminal propagation becomes possible.

The Lifshitz metric and its finite temperature counterpart are exact solutions to

Einstein gravity with a nontrivial matter sector. Two popular options for the matter

sector are Einstein gravity coupled to a massive gauge field [182],[36],[183] and Einstein-

Maxwell-dilaton theory [184],[185],[14],[186]

S =
1

16πGN

∫
dd+2x

√−g
(
R− 1

2
(∂φ)2 − V (φ)− 1

4
f(φ)F 2

)
. (1.5.6)
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In order to obtain Lifshitz solutions, it suffices to consider f(φ) ∝ eλ1φ and V (φ) = Λ,

where λ1 is a constant and Λ is the (negative) cosmological constant. Lifshitz solu-

tions have also been found within an Einstein-Maxwell-dilaton model including higher

derivative corrections in curvature and the field strength tensor [187].

Aspects of the holographic dictionary and holographic renormalization are better de-

veloped for Lifshitz geometries compared to their Schrödinger counterparts starting with

[181] which constructed the dual stress tensor for Lifshitz and Schrödinger geometries

within an Einstein-Proca model. This was subsequently generalized in [188] which also,

along with [189] for z = 2, studied aspects of holographic renormalization for Lifshitz ge-

ometries in an Einstein-Proca model in 3+1 dimensions. A Hamilton-Jacobi formulation

of holographic renormalization for Lifshitz solutions in 3 + 1 dimensions in this model

was provided in [190]. The holographic dictionary for special values of z has also been

derived in a variety of places, including [191] and [192] for z near 1, where the Lifshitz

solution is treated as a perturbation about AdS. More recently, [193] and [194] con-

structed the holographic dictionary within a large class of Einstein-Proca-dilaton models

for all values of z and arbitrary dimensions. Here, the dictionary is worked out by re-

cursively solving the radial Hamilton-Jacobi equations in the bulk. The analogue of the

Fefferman-Graham expansion for asymptotically Lifshitz spacetimes is also worked out.

See [195] for a review.

The Lifshitz geometry (1.5.2) has finite curvature scalars throughout the spacetime

and so does not contain any unphysical curvature singularities. Nevertheless, the geom-

etry does display diverging tidal forces in the deep interior as R → ∞ [164]. Such a

divergence is only a problem if an infalling observer can actually reach the interior in

finite proper time (or affine parameter in the case of a null geodesic). In fact, this is

the case for the Lifshitz geometry. To see this, consider an ingoing null geodesic. The

Lifshitz metric has no explicit time dependence, so there is a conserved quantity

E = L2R2z ṫ , (1.5.7)
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where ˙≡ d/dλ, λ being the affine parameter. Examining the equations of motion yields

an expression for the affine parameter for a null particle moving inward from some finite

R∗ to R = 0

Rz
∗ = −Ez

L2
(λ− λ0) , (1.5.8)

where λ0 is some initial affine parameter. The take home message is that this value is

finite. The same result holds for radial timelike geodesics [196].

The surfaces of constant R are null as R → 0 in the interior. To see this, simply

consider the contraction of the normal vector to a surface at constant radial slice

∇aR∇aR = gRR =
R2

L2
, (1.5.9)

which becomes null as R → 0. The index a runs over all of the bulk coordinates except

for the radial coordinate, R.

To see that there are divergent tidal forces in the interior of the Lifshitz geometry,

look at the form of the Riemann tensor in a parallelly propagated orthonormal frame (in

this case, a frame which follows a timelike observer) that is radially infalling [196]. The

idea is then that if the components of the Riemann tensor diverge in this frame, then

initially parallel geodesics develop a diverging relative acceleration. In other words, they

experience a diverging tidal force. An appropriate frame is [196]

ẽt̂µ = −E∂µt+ ER−(z+1)

√
1 +

L2R2z

E2
∂µR (1.5.10)

ẽR̂µ = −E
√
1− L2R2z

E2
∂µt+ ER−(z+1)∂µR (1.5.11)

ẽîµ = LR∂µxi , (1.5.12)

where indices with a hat indicate flat space directions (i.e. which live in the tangent

space). The components of the Riemann tensor with curved indices are related to the

components with flat indices by

R̃α̂β̂ξ̂χ̂ = Rµνλσẽ
µ
α̂ ẽ

ν
β̂
ẽλ
ξ̂
ẽσχ̂ . (1.5.13)
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The full set of components of the Riemann tensor in this frame may be found in [196].

An example of a diverging component is

R̃t̂ î t̂ î =
1

L2
+
E2(z − 1)

L4R2z
, (1.5.14)

which diverges in the interior R → 0 for z > 1. This result, coupled with the fact that

surfaces of constant radial coordinate R are null in the interior (1.5.9) tells us that a null

tidal force singularity is present at R = 0. Note that for z = 1, the divergence is not

present. This had to be the case, as z = 1 is AdS.

The null singularity is even a problem for string probes as they become infinitely

excited as they pass through the interior of the geometry [197]. In order to make sense of

these geometries from the point of view of applied holography, it is necessary to resolve

this unphysical singularity. Several approaches to solving this problem have been taken

which we will discuss more fully in chapter 2.

Several supergravity and string embeddings of Lifshitz geometries for various values of

the dynamical critical exponent, z, have been constructed, including: [198], [199], [200],

[201], [202], [203], [204], [205], [206], [207], [208], [209], [210], [211], [172] and [192].

Bottom-up holographic models, such as the Einstein-Maxwell-dilaton model (1.5.6)

support a wide range of possible gravitational solutions. A notable generalization of the

Lifshitz spacetime (1.5.2) which violates the hyperscaling relation is particularly useful

for condensed matter models, as we now discuss.

1.5.4 Hyperscaling violation

The Einstein-Maxwell-dilaton theory (1.5.6) supports a broader class of interesting space-

time geometries; the hyperscaling violating (HSV) metric

ds2d+2 = L2

(
−R2(z−θ/d)dt2 +

dR2

R2(1+θ/d)
+R2(1−θ/d)dx2i

)
, (1.5.15)

where z is the dynamical critical exponent, d is the number of boundary directions and

θ is the hyperscaling violation parameter [165],[166],[212]. Metrics of HSV form are not
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scale invariant, but rather transform covariantly,

ds2d+2 → λ2θ/dds2d+2 . (1.5.16)

From the perspective of the dual theory, hyperscaling is the property that the free energy

of the system should scale with its näıve dimension. At finite temperature, theories with

hyperscaling have an entropy density which scales with temperature as S ∼ T d/z. When

hyperscaling is violated, there is a modified relationship, S ∼ T (d−θ)/z, indicating the

system lives in an effective dimension deff = (d− θ) [14],[213].

HSV solutions and their finite temperature counterparts have also been studied in a

variety of other models, including Einstein gravity coupled to a massive gauge field [183]

and within an Einstein-Dirac-Born-Infeld-dilaton [214].

The HSV geometries, just like their Lifshitz cousins, generally have a null tidal force

singularity in the deep interior R → 0. This can be seen by carrying out exactly the same

procedure as in the Lifshitz case; by constructing a parallelly propagated orthonormal

frame and examining the form of the Riemann tensor. If there is a divergence in the

components of the Riemann tensor as R → 0, then this indicates that there are diverging

tidal forces in the interior. The full set of Riemann tensor components may be found in

[215], [216] and [217]. As an example,

R̃t̂ î t̂ î =
[d(z − 1)− θ]

L4(d− θ)

E2

R2z
+

d

L2(d− θ)
R2θ/d , (1.5.17)

where, again, the components of the Riemann tensor in this frame are related to the

usual components with curved space indices by (1.5.13). Notice, when θ = 0, the result

is the same as the Lifshitz case (1.5.14). In general, the divergence of the Riemann

tensor components will depend on the combination of solution parameters (z, θ). These

values are not totally arbitrary. They can be restricted by applying a standard energy

condition from general relativity, called the null energy condition (NEC)[14]. The NEC

is a restriction on the energy-momentum tensor of the model, namely

TµνN
µN ν ≥ 0 , (1.5.18)
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where Nµ is any arbitrary null vector of the spacetime. This condition, when applied

to a perfect fluid, simply states that the sum of the energy density and pressure of the

fluid should not be negative, ρ + pi ≥ 0. This condition is natural from the boundary

perspective, since we are interested in geometries which are dual to condensed matter

systems, so the energy content of the bulk theory should be reasonably well behaved.

The NEC and the other energy conditions are ubiquitous in gravitational physics. When

applied to the Raychaudhuri equation, they lead to conditions on geodesic focusing and

are important in singularity theorems. For a review see [218]. It has been argued that

violation of the NEC will lead to acausal behaviour [219], [220]. Unsurprisingly then,

when applied to the Lifshitz geometry (1.5.2), the NEC requires z ≥ 1.

With regards to holography, the NEC is important in the construction of the holo-

graphic c-theorem in AdS [221], [222], [223] and [224] as well as in constructing flows

between UV and IR Lifshitz geometries [225]. The averaged null energy condition in

a certain class of bulk spacetimes has recently been shown to be a consequence strong

subadditivity of entanglement entropy in the boundary theory [226].

The NEC, by virtue of the Einstein equations, is also a restriction on the spacetime

geometry itself. When applied to the HSV geometry (1.5.15), the equivalent condition

RµνN
µN ν ≥ 0 constrains the possible values of the solution parameters (z, θ) to be [14]

(z − 1)(z − θ + d) ≥ 0 , (1.5.19)

(d− θ)(d(z − 1)− θ) ≥ 0 . (1.5.20)

Physically, the effective dimension of the dual theory should be positive, so we expect

that d > θ for a reasonable boundary theory. It can be shown [216] that when d =

dz − θ ≥ 2(d − θ), all of the components of the Riemann tensor in the radial ingoing

parallelly propagated orthonormal frame are finite, so there is no tidal force singularity.

Notice, these values of z and θ saturate the second null energy condition (1.5.20). For

other generic values of z and θ (except z = 1, θ = 0 which is AdS) there is a null tidal
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force singularity in the deep interior.

As in the Lifshitz case, this IR singularity must be resolved in order to make the

geometry sensible for condensed matter applications. A full discussion of the techniques

used to revolve this singular behaviour in different models is delayed until chapter 2, where

it will be shown that curvature squared corrections to an Einstein-Maxwell-dilaton can

act as a mechanism to induce a crossover to a regular interior geometry.

For positive values of θ, there is a curvature singularity as R → ∞; the boundary

of the HSV geometry (1.5.15). This can be seen by computing the Kretschmann scalar

K ≡ RµνλσR
µνλσ. Since we generally expect θ to be positive, a curvature singularity

at the boundary is extremely problematic vis-à-vis constructing a sensible holographic

dictionary. We will show in chapter 2 that for certain values of z and θ, curvature squared

corrections to an Einstein-Maxwell-dilaton model can also support a crossover solution

to an asymptotic AdS region.

Recently, the holographic dictionary for HSV geometries within a large class of

Einstein-Proca-dilaton models for all values of z, θ and d which satisfy the null en-

ergy condition (1.5.19) (1.5.20) was worked out in [194]. This is achieved by using the

same technique of recursively solving the bulk Hamilton-Jacobi equations as in the case

of the Lifshitz holographic dictionary. A review is contained in [195].

As with the Lifshitz geometries discussed in section 1.5.3, a number of supergravity

and string embeddings of the HSV geometries have been found for various z and θ [212],

[227], [228], [229], [230], [231], [183], [232], [233], [234], [235] and [236].

The purpose of studying Lifshitz type geometries in the context of applied holography

is that they represent gravitational duals to non-relativistic field theories. The HSV

geometries provide holographic models that capture the behaviour of strange metals.
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1.5.5 Application: strange metals

Historically, HSV geometries were first studied in [166], where it was pointed out that

these spacetimes possess a holographic entanglement entropy which violates the area law.

The entanglement entropy of a conformal field theory in d + 1 dimensions on R
d,1

satisfies an area law, for d > 1. The leading order term in the entanglement entropy

between a spatial region, A and its complement is proportional to the area of the region

A. As an example, consider a strip of width l. This defines a spatial region A ≡

{x1, x2, . . . xd}, where −l/2 ≤ x1 ≤ l/2 and 0 ≤ x1, x2, . . . xd ≤ L. The entanglement

entropy between this region and its complement, SA = −trρA log(ρA) is given by [166]

SA = a
Ld−1

ǫd−1
− b

Ld−1

ld−1
, (1.5.21)

where ǫ is a UV cutoff which should be taken to zero in the high energy limit, and a and

b are constants [166]. Several examples may be found in [237]. Notice that the leading

term as ǫ → 0 is proportional to the area of the entangling region A, this is called the

area law for entanglement entropy. For a review, see [238].

The area law may be violated in some situations. QFTs in d + 1 dimensions with a

Fermi surface display logarithmic violations of the area law [239]. The same is true for

CFTs in d+ 1 dimensions, where the leading term in (1.5.21) is replaced by a log [240].

Violations of the area law are expected to occur for compressible phases of matter,

that is, a translationally invariant quantum system with a globally conserved U(1) charge

Q such that 〈Q〉 changes smoothly as a function of chemical potential µ and d〈Q〉/dµ 6= 0

[213]. A realization of a compressible phase is a system of finite temperature fermions at

non-zero density coupled to a gauge field in 2+1 dimensions. This system, which is known

to possess a Fermi surface [213], displays non-Fermi liquid behaviour, meaning that its

thermodynamic and transport properties do not match those predicted by standard Fermi

liquid theory. This phase is called a “strange metal” and is associated with quantum

critical behaviour [123] (see section 1.4.2). The Fermi surface in this case is exotic and
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is referred to as a hidden Fermi surface as it turns out that it is not a gauge invariant

quantity. Regardless, the Fermi surface still obeys the Luttinger relation which requires

that the Fermi surfaces encloses a volume proportional to Q [14]. The entropy density

in this case scales with temperature as S ∼ T 1/z. It is also known that z = 3/2 to three

loop order for this model [213].

For the HSV geometries (1.5.15), the holographic entanglement entropy was first

calculated for a strip region and a circular region for a 2+1 dimensional boundary in [166]

where in both cases, logarithmic violations of the area law were found. This calculation

was later extended in [14] where it was shown that leading term in the holographic

entanglement entropy is independent of the specific shape of the boundary entangling

region. The result depends on the value of θ. A logarithmic violation of the area law

is observed for θ = d − 1, whereas the area law is obeyed for θ < d − 1 and is strongly

violated for θ > d− 1 [213].

HSV geometries with finite temperature and charge density capture a number of

non-Fermi liquid properties. Firstly, setting θ = d − 1 implies a logarithmic violation

of the area law of entanglement entropy, as pointed out above. This violation suggests

that the HSV geometry is dual to a system with a Fermi surface. By applying the

Luttinger relation, it turns out that the holographic entanglement entropy has the same

dependence on kF as predicted from field theory calculations [14]. Furthermore, for

θ = d − 1, the entropy density of the finite temperature solutions scales as S ∼ T 1/z.

Setting the number of spatial dimensions to d = 2 and applying the NEC in this case

(1.5.19) (1.5.20), requires that z ≥ 3/2, which captures the known value of z = 3/2.

The values for z and θ are not uniquely determined by the NEC and selecting θ =

d − 1 = 1 and z = 3/2 is an arbitrary choice. In this sense, the holographic model

is “too good”, providing too many possible choices. In chapter 2, we will discuss how

the addition of curvature squared corrections to the bulk action modify the form of

the NEC and impose further restrictions on the possible choices of z and θ. Generally,
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holographic models of non-Fermi liquid behaviour do not reproduce all of the expected

properties of the dual phase. An early example constructed in [199] correctly reproduced

the linear scaling of resistivity with temperature, but did not get the correct scaling for

the Hall conductivity (which goes like T 3). More recently, it was pointed out that the

correct scaling may be reproduced at the expense of introducing a new scaling parameter

beyond z and θ [241].

Holographic Fermi surfaces and non-Fermi liquid behaviour have also been approached

by studying probe fermions in Einstein-Maxwell theory [242], [243], [13]. The background

geometry is the finite charge density RN−AdS black hole (1.3.13) and the probe fermions

are charged under the U(1) gauge field and are dual to a fermionic operator in the dual

field theory. The retarded Green’s function for the fermions is computed by solving the

bulk Dirac equation. The non-analyticities in the retarded Green’s function are used to

diagnose the existence of a Fermi surface at a Fermi momentum kF . The DC conductivity

of this model is calculated and it is found that, in some cases, the conductivity scales

linearly with temperature. For a review see [244].

Holography is also useful for modelling other phases of matter at strong coupling. In

particular, it is interesting to wonder what phases may be accessible vis-a-vis the kinds

of symmetries that are available to be broken in a holographic system. While classifying

all of these possibilities within a general holographic framework is an ongoing avenue

of research, impressive progress has thus far been made. The first step is identifying

mechanisms to further reduce the number of symmetries.

1.5.6 Breaking rotational symmetry

Another kind of symmetry we are interesting in breaking is rotational symmetry along the

boundary directions. From the gravitational perspective, breaking rotational symmetry

turns out be a slightly easier problem than full translational symmetry breaking. There

already exists a class of spatially anisotropic, but still homogeneous, solutions to general
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relativity; the Bianchi classification. Historically, these geometries have been studied in

the context of cosmology. The extension of this classification to holography was first

discussed in [245]. Homogeneity of the Bianchi geometries implies that the equations

of motion are ODEs as opposed to PDEs, which makes finding analytic solutions more

feasible. More direct methods of breaking translational invariance, such as holographic

lattices, do not have this simplification, as will be reviewed in section 1.5.7.

For d spatial dimensions, homogeneity requires that there are d Killing vectors ξi,

where i = {1, 2, · · · , d}. The geometries of the Bianchi types are classified by the com-

mutation relations satisfied by the Killing vectors

[ξi, ξj] = Ck
ijξk , (1.5.22)

where the Ck
ij are constants. Here [ξi, ξj] ≡ ξµi ∂µξ

ν
j − ξµj ∂µξ

ν
i is the Lie bracket. The

relations (1.5.22) define a real Lie algebra. For three spatial dimensions, there are nine

inequivalent such algebras, defining nine different geometries in the Bianchi classification

[245]. For example, with three spatial dimensions {x1, x2, x3}, the type VII0 geometry

has constants C1
23 = −C1

32 = −1, C2
13 = −C2

31 = 1 and all other Ck
ij = 0. The Killing

vectors are

[ξµ1 ] = [0, 1, 0] , [ξµ2 ] = [0, 0, 1] , [ξµ3 ] = [1,−x3, x2] ,

with the vector notation [x1, x2, x3]; one component for each spatial direction. The spatial

metric which encodes this symmetry takes the form

ds23 = (dx1)2 +
[
cos2(x1) + (1 + λ) sin2(x1)

]
(dx2)2 +

[
sin2(x1) + (1 + λ) cos2(x1)

]
(dx3)2 ,

(1.5.23)

where λ is a real parameter. The metric (1.5.23) has a helical symmetry; the pitch of the

helix is set by the parameter λ. Symmetries of this kind, and of the other Bianchi types,

can arise in systems with a vector order parameter [245].

In the context of holography, one of the spatial directions is interpreted as the usual

holographic radial direction, while the Bianchi symmetries are encoded along the re-
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maining three spatial directions defining the boundary. In 4+1 dimensions, solutions for

all nine possible homogeneous symmetry transformations along the boundary directions

are found within Einstein gravity with a massive Abelian gauge field and a negative

cosmological constant [245].

Bianchi type geometries have found application in holographic models of zero-temperature

metal-insulator transitions [246], where the interior geometry has a Bianchi type VII0

symmetry group. The geometry was found to be a solution to an Einstein-Proca-

Chern-Simons model. The solution is asymptotically AdS5 and the interior geometry

is AdS2 × R
3, which describes a metallic phase. The interior geometry is found to be

unstable to the formation of a helical lattice under perturbation by a relevant operator,

signalling a zero-temperature metal-insulator transition. This model was further gener-

alized [247], where it was shown that a superconducting phase with a helical symmetry

also exists. Conductor-insulator transitions with a helical interior geometry were also in-

vestigated within an Einstein-Maxwell-dilaton model in [248]. Extensions of the Bianchi

geometries to include hyperscaling violation and Lifshitz scaling were discussed in [249].

It is unclear if every geometry in the Bianchi classification can be completed to AdS

at the boundary. Partial progress to answering this question was provided in [250] where

geometries obeying standard energy conditions in general relativity which interpolate

between an interior Bianchi geometry and an asymptotically AdS or Lifshitz geometry

(see section 1.5.3) were presented. In principle, such geometries were constructed for

interior Bianchi types II, III, VI and IX. At present, it is unclear if these interpolating

geometries are solutions to a gravitational theory with a simple matter sector.

In contrast with rotational symmetry breaking, an explicit lattice is expected to fully

break translational invariance. Constructing such a lattice solution is generally difficult

since the simplification of a homogenous geometry, afforded by the Bianchi type models,

is no longer valid. Impressive progress has been made on this front in recent years which

we will review in the next section.
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1.5.7 Holographic lattices

An important feature of many condensed matter systems is a lattice. The presence of

a lattice breaks translational symmetry down to a discrete subgroup and so can have a

measurable impact on the transport properties of the system. In particular, since trans-

lational invariance is now broken by the lattice structure, momentum can be dissipated

and unphysical divergences in electrical transport are not present.

In a holographic context, this breaking of translational invariance is exactly the ingre-

dient needed to make progress on more realistic models of condensed matter phenomena.

In particular, this explicit breaking of translational invariance is what is required in order

to resolve the issue of the divergent DC conductivity in models of holographic transport

and finite density, such as the dual to the RN − AdS black hole.

The first class of holographic lattices studied appeared in [251] and a follow up pa-

per [252]. In this construction, a periodic lattice of impurities is set up by placing an

array of probe D5-branes in the background of N D3-branes. The lattice is doped by

replacing some of the D5-branes with anti-D5-branes and thermodynamic properties of

the system are worked out. It was found that below a critical temperature the system

dimerizes, in sense that the D5-branes and anti-D5-branes pair up with each other via

brane recombination. There is also some evidence that at very low temperatures, the

system displays glassy behaviour.

In [162], a more bottom-up approach to holographic lattices was taken. Here, the

model is bulk Einstein gravity with a neutral scalar field. The scalar field is imbued with

a periodic boundary condition so that the operator dual to the scalar in the boundary

theory has a periodic source term. The scalar field is allowed to backreact on the bulk

geometry and the resulting spacetime is the holographic lattice. Solving for the back-

reacted geometry is difficult since the system is no longer homogeneous: translational

invariance has been broken explicitly. The equations are solved in [162] numerically for a

3+1 dimensional bulk and the optical conductivity is studied. It is found that the diver-
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gent DC conductivity is smoothed out, being replaced by a Drude peak. An interesting

scaling power law regime is also identified at intermediate frequencies, where

|σ(ω)| = B

ω2/3
+ C , (1.5.24)

where B and C are constants. Interestingly enough, this power law scaling is observed

in some of the cuprate superconductors [253]. These results were extended in [254] to

include a study of the thermoelectric conductivity and an analogous power-law scaling

with frequency was found. A holographic lattice was also constructed numerically in 4+1

dimensions, where a similar power-law scaling was observed for the optical conductivity,

except with |σ| ∼ ω
√
3/2. A numerical ionic lattice in 4+1 dimensions was constructed by

sourcing the lattice with a periodic chemical potential, as opposed to a scalar. The optical

conductivity for the ionic lattice displays the same power-law scaling for intermediate

frequencies as the scalar lattice (1.5.24). This model of an ionic lattice was extended to

a minimal ingredient model of a holographic superconductor in [255]. Here too, in the

normal phase, a Drude peak is observed in the low frequency limit. The intermediate

frequency range still satisfies the power law (1.5.24). Evidence for the existence of a

superconducting gap is shown and a sum rule for the conductivity was found to be

satisfied.

In [256], a perturbative approach to a scalar holographic lattice was taken. Here,

the lattice is considered as a small perturbation around an initial RN − AdS geometry,

parameterize by a “strength”, which is taken to be small. The DC conductivity, to

leading order in the lattice strength, is found analytically and is seen to match previous

field theory results [257]. Interestingly, the authors argue that, under certain constraints,

to leading order in the lattice strength, the equations of motion for the perturbative scalar

lattice are the same as those for a class of gravitational theories with a massive graviton.

This observation suggests a possible link to holographic studies of massive gravity which

will be discussed in more detail below in section 1.5.9.

Recently, [258] showed that a wide variety of inhomogeneous IR geometries arise as
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solutions to Einstein-Maxwell theory with a single periodic source at the boundary, leav-

ing open the possibility that a large number of possible new solutions may be obtained.

The classification of these IR geometries and their holographic interpretation is an open

question. The AC conductivity of finite temperature ionic lattices in in 3+ 1 dimensions

were obtained numerically in [259].

In a somewhat related approach, momentum dissipation can be built into holography

by letting translational symmetry be broken spontaneously by an instability, rather than

explicitly as in the case of a holographic lattice. The result is a striped phase, first studied

in [260], [261], where it was shown that in 4+1 dimensions, the RN−AdS black brane is

unstable in Einstein-Maxwell theory with a Chern-Simons term, when the Chern-Simons

coupling becomes large. Various other striped solutions have since been found, including

duals to charge density waves where the boundary current dual to the bulk gauge field can

acquire a spatially modulated vev [262], holographic insulator/superconductor transitions

[263] and hyperscaling violation [264], [265].

Lattices are not the only way to break translational invariance. A common occurrence

in condensed matter systems is disorder. In this case, translational invariance is broken

by a “dirty” (random noise) source, as opposed to a periodic source. Despite technical

challenges, progress has been made on holographic models with disorder.

1.5.8 Disorder

Disorder is a common feature in most real world condensed matter systems and as such

holography should be able to say something about it. Disordered systems are difficult to

model using traditional field theory approaches and little is known at strong coupling.

This is especially true in the context of localization. It is well known that in a non-

interacting system, the addition of disorder can completely suppress conductivity [266].

For a comprehensive review, see [267]. Turning on interactions complicates the situation

and theoretical and experimental studies of many-body localization are in their infancy.
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A recent review may be found in [268].

Single body localization can be observed experimentally, however the many body

analogue is difficult to achieve. The problem is that to have a localized state, construc-

tive coherence is required; this leads to long lived states. In the many body situation,

this is hard, because the system is immersed in a bath of phonons that interact with

the modes that participate in localization, effectively disrupting the process. A holo-

graphic approach is well suited to handling this sort of problem, as the gravity theory is

strong/weak dual to a field theory, so it is already a many body problem. In this sense,

understanding what the gravity dual tells us about localization could provide a definition

of many body localization. Exactly what this would look like in a gravitational theory

and how the bulk fields would behave is an open and interesting question.

Several approaches to disorder within holography have been proposed. An early study

was presented in [269] which was interested in studying transport near a superfluid-

insulator transition in 2+ 1 dimensions with impurities from weak magnetic and electric

perturbations. Holographically, the weak magnetic and electric impurities on the field

theory side were translated to a 3 + 1 dimensional dyonic black hole solution. The field

theory and gravity results for transport coefficients were found to agree in the hydrody-

namic limit. Soon after, [270] calculated the momentum relaxation time scale due to weak

dilute impurities in a CFT and compared to results obtained in a truncation of M-theory.

The replica trick for disordered CFTs was extended to holography in [271] and later in

[272]. It was ultimately found that for any CFT with a holographic dual, corrections due

to the presence of disorder in the CFT to any connected correlation function vanishes at

leading order in large N . This result assumes that replica symmetry is unbroken in the

CFT [272]. In [273], disorder was modelled within the usual AdS/CFT setup by adding

probe D-branes with random fluctuating closed and open string background fields into

the mix.

The above mentioned studies were carried out in fixed spacetime backgrounds, either
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pure AdS or asymptotically AdS black hole solutions. To fully see the effect of quenched

random disorder, [274] proposed that disorder should be modelled by applying random

boundary conditions to a bulk field and allowing the field to backreact on the geometry.

The source of disorder in this study is assumed to be self-averaging and characterized by

a distribution PV [W (x)], over random functions W (x). The subscript V is in reference

to another function V (x), which is taken to be the boundary value of a gauge field in the

bulk. The system is assumed to be self-averaging in the sense that, over length scales

much larger than than a typical disorder scale, homogeneity is restored. This construction

is somewhat complicated as the entire functional PV [W (x)] runs as the energy scale

changes. To this end, [274] and later [275], worked to construct a holographic functional

renormalization scheme so that disorder averaged thermodynamic quantities could be

computed.

An interesting approach to disorder in gauge/gravity duality was proposed in [276].

A particular background is considered which is already deformed away from AdS, but

still satisfies the null energy condition. The degree to which the geometry is deformed

is controlled by a parameter which is meant to represent the amount of disorder in the

system. The wave function of a probe scalar in this background is studied by looking at

the nearest neighbour spacing distribution of the pole spectra of the two-point correlator.

By increasing the amount of disorder, a transition in the distribution is observed between

an initial distribution and a Poisson distribution, which is analogous to what happens

in a disorder driven metal-insulator transition. It is still unclear how this approach ties

into other models of holographic disorder. Studying the interconnection between the

methods developed in [276] and backreacted disordered solutions is an interesting and

open question.

More recently, [277] applied a spectral approach to modelling disorder in a holographic

superconductor. The basic idea is similar to [274] where the disorder is sourced by a

random space-dependent chemical potential by setting the boundary condition on a bulk
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U(1) gauge field. In this proposal, the chemical potential takes the form of a sum over a

spectrum which depends on one of the boundary directions, x

µ(x) = µ0 + V̄

k∗∑

k=k0

√
Sk cos(kx+ δk) , (1.5.25)

where Sk is a function of the momenta k which controls the correlation function for µ(x);

different choices of Sk lead to a different values of the disorder distribution average and

moments. V̄ is a tuneable parameter which sets the “strength” of the disorder. k0 and k∗

define an IR and UV length scale cutoff for the disorder. δk is a random phase for each

value of k. A spectral representation like this is known to simulate a stochastic process

when k∗ is large [278].

There is a resemblance between this spectral approach to disorder and the construc-

tion of a holographic ionic lattice [162] (see also section 1.5.7) where the lattice is set up

by a periodic boundary chemical potential. The difference is that for a holographic lat-

tice, there is only a single periodic source of a fixed wavelength. In the spectral approach

to disorder, there is a sum over periodic sources of arbitrary wavelength, so the effect

of disorder may resonant more strongly throughout the entire bulk geometry, having

non-trivial effects deep in the interior.

The “dirty” chemical potential (1.5.25) is incorporated into an Einstein-Maxwell

model in [277]. The Maxwell equations are solved numerically in an electric ansatz with

the boundary condition that At approaches (1.5.25) near the boundary. The analysis is

done in a fixed AdS-Schwarzschild background, so no backreaction is considered. Evi-

dence is found for an enhancement of the critical temperature of the superconductor for

increasing disorder strength. Numerical evidence that localization occurs in this model

was reported in [279]. This model has also been extended to holographic p-wave super-

conductors in [280] where the same behaviour of the critical temperature with disorder

strength was observed.

Recently, [281] applied a spectral approach to modelling disorder sourced by a scalar
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field in 2 + 1 bulk dimensions. The initial clean geometry in this case is AdS3 and the

scalar field is allowed to backreact on the geometry in the spirit of [274]. By treating

the disorder strength as a perturbative handle, a second order analytic solution for the

backreacted geometry is obtained. It is observed that the disorder averaged geometry, in

the deep interior, takes the form of a Lifshitz metric (see section 1.5.3) with a dynamical

critical exponent z set by the disorder strength. Numerical solutions are constructed for

strong disorder, where the analytic perturbative approach fails. The numerical solutions

also show that the interior geometry develops an emergent Lifshitz scaling. These results

have been extended to finite temperature in [282]. A similar implementation to scalar

disorder was used in [283] and [284] to study the conductivity of holographic strange

metals with weak quenched disorder.

We will return to the problem of disorder in gauge/gravity duality in chapter 3 and

show that by adopting the technique proposed in [281] and adapting it to the kind

of disorder source considered in [277] and [280], we can construct an analytic solution

perturbatively in the disorder strength and study the resulting DC conductivity [285].

Implementing explicit disorder and lattice structures into holography is technically

challenging. For one, explicit breaking of translational invariance implies loss of ho-

mogeneity. Secondly, taking the backreaction of the disordered sources into account is

nontrivial, especially when moving beyond perturbative disorder. To this end, a few

simplifying models of gauge/gravity duality without translational invariance have been

proposed which retain homogeneity, making analytic treatments more manageable.

1.5.9 Other proposals

Finding lattice solutions (see section 1.5.7), with explicit breaking of translational invari-

ance, is technically challenging. A few proposals have been put forward for finding gravity

models which are dual to systems with momentum dissipation yet still preserve bulk ho-

mogeneity. The basic idea revolves around conservation of the energy-momentum tensor
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of the dual field theory. In general, conservation of the field theory energy-momentum

tensor is related to diffeomorphism invariance in the bulk. Consider a bulk gravitational

model with a matter sector comprising a scalar field φ and a gauge field Aµ. Applying

the holographic dictionary (see section 1.3.1), φ(0) is a source for the dual scalar operator

〈O〉 and the pullback to the boundary of A(0)µ is a source for a boundary current 〈Ji〉.

These bulk fields should correspond to relevant deformations so that an asymptotic AdS

solution is available. The boundary energy-momentum tensor satisfies the conservation

equation (Ward identity) [286]

∇i〈T ij〉 = ∇jφ(0)〈O〉 − F ij
(0)〈Ji〉 . (1.5.26)

If the bulk fields in (1.5.26) depend on the spatial coordinates along the boundary, then

momentum-conservation can be violated. Moreover, if the spatial dependence can be

chosen in such a way that the bulk energy-momentum tensor remains homogeneous (i.e.

does not depend on the boundary coordinates), then it should be possible to find a corre-

sponding homogeneous bulk geometry. This can be achieved by exploiting a continuous

global symmetry in the matter sector of the theory. An example was constructed in

[286], where the bulk model is Einstein-Maxwell coupled to set of massless scalar fields

with linear dependence on the boundary directions. The bulk energy-momentum tensor

is homogeneous in this case due to the shift symmetry of the massless scalars. The re-

sulting, finite temperature, geometry is worked out and the DC conductivity is shown to

be finite. Several extensions of this model exist, including the addition of finite chemical

potential where a coherent (Drude-like)/incoherent metal transition was identified [287],

[288], [289] as well as within the framework of holographic superconductors [290].

Similarly, [291] considered an Einstein-Maxwell model with an additional complex

scalar field φ = eikxϕ(r), where x is a boundary direction, r is the bulk radial coordinate

and k is a constant. A finite temperature and finite charge black hole solution to this

model was found and dubbed a “Q-lattice”. The optical conductivity was observed to

be finite as ω → 0, displaying a Drude peak. Holographic metal/insulator transitions
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within a Q-lattice model were found in [291] and [292]. The thermoelectric transport

properties for 3 + 1 dimensional Q-lattices were obtained in [293]. The model has also

been embedded within a holographic s-wave superconductor where the presence of the

Q-lattice was shown to lower the critical temperature.

Another approach to holographic momentum dissipation is massive gravity [294]. The

idea is that since conservation of the boundary energy-momentum tensor is a consequence

of bulk diffeomorphism invariance, working in a gravitational theory without diffeomor-

phism invariance might be dual to a field theory without conservation of momentum. In

[294], the gravity theory contains a Maxwell field and explicit mass terms for the graviton.

It was proposed that this model may capture the physics of disordered systems. Electric

and thermoelectric transport properties have been worked out in [295], [296], [297], [298]

and [299]. An extension of this model including magnetic transport was discussed in

[300]. At this point, it is unclear if massive gravity has a sensible holographic dual. It is

not known to arise from a string model and there is still some debate about its stability.

While it is known that the model used in [294] is ghost-free in some circumstances (see

[301] for a review), it still has many unusual features including superluminal propagation,

loss of unique evolution and acausality [302]. It remains to be seen if these issues can be

addressed within the context of applications to holography.

Having reviewed symmetry reduction scenarios in gauge/gravity duality, we return to

non-relativistic holography and the HSV type geometries in chapter 2. It was pointed out

in section 1.5.4 that the HSV geometries generically possess unphysical singularities that

need to be regulated. Chapter 2 describes a mechanism by which this can be accomplished

within a certain class of holographic model. In chapter 3, an explicit holographic model

of perturbatively charged disorder is presented and its transport properties discussed.

Finally, in chapter 4, we will discuss possible avenues for further research and make some

speculations about the future of applied holography.



Chapter 2

Electric hyperscaling violating

solutions in

Einstein-Maxwell-dilaton gravity

with R2 corrections

This chapter studies hyperscaling violating solutions within Einstein-Maxwell-dilaton

gravity with curvature squared corrections. The contents of this chapter were first pre-

sented in [303], written in collaboration with Amanda W. Peet.

The AdS/CFT correspondence is a remarkable construction which has sparked many

new opportunities to study the detailed structure of strongly coupled quantum field the-

ories. Among new avenues of investigation it has spawned are applications to modelling

the quark-gluon plasma and condensed matter systems. The goal of modelling strongly

coupled field theory systems at quantum critical points will be the context for the work

reported here. Our perspective will be bottom-up, in the sense that we will seek par-

ticular classes of spacetime solutions in curvature squared gravity with dilaton potential

and dilaton-dependent gauge couplings in order to seek out physical constraints on the

91
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theory functions and parameters and on parameters of solutions within it. Finding string

theory embeddings for this class of models and analyzing technical stability properties

(ghosts, etc) of the solutions that we investigate is beyond the scope of this work.

Condensed matter systems typically do not possess relativistic symmetry. For in-

stance, for field theories at finite charge density Lorentz invariance is broken by the

presence of a current [199]. Breaking of relativistic symmetry in the field theory implies

that the bulk gravity/string dual should also break relativistic symmetry. Two major

directions have been pursued in this context: spacetimes with Schrödinger symmetry

[163] and spacetimes with Lifshitz symmetry [164]. Aspects of the dictionary are better

developed for Lifshitz, such as holographic renormalization [188], [190], so we choose this

as our context.

Lifshitz quantum critical points are invariant under the scaling symmetry

t→ λzt , xi → λxi . (2.0.1)

where z is the dynamical critical exponent. In [164] a candidate gravity dual for Lifshitz

fixed points was proposed, with spacetime metric

ds2d+2 = L2

(
−R2zdt2 +

dR2

R2
+R2dx2i

)
, (2.0.2)

where R is the radial coordinate, which ranges from R → 0 in the interior to R → ∞ at

the boundary. The bulk spacetime respects Lifshitz scaling symmetry with R → λ−1R.

Here, d is the number of transverse dimensions xi and L sets the length scale in the bulk.

The Lifshitz metric and its finite temperature counterpart are exact solutions to

Einstein gravity with a nontrivial matter sector. Two popular options for the matter

sector are Einstein gravity coupled to a massive gauge field [182],[36],[183] and Einstein-

Maxwell-dilaton theory [184],[185],[14],[186]

S =
1

16πGN

∫
dd+2x

√−g
(
R− 1

2
(∂φ)2 − V (φ)− 1

4
f(φ)F 2

)
. (2.0.3)
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In order to obtain Lifshitz solutions, it suffices to consider f(φ) ∝ eλ1φ and V (φ) = Λ,

where λ1 is a constant and Λ is the (negative) cosmological constant. Lifshitz solu-

tions have also been found within an Einstein-Maxwell-dilaton model including higher

derivative corrections in curvature and the field strength tensor [187].

Einstein-Maxwell-dilaton theory also supports a broader class of interesting spacetime

geometries, the hyperscaling violating (HSV) metric

ds2d+2 = L2

(
−R2(z−θ/d)dt2 +

dR2

R2(1+θ/d)
+R2(1−θ/d)dx2i

)
, (2.0.4)

where z is the dynamical critical exponent and θ is the hyperscaling violation parameter

[165],[166],[212]. Metrics of HSV form are not scale invariant, but rather transform

covariantly,

ds2d+2 → λ2θ/dds2d+2 . (2.0.5)

From the perspective of the dual theory, hyperscaling is the property that the free energy

of the system should scale with its näıve dimension. At finite temperature, theories with

hyperscaling have an entropy density which scales with temperature as S ∼ T d/z. When

hyperscaling is violated, there is a modified relationship, S ∼ T (d−θ)/z, indicating the

system lives in an effective dimension deff = (d − θ) [14],[213]. Candidate HSV gravity

duals for systems of this sort will be the focus of this study.

Compressible phases of matter have strongly coupled quantum critical points in 2+1

dimensions, making them obvious targets for holographic modelling. The HSV sub-case

θ = d− 1 is particularly interesting because it describes the case of strange metals [199],

a type of non-Fermi liquid. In D = d + 2 = 4 specifically, compressible non-Fermi

liquid states are known from field theory analysis to have dynamical critical exponent

z = 3/2 up to three loop order and θ = 1 [14]. Another motivation for studying candidate

HSV gravity dual spacetimes in Einstein gravity is that there are [14],[213] logarithmic

violations of the area law for entanglement entropy.

We may ask which types of theory functions f(φ), V (φ) can support HSV solutions
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and, if so, what physical parameters z, θ might be available. For HSV solutions of

Einstein-Maxwell-dilaton gravity, it suffices [14] to take f(φ) ∝ eλ1φ and V (φ) ∝ −eλ2φ,

where λ1 and λ2 are constants and the dilaton runs logarithmically: φ(R) ∝ ln(R)+const.

HSV solutions have also been found within an Einstein-Dirac-Born-Infeld-dilaton model

[214]. From the condensed matter perspective, having HSV solutions in Einstein gravity

causes an embarrassment of riches, in the sense that it gives too many allowed values of

z, θ. A natural question from a microscopic perspective is whether or not introducing

curvature squared corrections might help constrain the parameter space more tightly.

Introducing curvature squared corrections to Einstein gravity alters the structure of

the null energy condition (NEC), which we use as a primary tool to discriminate physical

solutions from unphysical ones. Accordingly, via the NEC, solution parameters z, θ can

be constrained in terms of theory parameters {ηi}, whose magnitude must be small in

order that the semiclassical approximation we make in the gravity sector be believable.

In addition to the NEC, we will insist on two basic requirements motivated from the field

theory side: that the physical effective dimension deff for the dual field theory be positive

[14] and that z ≥ 1 to ensure causal signal propagation.

Curvature squared corrections are also motivated from study of singularities in Lifshitz-

type and HSV-type solutions. First, consider Lifshitz. At first glance, it appears that

the Lifshitz gravity dual of [164] is nonsingular, because all curvature invariants remain

finite in the interior. However, the Lifshitz-type geometries display divergent tidal forces

in the interior [164], [196], [197] which disturb string probes. For Lifshitz solutions with

a magnetic ansatz for the gauge field, logarithmic running of the dilaton runs the gauge

coupling to infinity as R → 0. In [304], it was shown for D = 4 that quantum cor-

rections to f(φ) can stabilize the dilaton and replace the deep interior geometry with

AdS2 × R
2. For electric Lifshitz solutions, the gauge field runs to weak coupling in the

interior so quantum corrections to f(φ) do not provide a mechanism for resolving the

tidal force singularity. However, recently it has been found [305] that in D = 4 curvature
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squared corrections are capable of stabilizing the dilaton of electric Lifshitz, crossing over

to AdS2 × R
2. We will build on this observation. Another feature of the electric equa-

tions of motion is that demanding that the spacetime be asymptotically Lifshitz (i.e. at

R → ∞) makes the gauge coupling function formally diverge there. This was addressed

in [305] which displayed a crossover to AdS4 near the boundary (UV). Lifshitz solutions

in Einstein-Weyl were also studied in [306].

For HSV-type spacetimes with Einstein as the gravity sector, the situation is more

involved. Tidal forces still generally diverge in the interior, but are avoided for specific

ranges of z and θ as pointed out in [215], [217]. Curvature invariants remain finite in

the interior for θ > 0 [216], but diverge at the boundary, necessitating a UV completion

to AdS there. Magnetic HSV solutions display the same type of logarithmic running

as their Lifshitz cousins and become strongly coupled in the interior. Using the same

quantum corrections to f(φ) as [304], [307] constucted flows from HSV in to AdS2 × R
2

in the interior and out to AdS4 at the boundary. Electric HSV solutions, like for Lifshitz,

do not run to strong coupling in the interior. Motivated by the observations in [305], we

will investigate curvature squared solutions with hyperscaling violation and investigate

whether there are IR and UV completions.

The chapter is organized as follows. In section 2.1, we look for HSV-type solutions

to Einstein-Maxwell-dilaton theory with curvature squared corrections, and present the

theory functions f(φ), V (φ) needed to support these solutions. In section 2.2 we discuss

how the NEC along with the constraints 0 < deff ≤ d and z ≥ 1 restricts polynomial

combinations of solution parameters z, θ and theory parameters {ηi}. In section 2.3,

we discuss the question of crossovers between HSV, (a) AdSD asymptotically, and (b)

AdS2×R
d in the deep interior, supported by the curvature squared corrections. In section

2.4, we summarize our findings and comment on possible directions for future work.
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2.1 A curvature squared model and its HSV solution

We will be interested in classes of models with curvature squared corrections to Einstein

gravity, coupled to a U(1) gauge field and a scalar which we will refer to as the dilaton.

The action for the class of models we study is of the form

S =
1

16πGN

∫
dd+2x

√−g
(
R− 1

2
(∂φ)2 − V (φ)− 1

4
f(φ)F 2

+η1RµνρσR
µνρσ + η2RµνR

µν + η3R
2

)
. (2.1.1)

Here, the ηi are constant couplings for the higher curvature terms measured in units of the

Planck length ℓP . Generically, curvature squared corrections lead to ghosts appearing in

the theory, depending on the background geometry and values of the coupling constants

ηi. For example, in the context of Gauss-Bonnet gravity1 applied to holography, requring

a ghost free AdS solution as well as ensuring causality of the dual boundary theory places

nontrivial constraints on the possible values of the coupling constant [308], [309]2. Our

goal in this section is to find HSV-type solutions to the field equations of the model

(2.1.1). We will use the metric ansatz

ds2d+2 = −L2r2αdt2 + L2dr
2

r2β
+ L2r2dx2i . (2.1.2)

This form of the ansatz is chosen in order that the (fourth order) equations of motion

have a good chance of being tractable analytically. Here, d is the number of transverse

dimensions, D = d + 2 is the bulk spacetime dimension, and L sets the overall length

scale. The dynamical exponent z and the hyperscaling violation parameter θ are related

to the parameters α and β by

α =
dz − θ

d− θ
, β =

d

d− θ
. (2.1.3)

1In the action (2.1.1), the curvature squared terms reduce to the Gauss-Bonnet term χ4 =(
RµνλσR

µνλσ − 4RµνR
µν +R2

)
for η2 = −4η1, and η3 = η1.

2In the notation of section 2.2 the Gauss-Bonnet coupling in D = d + 2 ≥ 5 is constrained to be
between −(3d+ 5)/[4(d+ 3)2(d− 2)] ≤ ηGB/L

2 ≤ (d2 + d+ 6)/[4(d2 − d+ 4)2], where L2 sets the bulk
length scale.
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This metric (2.1.2) is related to that of the previous section (2.0.4) by a coordinate

transformation R = rd/(d−θ) which will help make our equations simpler. The Riemann

curvature components of (2.1.2) are

Rtr
tr = −α(α + β − 1)r2(β−1)/L2 , Rri

ri = −βr2(β−1)/L2 ,

Rit
ti = αr2(β−1)/L2 , Rij

ji = r2(β−1)/L2 , (2.1.4)

where repeated indices i, j are not summed over. From this it is straightforward to obtain

the Ricci tensor and Ricci scalar for the equations of motion.

In order to support a HSV spacetime, it will be necessary to include a nontrivial

potential for the the dilaton V (φ). In the case of pure Lifshitz (θ = 0 or β = 1), the

dilaton potential reduces to a constant and plays the role of a cosmological constant:

V (φ) → ΛLif as θ → 0. Later on when we investigate the possibility of producing AdS

completions to the HSV geometries in both the boundary (UV) and interior (IR) regions,

we will see that V (φ) will also set the individual AdS scales. That is, we will look for a

mechanism by which the higher curvature corrections to the action stabilize the dilaton

at some constant value φ = φ0. When evaluated on this solution, V (φ0) will set the AdS

scale for us.

The lore for the hyperscaling violating metrics of the form (2.1.2) is that the minimum

ingredients needed to support such a metric are a gauge coupling f(φ) and dilaton po-

tential V (φ) that are exponentials in the dilaton φ [304],[212]. This is valid in the limit of

matter plus Einstein gravity, but not in the case when higher curvature terms like those

in our action (2.1.1) are present, as was pointed out recently in [310]. Indeed, as we will

see, the form of the dilaton potential and gauge coupling will need to be modified in order

to support the HSV spacetime in our theory with curvature squared corrections. We will

see that not all parameters support HSV solutions, and we will explore the admissible

ranges of {ηi} using two tools: (1) the NEC and (2) constraints on parameters from the

condensed matter side. The hope is that bottom-up investigations of this sort may help
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serve as a partial guide to top-down string embedders. We now turn to the equations of

motion and solving them.

The Maxwell field equation takes the form

∇µ [f(φ)F
µν ] = 0 , (2.1.5)

while the dilaton equation of motion is

�φ− 1

4
∂φf(φ)FµνF

µν − ∂φV (φ) = 0 . (2.1.6)

Via repeated application of the Bianchi identities, the equations of motion for the metric

become

Tµν ≡ G̃µν = Rµν −
1

2
gµνR + 2η1RµλρσR

λρσ
ν + (4η1 + 2η2)RµλνσR

λσ − 4η1RµλR
λ
ν

− (2η1 + η2 + 2η3)∇µ∇νR + (4η1 + η2)�Rµν + 2η3RRµν

− 1

2
gµν
[
η1RαβρσR

αβρσ + η2RλσR
λσ + η3R

2 − (η2 + 4η3)�R
]
, (2.1.7)

while the energy-momentum tensor is

Tµν =
1

2
(∂µφ)(∂νφ)−

1

2
gµνV (φ)− 1

4
gµν(∂φ)

2+
1

2
f(φ)

(
FµσF

σ
ν − 1

4
gµνFλσF

λσ

)
. (2.1.8)

Making use of an electric ansatz for the gauge field yields a solution to the Maxwell

field equation (2.1.5)

F rt =
Q√−gf(φ) =

Q

f(φ)Ld+2rα−β+d
, (2.1.9)

where Q is a constant of integration.

Note that for a magnetic HSV solution in a radial ansatz we would seek F(2) =

B(r)dx ∧ dy, where

B(r) = P

f(φ)Ld−4rα−β+d−4
. (2.1.10)

We will stick with the electric case.
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Now, using the components of the energy-momentum tensor (2.1.8), the equations for

the metric may be recast in a more useful form,

V (φ(r)) = − 1

L2

(
r−2G̃ii + r2βG̃rr

)
,

(∂φ)2 =
2

L2

(
r−2αG̃tt + r2βG̃rr

)
,

Q2

f(φ(r))L2d
r−2d =

1

2L2

(
r−2αG̃tt + r−2G̃ii

)
, (2.1.11)

where there is no sum on repeated indices i. It is straightforward to obtain the com-

ponents of G̃µν , and they turn out to be a sum of two competing powers of r. This is

easiest to see by raising one index:

G̃t
t = −C1

L2
r2(β−1) − C2

L2
r4(β−1) ,

G̃r
r =

C3

L2
r2(β−1) +

C4

L2
r4(β−1) ,

G̃i
i =

C5

L2
r2(β−1) +

C6

L2
r4(β−1) . (2.1.12)

Here, the Ci are constants in α, β, d, η1, η2, and η3. The details of the long expressions

are relegated to the appendix (A); let us briefly summarize their features. First, the odd

numbered constants: C1(d, β) is linear in β and quadratic in d; C3(d, α) is linear in α and

quadratic in d; and C5(d, α, β) is linear in β and quadratic in d and α. Second, the even

constants. C2, C4 and C6 are linear in {ηi}, quartic in d (with coefficients depending on

{ηi}), quartic in α, and cubic in β (except for C4 which is quadratic). Only C2, C4 and

C6 contain information about the higher curvature terms in the action (2.1.1), so those

are the ones to watch.

The final result for the field equations in this ansatz simplifies to

V (φ(r)) = − 1

L2

[
D1r

2(β−1) +D2r
4(β−1)

]
, (2.1.13)

(∂φ)2 =
2

L2

[
D3r

2(β−1) +D4r
4(β−1)

]
, (2.1.14)

Q2

f(φ(r))L2d
r−2d =

1

2L2

[
D5r

2(β−1) +D6r
4(β−1)

]
, (2.1.15)
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where the constants {D1 . . . D6} are linear combinations of the {C1 . . . C6} constants as

follows,

D1(d, α, β) = C5 + C3, D2(d, α, β, η1, η2, η3) = C4 + C6 , (2.1.16)

D3(d, α, β) = C1 + C3, D4(d, α, β, η1, η2, η3) = C2 + C4 , (2.1.17)

D5(d, α, β) = C1 + C5, D6(d, α, β, η1, η2, η3) = C2 + C6 . (2.1.18)

Once we integrate (2.1.14), we have both the required form of the theory functions and

the form of the solutions, from (2.1.13-2.1.15). Note that we believe the curvature squared

HSV solutions presented here to be novel in the context of AdS/condensed matter but

unlikely to be so as GR spacetimes.

Before proceeding to analytic solutions, we should ask what kind of restrictions we

can impose on the parameter space of the theory. A very natural choice is to insist on

satisfying the null energy condition TµνN
µN ν ≥ 0 in order to ensure that we are dealing

with a sensible matter source for the model. Here, the inequality must hold for any

arbitrary null vector Nµ. Using the field equations (2.1.7) for the metric, this statement

may be translated into the condition G̃µνN
µN ν ≥ 0. An appropriate null vector is

N t =

(
d∑

i=1

s2i + s2r

)1/2

1

Lrα
, N r = sr

rβ

L
, N i = si

1

Lr
, (2.1.19)

where sr and si (d of them) are arbitrary positive constants. Using this Nµ, the NEC

translates into the following conditions on the constants Di:

D3(d, α, β) ≥ 0 , D4(d, α, β, η1, η2, η3) ≥ 0 , (2.1.20)

D5(d, α, β) ≥ 0 , D6(d, α, β, η1, η2, η3) ≥ 0 . (2.1.21)

(Note that there are no conditions on D1 or D2 coming from the NEC.) Two of these

conditions, D3 ≥ 0 and D5 ≥ 0, collapse into the simple relations

(z − 1)(z − θ + d) ≥ 0 , (2.1.22)

(d− θ)(d(z − 1)− θ) ≥ 0 , (2.1.23)
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respectively. These are identical to conditions found when applying the NEC to HSV

solutions of Einstein-Maxwell-dilaton theory [14], [212]. This had to be the case, as our

higher curvature model contains the Einstein gravity terms. Only the conditions D4 ≥ 0

and D6 ≥ 0 depend on the couplings ηi.

The NEC is expected to hold for any reasonable source of matter and it has been

argued that its violation will lead to, for example, acausal behaviour [219], [220]. The

NEC is used in Einstein [221], [222], [223] and higher curvature gravity [224] to derive a

holographic c-theorem. Recently, the weak energy condition (which implies the NEC) has

also been used to constrain geometries which interpolate between asymptotically Lifshitz

or AdS spacetimes and IR geometries with Bianchi symmetries [224].

In Einstein gravity, the energy conditions applied to the Raychaudhuri equations leads

to geodesic focusing. In higher curvature theories, the structure of the Raychaudhuri

equations do not change as they are mathematical identities and only become equations

once the Einstein equations are applied; for a review, see [311]. The relation between the

energy-momentum tensor and the Ricci tensor does change as a result of the modified

equations of motion, hence the conditions on geodesic focusing do change in a higher

curvature theory. In the context of holography, we are interested in theories which

support geometries dual to condensed matter systems. As such, the matter content

supporting the geometry should still satisfy the reasonable condition that TµνN
µN ν ≥ 0

(For a perfect fluid, this translates into a condition on ρ and pi; ρ+ pi ≥ 0).

Now let us move to solving these equations analytically. We may start by solving the

differential equation for (∂φ(r))2, (2.1.14) directly, to get

φ(r) =−
√
2D3

β − 1

[√
1 +

D4

D3

r2(β−1) − arccsch

(√
D4

D3

rβ−1

)]

+

√
2D3

β − 1

[√
1 +

D4

D3

− arccsch

(√
D4

D3

)]
+ c , (2.1.24)

where c is a constant. Note that, at first glance, this solution may seem to be undefined

in the limit that β → 1 (θ → 0 ⇒ α = z). However, this is just an illusion. The constant
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(r-independent) terms in φ(r) are precisely those needed to cancel the divergence from

the first two terms, and the limit is well defined:

φ(r) → −
√

2D3 + 2D4

∣∣∣
β→1

ln(r) + c . (2.1.25)

This is precisely the kind of logarithmic behaviour of the dilaton we would expect for a

purely Lifshitz behaviour [305].

It is instructive to study the asymptotic behaviour of φ(r). By expanding the solution

(2.1.24) as r → ∞ and r → 0, we can see what the dilaton is doing in the UV and IR

respectively. The result in the UV is

φ(r)|r→∞ → −
√
2D4

(β − 1)
rβ−1 + c , (2.1.26)

while in the IR it is

φ(r)|r→0 → −
√
2D3

(β − 1)
ln

(
1

2

√
D4

D3

rβ−1

)
+ c . (2.1.27)

In a putative string theory embedding, this would imply that the string coupling involving

eφ is diverging in the deep interior where we know the null singularity lurks, and dies out

to zero out at the boundary.

In order to satisfy the remaining gravity equations, we need a form for V (φ) and f(φ)

such that

V (φ(r)) = − 1

L2

[
D1r

2(β−1) +D2r
4(β−1)

]
, f(φ(r)) =

2Q2

L2(d−1)

r−2(β+d−1)

(D5 +D6r2(β−1))
.

(2.1.28)

In general, for arbitraryDi (i.e., arbitrary ηi and arbitrary α, β), it is difficult to invert the

solution (2.1.24) for φ(r). The analytic functions encountered are Lambert W-functions,

which do not have visually pleasant representations, so we do not display them here.

Instead, we leave V (φ(r)) and f(φ(r)) in implicit form along with (2.1.24) describing

φ(r) or alternately (2.1.14)) describing dφ(r)/dr.
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Regardless of the detailed form of f(φ) and V (φ), it is straightforward to examine

their asymptotic behaviours using the results in (2.1.26) and (2.1.27):

V (φ)|r→∞ → −(β − 1)2

2D4L2

[
D1 +

(β − 1)2

2D4

D2(φ− c)2
]
(φ− c)2 , (2.1.29)

V (φ)|r→0 → − 4D3

D4L2
exp

(
2(β − 1)√

2D3

(c− φ)

)[
D1 +

4D3D2

D4

exp

(
2(β − 1)√

2D3

(c− φ)

)]
.

Obviously, these formulæ are not valid for ηi → 0; there the form changes back to what

we expect from an Einstein gravity sector. Note that the magnitude of the potential is

controlled by 1/ηi, and that at large r the potential naturally measures φ in units of
√
ηi.

Recall that f(φ) plays the role of the coupling for the Maxwell field: f(φ(r)) ∼ 1/g2M .

Hence gM ∼ (Ld−1)/(
√
2Q)

(
D5 +D6r

2(β−1)
)1/2

r2(β+d−1). In terms of z and θ: 2(β−1) =

(2θ)/(d−θ) and β+d−1 = d+θ/(d−θ). Hence, g → 0 as r → 0 provided that θ ≥ 0 and

(d− θ) > 0, meaning that we get to weak gauge coupling in the interior of the spacetime

for physically sensible parameter ranges, as desired. Furthermore,

f(φ)|r→∞ → 2D4Q
2

(β − 1)2L2(d−1)

[
− (β−1)√

2D4

(φ− c)
](−2d)/(β−1)

[
D5 +

D6(β−1)2

2D4
(φ− c)2

]
(φ− c)2

. (2.1.30)

As r → ∞, the coupling f(φ) goes to zero. The remaining dilaton equation of motion

(2.1.6) then collapses to

(α + β + d− 1)D3 − (β + d− 1)D5 + (β − 1)D1 = 0 , (2.1.31)

(α + 2β + d− 2)D4 − (d+ 2β − 2)D6 + 2(β − 1)D2 = 0 . (2.1.32)

It is easy to verify that these two equations are satisfied identically for all d, α, β and ηi

by virtue of the ansatz.

Finally, we note that by saturating one of the NEC inequalities, z = 1 + θ/d, it is

possible to reduce the complexity of V (φ), f(φ) to power laws in the dilaton.

The next step is to explore which parameter ranges are physically admissible when we

have HSV solutions in our theory with curvature squared corrections. Our main physics

tool for investigating this will be the NEC, the details of which we derived earlier in this

section. We now turn to visualizing the NEC constraints graphically.
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2.2 Exploring parameter ranges using the NEC

In the previous section, we used {η1, η2, η3} to parametrize the curvature squared correc-

tions to Einstein gravity in our model. It is convenient at this point to change basis to

the more traditional basis {ηW , ηGB, ηR} for the higher curvature terms where

LHC = ηWCµνλσC
µνλσ + ηGBG+ ηRR

2 , (2.2.1)

where G = RµνρσR
µνρσ − 4RµνR

µν + R2 is the usual Gauss-Bonnet term and the Weyl

tensor is

Cµνρσ = Rµνρσ −
2

d

(
gµ[ρRσ]ν − gν[ρRσ]µ

)
+

2

d(d+ 1)
Rgµ[ρgσ]ν . (2.2.2)

Here, anti-symmetrization of the indices is defined as T[µν] =
1
2
(Tµν − Tνµ). It is straight-

forward to work out the relation between the coupling constants above and those in our

original basis:

ηw =
d(η2 + 4η1)

4(d− 1)
,

ηR =
4η1 + (d+ 2)η2 + 4(d+ 1)η3

4(d+ 1)
,

ηGB = −(4η1 + dη2)

4(d− 1)
.

There are a few sanity checks that we can make in this basis. In particular, the Gauss-

Bonnet term should vanish for d = 1 and is topological for d = 2 (D = d + 2 = 3 and

D = d+ 2 = 4), hence the equations of motion should be independent of ηGB for d ≤ 2.

This is straightforwardly verified. Furthermore, the Weyl tensor vanishes in AdS, so in

the limit that α = 1 and β = 1 (z = 1 and θ = 0, respectively), we expect the equations

of motion to be independent of ηW . Again, this is straightforwardly verified. In fact, it

is true for α = 1 even for β 6= 1 (z = 1, θ 6= 0, respectively).

It is difficult to visualize the influence of the three independent couplings ηGB, ηW , ηR

at once. We will address this complexity in stages by examining the cases in which

(i) only one parameter is turned on; (ii) two parameters are turned on; and (iii) three

parameters are turned on. Again, our main physics tool will be the NEC.
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2.2.1 Gauss-Bonnet gravity

Gauss-Bonnet gravity is the case where ηR = ηW = 0. We begin with this case because

it turns out to be the simplest one. Note that in every case we study, the conditions

(2.1.22) and (2.1.23) are always taken into account as well.

In terms of z and θ, the NEC for HSV solutions reduces to

− ηGB d (d− 1)(d− 2) [d(z − 1)− θ] ≥ 0 , (2.2.3)

− ηGB d (d− 1)(d− 2)(z − 1) [d2 + dz − dθ + 2θ] ≥ 0 . (2.2.4)

Notice that both conditions (2.2.3) and (2.2.4) are trivial when d = 1 or d = 2. As we

pointed out in the previous subsection (3.1), the Gauss-Bonnet term vanishes for d = 1

and is topological for d = 2 (i.e. D = d + 2 = 4) and so does not contribute to the

equations of motion. This is why the NEC reduces to (2.1.22) and (2.1.23) of Einstein

gravity.

For d > 2 where the Gauss-Bonnet term is nontrivial, combining (2.1.22) and (2.1.23)

with (2.2.3) and (2.2.4) produces different outcomes depending on the sign of ηGB. For

ηGB > 0, there is only one way to support HSV: z = 1 and θ = 0, i.e. the AdSd+2 limit.

For ηGB ≤ 0, we end up with the Einstein gravity NEC.

In general terms, we want to understand how the NEC conditions in our R2 HSV

model restrict the theory parameters ηi and the solution parameters z, θ. To see how, it

is instructive to plot the inequalities as a function of ηi, z, and θ while fixing the number

of transverse dimensions d. For the Gauss-Bonnet case, the permissible parameter regions

are shown in Fig (2.1), for two values of d. The plots look so simple here because the

constraints are linear. For every other case that we will discuss in this section, the

constraints will look more opaque and we use the plots to help shed light on them.

Our conventions for figure features are as follows. (i) Allowed regions are bounded

by the metallic grey surface(s) labeled “S”, which we will refer to in the following as the

constraint surface. (ii) An arrow indicates that the object shown – whose cross section
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is depicted as a light grey surface perpendicular to the base of the arrow – continues on

infinitely in the direction indicated by that arrow. (iii) Black indicates that either (a)

the HSV parameter θ leaves the physically acceptable regime of 0 ≤ θ < d or (b) the ηi

parameters become inadmissible, i.e. do not support HSV solutions satisfying the NEC.

(a) d = 2, only ηGB 6= 0. (b) d = 5, only ηGB 6= 0.

Figure 2.1: Restrictions on ηGB from the NEC for d = 2 and d = 5 respectively. Note that

there is only one arrow towards decreasing ηGB for the d = 5 case (2.1b).

2.2.2 Einstein-Weyl gravity

Einstein-Weyl gravity is what we get when we set ηGB = ηR = 0. This is of interest in

its own right because the Weyl tensor vanishes in AdS.

In this case, we find that

− 4ηW
(d+ 1)L2

(d− 1)(d+ 2β − 2)(α− 1)(α + β − 1)(α− 3β − d+ 1) ≥ 0 , (2.2.5)

− 4ηW
(d+ 1)L2

(d− 1)(α− 1)(α + β − 1)(3β + α + d− 3)(dα− 2dβ + 2− 2β − d2) ≥ 0 ,

(2.2.6)

Before we move to the plot, let us verify that our solution recovers the known Lifshitz

solution [305] in the limit that β → 1 (which implies that α → z). This is indeed

precisely what we obtain: V (φ(r)) reduces to the cosmological constant for the Lifshitz

case, φ(r) ∝ ln(r) and f(φ(r)) is an exponential of the dilaton.



Chapter 2. HSV in EMD gravity with R2 corrections 107

A curious sub-case is the one with α = 1 (so z = 1), but β 6= 1, that is, the

“purely” hyperscaling violating solution. In this case, we find a logarithmic dilaton and

an exponential potential

φ(r) = −
√

2d(1− β) ln(r) + const , (2.2.7)

V (φ) = − Ã

L2
exp

(√
2(1− β)

d
φ

)
, (2.2.8)

where Ã is a constant which depends on d and β, and

f(φ) → ∞ . (2.2.9)

The logarithmic running of the dilaton and a potential that is exponential in φ is to be

expected here [14], [305]. Recall the solution to Maxwell’s equations (2.1.5) is F rt =

Q/[
√−gf(φ)] = Qrβ−α−d/[f(φ)Ld+2]. Hence, as f(φ) → ∞, the field strength vanishes,

meaning that the gauge field reduces to a constant. This is to be expected as the role of

the gauge field was to break the usual relativistic scaling symmetry to the non-relativistic

Lifshitz case. When z = 1, this scaling symmetry is restored and the gauge field is no

longer necessary.

The NEC conditions in this case are

ηW (d− 1)[d(d− θ)− d(z − 2) + 2θ] ≥ 0 , (2.2.10)

ηW (d− 1)[d3 − d2(z + θ − 2) + (d+ 2)θ] ≥ 0 , (2.2.11)

which we plot along with the other two NEC constraints (2.1.22) and (2.1.23). Several

example plots are shown below.
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(a) d = 1, only ηW 6= 0

Figure 2.2: NEC restrictions on ηW for d = 1.

(a) d = 2, only ηW 6= 0. (b) d = 2, only ηW 6= 0, side view.

Figure 2.3: Restrictions on ηW from the NEC for d = 2. For z < 4, the NEC is satisfied in

the hexahedral region in the upper right hand side of both sub-figures. For z > 4, the NEC is

satisfied in the rectangular region in the lower left hand side of both sub-figures.

Figure (2.2) shows the restrictions imposed by the NEC in d = 1. Notice that there

are no constraints on ηW . This is not troubling as in d = 1, the conditions (2.2.10)

and (2.2.11) vanish and what we are plotting then is nothing more than the conditions

(2.1.22) and (2.1.23) familiar from Einstein gravity. In d = 1, the Weyl tensor vanishes

for the HSV metric and so ηW plays no role.
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Figure (2.3) shows the allowed regions for d = 2. Curiously, there is a transition at

z = 4; for z < 4 the NEC is satisfied in the hexahedral region in the upper right hand side,

as seen in figures (2.3b) and (2.3a), which restricts ηW ≥ 0. For z > 4, the situation is

flipped and the allowed region is the box in the lower left hand side, restricting ηW ≤ 0.

When z = 4 and d = 2, the conditions (2.2.10) and (2.2.11) vanish and the NEC is

satisfied for all sensible values of θ and there are no restrictions on ηW . This is indicated

in (2.2.10) and (2.2.11) by the plane cutting through the figures at z = 4. Curiously

enough, for d = 2 and z = 4, the Weyl tensor does not vanish as it does for d = 1 and for

z = 1, and so is still contributing to the equations of motion. For d > 2, a qualitatively

similar transition in behaviour occurs, however the crossover now happens for a range of

values of z and θ.

From the perspective of condensed matter theory, there is interest in holographic

theories with d = 2, θ = d− 1 = 1 and z = 3/2, which are proposed to capture some of

the mysterious physics of strange metal phases [14]. Figures (2.3b) and (2.3a) shows that

this range sits comfortably within the hexahedral region in the upper right hand side.

2.2.3 R2 gravity

Consider the case that ηR 6= 0, ηGB = 0, and ηW = 0, so that R2 is the only higher

curvature contribution. In this case, the NEC conditions are

− ηR[(d+1)θ2+d2(d+1)+2(d+ z)(dz−dθ− θ)][(d− 8)θ2−d(d− 2)zθ+d3(z− 1)] ≥ 0 ,

(2.2.12)

−ηR[(d+1)θ2+d2(d+1)+2(d+z)(dz−dθ−θ)][(z−1)(d(z−θ+d+2θ)] ≥ 0 , (2.2.13)

along with (2.1.22) and (2.1.23). These conditions are shown in Fig (2.4) for two repre-

sentative values of d.
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(a) d = 2, only ηR 6= 0.
(b) d = 5, only ηR 6= 0.

Figure 2.4: Restrictions on ηR from the NEC for d = 2 and d = 5. Note that there are two

black sides in both plots, unlike earlier cases.

The results for d > 5 are all qualitatively similar. In all cases, the allowed region is

bounded by the curved surface (“S” in figures (2.4)). This surface is always bounded by

lines along the ηR axis at z = 0 and z = 4. The NEC also restricts ηR ≤ 0 in all d.

In fact, the only way to support ηR > 0 is to set z = 1 and θ = 0. In this case, both

conditions (2.2.12) and (2.2.13) vanish.

We can also consider turning on more than one coupling at a time. In the next four

sections we will investigate the constraints on multiple ηs imposed by d, z and θ.

2.2.4 R2 and Weyl terms

As a first example, consider the case ηR 6= 0, ηW 6= 0, but ηGB = 0. The conditions are

− ηR
{
d(d+ 1)(θ2 + d2) + 2(d+ z)(dz − dθ − θ)[(d− 8)θ2 − d(d− 2)zθ + d3(z − 1)]

}

+
2ηW

(d+ 1)
d2(d− 1)(z − 1)[d2 − (d− 2)θ][d(d− θ)− d(z − 2) + 2θ] ≥ 0 , (2.2.14)
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− ηR
{
d2(z − 1)(θ2 + d2) + 2(d+ z)(dz − dθ − θ)(d(z − θ + d) + 2θ)

}

+
2ηW

d(d+ 1)
d2z(z − 1)(d− 1)[d3 − d2(z + θ − 2) + (d+ 2)][dz + 2θ + d(d− θ)] ≥ 0 .

(2.2.15)

Given a value for d, and z, it is instructive to plot these inequalities (along with (2.1.22)

and (2.1.23)) for the physically sensible range of θ. This is depicted in Fig (2.5) for

several different values. Note that because we now have two theory parameters varying

in the plots, we have to fix one of the other parameters per plot to fit the plot into 3D.

For clarity, we choose to fix z for any given plot (as well as d, as before) in order to

visualize the constraint surfaces for θ.

(a) d = 2, z = 2 (b) d = 2, z = 4 (c) d = 2, z = 6

Figure 2.5: Restrictions on ηW and ηR from the NEC for d = 2 and several values of z. Notice

the sharp change in behaviour in Fig (2.5b) where d = 2, z = 4.

The figures for d = 3, 4, 5 look qualitatively similar, with only minor quantitative

differences.

Notice that for d = 2, there is an interesting change in behaviour at z = 4 in Fig

(2.5). At this point, the contribution from the Weyl term vanishes from the NEC and we

are left simply with the the conditions of pure R2 gravity. As we found in section (2.2.3),

when only the ηR term is non-zero, then physically sensible ranges of z and θ restrict

ηR < 0. We see precisely this kind of behaviour in the case of having both ηR and ηW
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turned on; at d = 2 and z = 4, the ηW contribution vanishes and we are left with only

ηR which is required to be less than or equal to zero, consistent with our previous result.

d = 2 and z = 4 is special in that it is the unique combination of parameters for

which the ηW term does not contribute to the NEC. At the level of the equations of

motion (2.1.12), the relevant equations reduce down to those of pure R2 gravity for this

choice of parameters. In dimensions other than d = 2, a qualitatively similar transition

is observed, but the transition is not as sharp as the contribution from the ηW term never

drops out completely.

2.2.5 R2 and Gauss-Bonnet terms

Consider ηW = 0, ηGB 6= 0 and ηR 6= 0. The NEC conditions are

− ηR[2dz(d+ z) + d2(d+ 1)− 2(d+ 1)zθ − 2d(d+ 1) + (d+ 1)θ2][(d− 8)θ2

− d(d− 2)zθ + d3(z − 1)]− ηGB(d− 1)(d− 2)(d− θ)3[d(z − 1)− θ] ≥ 0 , (2.2.16)

− ηRd(z − 1)[d(z − θ + d) + 2θ)][2dz(d+ z) + d2(d+ 1)− 2(d+ 1)zθ − 2d(d+ 1)

+ (d+ 1)θ2]− ηGB(d− 1)(d− 2)(z − 1)(d− θ)2[d(z − θ + d) + 2θ] ≥ 0 , (2.2.17)

which are to be supplemented by (2.1.22) and (2.1.23). Notice that for d = 1 and d = 2,

the Gauss-Bonnet contribution to (2.2.16) and (2.2.17) vanishes and we are left simply

with pure R2 gravity as in section (2.2.3). Fig (2.6) and Fig (2.7) plot the restrictions

on ηGB and ηR for d = 3 and a few values of z.
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(a) d = 3, z = 2 (b) d = 3, z = 2, side view (c) d = 3, z = 3

Figure 2.6: Restrictions on ηGB and ηR from the NEC for d = 3 and z = 2 and z = 3.

(a) d = 3, z = 4 (b) d = 3, z = 6

Figure 2.7: Restrictions on ηGB and ηR from the NEC for d = 3 and z = 4 and z = 6. Notice

the sharp change in behaviour compared Fig (2.6) where d = 3, z < 4.

Notice the sharp change in behaviour for z ≥ 4 in Fig (2.7). Below z = 4, both

positive and negative values of ηR and ηGB are allowed up to a maximum value of θ (for

z = 2, this value is θ = 1.8, for example). Above this value of only ηGB < 0 is allowed and

ηR is also severely restricted, as seen in Fig (2.6b). In fact, this transition in behaviour

is independent of d and always occurs at z = 4. As in previous sections, z = 4 turns out

to be special.
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For d > 3, qualitatively similar behaviour is observed. Fig (2.8) and Fig (2.9) provide

a few salient examples.

(a) d = 5, z = 2 (b) d = 5, z = 3

Figure 2.8: Restrictions on ηGB and ηR from the NEC for d = 5 and z = 2 and z = 3.

(a) d = 5, z = 4 (b) d = 5, z = 6

Figure 2.9: Restrictions on ηGB and ηR from the NEC for d = 5 and z = 4 and z = 6. Notice

the sharp change in behaviour compared to Fig (2.8) where d = 5, z < 4.
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2.2.6 Gauss-Bonnet and Weyl

Turning our attention to the case of ηR = 0 and ηGB 6= 0 and, ηW 6= 0, the conditions are

2dz(z − 1)(d− 1)(d(d− θ) + d(z − 2) + 2θ)ηW

− (d− 1)(d− 2)(d+ 1)(d− θ)3(d(z − 1)− θ)ηGB ≥ 0 , (2.2.18)

2z(z − 1)(d− 1)(d(d− θ) + dz + 2θ)(d2(d− θ)− d2(z − 2) + (d+ 2)θ)ηW

− (z − 1)(d− 1)(d− 2)(d+ 1)(d− θ)2(d(z − θ + d) + 2θ)ηGB ≥ 0 , (2.2.19)

which are to be supplemented by (2.1.22) and (2.1.23). As we have seen in previous

cases, for d = 1 and d = 2, the Gauss-Bonnet term does not contribute and we are back

to simply the case of ηW 6= 0 examined in section (2.2.2). Plots of allowed regions of ηGB

and ηW are shown below for representative values of d ≥ 3, z and θ.
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(a) d = 3, z = 2. (b) d = 3, z = 2, back view. (c) d = 3, z = 4.

(d) d = 3, z = 5. (e) d = 3, z = 6.

Figure 2.10: Restrictions on ηGB and ηW from the NEC for d = 3 and z = 2, z = 4, z = 5 and

z = 6.

For d = 3 depicted above in Fig (2.10), there are distinct transitions in behaviour

that occur at z = 4 and z = 5. Once we hit z = 6, the allowed region is similar to that

of z = 2, except that the allowed values of ηW are reflected by a minus sign. This effect

happens for higher dimensions as well, although the precise value of z depends on d and

is not universal. Following the common theme that we have seen in previous sections,

values of z around 4 mark a noticeable change in the allowed parameter region. Higher

dimensions display analogous behaviour. We provide a few examples in figures (2.11)

and (2.12) below for d = 4 and d = 5, respectively.
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(a) d = 4, z = 3
2 . (b) d = 4, z = 4. (c) d = 4, z = 6.

Figure 2.11: Restrictions on ηGB and ηW from the NEC for d = 4 and z = 3
2 , z = 4 and z = 6.

(a) d = 5, z = 3
2 . (b) d = 5, z = 4. (c) d = 5, z = 6.

Figure 2.12: Restrictions on ηGB and ηW from the NEC for d = 5 and z = 3
2 , z = 4 and z = 6.

2.2.7 R2, Gauss-Bonnet and Weyl

Finally, let us consider the case of having all three ηR, ηGB and ηW turned on at once.

It is easiest to visualize the impact of different theory parameter choices by having all

three vary in our plots. This requires us to show different z, θ with different plots. So in

this subsection, we are showing different slicings through the five-dimensional parameter
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space {ηGB, ηW , ηR, z, θ} than we did in the single-η and pair-of-ηs cases. The plots may

look less structured but this is just a slicing artefact.

The conditions we need to satisfy are

− ηGB(d− 1)(d− 2)(d+ 1)(d− θ)3(d(z − 1)− θ)

− ηR(d+ 1){d3(z − 1)− dzθ(d− 2) + (d− 8)θ2}

× [(d+ 1)θ2 − 2(d+ 1)zθ − 2(d+ 1)dθ + d2(d+ 1) + 2d(d+ z)z]

+ 2ηW z(z − 1)d(d− 1){d(d− θ) + 2θ}[d(d− θ)− d(z − 2) + 2θ)] ≥ 0 , (2.2.20)

− ηGB(z − 1)(d− 1)(d− 2)(d+ 1)(d− θ)2[d(z − θ + d) + 2θ]

− ηRd(d+ 1)(z − 1) {d(z − θ + d) + 2θ}

× [(d+ 1)θ2 − 2(d+ 1)zθ − 2d(d+ 1) + d2(d+ 1) + 2d(d+ z)z]

+ 2ηW z(z − 1)(d− 1){d(z − θ + d) + 2θ}[d2(d+ 2) + (d+ 2)θ − d2(z + θ)] ≥ 0 ,

(2.2.21)

which are to be supplemented by (2.1.22) and (2.1.23). Once again, for d = 1 and d = 2,

the Gauss-Bonnet term does not contribute, so we will begin our analysis at d = 3. In

this case, we have three ηs but only two conditions to satisfy, hence there is a wide range

of possible values to choose from. Nevertheless, we can still generate markedly different

behaviour by change the value of the hyperscaling violation parameter, θ. Figure (2.13)

below provides an example for d = 3, z = 2 and θ = 1 and θ = 2, respectively. In going

from θ = 1 to θ = 2, a wide range of possible combinations of the ηs is lost.
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(a) d = 3, z = 2, θ = 1. (b) d = 3, z = 2, θ = 2.

Figure 2.13: Restrictions on ηR, ηGB and ηW from the NEC for d = 3 and z = 2, and θ = 1

and θ = 2, respectively. Note the change in the allowed region when going from θ = 1 to θ = 2.

The behaviour changes once again around z = 4. This is depicted in Fig (2.14) for

d = 3. For larger values of z, the allowed region is qualitatively similar to that of z = 4,

this is also depicted in Fig(2.14).

(a) d = 3, z = 4, θ = 1. (b) d = 3, z = 6, θ = 2.

Figure 2.14: Restrictions on ηR, ηGB and ηW from the NEC for d =3, z = 4, θ = 1 and d = 3,

z = 6, θ = 2, respectively.

Again, qualitatively similiar results are obtained for higher dimensions. Below z = 4,

the allowed region of ηs can be quite different, depending on the value of θ. Above, z ≥ 4,
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the shape of the allowed region is not as sensitive to changes of θ. Figures (2.15) and

(2.16) provide examples for d = 5.

(a) d = 5, z = 2, θ = 1. (b) d = 5, z = 2, θ = 3. (c) d = 5, z = 2, θ = 4.

Figure 2.15: Restrictions on ηR, ηGB and ηW from the NEC for d = 5 and z = 2, and θ = 1,

θ = 3, and θ = 4, respectively. Note the change in the allowed region when going from θ = 1

to θ = 3 and θ = 4.

(a) d = 5, z = 4, θ = 4. (b) d = 5, z = 6, θ = 3.

Figure 2.16: Restrictions on ηR, ηGB and ηW from the NEC for d =5, z = 4, θ = 4 and d = 5,

z = 6, θ = 3, respectively.

We will summarize the general features of all these NEC plots and their physical

implications in Section 2.4.
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2.3 Crossover solutions

In this section we are interested in constructing completions to the D = d + 2 HSV

geometry in the deep interior (IR) and asymptotic (UV) region. We will specialize to

Einstein-Weyl gravity because the Weyl tensor vanishes in AdS, which means that the

curvature squared terms will not source the dilaton regardless of the form of its coupling.

This ensures that we have a chance at an AdS UV completion to the geometry. We also

seek an IR completion to AdS2×R
d so that any gravitational (tidal force) singularities in

the deep interior of the HSV spacetime are resolved by the crossover to the singularity-

free AdS2 × R
d. We also hope to tame potential curvature invariant blowups in the

asymptotic region, in this case by the AdSD. This type of analysis was performed for

the Lifshitz case in [305], which provided one of the motivations for the analysis of this

section, but it uses a different set of theory functions than ours.

The HSV solution that was constructed in Section 2.1 contains a running dilaton. If

we want to be able to complete the spacetime into an AdS2 × R
d in the IR, we need

a mechanism by which the dilaton is stabilized to some constant value, φ0. This is

where the curvature squared corrections to the action come into play. An immediate

question that arises is whether we need to add any further terms to our effective action

in order to support crossovers. After allowing corrections to the Lagrangian of the form

k(φ)CµνλσC
µνλσ, we find that it is possible to have HSV as a solution of the equations as

well as AdSD and AdS2 ×R
d without needing any more theory functions than f(φ) and

V (φ).

It is most sensible for us to seek crossovers to HSV starting from the AdSD and AdS2×

R
d ends, aiming to pick up the HSV solution as we evolve in radius in between. This is

because classification of relevant/irrelevant perturbations is much better understood in

AdS.

In order to find crossovers, it helps to pick a convenient gauge for the metric (2.0.4).

Under a coordinate transformation R = ρ−1/z and a rescaling of L and the other coordi-
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nates, the line element takes the form

ds2 = L2ρ−2(dz−θ)/dz [−dt2 + dρ2 + ρ2(z−1)/zd~x2d
]
. (2.3.1)

In the new ρ coordinate, the deep interior (IR) corresponds to ρ → ∞ and the UV

corresponds to ρ→ 0. Since we wish to construct solutions which flow from AdS2×R
d in

the IR to an intermediate HSV regime and finally to AdSD, it is convenient to parametrize

the metric as [305]:

ds2 = a21(ρ)
[
−dt2 + dρ2 + a22(ρ)d~x

2
d

]
. (2.3.2)

In this parametrization, AdS2 ×R
d corresponds to a1(ρ) = L♭/ρ and a2(ρ) = ρ, whereas

AdSD corresponds to a1(ρ) = L♯/ρ and a2(ρ) = const.

In what follows we denote radial coordinate derivatives by ′ = ∂ρ. We will also

abbreviate dilaton field derivatives of theory functions as ˙ ≡ ∂φ. This is not a time

derivative; instead, it is a field derivative. We trust the reader not to get confused by

this.

It is easiest to begin our study of the field equations with the gauge field. The Maxwell

field equation is

∇µ [f(φ)F
µν ] = 0 . (2.3.3)

In our metric ansatz, this equation becomes

[
ad+2
1 ad2f(φ)E

]′
= 0 , (2.3.4)

where E ≡ F ρt(ρ) is a solution function of ρ. Clearly, this equation has a first integral,

E(ρ) = Q

ad+2
1 ad2f(φ)

, (2.3.5)

where Q is an integration constant. Note that there is a theory function involved here:

f(φ). Note also that although Q is a constant, it will be a different constant for our three

different solutions involved in the crossover: AdSD, AdS2×R
d, and HSV. This is related

to the fact that the electric field must have perturbations if the dilaton and metric do,



Chapter 2. HSV in EMD gravity with R2 corrections 123

in accordance with the terms in the original effective action. It is the total electric field

which obeys the Maxwell equation: the background, about which one is expanding, plus

the perturbation. (Note that if we had done magnetic perturbations staying in a radial

ansatz, the perturbed magnetic field would be unconstrained by the Maxwell equation.)

The last ingredient we need is ∂ρf(φ). This is directly available because we are working

within an ansatz with only radial coordinate dependence, so

[f(φ(ρ))]′ =
df

dφ

dφ

dρ
, (2.3.6)

or, more succinctly, f ′ = ḟφ′. This gives the full Maxwell equation as

[
(d+ 2)

a′1
a1

+ d
a′2
a2

]
E +

ḟ(φ)

f(φ)
φ′E + E ′ = 0 . (2.3.7)

The dilaton field equation is

�φ− 1

4
ḟ(φ)FµνF

µν − V̇ (φ) = 0 . (2.3.8)

When evaluated on the metric ansatz (2.3.2), this gives the full dilaton equation as

1

a21
φ′′ +

d

a21

(
a′1
a1

+
a′2
a2

)
φ′ − V̇ (φ) +

1

2
ḟ(φ)a41E2 = 0 . (2.3.9)

These coupled equations (2.3.7) and (2.3.9) for E and φ show us that it is impossible to

turn on dilaton perturbations without also exciting electric perturbations.

The next step is to write down the energy-momentum tensor for the right hand side

of the tilded gravitational equations of motion. The components of T µν are

T tt =− 1

2
V (φ)− 1

4a21
(φ′)2 − 1

2
f(φ)a41E2 , (2.3.10)

T ρρ = −1

2
V (φ) +

1

4a21
(φ′)2 − 1

2
f(φ)a41E2 , (2.3.11)

T xx = −1

2
V (φ)− 1

4a21
(φ′)2 +

1

2
f(φ)a41E2 . (2.3.12)
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For the G̃µνs in the Weyl corrected gravity equations G̃µν = Tµν , we write the second

and fourth order pieces as

G̃tt ≡+ ct1

(
a′1
a1

)2

+ ct2

(
a′2
a2

)2

+ ct3
a′′1
a1

+ ct4
a′′2
a2

+ ct5
a′1
a1

a′2
a2

+
4ηW
3a21

{
+ct6

(
a′2
a2

)4

+ ct7
a′′′′2

a2
+ ct8

a′′2
a2

(
a′2
a2

)2

+ ct9
a′′′2
a2

a′2
a2

+ ct10

(
a′′2
a2

)2

+ct11
a′′′2
a2

a′1
a1

+ ct12
a′′1
a1

(
a′2
a2

)2

+ ct13
a′1
a1

(
a′2
a2

)3

+ ct14
a′′1
a1

a′′2
a2

+ct15
a′′2
a2

a′1
a1

a′2
a2

+ ct16

(
a′1
a1

)2(
a′2
a2

)2

+ ct17

(
a′1
a1

)2
a′′2
a2

}
, (2.3.13)

and similarly for the G̃ρρ, and for a−2
2 G̃xx for each coordinate in the ~x. Note that at

fourth order, in principle there might have been three other types terms of the form

(a′′′′1 /a1), (a
′′′
1 /a1)(a

′
1/a1), (a

′′′
1 /a1)(a

′
2/a2), but these are absent in conformal gauge.

The 17 constants {ctI} in these expressions are all functions of d, and similarly with

the {cρI} and {cxI}. We now list them. The coefficients of the second order terms for G̃tt

are

ct1 = −1

2
d(d− 3) , ct2 = −1

2
d(d− 1) , ct3 = −d ,

ct4 = −d , ct5 = −d2 ; (2.3.14)

while the fourth order terms are

ct6 = +
3(d− 1)[2d2 − 8d+ 7]

2(d+ 1)
, ct7 = −3(d− 1)

(d+ 1)
,

ct8 = −3(d− 1)[d2 − 7d+ 8]

(d+ 1)
, ct9 = −3(d− 1)(2d− 3)

(d+ 1)
,

ct10 = −3(d− 1)(2d− 5)

2(d+ 1)
, ct11 = −6(d− 1)(d− 2)

(d+ 1)
,

ct12 = −1

2
ct11 , ct13 = +

3(d− 1)(d− 2)(2d− 3)

(d+ 1)
,

ct14 = +
1

2
c11 , ct15 = −3(d− 1)(d− 2)(2d− 5)

(d+ 1)
,

ct16 = +
3(d− 1)(d− 2)(d− 3)

(d+ 1)
, ct17 = −ct16 . (2.3.15)
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The coefficients of the second order terms for G̃ρρ are

cρ1 = +
d(d+ 1)

2
, cρ2 = +

d(d− 1)

2
, cρ3 = 0 ,

cρ4 = 0 , cρ5 = +d2 ; (2.3.16)

while the fourth order terms are

cρ6 = +
3(d− 1)(2d− 3)

2(d+ 1)
, cρ7 = 0 , cρ8 = −3(d− 1)(d− 2)

(d+ 1)
, cρ9 = −3(d− 1)

(d+ 1)
,

cρ10 = −1

2
cρ9 , cρ11 = 0 , cρ12 = 0 , cρ13 = −cρ8 ,

cρ14 = 0 , cρ15 = −cρ8 , cρ16 = 0 , cρ17 = 0 . (2.3.17)

The coefficients of the second order terms for each of the (a−2
2 )G̃xx are

cx1 = +
1

2
d(d− 3) , cx2 = +

1

2
(d− 1)(d− 2) , cx3 = +d ,

cx4 = +(d− 1) , cx5 = +d(d− 1) ; (2.3.18)

while the fourth order terms are

cx6 = +
3(d− 1)(d− 4)(2d− 3)

2d(d+ 1)
, cx7 = −3(d− 1)

d(d+ 1)
,

cx8 = −3(d− 1)[d2 − 9d+ 12]

d(d+ 1)
, cx9 = −6

(d− 1)(d− 2)

d(d+ 1)
,

cx10 = +
3

4
cx9 , cx11 = +cx9 ,

cx12 = −1

2
cx9 , cx13 = +

6(d− 1)(d− 2)2

d(d+ 1)
,

cx14 = +
1

2
cx9 , cx15 = −2cx16 ,

cx16 = +
3(d− 1)(d− 2)(d− 3)

d(d+ 1)
, cx17 = −cx16 . (2.3.19)

Now that we have the full equations of motion, we can set about demanding that

the three different spacetimes which we want to participate in the crossover solve the

equations of motion: (1) AdSD, (2) AdS2 ×R
d, and (3) HSV. We next consider these in

turn. Our convention will be that quantities in AdSD will be labeled with a subscript ♯,

while quantities in AdS2 × R
d will be labeled with a subscript ♭.
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First, we need to verify that AdSD is a solution of our Einstein-Weyl-Maxwell-dilaton

action. AdSD has a2 = 1 and a1 = L♯/ρ. Let the constant dilaton in the AdSD region

be φ♯, along with V♯ ≡ V (φ♯), f♯ ≡ f(φ♯), and similarly for higher derivatives of theory

functions. Then the equations of motion for the metric coefficients evaluated on AdSD

(in D dimensions) yield two conditions,

Q2
♯ = 0 , V♯ = −d(d+ 1)

L♯
2 . (2.3.20)

Next, let us see whether AdS2 × R
d is also a solution. This has a1(ρ) = L/ρ and

a2(ρ) = ρ, and φ(ρ) = φ♭ = const. Adding and subtracting two Einstein equations yields

Q2
♭ = L

2(d−1)
♭ f(φ♭)

[
1− 4(d− 1)

(d+ 1)L2
♭

ηW

]
, V♭ = − 1

L2
♭

. (2.3.21)

As expected, V (φ♭) sets the scale for the AdS2 × R
d solution. Notice that the presence

of the Weyl squared term changes the effective charge compared to Einstein gravity,

reducing or increasing it depending on the sign of ηW .

Lastly, we can ask whether HSV is a solution. This was already ensured by design in

Section 2.1.

In linearized perturbation theory, the Maxwell field equation guarantees that the

electric field will be perturbed along with the dilaton. We expand

E(ρ) = Ē(ρ) + E(ρ) , (2.3.22)

where Ē(ρ) is the background electric field and E(ρ) the perturbation. We also split

the dilaton into a background piece φ̄(ρ) (which will be just a constant for AdSD and

AdS2 × R
d) and a perturbation Φ,

φ(ρ) = φ̄(ρ) + Φ(ρ) . (2.3.23)

Using the form of our metric ansatz, the linearized electric equation becomes

[
(d+ 2)

ā′1
ā1

+ d
ā′2
ā2

]{
f0E + ḟ0ĒΦ

}
+ ḟ0ĒΦ′ + f0E

′ = 0 , (2.3.24)
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where f0 denotes the theory function f(φ) evaluated at its background value and ā1, ā2

are the background metric coefficients. The linearized dilaton perturbation equation

becomes

1

ā21
φ′′ +

d

ā21

[
ā′1
ā1

+
ā′2
ā2

]
φ′ − V̇0 − V̈0Φ + 2ā41

[
Ē2
(
ḟ0 + f̈0Φ

)
+ 2ḟ0ĒE

]
= 0 . (2.3.25)

We can also write the linearized energy-momentum tensor for use in finding crossovers.

Since at linear order the (Φ′)2 terms drop out,

T tt
∣∣
lin

= −1

2
V0 −

1

2
V̇0Φ− Q0

2ād−2
1 ād2

{
Q0

ād+2
1 ād2f0

(
1 +

ḟ0
f0
Φ +

4AL

ā1

)
+ 2E

}
, (2.3.26)

and

T tt
∣∣
lin

= T ρρ
∣∣
lin
, (2.3.27)

while

T xx|lin = −1

2
V0 −

1

2
V̇0Φ +

Q0

2ād−2
1 ād2

{
Q0

ād+2
1 ād2f0

(
1 +

ḟ0
f0
Φ +

4AL

ā1

)
+ 2E

}
, (2.3.28)

where A = A(ρ) is a metric perturbation: a1 = ā1 +LA(ρ). The form of the metric per-

turbation equations depends on the background around which we expand. In particular,

the analysis differs for AdSD and AdS2 × R
d, so we split the discussion at this point.

Before we do, some quick comments about crossover scales are in order. It is the

potential V (φ) which sets the crossover scales. Using the values of the potential V♯

(2.3.20) and V♭ (2.3.21) required for AdSD and AdS2 × R
d solutions, and the form of

V (φ) (2.1.28), we find the values of the radial coordinates ρ♯ and ρ♭ where the crossovers

occur in the bulk. These values depend on d, the solution parameters z and θ, and the

theory parameter ηW through the constants D1 and D2 (2.1.16). In the physical range

of z and θ, D1 is positive and D2 can be positive, negative or zero. In the AdS2 × R
d

region,

ρ
−2θ/dz
♭ =





− 1

2D2

(
D1 −

√
D2

1 + 4
L2D2

L2
♭

)
, if D2 6= 0

L2

L2
♭D1

, if D2 = 0 .
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For the AdSD region,

ρ
−2θ/dz
♯ =





− 1

2D2

(
D1 −

√
D2

1 + 4d(d+ 1)
L2D2

L2
♯

)
, if D2 6= 0

d(d+ 1)
L2

L2
♯D1

, if D2 = 0 .

The radial coordinate is dual to the field theory energy scale. Different probes will result

in different energy-radius relations. For example, a string [312] stretched from the interior

to a radial coordinate ρ results in E = [z dL2/2πα′(z d − 2θ)]ρ−(1−2θ/z d). Note that for

physical values of z and θ (obeying the NEC and deff > 0), z d− 2θ is positive.

2.3.1 UV crossover

The perturbed AdSD metric is in conformal gauge

ds2AdSD =

{
L♯
ρ

+ L♯A(ρ)

}2 [
−dt2 + dρ2 + {1 + B(ρ)}2 d~x2d

]
. (2.3.29)

We now expand the curvature squared equations of motion at linear order in pertur-

bations {A(ρ), B(ρ),Φ(ρ), E(ρ)}. We obtain for the tt gravity field equation

0 = −4(d− 1)
ηW
L2
♯

(ρ4B′′′′) + 8(d− 1)(d− 2)
ηW
L2
♯

(ρ3B′′′)

+

[
−d(d+ 1)− 4(d− 1)2(d− 2)

ηW
L2
♯

]
(ρ2B′′)− d(d+ 1)(ρ3A′′)

+ d2(d+ 1)(ρB′) + d(d+ 1)(d− 3)(ρ2A′) + 2d2(d+ 1)(ρA) , (2.3.30)

while for ρρ we obtain

0 = d(ρB′) + (d+ 1)(ρ2A′) + 2(d+ 1)(ρA) , (2.3.31)

while for (each) xx we get

0 = +
4(d− 1)

d

ηW
L2
♯

(ρ4B′′′′)− 8(d− 1)(d− 2)

d

ηW
L2
♯

(ρ3B′′′)

[
−(d− 1)(d+ 1) +

4(d− 1)2(d− 2)

d

ηW
L2
♯

]
(ρ2B′′)− d(d+ 1)(ρ3A′′)

+ d(d− 1)(d+ 1)(ρB′) + d(d+ 1)(d− 3)(ρ2A′) + 2d2(d+ 1)(ρA) . (2.3.32)
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The linearized Maxwell equation is simple by dint of gauge symmetry,

E ′ − (d+ 2)

ρ
E = 0 . (2.3.33)

The linearized dilaton equation of motion (2.3.9) in the perturbed AdSD background is

also quite simple,

Φ′′ − d

ρ
Φ′ −

L2
♯

ρ2
V̈♯Φ = 0 . (2.3.34)

The form of our perturbation equations (2.3.30-2.3.34) permits power law solutions

of the form

Φ = Φ̆ρνΦ , A = ĂρνA , B = B̆ρνB , E = ĔρνE , (2.3.35)

where {Ă, B̆, Φ̆, Ĕ} are simple constants, as long as two conditions are satisfied relating

the metric indices νA, νB to νΦ,

νA = νB − 1 , (2.3.36)

νΦ = νB . (2.3.37)

The electric field index νE is determined by the first order Maxwell equation to be

νE = d+ 2 . (2.3.38)

In other words, there is only one perturbation of the electric field and it is relevant

(growing in the IR). This is in accord with our intuition that Q should evolve from

Q♯ = 0 in the asymptotic AdSD region, increasing in the interior à la HSV, and eventually

levelling out to Q♭ of the interior AdS2 × R
d.

The second order dilaton equation of motion determines the two allowed values of the

index νΦ,

ν♯Φ =
(d+ 1)

2
±
√

(d+ 1)2

4
+ L2

♯ V̈♯ . (2.3.39)

Here, we see two perturbations, one relevant and one irrelevant. This simple equation

(2.3.39) is the familiar one from AdS, with V̈♯ playing the role of m2, as we would expect

by consistency.
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We must inspect the form of our theory function V (φ) to check that it gives rise to

real νΦ: we certainly do not want oscillatory solutions indicating a (linearized) instability.

We require the term under the square bracket to be non-negative,

(d+ 1)2

4
+ L2

♯ V̈♯ ≥ 0 . (2.3.40)

Let us check what kind of theory parameters can support real dilaton perturbations. We

assume for simplicity that V (φ) and f(φ) are monotonic; if not, the story becomes more

involved. Because we work within a purely radial ansatz and assume monotonicity of

V (φ), f(φ), we can find V̈ from our implicit expressions in Section 2.1,

V̈ =

(
dφ

dr

)−3{
d2V

dr2
dφ

dr
− dV

dr

d2φ

dr2

}
. (2.3.41)

Previously, we found that our theory could only support HSV solutions for partic-

ular classes of functions f(φ), V (φ) whose coefficients are specified by six constants

{D1, . . . , D6}. This eventuates because from the structure of the effective action: there

cannot be derivatives of theory functions higher than second order, so to specify f0, ḟ0, f̈0,

V0, V̇0, V̈0 we will need exactly six variables. Let us collect the relevant facts here about

the {Di} that follow from the NEC, causality, and physical deff . The even numbered

constants D2, D4, D6 are the only ones that depend on ηW , and they all depend on it

linearly. By virtue of the NEC, D3, D4, D5, D6 are all positive. Also, in the physical

ranges of z and θ, D1 is positive. The most interesting constant is D2. It can be positive,

negative, or zero, and its behaviour depends strongly on whether or not d = 2 or d > 2.

For d = 2, D2 = 0 if z = 4 for any θ. For d > 2, D2 = 0 if θ = −d(dz − z − 2d)/(d− θ)

so for positive θ (the physical range) we need z < 2d/(d − 1). With all that noted, we

now have all the ingredients necessary to rule out tachyons.

Examining L2
♯ V̈♯ in the asymptotic region, we can notice something immediately. It is

some constants of order one multiplied by one factor of ηW/L
2
♯ , a parameter which must

be small. Therefore, in our regime of theory parameters, the Φ perturbation is not in

danger of becoming tachyonic because ηW/L
2
♯ is tiny. We must also inspect all positive
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powers of r in L2
♯ V̈♯ in the AdSD regime, to ensure that their coefficient(s) go to zero in

the UV region. Having a finite L2
♯ V̈♯ requires

D2 = 0 . (2.3.42)

This requires either

d = 2 : z = 4 , any θ ∈ [0, d) , (2.3.43)

or

d > 2 : z <
2d

d− 1
for θ =

d(2d+ z − dz)

d− 2
> 0 . (2.3.44)

This provides serious restrictions on the solution parameters in the physically interesting

range. Thirdly, inspecting the constant term in L2
♯ V̈♯, which is now the dominant term at

r → ∞, we find that its coefficient is −(β− 1)2[D1D4+8D2D3], which is proportional to

ηW (and terms of order one) and can be positive, negative, or zero depending on solution

parameters. In one special case, d = 2, this coefficient also turns out to be zero when

z = 4, making νΦ extremely simple.

Let us now outline the numerical shooting problem. The shooting method is a numer-

ical technique used to solve boundary value problems. The idea is to treat the boundary

value problem like an initial value problem; starting at one boundary and ”shooting”

to the other boundary using an initial value solver until the boundary condition at the

other end hits the correct value. In the present case, with the equations of motion being

fourth order in B, second order in A,Φ, and first order in E, we would need to specify

a set of nine items {E, φ, φ′, A,A′, B,B′, B′′, B′′′} to solve an initial value problem. For

our perturbation problem, we know the initial conditions for the perturbations (they are

all zero), but not their derivatives, leaving five to shoot on numerically. Now, notice that

the sum of the tt (2.3.30) and xx (2.3.32) linearized gravity field equations produces an

expression for [(ρ4B′′′′) − 2(d − 2)(ρ3B′′′)] in terms of B′′ and B′ only – all the terms

involving A′′, A′, A cancel out (and there were no B terms to begin with). Substituting

this back into the tt gravity equation (2.3.30) reduces the order of the linearized differ-
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ential equation from four to two. Looking back to the ρρ linearized constraint equation

(2.3.31), we can see that it is first order in A and B, which fits perfectly. The full non-

linear equations are still fourth order, but the dimensionality of the shooting problem is

reduced by two: we need to shoot on only three derivatives A′, B′,Φ′, just like in Einstein

gravity. Note that this simplification will not persist for AdS2 × R
d; it is specific to the

properties of AdSD. Finally, to recognize the HSV metric while shooting, we would plot

the logs of the metric coefficients and pick off z, θ.

2.3.2 IR crossover

This time the perturbed metric that is appropriate to AdS2 × R
d is

ds2AdS2×Rd
=

{
L♭
ρ

+ L♭A(ρ)

}2 [
−dt2 + dρ2 + {ρ+B(ρ)}2

(
dx2 + dy2

)]
. (2.3.45)

Similarly to the AdSD case, we expand the curvature squared equations of motion at

linear order in perturbations {A(ρ), B(ρ),Φ(ρ), E(ρ)}. Note that these functions are not

the same as for AdSD and the linearized perturbation equations will obviously differ. We

obtain for the tt equation

0 = +
4(d− 1)

(d+ 1)

ηW
L2
♭

{
(ρ4B′′′′) + (ρ3B′′′)

}
+

[
d− 4d(d− 1)

(d+ 1)

ηW
L2
♭

] {
(ρ2B′′)− (ρB′)

}

+

[
d− 3d(d− 1)(d− 2)

d(d+ 1)

ηW
L2
♭

] {
(ρ4A′′) + 3(ρ3A′)

}

+

[
1− 4(d− 1)

(d+ 1)

ηW
L2
♭

]
{dB + (d+ 2)A}+ f♭L

d−2
♭

[
1− 4(d− 1)

(d+ 1)

ηW
L2
♭

]
E+

3

4
V̇♭Φ

(2.3.46)

where

E(ρ) ≡ Q♭

L4
♭

E(ρ) . (2.3.47)

Apart from dimensional analysis, all this simple redefinition does is to measure E(ρ)

perturbations in units of Q♭. This is a valid operation for this case of AdS2 × R
d, but



Chapter 2. HSV in EMD gravity with R2 corrections 133

would clearly make no sense in AdSD where Q♯ = 0. For the ρρ gravity equation we get

0 = −4(d− 1)

(d+ 1)

ηW
L2
♭

(ρ3B′′′)− 8(d− 2)(d− 1)

(d+ 1)

ηW
L2
♭

(ρ2B′′)

+

[
−d+ 4d(d− 1)

(d+ 1)

ηW
L2
♭

]
{(ρB′)− B}+

[
−d+ 4(d− 1)(d− 2)

(d+ 1)

ηW
L2
♭

]
(ρ3A′)

+

[
−(d− 2) +

4(d− 1)(d− 6)

(d+ 1)

ηW
L2
♭

]
(ρ2A) + f♭L

d−2
♭

[
1− 4(d− 1)

(d+ 1)

ηW
L2
♭

]
E+

3

4
V̇♭Φ

(2.3.48)

and for the xx equation (identical to the other xi xi equations) we get

0 = −4(d− 1)

d(d+ 1)

ηW
L2
♭

(ρ4B′′′′) +

[
(d− 1) +

8(d− 1)2

d(d+ 1)

ηW
L2
♭

] {
(ρ2B′′)− 2(ρB′)

}

+

[
d+

4(d− 1)(d− 2)

d(d+ 1)

ηW
L2
♭

] {
(ρ4A′′) + 2(ρ2A′)

}
+

[
2(d− 1) +

16(d− 1)2

d(d+ 1)

ηW
L2
♭

]
B

+

[
−4 +

16(d− 1)

(d+ 1)

ηW
L2
♭

]
(ρ2A) + f♭L

d−2
♭

[
−1 +

4(d− 1)

(d+ 1)

ηW
L2
♭

]
E+

1

4
V̇♭Φ (2.3.49)

The dilaton equation is again second order,

(ρ2Φ′′)−
{
(L2

♭ V̈♭) +
2f̈♭
f♭

[
1− 4(d− 1)

(d+ 1)

ηW
L2
♭

]}
Φ +

2

ρ2
(Ld♭ V̇♭)f♭E = 0 , (2.3.50)

and the electric perturbation equation is

(
1− 4ηW

3L2
♭

)
f♭

[
−1

2
E
′ +

1

ρ
E

]
− 1

4
(L2

♭ V̇♭)
[
ρ2Φ′ − 2ρΦ

]
= 0 . (2.3.51)

In similar spirit to the case of AdSD in the previous subsection, the form of the

perturbation equations about AdS2 × R
d permits power law solutions of the form

Φ = Φ̆ρνΦ , A = ĂρνA , B = B̆ρνB , E = ĔρνE , (2.3.52)

where {Ă, B̆, Φ̆, Ĕ} are simple constants, as long as the metric indices νA, νB are tied to

the dilaton index νΦ and the electric index νE by

νA = νB − 2 , (2.3.53)

νΦ = νB − 1 , (2.3.54)

νE = νB + 1 . (2.3.55)
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For the νΦ index, we find

ν♭Φ =
1

2
±
√

1

4
+ (L2

♭ V̈♭)− 2
f̈♭
f♭

(
1− 4ηW

3L2
♭

)
− 2(L2

♭ V̇♭)
E♭

Φ♭

. (2.3.56)

Note that ν♭Φ depends on three theory function derivatives: (L2
♭ V̈♭), (f̈♭/f♭), and (L2

♭ V̇♭),

as well as one solution parameter E♭/Φ♭ (via the equation of motion) and theWeyl squared

correction parameter ηW . In the previous subsection we already found the condition

involving L2
♯ V̈♯ required to keep Φ non-tachyonic in AdSD. We now examine the two new

pieces in order to see if our theory functions and theory parameters can support dilaton

perturbations about AdS2 × R
d with real values of νΦ. Note that such subtleties did

not arise in the magnetic Lifshitz crossovers obtained in [304] in a context without Weyl

squared corrections to the gravity sector.

We need to know the sign and magnitude of −2f̈♭/f♭. Calculating it from the implicit

form for f(φ) from Section (2.1) and going into the AdS2 ×R
d region, we find a number

of order one regardless of β or α,

− 2
f̈♭
f♭

∣∣∣∣∣
AdS2×Rd

= − 4

D3

< 0 . (2.3.57)

Insisting that this term does not overwhelm the 1/4 under the square root gives a con-

dition on solution parameters,

d2(z − 1) + (16− d)θ > 16d . (2.3.58)

This condition is compatible with the conditions we found on the existence of UV

crossovers to AdSD: If d = 2, we found that we needed z = 4 for an AdSD crossover, in

the IR case, then we need θ > 20/14. For d > 2, we find a range of z > 1 which falls

within that required for the existence of UV AdSD crossovers.

The last terms under the square root in (2.3.56) is more opaque and interesting

because it can compete against the other two terms. We would like to ensure that (L2
♭ V̇♭)

has a consistent sign for all φ i.e. for all r. This is important because if (L2
♭ V̇♭) could be
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zero at some r (equivalently, at some φ), then the E♭/Φ♭ term could drive the νΦ imaginary

during the crossover evolution, which would not be physical. Calculating L2
♭ V̇♭, we find

− 2(L2
♭ V̇♭) = +

2
√
2√
D3

(β − 1)D1 > 0 , (2.3.59)

because β > 1 in the physical range of parameters. This holds for all parameters, so it is

true as a theory function statement.

Einstein-Weyl gravity can also possess ghost-like excitations. It was shown in [313]

that ghost-like excitations about an AdS4 background can be removed provided that

ηW < 0. Looking back at section 2.2.2, we see that ηW < 0 can support a range of

physically acceptable z and θ for d ≥ 2.

Our analytical results pinpoint the constraints on the theory functions and the solu-

tion parameters z and θ in D = d + 2 dimensions necessary to find crossover solutions

with an asymptotic AdSD at the boundary, an intermediate HSV region and an AdS2×R
d

in the interior. It is our hope that these results will be useful for pointing out interest-

ing parameter ranges for which to construct such solutions numerically; we leave this to

future work.

So far, we have only explored curvature squared corrections of Weyl type, with dilaton-

dependent theory function coefficients. It would be interesting to know if it is possible

to find crossovers with dilaton-dependent theory function coefficients for Gauss-Bonnet

and R2 terms as well, although we have not investigated this.

2.4 Summary of findings and outlook

In this chapter, we find hyperscaling violating (HSV) solutions to an Einstein-Maxwell-

dilaton model with curvature squared corrections (with constant coefficients) and f(φ)

gauge coupling with dilaton potential V (φ). We make a simple isotropic, static, spher-

ically symmetric ansatz for the HSV metric, and solve the equations for HSV solution

parameters z, θ depending on theory parameters d, {ηi}. From a bottom-up perspective,
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insisting on having HSV solutions in this curvature squared model puts conditions on

the functions V (φ), f(φ).

Generally, the expression for φ is a competition between a[n asymptotically] logarith-

mic piece arccsch(a r2θ/(d−θ)) and a power law piece,
√
1 + a2 r2θ/(d−θ), where a is linear

in {ηi} and depends on d, z, θ. From this, we can see immediately that turning off the

{ηi} removes the power law piece and leaves only the log, making V (φ) ∼ −e−bφ, where

b = b(z, θ, d), which is the behaviour previously found with Einstein gravity [212]. With

the curvature squared terms turned on, obviously the character of the equations of motion

changes, and this alters the dependence on φ of the dilaton potential V (φ), in such a way

that we do not recover simple exponentials asymptotically far out: V (φ) ∼ −c1φ4− c2φ2,

where ci = ci(d, z, θ, {ηi}). This is a nuance of order of limits. Interestingly, deep in the

interior it reduces to a sum of exponentials: V (φ) ∼ −e−2cφ− e−4cφ, where c = c(z, θ, d).

Now let us comment on the gauge coupling function f(φ). In the limit that {ηi} → 0,

f(φ) ∼ e−f1φ, where f1 = f1(z, θ, d). Far out in the geometry, f(φ) ∼ φ−f2 , where

f2 = f2(θ, d), while deep in the interior f(φ) ∼ ∞, which forces F 2 to zero there.

In section 3 we shift gears to constraining allowed ranges of parameters for HSV

solutions by using the null energy condition. The NEC restricts polynomial combinations

of solution parameters z, θ (or equivalently α, β) and theory parameters {ηi}. These

constraints look opaque at first, so we investigate them graphically in stages of complexity.

We first visualize the HSV NEC constraints for single η first, then pairs of ηi, then all

three at once.

Weyl: For d = 1 the C2 term does not contribute and the NEC reduces to that of

Einstein gravity, as studied in e.g. [14]. For d = 2, for ηW > 0, we find 1 ≤ z < 4, while

for ηW < 0 z > 4 . (Recall that we do not consider z < 1 for causality reasons.) At

z = 4, ηW is unconstrained: the Weyl term simply does not contribute to the equations

of motion. For d > 2, qualitatively similar behaviour ensues: the range of z is now

θ-dependent. When ηW is positive, we find small z, θ. For negative ηW we find z > 4;
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which θ are admissible depends on d.

Gauss-Bonnet: For d = 1 and d = 2, the ηGB terms vanish from the equations of

motion, as expected because the bulk Gauss-Bonnet action is identically zero for d = 1

(D = 3) and topological for d = 2 (D = 4). For d > 2, for ηGB < 0, the NEC restrictions

are the same as for Einstein gravity, whereas for ηGB > 0, only z = 1, θ = 0 is admissible

(plain AdS).

R2 gravity: For ηR > 0, only z = 1, θ = 0 is admissible. For ηR < 0, we find two

distinct cases. (a) For z > 4, any θ is admissible. (b) For z < 4, only some θ are allowed;

the curved constraint surface is quartic in θ and cubic in z. There are also two other

physical constraints illustrated in the plots: the requirements that (i) deff ≡ d − θ ≥ 0

and (ii) θ ≥ 0, which were motivated from the condensed matter side. They are visible

in the plots as planar edges to permissible parameter ranges.

R2 and Weyl: For R2 and Weyl, ranges of permissible z, θ arise for all four sign choices

of the ηW , ηR parameters. The behaviour changes radically at z = 4, for any d. (a) For

z = 4, we need ηR < 0. For d = 2 only, ηW is unconstrained. For d > 2, ηW can be

positive or negative depending on ηR. (For d = 1, the Weyl tensor vanishes so there is no

ηW .) (b) For z > 4, ηR must still be negative; ηW can be positive or negative depending

on ηR. (c) For z < 4, ηR can be positive or negative and ηW can be positive or negative,

depending on θ. Positive values of ηR only occur for ηW positive. Also, to have θ take

every value between 0 and d requires ηW > 0, whereas for cases (a) and (b) θ can take

any value within its physical range.

R2 and Gauss-Bonnet: In this case, by having ηR turned on, we can now access

values of ηGB that were previously off limits. The behaviour of the plots again changes

qualitatively at z = 4 for any d ≥ 3. (The cases d = 1, 2 are not discussed as the

Gauss-Bonnet term vanishes, reducing the pair of parameters to a single one covered

previously.) (a) For z < 4, both positive and negative ηR and ηGB are allowed up to a

maximum value of θ less than d. (b) For z ≥ 4, only ηGB < 0 is allowed and ηR sits
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within a restricted range that goes from just above zero to the negative region.

Gauss-Bonnet and Weyl: For d = 1, 2 the Gauss-Bonnet term vanishes and we reduce

back to the Weyl-only case. We therefore take d ≥ 3. The behaviour in this case depends

on z. (a) z < 4: All positive values of ηW are allowed; not all negative values are allowed,

the boundary of the range depending on θ. ηGB can be positive or negative depending

on θ (as well as d, z, of course). (b) z > 4: Both ηW and ηGB can be positive or negative,

with the permissible ranges depending on each other and on θ (as well as d, z, of course).

R2, Gauss-Bonnet, and Weyl: Having all three curvature squared theory parameters

turned on is obviously the most complex case. Consider the full NEC conditions (2.2.20)

and (2.2.21) on the constants D4 and D6. First, we can examine the terms proportional

to ηGB. These vanish identically in d = 1, 2. Since these terms have factors identical

to the factors in the Einstein-only NEC, this implies that when there is only ηGB it has

to be negative; however, when they are turned on, we can access previously prohibited

values of ηGB. Second, consider the terms in ηR. The D6 coefficient vanishes when z = 4

in d = 2, and can also vanish in d > 2 but with z now depending on θ in the physical

range. Then the plots would just transition back to the two-parameter case studied in

Section 2.2.6. (See above for summary.) The cleanest transition is seen in d = 2 but it is

similar in higher d. The D4 coefficient, on the other hand, cannot vanish in the physical

range of parameters. Finally, consider the terms in ηW . The D4 coefficient vanishes when

z = 4 in d = 2; for the same values, D6 is positive, implying that ηW < 0. For other

z, d, the constraints on ηW are less severe: ηW can take on positive or negative values

depending on θ, z, d.

Generally, we see ‘features’ in the plots of Section 2.2 when particular terms in the

curvature squared NEC constraints vanish or change sign. This is most notable when the

ηR term is turned on, as its change in behaviour is the cleanest. In all the subsections

except 2.2.1, we found that z = 4 was a special value dividing different types of be-

haviours. The overall message is that physically acceptable HSV solutions are supported
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for a range of {ηi} parameters, depending on d and solution parameters z, θ.

In section 2.3 we study the question of crossover solutions between AdSD near the

boundary, HSV in the intermediate region, and AdS2×R
d in the deep interior. The idea

is that the AdSD completion provides a resolution of the large-r curvature singularity of

the HSV space, while the AdS2 × R
d completion provides a resolution to its tidal force

singularity at small r. The Weyl corrected Einstein-Maxwell-dilaton theory does support

both AdSD and AdS2×R
d solutions. By linearizing the equations of motion about those

backgrounds, we see that perturbations taking us from either background to HSV require

conditions on z, θ, d. For AdSD the condition is

d = 2 : z = 4 , any θ ∈ [0, d) , (2.4.1)

or

d > 2 : z <
2d

d− 1
for θ =

d(2d+ z − dz)

d− 2
> 0 . (2.4.2)

For AdS2 × R
d, we find an additional conditions on z, θ,

d2(z − 1) + (16− d)θ > 16d (2.4.3)

It is possible to satisfy both conditions for a range of physically sensible z, θ of order one.

A natural question to ask would be how to generalize our results to other systems with

hyperscaling violation. We focused here on the electric ansatz; it would be interesting

to know what might change with using instead a magnetic or (in d = 2) even a dyonic

ansatz. Another interesting direction would be to consider models with more complicated

ansatze, such as those with Bianchi type symmetries in the boundary directions as in

[249]. It is also important to work out how such bottom-up constructions might mesh

with supergravity/string embedding, as in e.g. [314].

Entanglement entropy SEE is interesting because it provides a non-local probe in

general AdS/CFT contexts which is different in character fromWilson loops. Calculating

SEE from field theory is notoriously difficult, but when the gravity dual is described by
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Einstein gravity with matter it can be calculated holographically via the Ryu-Takayanagi

(RT) formula [22]. The RT formula calculates the area of the minimal surface which

extends into the bulk and is homologous to the entangling region on the boundary. For

HSV solutions in Einstein gravity, SEE displays logarithmic violations of the area law,

as expected for condensed matter systems with Fermi surfaces [14].

For general {ηGB, ηW , ηR} curvature squared corrections, the formula for the entangle-

ment entropy is not yet known (see [91], [92], [93] and [94] for recent progress along these

lines), except for the sub-case where only ηGB is turned on. In [90], a generalization of the

Ryu-Takayanagi formula to Lovelock gravity was proposed. The entanglement entropy

for our HSV solutions with ηGB turned on can in principle be computed from the SEE

formula in [90]. In d = 2, relevant for condensed matter, because the the ηGB term is

topological, it does not contribute in the equations of motion, so it should yield the same

result as for Einstein gravity. It would be interesting to do the explicit (hard) computa-

tion using [90] of the entanglement entropy in this case to check explicitly. Physically,

the important question to resolve is whether or not there are log violations in SEE for

HSV solutions in gravity theories with curvature squared corrections. Recently, partial

progress towards answering this question was provided in [315]. Evidence is found for a

new divergent term, on top of the usual logarithmic term from Einstein gravity, for R2,

Gauss-Bonnet and RµνR
µν curvature squared corrections. The proposals for the gravity

functionals whose extremization give the extremal surfaces needed to compute the entan-

glement entropy in these theories are used. Actually computing the minimal surfaces is

difficult, so a near boundary analysis is performed in order to extract the new divergent

terms in all cases. The analysis is only reliable when the curvature square corrections

die off near the boundary, which occurs for θ < 0. The extension to the case θ > 0 is

discussed, but results are incomplete.



Chapter 3

Perturbatively charged holographic

disorder

This chapter studies a model of perturbative holographic disorder. The results presented

here were first reported in [285], written in collaboration with Amanda W. Peet.

The AdS/CFT correspondence has proven to be a remarkably powerful tool for prob-

ing the detailed structure of strongly coupled quantum field theories. Its broad list of

successes includes applications to modelling the quark-gluon plasma, condensed matter

phenomena such as superconductivity, and even fluid dynamics. Comprehensive reviews

of these subjects include, [101], [137] and [127], respectively.

An underlying theme to this progress is the reduction of symmetry in holographic

models. Systems which possess too many symmetries display behaviours that are not

desirable in condensed matter models, a prime example being the infinite DC conductivity

dual to the Reissner-Nordström-AdS (RN − AdS) geometry. This is not a surprising

feature. The underlying RN − AdS geometry possesses translational invariance along

the boundary directions. This means that the charge carriers in the dual theory have

no means by which to dissipate momentum, resulting in an infinite DC conductivity.

Realistic condensed matter systems do not display this behaviour, so if a holographic

141
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model is going to be useful for studying these kinds of problems, we need a way to break

translational invariance.

Several avenues of investigation have been carried out, including explicit holographic

lattices: [251], [252], [162], [254], [255], [256], [258], [259], Q-lattices: [291], [292], [293]

and breaking diffeomorphism invariance: [286], [287], [316], [317], [318], [288], [289], [290].

Other examples of holographic symmetry breaking include the breaking of rotational

symmetry [245], [249], [246], [248], [247], relativistic symmetry [163], [167], [164] and

hyperscaling violation [165], [166], [14], [212]. Our focus will be on disorder. Within the

context of bottom-up modelling, we will report here on a perturbative construction of

holographic disorder. That is, we will seek a particular spacetime solution that is sourced

by a disordered, randomly fluctuating field in the dual theory and use it to study the

dual DC conductivity.

Disorder is a common feature in real world condensed matter systems, but it is difficult

to model using traditional field theory approaches: little is known at strong coupling.

This is especially true in the context of localization. It is well known that in a non-

interacting system, the addition of disorder can completely suppress conductivity [266];

for a comprehensive review, see [267]. Turning on interactions complicates the situation

and many-body localization may occur [319]; a review may be found in [268]. Exper-

imental studies of many-body localization are also in their infancy. Since holography

is a strong-weak equivalence, it provides a potential way forward for studying disorder.

Understanding what the gravity dual tells us about localization might even provide a def-

inition of many body localization. Exactly what this would look like in a gravitational

theory and how the bulk fields would behave is an open and interesting question.

Several approaches to disorder within holography have been proposed and were dis-

cussed in section 1.5.8. Early studies were presented in [269], [270] and [273]. The replica

trick for disordered CFTs was extended to holography in [271] and later in [272].

To fully see the effect of quenched random disorder, [274] proposed that disorder



Chapter 3. Perturbatively charged holographic disorder 143

should be modelled by applying random boundary conditions to a bulk field and allowing

the field to backreact on the geometry. The source of the disorder is characterized by a

distribution over random functions and the system is assumed to be self-averaging. In

this construction, the entire distribution runs with the energy scale. To this end, [274]

and later [275], worked to construct a holographic functional renormalization scheme so

that disorder averaged thermodynamic quantities could be computed.

In [276], a particular background which is already deformed away from AdS, but

still satisfies the null energy condition, is considered. By studying the level statistics

associated with a probe scalar field, a transition is observed between an initial distribution

and a Poisson distribution as the amount of disorder is increased in the system. This is

analogous to what happens in a disorder driven metal-insulator transition.

More recently, [277] applied a spectral approach to modelling disorder in a holographic

superconductor. The basic idea is similar to [274] where the disorder is sourced by a

random space-dependent chemical potential by setting the boundary condition on a bulk

U(1) gauge field. In this proposal, the chemical potential takes the form (1.5.25), which

is repeated here for convenience,

µ(x) = µ0 + V

k∗∑

k=k0

√
Sk cos(kx+ δk) . (3.0.1)

Recall that Sk is a function of the momenta k which controls the correlation function for

µ(x); different choices of Sk lead to a different values of the disorder distribution average.

V is a parameter which sets the strength of the disorder. k0 and k∗ define an IR and UV

length scale cutoff for the disorder, respectively. δk is a random phase for each value of

k. A spectral representation like this is known to simulate a stochastic process when k∗

is large [278].

The dirty chemical potential (3.0.1) is incorporated into an Einstein-Maxwell model.

The Maxwell equations are solved numerically in a fixed AdS-Schwarzschild background

with an electric ansatz for the gauge field. The boundary condition is set so that At
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approaches (3.0.1) near the boundary. Evidence is found for an enhancement of the

critical temperature of the superconductor for increasing disorder strength. Evidence

that localization occurs in this model was found numerically in [279]. This model has also

been extended to holographic p-wave superconductors in [280] where the same behaviour

of the critical temperature with disorder strength was observed.

There is a resemblance between this spectral approach to disorder and the construc-

tion of a holographic ionic lattice in [162] and [320] where the lattice is set up by a

periodic boundary chemical potential. The difference is that for a holographic lattice,

there is only a single periodic source of a fixed wavelength. In the spectral approach

to disorder, there is a sum over periodic sources of arbitrary wavelength, so the effect

of disorder may resonate more strongly throughout the entire bulk geometry, having

non-trivial effects deep in the interior.

Recently, [281] applied a spectral approach to modelling disorder sourced by a scalar

field in 2 + 1 bulk dimensions. The initial clean geometry in this case is AdS3 and the

scalar field is allowed to backreact on the geometry in the spirit of [274]. By treating

the disorder strength as a perturbative handle, a second order analytic solution for the

backreacted geometry is obtained. It is observed that the disorder averaged geometry, in

the deep interior, takes the form of a Lifshitz metric with a dynamical critical exponent

z set by the disorder strength. Strong disorder is approached numerically and these

solutions also display Lifshitz behaviour. This analysis is extended to finite temperature

geometries in [282] where it is found that the interior Lifshitz scaling persists. A similar

implementation of scalar disorder was used in [283] and [284] to study the conductivity

of holographic strange metals with weak quenched disorder.

In [258], it was shown that a wide variety of inhomogeneous IR geometries arise as

solutions to Einstein-Maxwell theory with a single periodic source at the boundary. These

observations suggest that studying disordered boundary potentials in Einstein-Maxwell

theory at both zero and finite net charge density may lead to novel gravitational solutions
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and insight into disordered condensed matter systems.

Our goal here is to study charged disorder with backreaction. As we will see, the gen-

eral problem for a system with baseline charge density is very complicated. Accordingly,

we study the story perturbatively. We build in the disorder the same way as [277], [280],

with a randomly varying boundary chemical potential, and we also include backreaction.

In the bulk, this corresponds to having a fluctuating gauge field and letting it backreact

on the initially clean AdS geometry. We then solve the Einstein equations perturbatively

in the strength of the disorder and construct an analytic, asymptotically AdS, solution.

Similar to the case of scalar disorder studied in [281], the disorder averaged geometry

contains unphysical secular terms (terms which grow without bound) which diverge in

the deep interior. We explain how these divergences may be tamed and ultimately find

a well behaved averaged geometry.

Our primary interest is in investigating the transport properties dual to the disordered

geometry. Adapting a technique first developed in [292], we directly calculate the disorder

averaged DC conductivity. We find a correction to the conductivity dual to pure AdS

starting at second order in the disorder strength which scales inversely with the smallest

wavenumber k0 in the disordered chemical potential. We will also discuss extensions to

systems with finite charge density.

Holographic momentum dissipation and disorder has also been approached within the

context of massive gravity. See [294], [295], [296], [297], [298], [299], and [300]. While

this approach will not be our primary focus here, it will nevertheless be interesting to

understand how results within massive gravity mesh with explicit implementations of

holographic disorder.

This chapter is organized as follows. In section 3.1 we construct a bottom-up, dis-

ordered, holographic spacetime analytically. Using the strength of the disorder as a

perturbative handle, we solve the bulk equations of motion up to second order. Using a

Gaussian distribution for the disorder source, we explicitly evaluate the disorder average
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of the backreacted solution. In section 3.2, we implement a resummation procedure for

removing spurious secular terms which develop in the disorder averaged geometry as a

result of our perturbative expansion. With the regulated solution in hand, we study the

resultant DC conductivity in section 3.3. Section 3.4 points out some features of incorpo-

rating disorder in a geometry with an initial charge density. We point out how techniques

used to study transport properties of holographic lattices may be used to access the DC

conductivity in the finite charge case. Finally, in section 3.5 we summarize our findings

and comment on possible directions for future work.

3.1 Perturbatively charged disorder

We are interested in studying the effect of a disordered holographic lattice, with the

ultimate goal of understanding transport properties like conductivity in the dual model.

To this end, we start with a gauge field in the D = d + 1 dimensional bulk and then

introduce a random perturbation around the initially clean baseline solution. The model

is then Einstein-Maxwell gravity

S =
1

16πGN

∫
dd+1x

√−g
(
R +

d(d− 1)

L2
− 1

4
F 2

)
. (3.1.1)

Note that since we want an asymptotically AdS solution, we have set the cosmological

constant to Λ = −d(d− 1)/2L2, where L is the AdS radius. The equations of motion we

need to solve are then the Einstein and Maxwell equations. In what follows, it will be

convenient to work with the traced Einstein equations. That is we need to solve

Rµν +
d

L2
gµν =

1

2

(
F σ
µFνσ −

1

2(d− 1)
gµνF

2

)
, (3.1.2)

∇µF
µν = 0 . (3.1.3)

We consider a system where the initial charge density is zero. In this case, the baseline

solution is just AdSd+1 with At = 0. That is, the initially clean (no disorder) background
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is

ds2 =
L2

r2
(
−dt2 + dr2 + dx2i

)
, (3.1.4)

where the boundary is at r = 0 in these coordinates. To introduce disorder, we will

perturb about this background by turning on the gauge field. To get a tractable system,

we will introduce disorder along only one of the boundary direction x. According to the

holographic dictionary, near the boundary, the time component of the gauge field behaves

like

At(x, r) = µ(x) + ρ(x)rd−2 + · · · , (3.1.5)

where µ(x) is the chemical potential and ρ(x) is related to the charge density of the dual

theory. We source the disorder by taking the chemical potential to be a sum of periodic

functions with random phases using a spectral representation

µ(x) = V

N−1∑

n=1

An cos(knx+ θn) . (3.1.6)

Here, V is a constant which controls the strength of the disorder which we will use as a

perturbative handle. Similar profiles for the gauge field have been studied in the context

of disordered holographic superconductors in [277], [279], [280]. A spectral representation

for scalar disorder was used in [281]. The wavenumbers kn = n∆k are evenly spaced with

∆k = k0/N . 1/k0 is thought of as a short distance cutoff for the disorder and is held

fixed so that in the limit that N → ∞, ∆k → 0. The θn are random angles that are

assumed to be uniformly distributed in [0, 2π]. The amplitudes are

An = 2
√
S(kn)∆k , (3.1.7)

where S(kn) controls the correlation functions. Since the θn are uniformly distributed,

averaging over them (the disorder average) is done simply by taking

〈f〉D = lim
N→+∞

∫ N−1∏

i=1

dθi
2π
f . (3.1.8)
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If the function S(kn) is taken to be 1, this leads to µ(x) describing Gaussian noise. In

other words, by explicit calculation, we have that

〈µ(x)〉D = 0 , 〈µ(x1)µ(x2)〉D = V
2
δ(x1 − x2) . (3.1.9)

The gauge field At sources the disorder in the system, which means that it contributes

at order V . This in turn implies that the right hand side of the traced Einstein equa-

tions (3.1.2) start contributing at second order in the disorder strength. Only Maxwell’s

equations receive any corrections at first order in the disorder strength, so we can solve

for At in the clean AdS background. The solution which obeys the boundary condition

(3.1.6) at r = 0 is

At(r, x) = V
N−1∑

n=1

Ank
(d−2)/2
n

2(d−4)/2Γ(d−2
2
)
r(d−2)/2K(d−2)/2(knr) cos(knx+ θn) , (3.1.10)

where K(d−2)/2(knr) is the modified Bessel function of the second kind. Since At is now

a function of x, the Maxwell equation involves both Frt and Fxt. Notice, by turning on

disorder, we went from a solution that had zero charge density to one that has a finite

charge density. We can compute this in the dual theory: it is 〈J t〉, i.e. the expectation

value of the current density. The result is

〈J t〉 = −(d− 2)V Ld−3

8πGN

N−1∑

n=1

Ank
d−2
n

2d−1

Γ((2− d)/2)

Γ((d− 2)/2)
cos(knx+ θn) . (3.1.11)

Note, this formula is valid when (2 − d)/2 is not a negative integer (which will be the

case in what follows). Now, we can plug the solution for At back into the traced Einstein

equations and work out the metric corrections at second order in V . This is generally

difficult to do in arbitrary dimensions. We will focus on the case with D = 4, in this

way the dual to the initially clean geometry is a 2 + 1 dimensional CFT. We need an

ansatz for the backreacted metric. Since we are adding a perturbation in the x direction

only, the metric coefficients could generally depend on both the radial direction r and

the boundary direction x. Furthermore, we insist that the geometry is asymptotically
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AdS and we will work within Fefferman-Graham gauge [321]. At the end of the day, this

means that the general form of the backreacted metric is

ds2 =
L2

r2
(
−α(x, r)dt2 + dr2 + η(x, r)dx2 + δ(x, r)dy2

)
, (3.1.12)

where the functions α(x, r), η(x, r) and δ(x, r) need to be solved for. We solve for them

in a perturbative expansion

α(x, r) = 1 + V
2
α2(x, r) + · · ·

η(x, r) = 1 + V
2
η2(x, r) + · · ·

δ(x, r) = 1 + V
2
δ2(x, r) + · · · ,

so to second order we solve for α2(x, r), η2(x, r) and δ2(x, r). The traced Einstein equa-

tions (3.1.2) expanded to second order give the following set of equations for the metric

coefficient:

− 2r∂rδ2 + 2r2∂2xα2 − 2r∂rη2 + 2r2∂2rα2 − 6r∂rα2 =
r4

L2

[
(∂rH)2 + (∂xH)2

]
, (3.1.13)

− 2r2∂2r δ2 + 2r∂rη2 + 2r∂rα2 − 2r2∂2rα2 − 2r2∂2rη2 + 2r∂rδ2 = − r4

L2

[
(∂rH)2 − (∂xH)2

]
,

(3.1.14)

∂r∂x(α2 + δ2) =
r2

L2
(∂rH)(∂xH) , (3.1.15)

6r∂2η2+2r∂rα2+2r∂rδ2−2r2∂2xα2−2r2∂2xδ2−2r2∂2rη2 =
r4

L2

[
(∂rH)2 − (∂xH)2

]
, (3.1.16)

2r∂rη2 + 2r∂rα2 + 6r∂rδ2 − 2r2∂2r δ2 − 2r2∂2xδ2 =
r4

L2

[
(∂rH)2 + (∂xH)2

]
, (3.1.17)

where H = H(x, r) such that At = V H(x, r) is the solution to the Maxwell equations at

first order (3.1.10).
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3.1.1 Second order solution

By using combinations of equations (3.1.13)-(3.1.17), we can solve for α2(x, r), η2(x, r)

and δ2(x, r). The solutions are:

α2(x, r) =
1

2
H1(x) +

1

2
c1 +

1

2
c2r

3 − 1

16L2

N−1∑

n=1

A2
n

k2n
+

1

32L2

N−1∑

n=1

A2
n

k2n
(2k2nr

2 + 2knr + 1)e−2knr

+
1

16L2

N−1∑

n=1

A2
n

k2n
(2k2nr

2 + 2knr + 1) exp(−2knr) cos
2(knx+ θn)

+
1

8L2

N−1∑

n=1

n−1∑

m=1

AnAm
knkm

[
1 + (kn + km)r + 2knkmr

2
]
e−(kn+km)r cos((kn − km)x+ θn − θm)

− 1

8L2

N−1∑

n=1

n−1∑

m=1

AnAm
knkm

[1 + (kn − km)r] e
−(kn−km)r cos((kn − km)x+ θn − θm)

+
1

2L2

N−1∑

n=1

n−1∑

m=1

AnAmknkm
(kn + km)4

[
(kn + km)

2r2 + 2(kn + km)r + 2
]
e−(kn+km)r

× cos((kn + km)x+ θn + θm) ,

δ2(x, r) =
1

2
H1(x) +

1

2
c1 +

1

2
c2r

3 +
1

16L2

N−1∑

n=1

A2
n

k2n
− 3

32L2

N−1∑

n=1

A2
n

k2n
(2k2nr

2 + 2knr + 1)e−2knr

+
1

16L2

N−1∑

n=1

A2
n

k2n
(2k2nr

2 + 2knr + 1) exp(−2knr) cos
2(knx+ θn)

− 1

8L2

N−1∑

n=1

n−1∑

m=1

AnAm
knkm

[
1 + (kn + km)r + 2knkmr

2
]
e−(kn+km)r cos((kn − km)x+ θn − θm)

+
1

8L2

N−1∑

n=1

n−1∑

m=1

AnAm
knkm

[1− (kn − km)r] e
−(kn−km)r cos((kn − km)x+ θn − θm)

+
1

2L2

N−1∑

n=1

n−1∑

m=1

AnAmknkm
(kn + km)4

[
(kn + km)

2r2 + 2(kn + km)r + 2
]
e−(kn+km)r

× cos((kn + km)x+ θn − θm)
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η2(x, r) =
1

4
r2∂2xH1(x)− c2r

3 +H3(x)−
1

32L2

N−1∑

n=1

A2
n

k2n
(2knr + 1) exp(−2knr)

+
1

16L2

N−1∑

n=1

A2
n

k2n
(2knr + 1) exp(−2knr) cos

2(knx+ θn)

+
1

L2

N−1∑

n=1

n−1∑

m=1

AnAmknkm
(kn + km)4

[(kn + km)r + 1] exp(−(kn + km)r) cos((kn + km)x+ θn + θm) ,

where c1 and c2 are constants and H1(x) and H3(x) are arbitrary functions of x. The

solution for the metric coefficient in the x direction, η2(x, r), is the simplest, as the

equations of motion (3.1.13)-(3.1.17) can be arranged to give a first order differential

equation for η2(x, r).

We want a solution that is asymptotically AdS as r → 0 and is regular in the interior.

The former condition is tantamount to insisting that α2(x, 0) = η2(x, 0) = δ2(x, 0) so that

the metric takes on the correct asymptotically AdS form in Fefferman-Graham gauge.

Imposing these conditions fixes c2 = 0 and H1(x) = const and H3(x) = const. The

solutions for α2(x, r), η2(x, r) and δ2(x, r) which are asymptotically AdS are regular in

the interior are:

α2(x, r) =
1

2
c− 1

16L2

N−1∑

n=1

A2
n

k2n
+

1

32L2

N−1∑

n=1

A2
n

k2n
(2k2nr

2 + 2knr + 1) exp(−2knr)

+
1

16L2

N−1∑

n=1

A2
n

k2n
(2k2nr

2 + 2knr + 1) exp(−2knr) cos
2(knx+ θn)

+
1

8L2

N−1∑

n=1

n−1∑

m=1

AnAm
knkm

[
1 + (kn + km)r + 2knkmr

2
]
e−(kn+km)r cos((kn − km)x+ θn − θm)

− 1

8L2

N−1∑

n=1

n−1∑

m=1

AnAm
knkm

[1 + (kn − km)r] e
−(kn−km)r cos((kn − km)x+ θn − θm)

+
1

2L2

N−1∑

n=1

n−1∑

m=1

AnAmknkm
(kn + km)4

[
(kn + km)

2r2 + 2(kn + km)r + 2
]
e−(kn+km)r

× cos((kn + km)x+ θn + θm) ,
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δ2(x, r) =
1

2
c+

1

16L2

N−1∑

n=1

A2
n

k2n
− 3

32L2

N−1∑

n=1

A2
n

k2n
(2k2nr

2 + 2knr + 1) exp(−2knr)

+
1

16L2

N−1∑

n=1

A2
n

k2n
(2k2nr

2 + 2knr + 1) exp(−2knr) cos
2(knx+ θn)

− 1

8L2

N−1∑

n=1

n−1∑

m=1

AnAm
knkm

[
1 + (kn + km)r + 2knkmr

2
]
e−(kn+km)r cos((kn − km)x+ θn − θm)

+
1

8L2

N−1∑

n=1

n−1∑

m=1

AnAm
knkm

[1− (kn − km)r] e
−(kn−km)r cos((kn − km)x+ θn − θm)

+
1

2L2

N−1∑

n=1

n−1∑

m=1

AnAmknkm
(kn + km)4

[
(kn + km)

2r2 + 2(kn + km)r + 2
]
e−(kn+km)r

× cos((kn + km)x+ θn − θm) ,

η2(x, r) = c− 1

32L2

N−1∑

n=1

A2
n

k2n
(2knr + 1) exp(−2knr)

+
1

16L2

N−1∑

n=1

A2
n

k2n
(2knr + 1) exp(−2knr) cos

2(knx+ θn)

+
1

L2

N−1∑

n=1

n−1∑

m=1

AnAmknkm
(kn + km)4

[(kn + km)r + 1] exp(−(kn + km)r) cos((kn + km)x+ θn + θm) ,

where c is a constant. The fact that an asymptotically AdS solution exists was to be

expected as in d+ 1 = 4 dimensions, the gauge field which encodes the disorder sources

a relevant operator in the dual theory. Geometrically, the gauge field falls off sufficiently

fast as r → 0 so that it does not disrupt the asymptotic form of the metric.

3.1.2 Disorder average

The solutions we have found for α2(x, r), η2(x, r) and δ2(x, r) simplify considerably under

disorder averaging. Using (3.1.8), we average over the random angles θn. The resulting
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sums may be expressed in terms of special functions

〈α2〉D = lim
N→+∞

{
1

2
c− 1

4k0L2

[
NH

(2)
(N−1) + 2k0r ln(1− exp(−2k0r/N)) (3.1.18)

+2k0r exp(−2k0r)Φ(exp(−2k0r/N), 1, N)−NLi2 [exp(−2k0r/N)]
]

+
2k20r

2

N

exp(−2k0r(N − 1)/N)− 1

exp(2k0r/N)− 1
+N exp(−2k0r)Φ(exp(−2k0r/N), 2, N)

}
,

〈δ2〉D = lim
N→+∞

{
1

2
c+

1

4k0L2
NH

(2)
(N−1) −

1

4k0L2

[
− 2k0r ln(1− exp(−2k0r/N))

(3.1.19)

−2k0r exp(−2k0r)Φ(exp(−2k0r/N), 1, N) +NLi2 [exp(−2k0r/N)]
]

−2k20r
2

N

exp(−2k0r(N − 1)/N)− 1

exp(2k0r/N)− 1
−N exp(−2k0r)Φ(exp(−2k0r/N), 2, N)

}
,

〈η2〉D = c (3.1.20)

where H
(2)
(N−1) =

N−1∑

n=1

1

n2
is the generalized harmonic number, Li2(z) =

∞∑

n=1

zn

n2
is the

polylogarithm of index 2 and Φ(z, a, b) =
∞∑

n=0

zn

(b+ n)a
is the Lerch Phi function. By

taking the large N limit, the above expressions are found to be finite and give

〈α2〉D =
1

2
c+

1

4k0L2
(1− k0r)−

1

4k0L2
(1− k0r) exp(−2k0r) , (3.1.21)

〈δ2〉D =
1

2
c− 1

4k0L2
(1− k0r) +

1

4k0L2
(1− k0r) exp(−2k0r) , (3.1.22)

〈η2〉D = c , (3.1.23)

The disorder averaged solutions 〈α2〉D and 〈δ2〉D are divergent in the interior of the

geometry as r → ∞. Since the gauge field which sources the disorder is a relevant

perturbation, this is not surprising. In order to have a finite solution in the interior, we

should resum the perturbative solution in the spirit of the Poincaré-Lindstedt method

for removing secular terms (terms that grow without bound) in perturbative solutions to

differential equations. This kind of situation was also encountered in the case of scalar

disorder studied in [281].
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3.2 Resummation of disordered solution

We have seen that the disorder averaged metric coefficients 〈α2〉D (3.1.21) and 〈δ2〉D
(3.1.22) diverge in the deep interior as r → ∞ due to the presence of secular terms.

This indicates a breakdown in the perturbative scheme and needs to be corrected. This

outcome was not totally unexpected, as a similar sort of divergence in one of the dis-

order averaged metric components was found [281]. This divergence was corrected by

resumming the disordered solution in the spirit of the Poincaré-Lindstedt method. We

will adapt this technique to our problem and see that a resummed solution, which has

〈α2〉D and 〈δ2〉D finite in the deep interior, is available.

The procedure is as follows. We look for additional terms that could contribute at

the correct order in the disorder strength, V
2
, as they should only correct the unphysical

secular terms in the disorder averaged metric. Furthermore, these new terms must not

violate the asymptotically AdS condition imposed on the uncorrected disordered geom-

etry. The simplest ansatz then for corrected backreacted metric in Fefferman-Graham

coordinates is

ds2 =
L2

r2

[
− α(x, r)

β1(r)W (V )
dt2 + dr2 + η(x, r)dx2 +

δ(x, r)

β2(r)P (V )
dy2
]
. (3.2.1)

The new functions β1(r) and β2(r) may be chosen to remove the secular terms in 〈α2〉D
and 〈δ2〉D. Hence, they should only contribute starting at second order. Their exponents,

then, W (V ) and P (V ) should be expanded in powers of the disorder strength as

W (V ) = W2V
2
+W4V

4
+ · · · , (3.2.2)

P (V ) = P2V
2
+ P4V

4
+ · · · (3.2.3)

where, as in the usual Poincaré-Lindstedt procedure, the Wi and Pi are constant co-

efficients that we will adjust in order to remove the secular terms in 〈α2〉D and 〈δ2〉D.

In order to ensure that the spacetime geometry remains asymptotically AdS, we must

enforce the boundary condition β1(r) → 1 and β2(r) → 1 as r → 0. Moreover, in order
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to ensure that the functions β1(r) and β2(r) have a chance at removing the problem-

atic terms in the disorder averaged metric components, we should have that β1(r) and

β2(r) diverge as r → ∞. This is the only way that a new term can compete with (and

ultimately regulate) the already divergent secular terms.

The placement of the new functions β1(r) and β2(r) in the metric (3.2.1) is not

arbitrary. Expanded to second order in the disorder strength, the right hand side of

the traced Einstein equations (3.1.2) is left unchanged. This is sensible since the source

of the disorder, namely the gauge field (3.1.10) is not being modified. Notice also that

β1(r) and β2(r) are only functions of the radial coordinate r as their sole purpose is to

correct the secular terms in the averaged metric components 〈α2〉D and 〈δ2〉D. There is

no new function associated with the x direction as 〈η2(x, r)〉D (3.1.23) is already finite

everywhere and does not require a correction.

The off-diagonal [r, x] component of the traced Einstein equations (3.1.15) is also

unchanged. This is crucial, as this component allows us to solve for the combination

α2(x, r)+ δ2(x, r), and so the x dependence in this combination will also not be modified

from the original solution. The only difference brought about by including β1 and β2 is the

possibility of modifying the overall partial integration functions of the radial coordinate

in α2(x, r), δ2(x, r) and η2(x, r). It is this modification that will allow us to remove the

secular terms from the disorder averaged metric components.

Finding the solution for the metric coefficients in (3.2.1) to second order in the disorder

strength goes through in exactly the same way as for the original case. We look for an

expansion of the form

α(x, r) = 1 + V
2
α2(x, r) + · · ·

η(x, r) = 1 + V
2
η2(x, r) + · · ·

δ(x, r) = 1 + V
2
δ2(x, r) + · · · .

Plugging this expansion into the traced Einstein equations (3.1.2) yields a set of partial
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differential equations

− 2r∂2rα2 + 2∂2δ2 + 2∂rη2 − 2r∂2xα2 + 6∂rα2 −
6W2

β1
∂rβ1 −

2P2

β2
∂rβ2

− 2rW2

β2
1

(∂rβ1)
2 +

2rW2

β1
∂2rβ1 = − r3

L2

[
(∂rH)2 + (∂xH)2

]
, (3.2.4)

2r∂2rη2 − 2∂rα2 − 2∂rδ2 + 2r∂2rα2 + 2r∂2r δ2 − 2∂rη2 +
2W2

β1
∂rβ1 +

2P2

β2
∂rβ2

+
2rW2

β2
1

(∂rβ1)
2 +

2rP2

β2
2

(∂rβ2)
2 − 2rP2

β2
∂2rβ2 −

2rW2

β1
∂2rβ1 =

r3

L2

[
(∂rH)2 − (∂xH)2

]
,

(3.2.5)

∂x∂r(α2 + δ2) =
r2

L2
(∂rH)(∂xH) , (3.2.6)

2∂rδ2 − 2r∂2xδ2 − 2r∂2rη2 + 2∂rα2 + 6∂rη2 − 2r∂2xα2 −
2W2

β1
∂rβ1 −

2P2

β2
∂rβ2

=
r3

L2

[
(∂rH)2 − (∂xH)2

]
, (3.2.7)

2∂rη2 − 2r∂2xδ2 + 2∂rα2 − 2r∂2r δ2 + 6∂rδ2 −
6P2

β2
∂rβ2 −

2W2

β1
∂rβ1

+
2rP2

β2
∂2rβ2 −

2rP2

β2
2

(∂rβ2)
2 =

r3

L2

[
(∂rH)2 + (∂xH)2

]
. (3.2.8)

Notice, the [r, x] component (3.2.6) is unchanged compared to the original [r, x] compo-

nent (3.1.15), as promised. In fact, the new traced Einstein equations differ only from

the original ones (3.1.13) - (3.1.17) by the addition of terms with derivatives of β1 and

β2. In particular, this means that the x dependence of the metric coefficient α2(x, r),

η2(x, r) and δ2(x, r) will be unchanged. Again, this had to be the case since the source

for the disorder, namely the gauge field (3.1.10) has not be modified, nor have the right

hand sides of the traced Einstein equations (3.1.2).
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The solutions for α2(x, r), η2(x, r) and δ2(x, r) are found to satisfy

α2(x, r) + δ2(x, r) = G1(x) +G2(r) +
1

8L2

N−1∑

n=1

A2
n

k2n

(
1 + 2knr + 2k2nr

2
)
e−2knr

+
1

L2

N−1∑

n=1

n−1∑

m=1

AnAmknkm
(kn + km)4

[
(kn + km)

2r2 + 2r(kn + km) + 2
]

× cos((kn + km)x+ θn + θm)e
−(kn+km)r , (3.2.9)

where G1(x) is an arbitrary function of x and

G2(r) = G̃2(r)−
1

16L2

N−1∑

n=1

A2
n

k2n

(
1 + 2knr + 2k2nr

2
)
e−2knr . (3.2.10)

The condition (3.2.9) along with the partial integration function G2(r) (3.2.10) are also

true for the original disordered metric solutions up to a new, potentially different, function

G̃2(r). It satisfies

r∂2r G̃2(r)− 2∂rG̃2(r) =
rW2

β1
∂2rβ1 +

rP2

β2
∂2rβ2 −

2P2

β2
∂rβ2

− 2W2

β1
∂rβ1 −

rW2

β2
1

(∂rβ1)
2 − rP2

β2
2

(∂rβ2)
2 . (3.2.11)

This is the new piece that will allow us to tame the secular terms in the disorder averaged

solutions.

The equations of motion (3.2.4) - (3.2.8) may also be combined to get

α2(x, r)− δ2(x, r) = G̃4(r)−
1

8L2

N−1∑

n=1

A2
n

k2n
+

1

8L2

N−1∑

n=1

A2
n

k2n

(
1 + 2knr + 2k2nr

2
)
e−2knr

+
1

4L2

N−1∑

n=1

n−1∑

m=1

AnAm
knkm

[
1 + (kn + km)r + 2knkmr

2
]
cos((kn − km)x+ θn − θm)e

−(kn+km)r

− 1

4L2

N−1∑

n=1

n−1∑

m=1

AnAm
knkm

[1 + (kn + km)r] cos((kn − km)x+ θn − θm)e
−(kn−km)r , (3.2.12)

where the function G̃4(r) plays an analogous role to G̃2(r) in (3.2.9); it satisfies

r∂2r G̃4(r)− 2∂rG̃4(r) = −2W2

β1
∂rβ1 +

2P2

β2
∂rβ2 −

rW2

β2
1

(∂rβ1)
2

+
rP2

β2
2

(∂rβ2)
2 +

rW2

β1
∂2rβ1 −

rP2

β2
∂2rβ2 . (3.2.13)
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Finally, the solution for η2(x, r) is

η2(x, r) =
1

4
r2∂2xG1(x) +G3(x)− G̃6(r)−

1

32L2

N−1∑

n=1

A2
n

k2n
(2knr + 1) e−2knr

+
1

L2

N−1∑

n=1

n−1∑

m=1

AnAm
(kn + km)4

[(kn + km)r + 1] cos((kn + km)x+ θn + θm)e
−(kn+km)r

+
1

16L2

N−1∑

n=1

A2
n

k2n
(2knr + 1) cos2(knx+ θn)e

−2knr , (3.2.14)

where

G̃6(r) =

∫
dr

[
1

r
r∂2r G̃2 +

rW2

2β2
1

(∂rβ1)
2 +

rP2

2β2
2

(∂rβ2)
2 − rP2

2β2
∂2rβ2 −

rW2

2β1
∂2rβ1

]
. (3.2.15)

Using these solutions, we will be able to write down a resummed backreacted metric,

devoid of secular terms under disorder averaging.

3.2.1 Resummed disorder average

With the solutions (3.2.9), (3.2.12) and (3.2.14) at hand, we can impose asymptotically

AdS boundary conditions and require that the secular terms in the disorder average

vanish. To do this, we need a choice for β1(r) and β2(r). A natural choice is

β1(r) = β2(r) = exp
( r

4L2

)
, (3.2.16)

with W2 = 1 = −P2. V has units Length1/2, so to second order βW2V
2

1 and βP2V
2

2 are

dimensionless. Different choices of β1(r) and β2(r) which preserve the asymptotically

AdS boundary condition and remove the secular divergences in (3.1.21) and (3.1.22) will

correspond to different resummations, but will ultimately lead to the same IR geometry

in the same way as in the case of scalar disorder [281]. Any choice of β1(r) and β2(r) must

behave in a specific way in the interior in order to remove the unphysical divergences,

and so result in the same IR geometry. With this choice, the partial integration functions

G̃2(r) (3.2.10) and G̃4(r) (3.2.13) simplify to

G̃2(r) = d1 +
1

3
d2r

3 , (3.2.17)
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and

G̃4(r) = d3 +
1

3
d4r

3 +
1

2L2
r , (3.2.18)

where d1, d2, d3 and d4 are constants.

Since G̃2(r) appears in α2+δ2 and G̃4(r) appears in α2−δ2, the two metric coefficients

will be modified from their original values by

1

2
(G̃2 + G̃4) =

1

2
(d1 + d3) +

1

6
(d2 + d4)r

3 +
1

4L2
r , (3.2.19)

in α2(x, r), while

1

2
(G̃2 − G̃4) =

1

2
(d1 − d3) +

1

6
(d2 − d4)r

3 − 1

4L2
r , (3.2.20)

appears in δ2(x, r). In η2, G̃6 (3.2.15) becomes simply

G̃6(r) =

∫
dr

[
1

2
r∂2r G̃2(r)

]
=

1

3
d2r

3 . (3.2.21)

Setting the constant d2 = 0 recovers the original solution for η2(x, r). As such, 〈η2〉D is

exactly the same as in (3.1.23). This is precisely as expected, 〈η2〉D was already finite

everywhere and requires no correction.

Finally, setting d3 = d4 = 0 the corrections to 〈α2〉D and 〈δ2〉D are precisely those

needed to remove the secular terms. We finally have

〈α2〉D =
1

2
c+

1

4k0L2
− 1

4k0L2
(1− k0r) exp(−2k0r) , (3.2.22)

〈δ2〉D =
1

2
c− 1

4k0L2
+

1

4k0L2
(1− k0r) exp(−2k0r) , (3.2.23)

and 〈η2〉D is given in (3.1.23). These results constitute the corrected disorder averaged

metric coefficients, all of which are now finite everywhere in the bulk.

Note also that the choice for W2 = −P2 ensures that there are no curvature diver-

gences anywhere in the bulk. Calculating K ≡ RµνλσR
µνλσ through order V

2
in the

disorder averaged metric gives K = const.

With the resummed solution, we can ask about transport properties of the disordered

geometry. In particular, we are interested in understanding how the conductivity is

modified from the initially clean AdS case. We tackle this question in the next section.
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3.3 Conductivity

In order the calculate the conductivity, we need to turn on a perturbation to the gauge

field. We will be interested in computing the conductivity along the disordered direc-

tion x. In pure AdS, the zero-momentum conductivity can be computed by turning on

Ax(r, t) = ax(r)e
−iωt and computing the retarded holographic Green’s function via the

linearized bulk equations of motion. Taking the ω → 0 limit gives the DC conductivity

which turns out to be a constant. This result persists even at finite temperature and is

due to bulk electric-magnetic duality [80]. The calculation is simplified in the AdS case,

since the gauge field perturbation does not contribute the to linearized energy-momentum

tensor and so cannot source any new metric perturbations.

The situation is not so simple when a non-zero background value for another compo-

nent of the gauge field is turned on, for example in the RN −AdS geometry. This means

that, generally speaking, the perturbation of the gauge field needed to measure the con-

ductivity will couple to background gauge field component and contribute at linear order

in the equations of motion. As a consequence, new metric perturbations are sourced and

can lead to complicated linearized equations.

In the context of holographic lattices, such as those studied in [162], [254] and [255] the

problem is magnified. Virtually everything that can be sourced is and the perturbation

equations turn into a complicated set of partial differential equations which must be

solved using numerical techniques. In [256], a holographic lattice, sourced by a periodic

scalar field was studied analytically in a perturbative expansion about the lattice strength.

Due to the perturbative nature of the lattice, the linearized equations of motion for the

gauge field fluctuation turn out to simplify considerably and only a single metric and

scalar perturbation are sourced making the system more amenable to analysis.

For our disordered case, the situation does not simplify quite so drastically, even

though the disorder strength is assumed to be weak. The gauge field perturbation Ax

will mix with the background At, producing terms which are second order in perturba-
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tions (i.e. one power of the disorder strength V and Ax). These will in turn source metric

perturbations of the same order and in principle may source metric perturbations along

every direction. We can, nevertheless, still access information about the DC conductivity

of the system by employing a technique first proposed in [292]. The idea is to turn on a

perturbation that is linear in time. An analysis in linear response theory implies that the

DC conductivity may be directly calculated by taking advantage of conserved quantities

in the bulk. By using the equations of motion to relate the boundary current to the

magnitude of the applied electric field, the DC conductivity follows from Ohm’s law. In

[259], this technique was adopted to study the DC conductivity of inhomogeneous holo-

graphic lattices at finite temperature. In section 3.4, we will discuss how this technique

may be applied to holographic disorder with non-vanishing initial charge density.

We consider a perturbation to the gauge field Ax = ax(r) − Et, where E is the

constant magnitude of the electric field in the x direction. At the level of the lin-

earized equations of motion, this perturbation may further source metric perturba-

tions {δgtt, δgxx, δgyy, δgxt}. We have already elected to work in Fefferman-Graham

gauge when constructing the backreacted spacetime in order to ensure an asymptoti-

cally AdS solution. As such, we will impose that the metric perturbations obey the

usual Fefferman-Graham expansion near the boundary. In other words, as r → 0,

δgab = (L2/r2)δgab(0)(x) + δgab(1)(x) + O(r2). Note that the metric perturbations will

be at most functions of x and r and will be composed of combinations of periodic func-

tions in x. This is because the metric perturbations are being sourced by terms made up

of the gauge field perturbation and the original time component of the gauge field that

sources the disorder, so there is no possibility to source any other kind of dependence.

From the bulk Maxwell equations ∇µF
µν = 0, we see that the x and r components

require that

∂x
(√−gF xr

)
= ∂r

(√−gF xr
)
= 0 . (3.3.1)

Hence, the current Jx ≡ √−gF xr is a conserved quantity in the bulk. As r → 0, this
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defines the boundary current in the x direction.

The conductivity can be read off from Ohm’s law, namely Jx = σE. Therefore, if we

can find an expression for Jx/E and take the disorder average of the result, we will have

found the DC conductivity directly (up to an overall normalization constant set by the

action (3.1.1)).

Our strategy will be as follows. First, we write down an expression for Jx linearized

about the gauge field and metric perturbations. Since this quantity is a constant, we can

evaluate it anywhere in the bulk. As we are working at zero temperature, there are no

horizons about which to expand. We therefore focus on expanding about the boundary

r = 0, where, in keeping with our choice of Fefferman-Graham gauge, we enforce asymp-

totic AdS falloffs for all of the perturbations. We then take advantage of our perturbative

handle, the disorder strength V . The linearized equations of motion generally contain

terms at many orders in V . We start with the leading order Maxwell equations which

we solve for ax(r). This solution is then fed into the next order in perturbations which

couples ax(r) to order V terms. These source the metric perturbations, which may be

solved for via the Einstein equations and expressed in terms of the magnitude of the

applied electric field E. The results solve for σ up to second order, after taking the

disorder average. The linearized equations of motion contain higher order terms as well,

such as V
2
δgab. Since the metric fluctuations are already sourced by terms of the form

V ax, these terms are already fourth order in perturbations and not relevant.

The linearized expression for Jx, expanded near the boundary at r = 0 is

Jx =

√
δ(0)

α(0)η(0)

[
α(0)ax(1) + V H(1)δgtx(0)

]
, (3.3.2)

where the gauge field perturbation has been expanded near the boundary ax(r) = ax(0)+
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rax(1) + · · · . Also

α(x, r) = α(0)(x) + rα(1)(x) + · · ·

η(x, r) = η(0)(x) + rη(1)(x) + · · ·

δ(x, r) = δ(0)(x) + rδ(1)(x) + · · · ,

near r = 0. The function H(x, r) is related to the disorder source as At(x, r) = V H(x, r)

and it has also been expanded near r = 0 as

H(x, r) = H(0)(x) + rH(1)(x) + · · · . (3.3.3)

The next step is to get an expression for the gauge perturbation ax(r). To do this, we

use the linearized Maxwell equations to leading order in perturbations. This is just the

Maxwell equation in AdS, so the solution is easy to find

ax(r) = b1 + b2r , (3.3.4)

where b1 and b2 are constants. This solution then couples to the disorder source At

and the original background metric coefficients to produce the metric fluctuations. In

principle, the gauge field fluctuation itself will then receive corrections from the metric

perturbations, but this requires going to, at a minimum, third order in perturbation

theory. The upshot is that we can use the baseline solution for ax to extract the DC

conductivity to second order in perturbations. The constant b2 can be fixed in terms of

the applied electric field E. To see how, replace the time coordinate t with the ingoing

coordinate v = t − r + O(V
2
). Then the full gauge field perturbation Ax = ax − Et is

a (finite) ingoing solution provided that b2 = E up to second order. This is exactly the

condition required in pure AdS to recover the correct DC conductivity and it will ensure

that our result contains the pure AdS case plus a possible correction, so that the final

disorder averaged solution will take the form

〈σ〉D = σAdS + V
2〈σDisorder〉D . (3.3.5)
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That is, the original constant AdS DC conductivity plus a correction.

With Jx in (3.3.2) we must find an expression for δgtx(0) in order to get the conduc-

tivity. This can be accomplished via the linearized equations of motion. Despite being

linearized, the equations of motion are still quite complex and finding a solution is a dif-

ficult task. This difficulty may be circumvented by making use of perturbative expansion

in the disorder strength. To get an expression for δgtx(0) it suffices to solve the linearized

Einstein and Maxwell equations up to second order in perturbations. That is, we keep

terms of order ax, V
2
, V ax and δg.

We have already solved the linearized Maxwell equations through second order in

(3.3.4). No further corrections to the Maxwell equations are sourced until at least third

order in perturbations. The linearized Einstein equations work out similarly. There are

no contributions to the linearized equations at first order in perturbations. This had to

be the case as all of the metric coefficients and metric perturbations are at least second

order perturbative terms. Every diagonal component of the linearized Einstein equations

is just the original equation plus a correction due to a term proportional to V E which,

in principle could source metric perturbations along these directions. Remarkably, none

of the diagonal components of the linearized Einstein equations, nor the [x, r] component

contain the metric perturbation δgtx that we need to compute the conductivity. In fact,

the relevant metric perturbation decouples completely from the others and only shows

up in [t, r] and [t, x] components. The equations are

r∂x∂rδgtx + 2r∂rδgtx + V r(∂xH)E = 0 , (3.3.6)

2δgtx − r2∂2r δgtx − 2r∂rδgtx − V r2(∂rH)E = 0 , (3.3.7)

with a solution

δgtx(x, r) =
V E

r2

N−1∑

n=1

An
k3n

(
2 + 2knr + k2nr

2
)
cos(knx+θn) exp(−knr)+2

V E

r2
K(x) , (3.3.8)

where K(x) is a function of x that will be fixed momentarily. As promised, the metric

fluctuation is sourced by a term that goes like V times a gauge field fluctuation. A
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quick comment is in order about boundary conditions. Earlier, above (3.3.5), we argued

Ax was ingoing. Nonetheless, the metric perturbation δgtx remains static, because the

flux is constant (by design). Therefore, it is not necessary to separately impose ingoing

boundary conditions on δgtx; this is already taken care of. With (3.3.8), we can determine

δgtx(0) and get and expression for Jx in terms of E. We now have all of the ingredients

we need to get to the DC conductivity. Inserting the results back into (3.3.2), expanding

to second order in the disorder strength

Jx

E
= 1 +

V
2

2
(α2(0) + δ2(0) − η2(0))−

2V
2

L2

N−1∑

n=1

A2
n

k2n
cos2(knx+ θn) (3.3.9)

− 2V
2

L2

N−1∑

n,m=1
m 6=m

AnAmkm
k3n

cos(knx+ θn) cos(kmx+ θm) + 2
V

2

L2
H(1)K(x) ,

where, as r → 0

α(x, r) = 1 + V
2
α2(x, r) → 1 + V

2 (
α2(0) + rα2(1) + · · ·

)
,

η(x, r) = 1 + V
2
η2(x, r) → 1 + V

2 (
η2(0) + rη2(1) + · · ·

)
,

δ(x, r) = 1 + V
2
δ2(x, r) → 1 + V

2 (
δ2(0) + rδ2(1) + · · ·

)
.

From the metric coefficient α2, η2 and δ2 we get

α2(0) + δ2(0) − η2(0) =
1

16L2

N−1∑

n=1

A2
n

k2n
cos2(knx+ θn)−

1

32L2

N−1∑

n=1

A2
n

k2n

+
1

L2

N−1∑

n=1

n−1∑

m=1

AnAmknkm
(kn + km)4

cos((kn + km)x+ θn + θm) .

The last step needed to get the DC conductivity is to take the disorder average (3.1.8)

of (3.3.9). To do this, we need to know the function K(x) appearing in (3.3.8). This

function may be fixed by requiring a finite large N limit for the conductivity as well as

a finite value for δgtx(0) and a vanishing disorder average for δgtx. The condition on the

disorder average of δgtx actually follows from the requirement of a finite large N limit

for the conductivity. If 〈δgtx〉D was a constant as r → 0, then the H(1)δgtx(0) term in

Jx (3.3.2) would vanish under disorder averaging and would not be able to regulate the
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large N limit. The coefficient of K(x) can then be fixed by dimensional analysis. A good

choice is

K(x) =
π2

12ζ(3)

N−1∑

n=1

A3
n

k4n
cos(knx+ θn) , (3.3.10)

where ζ(n) is the Riemann zeta function. There is more than one choice for the coefficient

of K(x), however every choice which is dimensionally consistent and satisfies our basic

requirements for δgtx returns the same result for the disorder averaged conductivity. Ap-

plying (3.1.8) to (3.3.9) and restoring the units (which is due to the overall normalization

we have chosen for the action (3.1.1) 1) we get

〈σ〉D =
1

16πGN

+
V

2

4πGNL2k0
. (3.3.11)

The disorder averaged conductivity takes the form (3.3.5) as claimed. The overall con-

tribution due to disorder is a constant which comes in a second order in the disorder

strength. This is sensible as the disorder induced corrections to the geometry (3.2.1)

are at second order. In fact, our result echoes that of the single holographic lattice con-

structed in [320]. From the point of view of the conductivity, only the metric coefficients

α(x, r), δ(x, r) and η(x, r) really matter. Under disorder averaging, these functions ap-

proach a constant towards the boundary r → 0 which scales as V
2
/(4k0L

2), which is a

natural dimensionless constant made up of the three scales in the system. It is therefore

not surprising that the correction induced by the disorder source on the DC conductivity

involves precisely this combination. Moreover, notice that as V → 0, the average DC

conductivity (3.3.11) reduces to the expected pure AdS result.

Note that the result (3.3.11) is specific to a disordered source with a Gaussian distri-

bution (3.1.9). It is an interesting question as to whether or not changing the disorder

distribution will affect the final result. In particular, the fact that the correction to

the conductivity is positive and not negative as might be expected is a result of having

1In pure AdS, the dual DC conductivity is σDC = 1/e2, where the bulk gauge field is normalized by
−1/4e2. In our conventions, e has been absorbed into the gauge field and we have pulled out an overall
factor of 16πGN .
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chosen a Gaussian distribution. It is unclear that this will be the case if the disorder

distribution is modified. Moreover, it is also unclear that a positive correction persists

to higher orders in the disorder strength. It might be that further corrections come in

with the opposite sign, but are only visible at larger disorder strength.

It is tempting to try and address the question of using a different distribution start-

ing from (3.3.9). However, to arrive at this formula, we have explicitly made use of the

resummed metric (3.2.1) which implicitly assumes a Gaussian distribution for the disor-

der source. In particular, the functions β1(r) and β2(r) are specific for this realization

of disorder. Understanding how the form of the metric coefficients in the backreacted

geometry is dependent on how disorder is implemented in the system and how this affects

the dual transport properties are questions we leave for future work.

3.4 Finite charge density

The observations of the previous section all follow from a system with zero initial charge

density. Turning on a non-zero background charge density can change the game drasti-

cally. The baseline, clean, geometry is now the RN − AdS solution. In the RN − AdS

background, the boundary directions preserve translational invariance, and so there is no

way to dissipate momentum. Coupled with the fact that the solution no longer possess

particle-hole symmetry like the pure AdS case, the net result is a divergent DC conduc-

tivity. From the perspective of our previous results in pure AdS, it is a natural question

to ask how much we can say about adding disorder to this background.

The action and equations of motion are the same as in (3.1.1), (3.1.2) and (3.1.3). In

this case, the initially clean geometry is Reissner-Nordström-AdS and the gauge field is

not constant everywhere. The baseline solution is

ds2 =
L2

r2

(
−f(r)dt2 + dr2

f(r)
+ dx2i

)
. (3.4.1)

There are d− 1 boundary directions. The boundary is located at r = 0 in these coordi-
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nates. f(r) is given by

f(r) = 1−
(
1 +

(d− 2)µ2
0r

2
0

2(d− 1)L2

)(
r

r0

)d
+

(d− 2)µ2
0r

2
0

2(d− 1)L2

(
r

r0

)2(d−1)

, (3.4.2)

At(r) = µ0

(
1−

(
r

r0

)d−2
)
, (3.4.3)

where r0 is the location of the outer horizon and µ0 is a constant associated to the

chemical potential of the dual theory [71]. The temperature is

T =
1

4πr0

(
d− (d− 2)2µ2

0r
2
0

2(d− 1)L2

)
. (3.4.4)

We introduce disorder the same way we did before by adding a perturbation to the gauge

field and insisting on the boundary condition (3.1.6) and regularity in the interior. As

an example, if d+ 1 = 5 and we take the limit where all the horizons coincide at r = r0

(i.e. T = 0). The solution to the Maxwell equations at first order is

At(x, r) = µ0

(
1− r2

r20

)
+ V

N−1∑

n=1

An
3∆n/2

Γ(1 + ∆n
2
)Γ(∆n

2
)

Γ(∆n)

(
1 + 2

r2

r20

)[
(r20 − r2)

r2

]∆n/2

(3.4.5)

× 2F1

[
∆n

2
, 1 +

∆n

2
;∆n;

r2 − r20
3r2

]
cos(knx+ θn) ,

where ∆n = 1+

√
1 +

k2nr
2

0

3
. Note that the solution (3.4.5) vanishes at the horizon r = r0

as required for the gauge field to be well defined.

In d+ 1 = 4, the solution is more complicated.

At(x, r) = µ0

(
1− r

r0

)
+ V

N−1∑

n=1

3λn/2An
r0

(r0 − r)λn/2

[
i
√

(2)(r0 − r)− 2(r0 + 2r)

i
√
2− 2

]1−λn/2

(3.4.6)

×
2F1

[
λn
2
,−1

2
; 1+λn

2
; 2i

√
2(r−r0)

i
√
2(r0−r)−2(r0+2r)

]

2F1

[
λn
2
,−1

2
; 1+λn

2
;− 2i

√
2

i
√
2−2

] ,

where λn = 1+

√
1 +

r2
0
k2n
3

. The solution (3.4.6) vanishes at the horizon r = r0 and obeys

the correct boundary condition (3.1.6) at r = 0.
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The idea now is to plug this back into the equations of motion and work out the back

reacted geometry to next order in V perturbations. This is more complicated than the

initially uncharged case. Since the initially clean geometry requires a nontrivial gauge

field from the get go, there is a baseline term in At(x, r) that survives on the right

hand side of the equations of motion. In general this will mix perturbative and baseline

terms, meaning that the equations of motion must be consistently solved at both first

and second order in V . Also, the solution presented here is not in the Fefferman-Graham

coordinates of the previous section. This adds the complication that, in general, the

backreacted geometry could have off-diagonal gra contributions. Since the perturbation

is only along the x direction, At only mixes the r and x directions. Hence, the only

off-diagonal term that can be sourced is grx. This means that the back-reacted metric

should take the form

ds2 =
L2

r2

(
−α(x, r)dt2 + dr2

F (r)
+ η(x, r)dx2 + δ(x, r)dy2 + 2χ(x, r)dxdr

)
. (3.4.7)

The perturbative expansion for the unknown functions this time is then

α(x, r) = f(z) + V α1(x, r) + V
2
α2(x, r) + · · · ,

F (r) = f(r) + V F1(r) + V
2
F2(r) + · · · ,

δ(x, r) = 1 + V δ1(x, r) + V
2
δ2(x, r) + · · · ,

η(x, r) = 1 + V η1(x, r) + V
2
η2(x, r) + · · · ,

χ(x, r) = V χ1(x, r) + V
2
χ2(x, r) + · · · ,

note that the expansion for χ(x, r) starts at order V . This off-diagonal component is not

present in the initial clean geometry, so in the limit that V → 0, this metric coefficient

must vanish. Following the same logic as in section 3.1, we should try and solve the

traced Einstein equations up to second order in the disorder strength. At zeroth order,

the traced Einstein equations are just those of the baseline RN −AdS solution, ensuring

that the full solution will be expressed as the RN −AdS geometry plus corrections. This
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observation is what constrains the backreacted metric component grr to be only a function

of r. The disorder is turned on along the boundary directions, so we do not expect it to

modify the location of the horizon. At higher order, the traced Einstein equations are

complicated and it is unclear if a compact analytic solution can be found. While we will

not attempt to answer this question here, it would be interesting to understand if the

numerical techniques applied to holographic lattices and scalar disorder could be applied

here.

In lieu of a full analytic solution, we can nevertheless extract the form of the DC

conductivity by applying the technique used for inhomogeneous holographic lattices in

[259]. We will briefly review the salient features of this technique as we go along. We

will make a modest assumption about the behaviour of the disordered solution near a

horizon and see that, given the metric coefficients and gauge field solution, it is possible

to extract the form of the disorder averaged DC conductivity directly in terms of horizon

data.

We will assume the form of the backreacted metric is (3.4.7) with the event horizon at

r = r0 and asymptotes to AdS4 near the boundary r = 0. As V → 0, the geometry must

reduce to the RN −AdS solution. We will work at finite temperature T and express the

gauge field solution as

At(x, r) = µ0

(
1− r

r0

)
+ V H(x, r) , (3.4.8)

where near the boundary, H(x, r) respects the disordered boundary condition (3.1.6). In

general, it will be a sum over periodic functions in x of arbitrary wavelength kn. The

same must be true of the metric coefficients in (3.4.7). Note that, even though there

are many periodicities in the disorder source, and hence the spacetime solution, there

is a common periodicity 2πN/k0. The metric coefficients and gauge field will also be

functions of the random angles θn in the disorder source (3.1.6). In order for the gauge

field to be well defined, it must vanish at the horizon, as in the RN −AdS case. Hence,

the solution (3.4.8) should vanish as r → r0.
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We will insist on an asymptotically AdS solution, so the metric coefficients in the

backreacted geometry (3.4.7) will need to fall off appropriately near the boundary at

r = 0. We will also need to insist on regularity of the solution at the event horizon,

r = r0. The metric coefficients in (3.4.7) should then be expanded near the horizon as

α(x, r) = −4πT (r − r0)
[
α(0)(x) +O((r − r0)) + · · ·

]
, (3.4.9)

F (r) = −4πT (r − r0)
[
F(0) +O((r − r0)) + · · ·

]
+ · · · , (3.4.10)

δ(x, r) = δ(0)(x) + (r − r0)δ(1)(x) +O((r − r0)
2) + · · · , (3.4.11)

η(x, r) = η(0)(x) + (r − r0)η(1)(x) +O((r − r0)
2) + · · · , (3.4.12)

χ(x, r) = χ(0)(x) + (r − r0)χ(1)(x) +O((r − r0)
2) · · · , (3.4.13)

H(x, r) = (r − r0)H1(x) +O((r − r0)
2) + · · · , (3.4.14)

where each of the functions in the near horizon expansion may themselves be expanded

in the disorder strength V . For example α(0) = α0(0) + V α1(0)(x) + V
2
α2(0)(x) + · · · , and

similarly for the rest of (3.4.9) - (3.4.14). Note that in the limit that T → 0, there will

be terms in α(x, r) and F (r) which are proportional to T−1 and stay non-zero. These

terms originate from the background charge density in the initial RN − AdS geometry.

Our convention will be that the first subscript indicates the power of V that multiplies

the coefficients while the second subscript in brackets indicates the order in the near

horizon expansion. Note also that the function H(x, r) in (3.4.14), which appears in the

solution to the gauge field to first order in the disorder strength, only starts at O(r− r0).

This is to ensure that the gauge field vanishes at the horizon, as required by regularity.

To keep the discussion as general as possible, as in [259], we turn on every possible

perturbation to both the gauge field and the metric, namely {at(x, r) , ar(x, r), ax(x, r)}

and {δgtt , δgrr , δgxx , δgyy , δgxr , δgtr , δgtx}. Note that we do not need to turn on a y

component to the gauge field as we will be interested in measuring the conductivity

along the disordered x direction. To this end, we use a linear perturbation

Ax(x, r) = ax(x, r)− Et , (3.4.15)



Chapter 3. Perturbatively charged holographic disorder 172

where E is the constant magnitude of the applied electric field at the boundary.

The perturbations will need to fall off appropriately near the boundary so as not to

destroy the asymptotically AdS region. Moreover, we will insist on regularity at the

horizon r = r0. This condition may be enforced on the perturbations by replacing the

time coordinate with the ingoing Eddington-Finkelstein like coordinate

v = t− (4πT )−1 ln(r0 − r) + · · · . (3.4.16)

In light of the regularity condition, the constraints on the near horizon behaviour of the

gauge field are

at(x, r) = at(0)(x) +O(r − r0) + · · · , (3.4.17)

ar(x, r) =
1

f(r)

(
ar(0)(x) +O(r − r0) + · · ·

)
, (3.4.18)

ax(x, r) = ln(r0 − r)
(
ax(0) +O(r − r0) + · · ·

)
, (3.4.19)

along with the relations

ar(0) = −at(0) , (3.4.20)

ax(0) =
E

4πT
, (3.4.21)

each of which follows as a consequence of regularity after switching to the ingoing coor-

dinate (3.4.16). Whereas for the metric perturbations, regularity requires

δgtt(x, r) =
L2

r20
f(r)

(
δgtt(0)(x) + · · ·

)
, (3.4.22)

δgrr(x, r) =
L2

r20f(r)

(
δgrr(0)(x) + · · ·

)
, (3.4.23)

δgxx(x, r) = δgxx(0)(x) +O(r − r0) + · · · , (3.4.24)

δgyy(x, r) = δgyy(0)(x) +O(r − r0) + · · · , (3.4.25)

δgtr(x, r) = δgtr(0)(x) = O(r − r0) + · · · , (3.4.26)

δgxr(x, r) = − 1

f(r)

(
δgxr(0)(x) +O(r − r0) + · · ·

)
, (3.4.27)

δgtx(x, r) = δgtx(0)(x) +O(r − r0) + · · · , (3.4.28)
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along with the conditions

δgtx(0) = −δgxr(0) , (3.4.29)

δgtt(0) + grr(0) − 2gtr(0) = 0 . (3.4.30)

Notice that since the disorder source is a sum over periodic functions in x of arbitrary

wavelength, the gauge field and metric perturbations will have to be as well. Again, they

will all share the same common periodicity 2πN/k0. Furthermore, the perturbations will

all be functions of the random angles θn in the disorder source (3.1.6).

The next step, as in the case of a single holographic lattice, is to identify two useful

conserved quantities in our background. The first is the boundary current, Jx =
√−gF xr

which, just as in section 3.3 is a bulk constant by virtue of the Maxwell equations

∂r(
√−gF rx) = ∂x(

√−gF xr) = 0. Again, the gauge field can only be a function of x

and r. The boundary current, linearized about the gauge field and metric perturbations,

is

Jx =

√
δF

α(η − χ2F )

{
α (∂xar − ∂rax) +

r2

L2

[
V (∂xH)δgtr +

(
µ0

r0
− V ∂rH

)
δgtx

]}
.

(3.4.31)

As we are working at finite temperature, there is another conserved quantity, the heat

current Q. This conserved quantity is associated with a tensor [292]

Gµν = ∇µξν +
1

2
ξ[µF ν]σAσ +

1

4
(ψ − 2φ)F µν , (3.4.32)

where ξµ is a Killing vector such that LξF = 0. Also, LξA = dψ and iξF = dφ, iξF

being the interior product of ξ and F . With these definitions, it can be shown that

∇µG
µν = 3ξν , (3.4.33)

provided that the Maxwell (3.1.3) and traced Einstein (3.1.2) equations are satisfied [292].

An appropriate Killing vector is ξµ = [ξt, ξr, ξx, ξy] = [1, 0, 0, 0], which satisfies the

requirement LξF = 0. There is a conserved quantity associated with (3.4.32) as can
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be seen by observing that Gµν is antisymmetric and that it is only a function x and r.

Hence, ∂x(
√−gGrx) = ∂r(

√−gGrx) = 0, which follows from (3.4.33). The conserved

quantity is Q =
√−gGrx. As shown in [292], this quantity is the heat current in the

boundary theory. Linearized about the perturbations, Q is

Q =
1

2rL2

√
δF

α(η − χ2F )

{
rL2α

[
µ0

(
1− r

r0

)
+ V H

]
(∂rax − ∂xar) (3.4.34)

+rL2α (∂rδgtx − ∂xδgtr) +

(
r3V µ0

(
1− r

r0

)
∂rH + 2L2α− µ2

0r
3

r0

(
1− r

r0

)
− µ0r

3V

r0
H

−L2r∂rα + r3V
2
H∂rH

)
δgtx −

(
L2r∂xα + µ0r

3V

(
1− r

r0

)
∂xH + r3V

2
H∂xH

)
δgtr

}
.

In what follows, we will make use of the perturbative expansion in the disorder strength

and, similarly to the initially uncharged case in section 3.3, we will ignore terms of order

V
2
δg and higher. Following [259], the next step is to evaluate the constants Jx (3.4.31)

and Q (3.4.34) near the event horizon at a fixed temperature T . Using the expansion

for the metric coefficients (3.4.9)-(3.4.14) and the perturbation in (3.4.17)-(3.4.19) and

(3.4.22)-(3.4.28), we find

Jx =

√
δ(0)F(0)

α(0)η(0)

[
α(0)

(
E + ∂xar(0)

)
+
r20
L2

(
µ0

r0
− V H

)
δgtx(0)

]
, (3.4.35)

and

Q = −2πTLδgtx(0) = constant , (3.4.36)

meaning that δgtx(0) = constant. Next, we expand Q (3.4.34) to next order in the near

horizon expansion and use the linearized equations of motion to express it entirely in

terms of near horizon data. This expression may then be used to find an expression for

δgtx(0) in terms of E. The next order expansion of Q is messy and contained in appendix

B. The result is that

α(0)

(
µ0 − r0V H(1)

) (
E + ∂xar(0)

)
− 4πTr0∂x

(
α(0)δgtr(0)

)
(3.4.37)

+

(
8πTα(0) + 2

r20
L2
V µ0H(1) −

r0µ
2
0

L2
+

8π2T 2r0α(0)χ
2
(0)

η(0)
− Ω(0)(x)

)
δgtx(0) = 0 ,
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where Ω(0)(x) is a function of metric coefficients near the horizon. It is found in appendix

B. To get an expression for Jx in terms of E and δgtx(0), we integrate (3.4.36) over the

common periodicity 2πN/k0. Then, doing exactly the same thing with (3.4.37), we can

relate E to δgtx(0). Substituting this into the expression for Jx gives us the desired

relation between Jx and E. The final result is

Jx

E
=

I1
I2 + I3

, (3.4.38)

where

I1 =
k0

2πN

∫ 2πN/k0

0

[
2r0µ

2
0

L2
− 4r20µ0

L2
V H(1) − 8πTα(0) −

8π2T 2r0
η(0)

α(0)χ
2
(0) + Ω(0)(x)

]
dx ,

(3.4.39)

I2 =
k20

4π2N2

∫ 2πN/k0

0

√
η(0)

α(0)δ(0)F(0)

dx (3.4.40)

×
∫ 2πN/k0

0

[
2r0µ

2
0

L2
− 4r20µ0

L2
V H(1) − 8πTα(0) −

8π2T 2r0
η(0)

α(0)χ
2
(0) + Ω(0)(x)

]
dx ,

I3 =
k20r0

4π2L2N2

∫ 2πN/k0

0

[
α−1
(0)

(
V r0H(1) − µ0

)]
dx (3.4.41)

×
∫ 2πN/k0

0

√
α(0)η(0)
δ(0)F(0)

(
µ0 − r0V H(1)

)
dx .

All of the functions in the integrals (3.4.39)-(3.4.41) may be expanded to second order

in the disorder strength V , provided the solutions are known. The final step after the

expansion is to take the disorder average (3.1.8) of (3.4.38). The disorder averaged

conductivity is then 16πGN〈σ〉D = 〈Jx/E〉D.

By taking the µ0 = 0 limit, it may be possible to find temperature dependent correc-

tions to the disorder averaged DC conductivity in (3.3.11). It may be that a temperature

dependence introduces a negative correction to the conductivity. It is possible that the

metric coefficients α(x, r), F (r), δ(x, r), η(x, r) and χ(x, r) in (3.4.7) could contain addi-

tional dependence on temperature, so computing the full correction to the conductivity

would require knowing these functions. This way, the integrals in (3.4.39), (3.4.40) and

(3.4.41) may be evaluated.
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While we do not know the solutions to the metric coefficients, any additional tem-

perature dependence must be such that they are not unbounded functions of T since the

perturbative corrections should not overwhelm the baseline AdS conductivity. This way,

the disorder averaged conductivity would not be at risk of becoming negative. Study-

ing of how temperature dependence alters the disorder averaged DC conductivity in the

µ0 = 0 limit is worth further investigation. This is especially true when thinking be-

yond a perturbative approach as it may reveal interesting features about the possible

suppression of transport in holographic models of disorder.

3.5 Summary and outlook

In section 3.1 we construct a bottom-up holographic model with perturbatively charged

disorder. Starting from a bulk Einstein-Maxwell action, we include disorder in the dual

theory by using a spectral representation. This technique is known to simulate a stochas-

tic process [278]. This is achieved by including a randomly varying chemical potential

(3.1.6) made up of a sum of N periodic functions along one of the boundary directions;

an approach reminiscent of the disordered holographic superconductors studied in [277],

[279] and [280]. The random chemical potential contains two parameters, a wavenumber

k0 which is held fixed in the large N limit and V which controls the strength of the

disorder. The parameter V is taken to be small and is used as a perturbative handle to

construct a bulk solution. A bulk gauge field is turned on which approaches the fluc-

tuating chemical potential (3.1.6) near the spacetime boundary. By letting the gauge

field backreact on the initially clean (i.e. zero disorder) AdS4 geometry, we construct

an asymptotically AdS solution to the bulk equations of motion (3.1.2) and (3.1.3) at

second order in the disorder strength in section 3.1.1.

We evaluate the disorder average (3.1.8) of the second order metric coefficients (3.1.18),

(3.1.19) and (3.1.20), in section 3.1.2 and find that they are compactly expressed in terms
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of special functions. By carefully evaluating the large N limit, we find a divergence in the

deep interior as r → ∞ in two of the metric coefficients (3.1.21) and (3.1.22), indicating

that the solutions must be regulated.

In section 3.2, we resum the disordered solution found in section 3.1 by adapting the

standard Poincaré-Lindstedt method for regulating perturbative solutions to differential

equations, similarly to the case of scalar sourced disorder in [281]. We find a regulated,

second order, solution to the equations of motion with metric functions (3.2.22), (3.2.23)

and (3.1.23), where the previously noted divergences are removed. The averaged re-

summed solution is devoid of curvature singularities through second order in the disorder

strength.

With the resummed solution at hand, we study the resulting DC conductivity along

the disordered direction in section 3.3. We directly access the DC conductivity of the

model by adapting a technique first proposed in [292]. The idea is to turn on a source

linear in time and take advantage of the existence of conserved quantities in the bulk

to find a relationship between the boundary current and the magnitude of the applied

electric field. The DC conductivity may then be extracted from Ohm’s law. By virtue of

the nature of the disordered spacetime solution in this case, turning on a bulk gauge field

perturbation along the disordered direction results in a complicated set of equations of

motion. As is the case for single holographic lattices [162], the gauge field perturbation

further sources a whole set of possible metric fluctuations. By taking advantage of our

perturbative handle, namely the disorder strength, the situation simplifies and the rele-

vant metric fluctuation can be solved via the linearized equations of motion up to second

order in perturbations. The disorder averaged DC conductivity is computed in (3.3.11)

which is found to be the usual AdS conductivity plus a correction at second order in the

disorder strength, a result reminiscent of the single holographic lattices studied in [320].

Section 3.4 makes some observations about adding a disordered chemical potential to

an initially clean system with a finite charge density. In this case, the baseline geometry is
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the RN −AdS solution. The presence of an initial charge density changes the character

of the backreacted equations of motion, as the perturbative contributions originating

from the disorder source now mix with the baseline gauge field. The result is that

geometry may receive corrections at all orders in the disorder source, unlike the initially

uncharged case studied in section 3.1. At second order, the traced Einstein equations are

complicated and it is not clear that there is a compact analytic solution. It is still possible

to extract some information about the form of the disorder averaged DC conductivity

in this case by applying the techniques of [292] and [259]. The procedure is similar to

the initially uncharged case in section 3.3, except that now the baseline solution (and

hence the disordered solution) has an event horizon. By writing down a broad ansatz

for a 3 + 1 dimensional disordered geometry at finite charge density and temperature

(3.4.7), we show that the disorder averaged DC conductivity may be expressed entirely

in terms of near horizon data (3.4.38), as is the case for the holographic lattices studied in

[259]. We leave the difficult task of finding a disordered, finite charge density, spacetime

solution for future work.

There are many open questions with regard to explicit implementations of holographic

disorder, both in terms of studying the properties of the dual field theory as well as

understanding the kinds of bulk geometries that arise in the process.

A natural extension to our work here is to disordered holographic superconductors,

such as those studied in [277], [279] and [280]. A spectral representation for the disordered

chemical potential is also used in these studies and the properties of the superconduct-

ing transition are studied numerically. It would be interesting to understand how the

inclusion of backreaction of the disorder source onto the spacetime geometry changes the

picture here. For example, how is the appearance of the superconducting phase tran-

sition affected? Is the critical temperature significantly changed? Is possible to get an

analytical handle on a a critical amount of holographic disorder beyond which the con-

ductivity becomes completely suppressed and the superconducting phase transition does
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not occur? This previous question is particularly pertinent with regards to many-body

localization. If such a transition does occur, what kind of bulk geometry is required and

how does it fit into conventional gravitational models? In particular, if a localization

transition does occur in the dual theory, would the bulk probe effectively become stuck2

at some radial position? Would this translate to a well defined mobility edge at the cor-

responding energy scale in the dual theory? It would also be interesting to understand

the behaviour of time dependent probes in such a background.

To fully study this problem, it may be necessary to move beyond the perturbative

disorder studied in this paper and an analytical approach may be ill-suited and numerical

solutions may be required. In such a case, it would be interesting to understand if the

techniques used in [281] for scalar disorder and [258] for holographic lattices would be

useful.

In [281], disorder is sourced by a scalar field in 2 + 1 dimensions and the disorder

averaged metric is found to display an emergent Lifshitz scaling. It would interesting to

classify the possible IR geometries that can be produced in this way, hopefully leading

to a better understanding of disorder fixed points of condensed matter systems. For

example, could an interior geometry with an emergent hyperscaling violation exponent

be generated via a back-reacted disordered source? How about IR geometries that break

rotations, i.e. in relation to Bianchi models [245], [249]? In other words, what kind of IR

disordered fixed points can be constructed via holography?

In [276], an ansatz for a disordered geometry is proposed and the dynamics of a

scalar field in this background are studied. Using techniques from random matrix the-

ory, a transition is observed which is reminiscent of a disorder driven metal-insulator

transition. Understanding more than one explicit example of a geometry which displays

this behaviour as well as the matter content required to support such solutions in a

gravitational theory may shed light on the minimal ingredients necessary for accessing

2We thank Omid Saremi for raising this issue with us.
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disordered phenomena via holography. It would also be worthwhile understanding how

the proposed spacetime in [276] fits in with backreacted disordered geometries.

Finally, our results for the initially uncharged case in sections 3.1, 3.2 and 3.3 depend

sensitively on the disorder distribution. In this paper we have focused on the effect of

Gaussian random disorder. It would be interesting to extend our results to other distri-

butions and understand how the resulting backreacted geometry and transport properties

are modified.



Chapter 4

Future Directions

In this chapter we will point out possible future directions with regards to the results

presented in chapters 2 and 3 as well as some general future avenues of research in holog-

raphy. We will focus primarily on future prospects for symmetry breaking in holography

with a bent towards potential applications and exploration of their gravitational duals.

We will also discuss some aspects of holographic thermalization and what this may tell

us about quantum many-body physics. Finally, we will discuss the current program of

understanding how quantum information theory constrains potential gravity dual solu-

tions and what this suggests about the emergence of gravity and spacetime emerge from

a quantum theory.

4.1 Symmetry breaking in gauge/gravity duality and

future applications

Understanding exactly which symmetries are available to be broken in bottom up holo-

graphic models and what dual physics they encode is central to mapping out the range of

applicability of holography. Many examples have been discussed in this thesis, including

boost symmetry, translational symmetry and rotational invariance. In the context of the

181
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latter case, it remains to be shown if in general the Bianchi type geometries discussed

in section 1.5.6 can be connected to an asymptotically well behaved region. In [250], it

was shown that in principle, there should exist a class of geometries which interpolate

between several of the Bianchi type spacetimes and an asymptotically AdS or Lifshitz

region. The null energy condition is used as a guiding principle in that the proposed ge-

ometries obey this sensible energy condition. It is, as of yet, unclear if these interpolating

geometries are solutions to a gravitational theory with a simple matter sector. While the

Bianchi type VII geometry has been used to model holographic metal-insulator transi-

tions [246], it still unclear precisely what kind of boundary physics the other geometries

in this classification describe. Understanding their dual interpretation would help clarify

how these holographic models fit within the larger context of applied holography.

It is also important to address issues of stability when it comes to bottom-up holo-

graphic models. The gravity solutions proposed to capture the relevant boundary physics

may not also be stable. Ultimately, the bottom-up solutions should somehow descend

from a consistent truncation of a higher dimensional theory like supergravity, or opti-

mistically full string theory. As emphasized in [322], it is not sufficient to demonstrate

stability in the truncated theory, but rather it is important to study the full theory.

In the full theory, it may be that there are additional excitations which violate the

Breitenlohner-Freedman bound and render an AdS vacuum unstable. Stability analysis

is technically challenging, but would be worth pursuing as it could provide insight into

the kinds of top-down embeddings that are available for bottom-up models.

In recent years, it has become clear that a wide variety of interesting interior gravita-

tional solutions are available, even in seemingly simple theories. This has been demon-

strated within the context of both Einstein-scalar theory and Einstein-Maxwell [281],

[258]. It is interesting to speculate just how far this program of finding and classifying IR

geometries may be taken and how they may be applied to modelling real world systems.

An example already exists of how to generate an emergent Lifshitz scaling in the deep



Chapter 4. Future Directions 183

IR simply by applying the right kind of perturbation to AdS3. The idea is to add a

disordered scalar field, using a spectral representation as was done in chapter 3 and let it

backreact on the geometry. Choosing a Gaussian distribution leads to the emergence of

a critical exponent z which is controlled by the strength of the disorder. The effect has

now been show to persist in various dimensions even at finite temperature [282]. It is

interesting to wonder if any of the other typical interior geometries studied in the context

of holographic symmetry breaking (see section 1.5) can be generated in a similar way.

A particularly pertinent example is hyperscaling violation (HSV), introduced in sec-

tion 1.5.4 and discussed at length in chapter 2. A nontrivial hyperscaling violation expo-

nent may be associated with certain spin-glass phases of the Ising model, where random

quenched disorder plays an important role [323]. Given this relationship, it is a natural

question as to whether or not such behaviour may be understood holographically.

The critical first step to such an investigation is the identification of the minimal

matter content required in a bottom up holographic model. In order to find a HSV solu-

tion in Einstein gravity, a scalar field and a gauge field are usually required (although a

massive gauge field also works) [212], [183]. By including more than one disordered field

in the gravity model, it may be possible to access increasingly exotic IR geometries. Also,

selecting different distributions and disorder strengths for the bulk fields may lead to in-

teresting competitions between the disorder sources. Possibilities include disorder driven

phase transitions and regimes of coexistence where multiple phases exist simultaneously,

similar to the coexistence of several holographic superconducting phases mentioned in

section 1.4.4.

There is also evidence that properties of glassy systems can be accessed via holography

[324], [325]. The idea is to construct a class of asymptotically AdS metastable black hole

bound states at finite temperature and chemical potential. There are an exponentially

large number of possible configurations and solutions display logarithmic relaxation times,

similar to glassy systems.
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As of yet there is no well established complete theory of the glass transition. It is

still not exactly known what causes the dynamical slowing down observed in supercooled

liquids. Relaxation time scales in the system blow up to huge values. One ubiquitous way

to see this is in the dramatic increase of viscosity as the temperature is lowered to the

glass transition temperature sufficiently quickly. In particular, this increase in relaxation

times happens without any structural changes to the system; there are no changes in

spatial order compared to the liquid phase.

Structural glasses are not described by equilibrium thermodynamics; rather they are

metastable states that never manage to relax to the true equilibrium configuration of

the system in finite time. In particular then, the properties of glasses depend on the

details of their history. They are said to display aging, meaning that the properties of

the system depend on how long it has been since it fell out of equilibrium (i.e. how long

it has been since the glass transition occurred). This phenomenon usually shows up as

non-exponential relaxation rates for observables of the system.

One point of view is that glasses have a rugged free energy landscape with exponen-

tially many local minima. For a review see [326]. The system basically gets hopelessly

stuck jumping around this landscape trying to find the true global minimum, which it

never reaches in finite time. Such systems are inherently non-ergodic as they do not ever

manage to explore their entire phase space. An example of such a model is a spin glass, in

which there are exponentially many solutions for the local magnetization density below

the glass transition temperature.

This landscape perspective does not provide a full picture. While there are no struc-

tural changes at the glass transition, there are dynamical changes. Supercooled liquids

display localized regions of highly cooperative motion and regions with almost no coop-

erative motion. That is, regions where the motion of particles are highly correlated with

each other and a region where there is virtually no correlation. The size and distribution

of these regions changes drastically when approaching the glass transition. The evolution
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of these regions may be observed in numerical simulations of supercooled liquids. These

phenomena are better explained using a kinetic theory of the glass transition. For a

review, see [327].

Crucially, in order to apply holography to this kind of problem, bulk translational

invariance must be broken. The reason for this stems from the viscosity bound, η/s =

1/4π (1.3.47). When the temperature is lowered, the entropy of the black brane decreases

and hence the viscosity in the dual theory must also decrease. This is exactly the opposite

of what is expected of a glass forming system; as temperature is lowered, viscosity should

grow. To get around this problem, translational invariance must be broken in order to

circumvent the viscosity bound.

The examples of disordered holographic systems discussed in section 1.5.8 and in

chapter 3 concern quenched disorder, meaning that there is no time evolution associated

to the source of impurity. While this is the case for spin glasses, it is not true for struc-

tural glasses in which disorder is spontaneously generated at the transition temperature.

Nevertheless, it would be interesting to probe the backreacted type geometries to see

if evidence of glassy behaviour arises, especially in the dual transport properties. Un-

derstanding how viscosity is affected by the addition of this kind of disorder would be

worthwhile in the sense that it may point towards a class of real world low temperature

systems that display similar behaviour. It would also be interesting to understand the

behaviour of time dependent probes in such backgrounds. By modifying the disorder

strength, interesting transitions in the relaxation time of time dependent probes may

result.

Many recents studies of novel IR geometries involve sophisticated numerical tech-

niques. The advantage is that numerical solutions give access to strongly disordered

regimes. It is possible that radically different emergent behaviour may occur outside of

the range of perturbative disorder. Numerical techniques may be necessary in order to

access the regime where a localization transition occurs due to the necessity of having a
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strongly disordered system.

Another obvious question is, what happens in more complicated holographic models

when disorder is incorporated? In [277], [279] and [280] holographic s-wave and p-wave

superconductor models were studied with a disordered chemical potential. The random

chemical potential in the boundary theory is introduced using the spectral approach

used in chapter 3, and the equations of motion for the bulk fields are solved numerically

in a fixed AdS-Schwarzschild geometry, as discussed in section (1.5.8). It is curious to

wonder what would happen if gravitational backreaction is taken into account. This is

particularly true in light of [282], which showed that taking into account gravitational

backreaction due to scalar disorder in an initially clean AdS-Schwarzschild geometry

results in an emergent Lifshitz scaling, as in the zero temperature case [281]. Accounting

for the effect in a holographic superconductor model may lead to non-trivial modifications

of the critical temperature. In particular, for sufficiently strong disorder, it might be

expected that the critical temperature becomes highly suppressed, making the transition

to a superconductor state increasingly disfavourable. This expectation is grounded in

weakly coupled intuition; it is an interesting question as to whether or not this näıve

expectation is modified by strong coupling effects.

It would ultimately be interesting to understand how much holography can say about

the physics of quantum many-body systems at strong coupling. On way to approach this

is by studying equilibration times after a perturbation to a system. A näıve expectation

is that a mild perturbation to an asymptotically AdS geometry would eventually settle

down and that the spacetime is stable. Remarkably, this turns out not to be the case. In

[133] it was shown that the evolution of a real, massless and spherically symmetric scalar

field in global AdS will generally result in gravitational collapse for almost any, even

arbitrarily small, initial field amplitude. This study describes the onset of the instability

as being the result of (nonlinear) resonant interactions between the normal modes that

characterize the system at the linear level. It is argued that this leads to a direct turbulent
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cascade of energy to high mode numbers and that this makes the gravitational collapse

inevitable. The energy transfer seems to be going backwards to what would be expected

from usual fluid turbulence. Subsequent analysis showed that if the initial data consisted

of only one mode, the resonant self-interaction is avoided and just results in a constant

shift of the frequency of the mode.

Following up on this observation, [328] studied this problem from the context of

thermalization in a potential dual field theory. If gravitational collapse does occur and

a black hole is formed, the dual state is thermal, meaning that the system has reached

equilibrium. It is observed that if the system starts off with all of the modes initially

populated and the mode amplitudes fall off sufficiently fast for the high mode numbers,

the resonant self-interaction has the same effect as in the case of single-mode initial data

and behaves like a frequency shift. In this case, gravitational collapse can be avoided.

There are two effects coming into play here to determine if gravitational collapse will

occur or not: gravitational focusing and nonlinear dispersion of the propagating scalar

field. If gravitational focusing dominates, then collapse to a black hole results. On the

other hand, if the initial scalar profile is distributed broadly enough, the system evolves

without ever approaching a static or stationary solution. In this picture, the boundary

CFT never thermalizes at late times. Thermalization times in holographic models in

global AdS5 dual to theories with non-equal central charges c 6= a were studied in [329].

This raises an interesting possible connection to the physics of closed many-body

systems. A closed many-body system is one in which the system is not in any contact

with an external reservoir. In other words, it is an isolated system. A recent review may

be found in [268]. After long time unitary evolution, the system will either thermalize

or become localized (in real space). In the former case, the system can act as its own

reservoir and thermal equilibrium is achieved with the final state being parameterized by

a small number of observables, such as temperature, pressure, etc. In the latter case, the

system does not act as its own reservoir and so does not thermalize. Instead, the system
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is able to remember some details of its initial state, even after an arbitrarily long time.

The states which fail to thermalize are highly-excited and have a non-zero energy density

even in the thermodynamic limit. Many-body localized states violate the eigenstate

thermalization hypothesis (ETH) [268] which states that all many body eigenstates of a

Hamiltonian are thermal. An example of a system which violates the ETH is a system

of interacting spins on a lattice with a disordered onsite magnetic field. Once a critical

amount of disorder is present in the system, many-body localization occurs in the sense

that DC spin and energy transport are suppressed and thermalization can never occur.

This is true for both the strongly and weakly interacting cases [268].

The many-body localization transition marks the breakdown of the applicability of

equilibrium quantum statistical mechanics to the long-time properties of the system.

There is a phase transition at a critical disorder strength between a thermal phase and a

many-body localized phase in which the ETH is violated and some memory of the local

initial conditions of observables remains even for arbitrarily long times. The transition is

not visible to equilibrium thermodynamics, but rather shows up as an eigenstate transi-

tion, in which there is a sharp transition in the properties of the many body eigenstates

and hence the dynamics of the system.

It is interesting to compare this picture to that of the instability of global AdS,

especially in the case pointed out in [328] where a class of scalar perturbations never

thermalizes. Specifically, in [328] two modes are initially excited and the rest are set to

zero. It is initially found that all the energy is contained in the two modes that are turned

on. Energy flows out to the other modes for some time at which point an inverse energy

cascade occurs and all of the energy flows back to the initial modes. The state returns to

its original configuration and this recurrence behaviour repeats itself. The energy does

not just keep cascading to higher and higher modes, instead it sloshes around between

the modes and the system settles into a sort of metastable state. Energy equipartition

never occurs and the system does not thermalize. This has a striking similarity to the
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closed many-body systems with states that localize. There, a memory of the initial state

is always preserved. In the gravity case, the active modes eventually return to their

original configuration and continue to do so repeatedly. It is tempting to associate this

behaviour with a many-body localized state in the dual theory, however care should be

taken here. In the field theory example described above, the addition of sufficiently strong

disorder is necessary for the many-body localization to occur. In the gravity problem,

the system is spherically symmetric and translationally invariant. Could it be that this

is describing a kind of translationally invariant many-body localization? How does this

reflect the non-ergodicity of a localized system, if at all? It would be interesting to study

this problem from the perspective of the eigenvalue distribution of a time dependent bulk

probe; how does it differ with respect to the scalar perturbations that do thermalize? Is

there any evidence for the suppression of DC transport?

In [271] and later in [272], an implementation of the replica trick was studied in a

holographic context. The idea was to translate this standard tool for studying disorder

systems in a field theory into a gravity theory and to apply it to learn about disorder at

strong coupling. This is achieved by, as in the field theory implementation, replicating

every bulk field including the metric n times. By studying the behaviour of correlation

functions at leading order in large N , it is argued that n replicated copies of a CFT

with a holographic dual may be understood as a CFT with a multi-trace deformation.

Using this perspective, [272] showed that to leading order in the large N expansion, the

connected correlation functions in the presence of random disorder vanish in the strongly

coupled dual field theory. Crucial to this observation was the assumption that replica

symmetry is unbroken.

Replica symmetry means that each copy of the theory used in the replica trick is

indistinguishable from the other. That is it leaves the permutation symmetry between

the replicas unbroken. In such a solution, the degree of correlation between each of the

replicas is assumed to be the same. As this symmetry is not present in the initial system,
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it should be thought of as auxiliary. This is sensible from the point of view of a model

of quenched disorder in that such systems are generally thought to be self-averaging. In

other words, the macroscopic properties of the system should be independent of the spe-

cific microscopic realization of the disorder. Hence, physical properties can be measured

by taking disorder averages.

On the other hand, assuming that each of the replicas is indistinguishable from the

others can lead to unphysical solutions in some models. An example is the famous

Sherrington-Kirkpatrick (SK) model of a spin glass. The model describes a set of in-

teracting spins where each spin interacts with all of the others in the system, not just

nearest neighbours. Each interaction is taken to be described by an independent Gaus-

sian random variable. A review may be found in [330]. A replica symmetric solution is

available for the SK model which breaks down at low temperatures, predicting things

like a negative entropy density.

Breaking the replica symmetry turns out to be crucial for obtaining the correct low

temperature solution. In this situation, it is imagined that the degree of correlation

between each of the replicas is not the same. Some replicas could clump together and

have a greater overlap with each other than with the other replicas. This process can

repeat itself over and over again resulting in increasingly finer regions of overlap between

the various replicas. By measuring the distance between the correlated clusters of replicas

at each step an ultrametric structure emerges. An ultrametric space is one in which the

usual triangle inequality between three points is replaced by a more restrictive inequality

of the form [330]

d(a, b) ≤ max{d(b, c), d(c, a)} . (4.1.1)

The physical picture in the spin glass case is that as temperature is lowered below the

glass transition, the phase space of the system is broken up into increasingly small regions,

separated by large free energy barriers. The different separated regions correspond to

possible ground states of the macroscopic system which are increasingly dissimilar as a
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function of their distance apart in the ultrametric space. This process continues on to

zero absolute temperature. The final picture is of a landscape separated by large free

energy barriers arranged in a fractal tree branch pattern characteristic of ultrametricity

. It is clear that the breaking of replica symmetry and the emergence of an ultrametric

pattern is related to the breaking of ergodicity in the sense that not every microscopic

state can be accessed by the system.

The physical implications for a holographic gravity model are unclear. It is an inter-

esting question to wonder about how the formation of an ultrametric structure due to

replica symmetry breaking in the boundary theory will appear in the gravity theory. This

is especially true at finite temperature, as the gravity dual possesses a black hole. As the

temperature is lowered, what kind of phase transition occurs with regards to the horizon

structure of the black hole? Will it develop a similar ultrametric structure? This might

be the case as the breaking of replica symmetry alters the low temperature free energy in

the field theory. In the case of KS model, the negative entropy density is also removed.

These quantities are geometric in the bulk, being controlled by the black hole horizon, so

there should be some corresponding modification of the near horizon physics. It is also

unclear how the dimensionality of the bulk plays into such a picture. Higher dimensional

black holes display a richer solution space than their lower dimensional counterparts.

Is there some critical dimension below which such a phenomenon cannot occur? What

would this imply about the boundary dual?

On top of the open applications of holography, there are many remaining questions

about the full holographic dictionary. In particular, there is considerable recent evidence

that every bulk surface, both minimal and non-minimal, has an interpretation in the

boundary theory and are remarkably connected to quantum information theory.
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4.2 Gravity and entanglement entropy: the emer-

gence of spacetime

The Ryu-Takayanagi (RT) formula discussed in section 1.3.5 demonstrates that informa-

tion theoretic concepts have a natural geometric interpretation in a dual gravitational

theory. Many generalizations have since been proposed that place this connection on a

more solid footing. In [331] and [24], the entanglement entropy of a hole in spacetime was

calculated. The hole is constructed by concentrating on a family of observers who are all

causally disconnected from a spherical region at the origin of an asymptotically global

AdS3 geometry. It is argued that these observers can only gain access to some of the

information about the boundary theory. The bulk observers measure a quantity called

residual entropy (also sometimes called differential entropy), which characterizes their

uncertainty about the state of the boundary theory based on the information they have

access to. This residual entropy is directly reproduced in the bulk by the areas of circular

holes. This construction was extended to bulk surfaces which vary in time for a class of

planar symmetric geometries in [332]. Furthermore, in [97], it was shown that using the

concept of residual entropy in the boundary theory, it is actually possible to reconstruct

a wide class of bulk surfaces in more than 2 + 1 dimensions. These observations lead to

the interesting question of just how much of the bulk geometry can a boundary observer

reconstruct? Studying this question has led to interesting extensions of the holographic

dictionary. For example, in [333] the residual entropy is shown to encode the entangle-

ment cost of transmitting the state of a subregion on the boundary to another subregion

using a merging protocol. This gives a direction information theoretic interpretation of

the bulk curves used to calculate the residual entropy.

Another key observation is that, in some cases, there are geometries in which no

minimal surface can probe every region. A spacetime with an event horizon is a canonical

example [334]. This leads to the notion of an entanglement shadow, or a region of
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spacetime not directly accessible by a minimal surface, which nevertheless contributes to

the entanglement entropy of the boundary theory. In boundary theory language, there

are contributions to the entanglement entropy arising from internal degrees of freedom

that are not spatially organized. In [335], a concept termed entwinement was introduced

which is associated with the area of non-minimal geodesics which wrap many times

around a singularity in the examples considered. It is argued that these surfaces are

necessary in order to account for the entanglement entropy due to the shadow region and

may be important for reconstructing the inside of a black hole horizon via holography.

An interesting observation in this context stems from locality in the bulk. In [336],

[337], [338] it was argued that in the low energy limit localized bulk operators may actu-

ally be dual to smeared out, non-local boundary operators. Following up, [339] showed

that a semiclassical representation of bulk fields as operators in the dual CFT leads to

problematic behaviour near the horizon of a black hole in the bulk. Specifically, there is

a break down in locality in that the bulk fields fail to commute at spacelike separations.

This failure to commute is characterized by an amount of the order exp(−S/2), where

S is the Bekenstein-Hawking entropy of the black hole. This result stresses that further

corrections beyond the semiclassical limit may be necessary to properly reconstruct the

bulk geometry.

In [340], it was shown that by taking the RT formula as input and applying it to a

CFT at leading order in large N , the equations of motion for a potential gravitational

dual theory are the Einstein equations linearized about AdS. Moreover, by using a

more general Wald functional instead of the RT formula as input, the bulk must satisfy

the linearized equations of motion with higher curvature corrections. This result was

extended in the case of the RT formula in [341] and [342] to include 1/N corrections

and found that the linearized vacuum Einstein equations are supplemented by source

term, encoding the bulk energy momentum tensor. These results provide strong evidence

that quantum information theory in the boundary and the emergence of spacetime in a
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potential dual gravity theory are deeply interconnected. The ultimate fantasy goal here

is to completely reconstruct a bulk geometry from nothing more than field theory inputs.

In fact, using the standard inequalities of quantum information theory as input, such

as strong subadditivity, [226] pointed out that natural geometric restrictions arise in the

dual gravity theory. In particular, enforcing strong subadditivity translates to satisfying

the averaged null energy condition in the bulk. This seems like a physically sensible

result and it is interesting to wonder about how other information theoretic restrictions

on the boundary translate into conditions on the bulk geometry. Ultimately, such studies

may help uncover exactly which kinds of geometric theories are accessible via holography

given a sensible boundary theory. It is also an interesting question as to whether this

construction can be extended to other types of boundary theories. In particular does

starting from a non-relativistic boundary theory, working out the information theoretic

inequalities and applying the holographic dictionary for the Lifshitz case [195] return a

geometry with a non-trivial dynamical critical exponent? It should be expected that the

null energy condition would apply here as well and restrict z to values greater than or

equal to one. Does the same construction work for the HSV geometries?

Another interesting open problem concerns the available spacetime solutions of Vasiliev

higher spin theory in four dimensions, discussed in section 1.2.3. As this class of higher

spin gauge theories always contains spin two, there should be a wide variety of possible

spacetime solutions available to study within this context. AdS and dS solutions appear

as natural vacuum solutions to the Vasiliev equations and may be found by inspection.

The Vasiliev equations themselves generally contain many more fields which are set to

vanish for the basic AdS and dS type solutions. By including these additional fields, it is

natural to suspect that more solutions become available. Exactly what these solutions are

and what kind of geometric properties they encode are an open question. Considerable

progress has been made on this front in three dimensions where black hole solutions are

known [68] as well as asymptotically Lifshitz solutions [343]. The three dimensional case



Chapter 4. Future Directions 195

is comparatively simpler than the four dimensional case owing to the restrictive nature of

three dimensional gravity. In particular, the Chern-Simons formulation of three dimen-

sional gravity provides the necessary holonomy condition for diagnosing the existence of

a black hole horizon in a higher spin model. There is, as of yet, no analogue for higher

dimensional higher spin theory. It would be worth investigating the possible solution

space in this context, particularly with regards to holographic applications.

In short, there any many open and interesting avenues of investigation in the context

of pure and applied holography. While this program may end up teaching us valuable

lessons about strongly coupled quantum field theories and point towards some universal

behaviours we might expect to see in condensed matter physics, there are plenty of

opportunities to learn about the nature of gravity as well. The connections between

quantum information theory and the emergence of spacetime lead to the tantalizing

possibility that holography may provide some clues about exactly what it means to have

a theory of quantum gravity. The applications that we have pointed to in this thesis

suggest that perhaps the worlds of strongly coupled quantum field theory, quantum

many-body systems and quantum information theory are not so widely separated from

the ultimate question of understanding the nature of quantum gravity.



Appendix A

Constants Appearing in the NEC

In this appendix we provide the constants Ci that arise in the equations of motion and

in the null energy condition in chapter 2. Readers who are not interested in the technical

details should skip ahead to chapter 3 They are

C1(d, β) = −d
2
(d+ 2β − 1) , (A.0.1)

C2(d, α, β, ηi) =− 1

2L2

{[
4α4 − 8(1− β)α3 + (−44 + 88β − 40dβ − 44β2 − 8d2 + 44d)α2

+(−144β + 16d2 − 64d+ 104dβ + 48− 8d2β + 144β2 − 40dβ2 − 48β3)α

+2d− 4dβ2 − 2d2
]
η1 +

[
2α4 + (2d+ 4β − 4)α3

+(13d− d2 + 44β − 22− 22β2 − 12dβ)α2

+(8d2 − 6d2β + 72β2 + 24− 72β − 32d− 24β3 − 26dβ2 + 58dβ)α

+5d− 12β3d− 11d2β2 + 16d2β + 29dβ2 − 6d2 − 22dβ + d3 − 2d2β
]
η2

+
[
(2αβ + 2dβ − 2α + 2α2 − d+ 2dα + d2)× (−24β2 + 48β − 24

+2αβ − 2α + 2α2 − 10dβ + 9d+ 2dα− d2)
]
η3

}
, (A.0.2)

C3(d, α) =
d

2
(d+ 2α− 1) , (A.0.3)
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C4(d, α, β, ηi) =
1

2L2

{[
− 12dβ2 − 8α3β + 20α2d− 8dαβ + 24α2β − 12α2β2

+8α3 − 12α2 + 6d2 + 4α4 − 8dα3 − 8d2β + 24dβ − 6d
]
η1

+
[
13α2d− 3d+ 4α3 − 6α2 + 2d2 + 2α4 + 4d2β − 4α3β − α2d2

+d3 − 6αβd2 + 10dαβ + 6dβ − 6α2β2 + 4d2α− 4dα− 2dα3

+12α2β − 3dβ2 − 8dα2β − 6dβ2α− 2d3β − 3d2β2
]
η2

[
2α2 + 2αβ − 2α + 2dα + 2dβ + d2 − d)

×(−6dβ − 6αβ + 6α + 2α2 + 9d− 2dα− d2
]
η3

}
, (A.0.4)

C5(d, α, β) = α2 + (d+ β − 2)α +
1

2
d(d− 3) + (d− 1)β + 1 , (A.0.5)

C6(d, α, β, ηi) =− 1

2L2

{[
28α2 − 16α3 − 24α2β + 4α4 + 8α3β + 8α

−4dα2 + 48β3 + 30d− 24 + 44dβ2 − 6d2 + 4α2β2 + 120β + 16dαβ

−144β2 + 40αβ2 − 56αβ + 8d2β − 80dβ − 8dα
]
η1

+
[
− 12 + 11d+ 8α3β − 48α2β + 18α2β2 − 25dβ2 + 28αβ

+12dα + 2dβ + 12β3α + 12dβ3 − 8α + 36β + 2α4 − 12α3 + 30α2

−36β2 + 12β3 + 2d2 − 32αβ2 − 13dα2 − 4d2α− 16d2β + 2dα3

+d2α2 + 11d2β2 + 2d3β − 38dαβ + 12dα2β + 22dβ2

+6d2αβ − d3
]
η2 +

[
(2α2 + 2αβ − 2α + 2dα + 2dβ + d2 − d)× (24β2

−60β + 36 + 10αβ − 14α + 2α2 + 10dβ − 13d+ 2dα + d2)
]
η3

}
.

(A.0.6)
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Next order near horizon expansion

As mentioned in section 3.4, one of the ingredients needed to compute the DC conduc-

tivity is the expansion of the heat current Q to order r − r0 near the horizon r0. This

results in the following condition

α(0)

(
µ0 − r0V H(1)

) (
E + ∂xar(0)

)
− 4πTr0∂x

(
α(0)δgtr(0)

)
(B.0.1)

+

[
8πTα(0) +

2r20µ0V

L2
H(1) −

µ2
0r0
L2

+
8π2T 2r0
η(0)

α(0)χ
2
(0)

]
δgtx(0)

−
[
24r0π

2T 2α(1) + 8π2T 2r0α(0)

F(1)

F(0)

+ 2πTr0α(0)

δ(1)
δ(0)

2πTr0α(0)

η(1)
η(0)

]
δgtx(0) = 0 .

Using the linearized equations of motion, it is possible to solve for the last term in brackets

containing α(1), F(1), δ(1), η(1) and express it entirely in terms of horizon data with the

result (3.4.37) mentioned in the main text. To the relevant order in perturbations, we
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get

Ω(0)(x) =
1

2L2F(0)η
2
(0)δ

2
(0)(16π

2T 2F(0)α(0)δ(0) − 1)

{
2F(0)η(0)δ

2
(0)

[
128π3T 3L2F(0)α

2
(0)η(0)δ(0)

− 8πTL2α(0)η(0) − 2µ0V r
2
0η(0)H(1) + 32π2T 2µ0r

2
0V α(0)F(0)η(0)δ(0)H(1)

− 16π2T62µ2
0r0α(0)F(0)η(0)δ(0) + 128π4T 4r0F

2
(0)α

2
(0)δ(0)χ

2
(0) − 8π2T 2L2r0F(0)α(0)χ

2
(0)

]

+ 4πTr0L
2F(0)δ(0)

[
16π2T 2F(0)α

2
(0)δ

2
(0)χ(0)∂xη(0) + 16π2T 2F(0)α(0)η(0)δ(0)χ(0)∂xα(0)

− 32π2T 2F(0)α
2
(0)η(0)δ

2
(0)∂xχ(0) + 16π2T 2α2

(0)F(0)η(0)δ(0)∂xδ(0) + 2α(0)η(0)δ(0)∂xχ(0)

− α(0)δ(0)χ(0)∂xη(0) − 3η(0)δ(0)χ(0)∂xα(0) − α(0)η(0)χ(0)∂xδ(0)
]

+ 16π2T 2L2r0
[
F(0)η(0)δ

3
(0)(∂xα(0))

2 + F(0)α
2
(0)η(0)δ(0)(∂xδ(0))

2 + α2
(0)δ

2
(0)(∂xη(0))(∂xδ(0))

+ F(0)α(0)δ
3
(0)(∂xα(0))(∂xη(0))

]
− L2r0

[
η(0)δ(0)(∂xα(0))(∂xδ(0)) + α(0)δ(0)(∂xη(0))(∂xδ(0))

+ α(0)η(0)(∂xδ(0))
2
]
− 2L2r0α(0)η(0)δ(0)

[
16π2T 2F(0)δ

2
(0)∂

2
xα(0) + 16π2T 2F(0)α(0)δ(0)∂

2
xδ(0)

− ∂2xδ(0)
] }
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[287] B. Goutéraux, “Charge transport in holography with momentum dissipation,”

JHEP 1404 (2014) 181, arXiv:1401.5436 [hep-th].

[288] K.-Y. Kim, K. K. Kim, Y. Seo, and S.-J. Sin, “Coherent/incoherent metal

transition in a holographic model,” JHEP 1412 (2014) 170, arXiv:1409.8346

[hep-th].

http://arxiv.org/abs/1407.7526
http://arxiv.org/abs/1407.7526
http://dx.doi.org/10.1103/PhysRevLett.112.231601
http://arxiv.org/abs/1402.0872
http://arxiv.org/abs/1402.0872
http://arxiv.org/abs/1504.03324
http://dx.doi.org/10.1103/PhysRevD.89.066018
http://arxiv.org/abs/1401.7993
http://dx.doi.org/10.1016/j.nuclphysb.2015.01.017
http://dx.doi.org/10.1016/j.nuclphysb.2015.01.017
http://arxiv.org/abs/1411.3331
http://arxiv.org/abs/1504.03288
http://dx.doi.org/10.1007/JHEP05(2014)101
http://arxiv.org/abs/1311.5157
http://dx.doi.org/10.1007/JHEP04(2014)181
http://arxiv.org/abs/1401.5436
http://dx.doi.org/10.1007/JHEP12(2014)170
http://arxiv.org/abs/1409.8346
http://arxiv.org/abs/1409.8346


Bibliography 229
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