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Abstract--A mathematical analysis of the variance of the average evoked-response computation 
as a function of the number N of stimuli presented is made for the case when the response is 
disturbed by additive stationary noise. A comparison is made between the variance for purely 
periodic stimuli and that for stimuli of which the interstimulus durations are Gaussian distri- 
buted. In the latter situation, the interval durations may be correlated with each other, e.g. 
according to a Gaussian Markov process. It is deduced that, in general, the introduction of 
aperiodic stimulation tends to make the functional relationship between the variance and N 
behave as though it holds for noise with a very broad frequency spectrum; the variance is 
proportional to 1IN.  

INTRODUCTION 

IT IS well known that, for example in the field of  
electroencephal0graphic (e.e.g.) analysis, the 
quality of a repeatedly evoked response that is 
disturbed by noise may be improved by a 
procedure of  summation and averaging. I f  the 
response is deterministic, on summation, its 
amplitude increases linearly with the number of  
stimulations, N, whereas, as a rule of  thumb, the 
standard deviation or r.m.s, value of the ampli- 
ude of the noise increases with x/N, so that the 
signal/noise ratio expressed in terms of the ampli- 
tude increases witll ~/N, or, in power  terms, the 
signal/noise ratio increases with N. Several 
conditions m~lst, however, be fulfilled for this 
simple rule to hold true exactly. The duration 
of the evoked potential must be smaller than the 
interstimulus duration m. The noise must be 
additive to the response, not time-locked to the 
response, and it must constitute a stationary 
random process. Moreover, in the case of  
regular stimulation, the period m must  be such 
that, after a t ime greater than m, the noise is not 
correlated with itself. I f  the noise has a more or 
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less narrowband power spectrum, the successive 
samples of  the noise may be correlated with each 
other, and the signal/noise ratio in power terms 
may be larger or smaller than N. If, in studies 
of  evoked response, the alpha rhythm represents 
the noise component,  the assumption of inde- 
pendence of the noise samples is in general not 
justified. 

LEE (1960) has indicated that the correlation 
between the sample amplitudes of  a stationary 
random process can be diminished by taking the 
samples not in a purely regular fashion, but by 
introducing fluctuations in the time durations 
between samples. RUCHLIN (1965) has worked 
out the idea of improving average-response 
computat ion by diminishing the correlation 
between subsequent noise-sample amplitudes; 
he suggested the use of  aperiodic stimulation. 
Ruchlin investigated the effect for stimulus- 
interval durations which were  equiprobably 
distributed between two values, m - m  a and 
i$'i-~-D~ia} OF t:;&puJtCilttia, l i y  IdI~LLLOULGId 'V~/ILLL a 

dead time m c and mean m, as visualised Figs. 
l a  and b. I t  will be noted that the  observation 

621 



622 M. TEN HOOPEN and H. A. REUVER 

time for the evoked response is diminished from 
m for regular stimulation to, respectively, 
m - r n  a and r n - m c  for the irregular stimulus 
pattern, when the mean interval duration is the 
same and equal to m. As to the noise, Ruchlin's 
computation was carried out for a fiat power 
spectrum of bandwidthfx and centre frequencyf~. 

As will be shown, for a given noise spectrum 
with centre frequency f~, the deviation from the 
law y a r N =  l /N,  where varN denotes the 
normalised variance of the sample mean, is most 
pronounced if the value offc is equal to, or nearly 
equal to, half the stimulus frequency fs (=  l /m)  
or to multiples thereof; thus for f~ = f J2,  f~ = f~ 
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FIG. l. Examples of stimulus-interval distributions pI(T). 
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FIO. 2. Illustration ofeqn. 1 for computation of variance 
of average response var N in the case of periodic stimula- 
tion. Number of  stimuli: N = 1, 2 and 3. In Fig. 2a are 

drawn three noise autocorrelation functions. 

etc. It must be remarked, however, that low 
values of the ratio fc/fs are of limited interest to 
cerebral evoked-potential averaging, when the 
alpha rhythm is taken as the interfering noise 
(and it is, moreover, taken for granted that these 
phenomena are independent of each other). The 
alpha rhythm fc is of the order of 10 Hz. The 
stimulus-interval duration m cannot be much 
smaller than 0.5 s, as most evoked potentials 
have a duration of this order of magnitude. I f  m 
is smaller than about 0.5 s, subsequent evoked 
potentials will overlap and add linearly to each 
other, so that the initial component of the 
potential will be disturbed. In addition, there 
are indications that, for m < 0-5s, evoked 
potentials and the alpha rhythm interfere with 
each other in a nonlinear way (AREAL and 
GERIN, 1969b; SATO et al, 1971). This implies 
that mfc = fdf~ > 5. Nevertheless, if f~ is not 
stable from experiment to experiment, a fluctua- 
tion in the stimulus intervals tends to equalise 
the variances, which, as regards comparability, 
is a desirable feature. 

The aim of the present communication is to 
clarify the foregoing comments and statements, 
and to elaborate the pertinent theory not only 
from mf~ = n, n being a whole number, but also 
for mfc being a fractional number, including 
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mfc = n +�89 Such an at tempt may be helpful if 
one wants to decide whether the potential profits 
of  aperiodic stimulation, in comparison with 
purely periodic stimulation, counterbalance the 
effort that must be made to obtain special 
stimulus conditions and to counteract the quality 
of  high-precision devices. For the noise-power 
spectrum we have not taken a spectrum that is 
flat over a rangefx and zero elsewhere, but spectra 
tha t  are more realistic, at least as regards spectra 
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FIG. 3. Illustration of eqn. 2 for computation of variance 
of average response var N in the case of aperiodic 
stimulation. Number of stimuli: N = 1, 2 and 3. In 
Fig. 3a two noise autocorrelation functions are drawn. 

of  biological origin. In terms of  their auto- 
correlation functions 

r (z) = exp (-~1~1) cos (2nfc'c) 
and 

r = exp ( -~2zz/2)  cos (2rcf~z), 

will be investigated. The stimulus-interval 
distribution is also different f rom Ruchlin's; it is 

a Gaussian distribution p~(z), with mean m and 
variance a~2; it is shown in Fig. lc. In practice, 
the latter distribution is probably easier to 
obtain f rom a wideband noise generator in 
combination with a relaxation oscillator. 

Both modifications, the shape of the noise 
spectrum and the shape of the interstimulus 
interval, are inviting f rom a theoretical point of  
view, because the expressions for the variance 
of the averaged noise samples as a function of  N 
can be written in a closed mathematical form. 
Besides the Situation that mfc = 5, relevant to 
e.e.g, applications as indicated, the result for 
rnfc being about  unity has also been treated, 
mainly because, under these circumstances, 
pecularities come to light which so far had not 
been reported: y a r n  of the noise samples does 
not always decrease monotonically with increas- 
ing N. 

Up to now it has been tacitly assumed that the 
aperiodicity in stimulation is of  the renewal 
type; that is, the durations of  successive intervals 
are independent of  each other. We have taken 
the opportuni ty  to investigate the outcome if 
this is not so, and when the interval durations are 
correlated with each other according to the 
Markov process. Here, again, we may conveni- 
ently use a Gaussian interval distribution. 

THEORY 

According to LEE (1960), the normalised 
variance of  N sample amplitudes relative to the 
value for N = 1, for a fixed sample-time interval, 
is equal to 

/ } v a r g = N  - t  1 + 2  ~ (1-k/g)q~(km) (1) 
k = l  

where ~b(z) is the normalised autocorrelation 
function of  the noise, qS(0) = 1 and ~b(oo) = 0. 

This formula can be generalised when the 
sampling time interval is not constant. I f  the 
sampling-interval durations are stochastical 
distributed with a probability-density function 
pl('c) with mean m and variance el 2, and with a 
probability-density function of the duration of  
the sum of k successive intervals Pk('O with 
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variance O'k 2, the normalised variance is equal to 

N - I  
v a r N = N - ~  1+ E ( I - k / N )  

k=l  
oO 

(2) 

where pk(z) = p k ( - z )  for z < 0. 
I f  the interval durations are independent o f  

each other, it follows that 

,r 

I" Pk-~(t)Pa(Z-t)  dt for k />  2. pk ('C) 
! 

o 

For  regular stimulation, pk('C) degenerates to a 
delta function: pk(Z) = fi(km). 

To fix ideas, the expression in brackets in 
eqn. 1 is shown in Fig. 2 for N = 1, 2 and 3, and 
for z > 0. V a r N  is equal to the weighted sum 
of  the values of  qS(z) at -c = 0, m and 2m. For  

N 
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FIG. 4. Normalised variance of average response x, ar N for noise autocorrelation function 

~1(~) = exp (-~1~1) cos 2,,f,~. 
In Figs. 4a, b and c, the value of ~]f~ increases from 0' 314/4 to 0' 314/2 and 0. 314. Inset numbers 

refer to the value of mf~ Periodic stimulation with interval duration m. 
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FIG. 5. As Fig. 4 for aperiodic stimulation, viz. Oaussian-distributed stimulus-interval durations 
with mean m and standard deviation ~rl; ,J1/m = 0.15. 
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qS(z) = exp ( - a z ) ,  cf: curves (i) and (ii), one has, 
respectively, for  the said values of  N, 

v a r N =  1, {1 +2.-} exp ( -  c~m)}/2 
and 

{ 1 + 2.2/3 exp ( -  0~m) + 2.1/3 exp ( -  2era)}/3. 
I f  0~ is smaller than  1/m, cf. curve (i), y a r N  will 
be larger than  if the reverse holds. I f  e is much  
larger than  1/m, cf. curve (ii), the expressions in 
brackets  are nearly equal to unity. Fo r  band-  
filtered Gauss ian  noise, cf. curve (iii), the higher- 
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G a u s s i a n - M a r k o v  process, it fol lows tha t  
(00k/001)  2 = k + 2 p ( p k - k p + k  - 1) (1 _p)-2. The  
dashed curves in Fig. 3d are valid for  p = + 0 . 5  
a n d p  < - 0 . 5 ,  so t ha t a2  2 = 300z2 and  002 2 = 001 2. 

Fo r  ease of  computa t ion ,  and wi thout  loss o f  
generality, we have assumed in the following tha t  
300~ + m. A more  severe restriction on 00~ is set 
by the requirement  tha t  the observat ion  t ime 
of  the evoked potential ,  which m a y  be set equal  
to m-300~, shall not  be much  smaller than  m, 
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FIG. 6. Normalised variance of average response vat N. In Fig. 6a, the noise autocorrelation 
= ffl(r) = exp (-~1~1) cos 2~f~, and in Fig. 6b 

ff2(r) = exp ( -  ~2~'2/2) cos 2,~f~-; in both cases =/fc = 0"314. Inset numbers refer to the value 
of mfc. Open circles for o~/m = 0, solid circles for ,rl/m = 0'15. 

order  cont r ibut ion  to v a r N  is negative, though  
not  much  so in the underlying case. 

Fig. 3 is intended to clarify eqn. 2, which again 
applies to N = 1, 2 and 3. The solid curve in 
Fig. 3a represents q~l(z), the dashed curve ~b2(z), 
bo th  with a = 0.314fc. For  pz(z) one writes 
Pl (z) = exp { -  (m- 'c)z/(2a12)} (001x/2n)- 1. I t  
has been taken tha t  tr I = 0 .15m and m = 1/fc. 
The distr ibution p2(z) has a similar shape with 
mean  2m and variance 0"2 2. I f  the intervals are 
independent  o f  each other, then o02 2 = 2o'2 2. I f  
the intervals are distr ibuted according to a 

i.e. the t ime period available for  per iodic  
stimulation�9 

Expressions for  variance m a y  be given, i f  
required, in the f requency domain ,  by  substi tut-  
ing 

c o  

~b(f) = I ~b(z) exp ( -2n j f l )  dz 
l 

- - c o  

and 
o O  

Pk(f) = f pk(z) exp (2njfv) dz 
- - o 0  
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Then the normal ised variance equals 

var  N = N -  1 l + (1 - k/N) 
k=l 

- | ( 3 )  

For  mutual ly  independent  interval durat ions,  
one inserts P k ( f ) =  P1k(f). Substi tuting 

~bx(z ) = exp ( - a l ~ l )  cos (2rcfc-c) 

and 

pk('C) = exp{ -- (kin - "C)2/(20-k2))(0-kx/(27~)- 1 

in eqn. 2, or  

tk(f) = 2a{(2rcf) 2 + a  2 + (27rf~) 2} 

• [{(27rj)2 _ a2 _ (2~zf~)2}2 + 4ct2(2rcf)2]- 1 

and  

Pk(f) = 2 exp ( - -  271:2f20"k 2) COS (2nfkrn) 

in eqn. 3 yields 

I N-1 
v a r N =  N -1 1 +2 k_~ 1 (1 --k/N) cos (2rCfcmk') 

exp{-- 4rc2f~20"k2/2 -- akin + a20"k2/2}] 

where m k' ---- kin-a0-k 2, and provided mk' > 30-k 

With q52(0 -~ exp ( - a 2 z 2 / 2 )  cos (2rcf~z), or 

~b(J) = x/(n/2) ~-  l{exp - 2 ~ 2 ( I f l - - f c )  2 a -2} 

one finds 

I /V-1 
var  N = N -  1 ! +  2k~1 (1 -- k/N) (1 + a20-k 2)-~ 

x cos (2~f~mk") exp {-- (2~2f~Z0-kZ 

+ akin~2) (1 + a20-k 2) - 1}[ 
where .1 
ink" = km(1 +e20-k2)-I provided ink" > 30-k. 

R E S U L T S  

Figs. 4 and 5 show, on a double- logar i thmic 
Scale, the relat ionship between the normal ised 
variance,  shortened to var  N, as a funct ion of  the 

number  of  s t imulat ions N. The  noise has a 
correlat ion funct ion r with c~/fc = 0.314/4, 
0-314/2 and 0.314 in this order,  f rom left to 
right. This amoun t s  to a bandwidth ,  defined as 
the f requency range at hal f  the m a x i m u m  value 
in the power  spectrum, of  approx imate ly  
fx/fc = 0.1/4, 0.1/2 and 0.1, respectively. The  
latter two values compare  roughly to  the band-  
width o f  the a lpha  rhythm.  Note  tha t  the 
max imum-va lue  frequency in the power  spec t rum 
does not  coincide exactly with fc, but  is a few 
per  cent smaller  at  the values of  a used. 

The results for  regular  st imulation,  with 
a 1 = 0, are compu ted  and they are shown in 
Figs. 4a, b and c, and those for  Gauss ian-  
dis t r ibuted intervals with al/rn = 0" 15 are shown 
in Figs. 5a, b and  c, for  m = 5/fc (upper  set o f  
points),  m = 4.8/f~ and m = 4.5/f~ (lower set o f  
points). I f  f~ = 10Hz,  this corresponds  to 
st imulation frequencies fs = 2, 2a~- and 
2 ~ Hz. I t  will be observed tha t  a considerable 
difference exists in the values of  the var iance for  
m = 5/f~ and m = 4.5/f~, and this the more  so 
when the noise is nar rower  in bandwid th  (a 
smaller). Fo r  o- 1 = 0, the asymptotes  for  large 
values of  N can readily be determined f r o m  the 
expression 

v a r N  = N - 1 {  exp ( 2 a m ) -  1} {exp (2am) 

- 2  exp (am) cos (2nf~rn)+ 1} -1 

In  Fig. 4, these have been drawn for  mfc = 4.5 
and  5. 

F r o m  the above  formulas  for  the asymptotes ,  
it follows that,  for  a 1 = 0, y a r N  converges to 
I /N when the noise becomes b roade r  in band-  
width (a larger). F o r  a x ~ 0, the same conclu- 
sion would seem to hold at  first sight, bu t  on 
second thoughts  this is not  true. This  cannot  be 
deduced f rom the formulas  given so far  because 
these are valid for  kmk--aak 2 > 3o'1. Fo r  large 
values of  a, the autocorre la t ion  is practical ly 
equal  to qS(z)= exp ( - a z ) .  F r o m  eqn. 2, one 
finds tha t  

var  N = N -  1{ 1 + 2 (1 - 1/_IV) exp ( - am + a 2 0"2 ~/2) 

+ 2  ( 1 - 2 I N )  exp ( - 2 a m + 2 a 2 0 " 1 2 / 2 ) +  ...} 
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Since each term in this expression is equal to, 
or larger than, the corresponding terms in the 
similar expression with a~ = 0, for very broad- 
band noise the variance is larger in the case of  
aperiodic stimulation than for periodic stimula- 
tion, whatever the values of  N or mfc. The 
intriguing question remains whether this state- 
ment may be generalised to other than Gaussian- 
distributed interstimulus intervals. 

For  mfc = 4-5, the normalised variance, as a 
function of N, does not change as smoothly as 
for mf~ = 5, especially for small e, small a t  and 
small N values. The effect becomes obscured 
when the numerical values of  these parameters 
increase. The phenomenon is very pronounced 
for mf~ = 0.5. This is shown in Fig. 6 for 
a~/m = 0 (open circles) and al/m = 0.15 (solid 
circles); the upper points refer to mf~ = 1 and 
the lower points to mf~ = 0"5. Fig. 6a holds for 
an autocorrelation function ~bl(z ) and Fig. 6b 
for ~2(z), both with ct/f~ = 0.314, so that the 
power spectra have nearly the same bandwidth 
fx = 0-1 ft. The remarkable conclusion is that, 
under certain conditions, it is profitable, with 
regard to the variance, to utilise N samples 
instead of N + 1 samples. 

I f  the stimulation intervals are not distributed 
according to renewal process, functions pk('C) for 
k ~> 2 are not determined solely by pl(z) but also 
by the nature of  the interdependence of successive 
interval durations. Computat ions have been 
carried out for r with c~/fc = 0.314 and 
stimulus-interval durations following a Gaus- 
s ian-Markov process with parameter  p. The 
influence of p is more evident with smaller values 
ofct and a. Fig. 7 shows the results for p = - 0 . 5  
(open circles), p = +0 .5  (solid circles) and 
al/m = 0.5. In Fig. 7a, the lower pair of  figures 
holds for mf~ = 0.5 a n d  the upper pair for 
rnfc = 1. Fig. 7b holds for rnf~ = 0.9, and Fig. 
7c for rnf~ = 1.2. For  p = 0, the values for the 
normalised variance are for any N situated 
between the two given sets of points. 

The effect of  correlation is relatively small, 
and will not be discussed further. Moreover,  
positive correlation sometimes results in a 
smaller variance than negative correlation; at 
other times the reverse holds. 

DISCUSSION 

Throughout this paper, we have assumed that 
the response wave is deterministic, and that the 
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FIG. 7. Normalised variance of average response var N, for aperiodic stimulation with ~t/m = 0" 15; 
stimulus interval durations correlated according to a Gaussian-Markov process with p = +0-5(open 

circles) and p = - 0.5 (solid circles). Inset numbers refer to the value of mf~. 
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stationary background noise is additive to, and 
not time-locked to, the response. Each of these 
assumptions is open to doubt. I f  the response is 
nondeterministic, and if its random aspects are 
uncorrelated with the noise, then the total 
variance of the average response is equal to the 
sum of the variances caused by each of these 
sources of randomness. BARrow (1967) has 
carried out electronic simulations of the phenom- 
enon of rhythmic after-discharge in the e.e.g. 
induced by photic stimulation, and he has 
investigated the influence of variable amplitude, 
latency, and a combination of both, in the 
evokedresponse. Further, a nonlinear interaction 
between the photically evoked response and the 
background activity was indicated. The influ- 
ence of nonstationary noise is, in general, 
difficult to assess. Examples of nonstationary 
noise with regard to average-response computa- 
tion have been given by BENOAT (1964). 

In the computations, some properties of the 
alpha rhythm have been inserted for those of the 
interfering noise. The autocorrelation function 
of the alpha rhythm is mostly of a damped 
oscillatory type, and is often expressed as 
q~l(z) = exp (-0~z) cos 2ztf~.r, Although this 
rhythmicity has been subjected extensively to 
quantitative analysis, proper values for a are not 
easy to obtain from the literature. 

SATO (1957) deduced from an occipital e.e.g. 
of  a normal adult, that a = 12.17 rad/s, or 

= 12.17/(2z 0 = 1.93 Hz. For fc = 10Hz one 
has a/f~ = 0.193. WEISS (1959) has compared 
the e.e.g, with bandlimited noise and inserted in 
the above formula for the autocorrelation 
function a/f~ = 0.175. DA~qmL (1965) carried 
out measurements on the autocorrelogram of 
1 rain recordings from the occipital lobe. From 
his synchronisation ratio, one arrives at values 
for a/fr ranging from 0.25 to 0.40, in the eyes- 
dosed condition. Recently, WENNBERG and 
ZETrE~ERO (1971) studied quantitatively the 
shape of the autocorrelation functions of the 
e.e.g, which were thought to be composed of 
more than one component. As far as the alpha 
rhythm in the two occipital leads is concerned, 
one derives from their table for ~/f~ (in our 

nomenclature) values of 0.22 to 0.30. These 
values are of the same order of magnitude as 
those used by us. It implies that the autocorrela- 
tion function, after a delay equal to about five 
periods, has diminished to roughly half of the 
maximum value at zero delay. Similar pictures 
result if one simulates the normal e.e.g, as the 
output of a tuned circuit fed by randomly 
occurring pulses as input (BARLOW, 1962). 

From the results, it can be deduced that, for 
given noise characteristics (0~ and fc) and a given 
stimulus frequency, the introduction of a 
fluctuation (~r~) in the stimulus-interval duration 
has the same effect on the variance of  the average 
as if one were using regular stimulation, while 
the noise would have a more broadband power 
spectrum. This was also found experimentally 
by ARNAL and GEgIN (1969a) for both the alpha 
rhythm and an electronically simulated version 
of it. 

To be more specific, if the stimulus frequency 
fs is such that fJfs is approximately equal to a 
whole number n, on increasing the degree of 
fluctuation, the variance of the average decreases 
towards the value of l/N, when N is the number 
of stimuli presented. This has also been derived 
by RUCHLI~r (1965) for other stimulus-interval 
distributions and for a different noise-power 
spectrum. Therefore, under these circumstances, 
aperiodicity in the stimulus-sequence presenta- 
tion is advantageous. The value of this depends 
on the parameter values proper. However, if 
fdf ,  is equal to about n +�89 the variance of the 
average tends to increase towards the value 
I/N; aperiodicity worsens the result. 

When the noise parameters 0~ and f ,  and the 
stimulation frequency f~ are such that it is 
possible to approximate to the condition 
var N = 1IN through the application of aperiodic 
stimulation and at the expense of  a shorter 
effective observation time for the response wave, 
it is still not self-evidently advisable to use such a 
procedure of stimulation. 

I f  the condition that mf~ = n+�89 can be 
achieved, the variance can be diminished in an 
easier way. For instance, if fc---10Hz,  an 
interstimulus interval of rn = 1.05 or 0.95 s will 
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make va r N  smaller than l/N, the value that, 
with the same mean interval duration, may 
ultimately be achieved for highly aperiodic 
stimulation. 

The influence of aperiodicity on the variance 
largely depends on the value of ~, for a given 
ratio offs and ft. It  may be asked how far these 
statements are relevant to average-response 
computation when the alpha rhythm stands for 
the disturbing noise component. In this respect, 
the outcome is fairly negative. Taking the 
parameter values as in Figs. 4c and 5c, 
c~/fc = 0.314, f~ = 10Hz and fs = 2 .0Hz  
(mf~ = 5), then f o r N  = 10 and trl/m = 0.15, the 
variance amounts to a value that is only 16~  
smaller in comparison with strictly periodic 
stimulation, where ~rl/m = 0. Similarly, for 
f~ = 2"2Hz (mf~= 4-5), the variance is 17~o 
larger than for crl/m = 0. For larger values 
of  N and slower stimulation frequencies, the 
percentages become even smaller. Only in the 
case of  noise with a very narrow power spectrum 
does aperiodic stimulation have real advantages. 
The alpha rhythm would seem to possess such a 
degree of irregularity that the reduction in 
observation time of the response wave and the 
requisites of unusual stimulation procedures are 
hardly outweighed by the eventual advantages. 

A similar statement has been reached by 
KITSAOO and HATSUDA (1965) when they reported 
and discussed experiments to determine the 
degree of contamination of the average response 
with alpha waves and the factors influencing the 
degree of contamination. Artificial signals, with 
the same amplitude and zero-crossings distribu- 
tion as an e.e.g, filtered through an alpha band- 
pass filter, obtained by manually changing the 
frequency of an oscillator, were summed. 
Because the amplitude of  the summed waves 
increased in the same way as sine waves if 
summed aperiodically, it was concluded that the 
frequency of  ordinary alpha waves is random 
enough to be treated in the same manner as sine 
waves summed with random phase differences. 

A direct application of  the theory has been 
demonstrated by BALL et al. (1971), in an 
attempt to determine sensory-conduction veloci- 

ties by using evoked somatosensory responses 
recorded through the intact scalp as the latency 
indicators after stimulation of  nerves in the 
periphery at distal and proximal points. These 
authors pointed out that, since the stimulus pulse 
from the computer was locked to the 60Hz 
mains frequency, any 60 Hz artefact time-locked 
with the stimulus appeared as a signal, not as 
noise. To overcome this, the computer program 
randomly varied the 2 s triggering interval of  the 
stimulation by ___8.33 ms, a range equal to the 
period of a 60 Hz frequency. The stimulus thus 
lost its time-lock to that frequency, and this 
artefact was averaged out. 

Variation in the stimulation period has also 
been utilised in a slightly different context by 
MARSONER and TATSUNO (1970) in a study on 
evoked potentials triggered by a certain compon- 
ent of the background activity. In their setup, 
the sweep of the averager for evoked potentials 
is triggered when the alpha component of  the 
e.e.g, rises above a certain level. In this case, the 
averaging cycle is phase-locked to the alpha 
wave, thus essentially influencing the result. For  
this reason, these authors use a random trigger 
delay between an alpha wave with sufficient 
amplitude and the triggering of  the summation 
period. 
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A S P E C T S  D U  C A L C U L  D U  P O T E N T I E L  E V O Q U E  M O Y E N  
P A R  S T I M U L A T I O N  A P E R I O D I C  

Sommaire--Une analyse math6matique de la variance du potential 6voqu6 moyen comme 
fonction du nombre de stimulations pr6sent6es, N, est d6riv6e, sous condition que la r6ponse 
soit perturb6e additivement par bruit de fond stationnaire. On compare la variance en cas de 
stimulation strictement p6riodique, et en case de stimulation al~atoire, c'est h dire, si les 
intervalles entre les stimulations varient selon une distribution Gaussienne. En outre, les 
intervalles peuvent ~tre corr616s mutuellement, par example conform6ment un processus 
Markov-Gaussien. I1 est d6duit que par l'introduction d'une stimulation ap6riodique, en 
g~n6ral, la relation entre la variance et N s'incline vers le cas d'un bruit de spectre h large bande, 
donc la variance ~tant proportionale h 1/N. 

A S P E K T E  D E R  M I T T E L U N G  V O N  E V O Z I E R T E N  
R E A K T I O N S - P O T E N T I A L E  B E I  A P E R I O D I S C H E R  S T I M U L A T I O N  

Zusammenfassung--Eine mathematische Analyse der Varianz des gemittelten evozierten 
Reaktions-potentiales als Funktion der Anzahl von angebotene Reize N wird dargestellt, unter 
der Voraussetzung dass der evozierte Potential von additiven station~iren Rauschen gest6rt 
wird. Es werden verglichen die Varianz wenn die Reize rein periodisch erfolgen und wenn die 
Zeitintervalle zwischen Reize normal verteilte Schwankungen unterworfen sind. Im letzten 
Falle diirfen die Zeitintervalle wechselseitig korreliert sein, z.B. gem~iss einem Gausschen 
Markov Prozess. Es wird gezeigt dass im Allgemeinen bei der Einfiihrung von aperiodische 
Reizfolgen das Funktionalverband zwischen Varianz und N sich dem Falle zustrebt wenn 
Rauschen mit breitbandigem Leistungsspektrum vorliegt, wobei also die Varianz proportional 
zu 1/N ist. 


