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1 Introduction

In the past few years, there has been growing interest in finding a low energy effective theory

for multiple M5-branes in M theory [1]–[43]. One of the many approaches to the problem

is to consider M5-branes compactified on a circle of finite radius R. (In the end, you

can take the decompactification limit R → ∞ for the uncompactified theory.) Via double

dimensional reduction, when R→ 0, M5-branes become D4-branes, which are described by
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the 5-dimensional super Yang-Mills theory. This duality serves as an important constraint

on the model for multiple M5-branes.

At the same time, a model of multiple M5-branes should admit the configurations in

which all M5-branes are well separated from each other so that they are all decoupled. In

this limit, the model should be described by multiple copies of the single M5-brane effective

theory, which has a well-known Lagrangian [44–47] with an Abelian gauge symmetry (with

or without compactification). This is another important constraint on the multiple M5-

brane theory.

In addition, the world-volume theory of M5-branes is expected to have the (2, 0)-

superconformal symmetry in 6 dimensions. Although it is possible that only part of

the supersymmetry is manifest in a Lagrangian formulation [14, 15, 24, 30], the same

field content (more precisely the dynamical degrees of freedom) should agree with that of

the (2, 0)-theory.

In our opinion, the most important feature of M5-branes is the gauge symmetry of

a 2-form gauge potential. While the Abelian theory for such a gauge symmetry is well

understood both in physics and mathematics [48], the non-Abelian counterpart is rather

mysterious. In mathematics, there is still no consensus about the precise definition of non-

Abelian gerbes [49, 50]. In physics, the construction of a satisfactory theory for non-Abelian

2-form gauge potential is usually obstructed by various no-go theorems [1–3, 19, 51–53].1

A crucial difference between the ordinary gauge symmetry for 1-form potentials and that

for 2-form potentials is that the latter has a redundancy in the gauge transformation laws.

How to non-Abelianize the gauge symmetry without losing this “gauge symmetry of gauge

symmetry” is the key issue of the problem in order to have the correct number of degrees of

freedom. This is perhaps directly connected to the core of the mysteries about M5-branes,

which offer an opportunity to guide us to significantly expand our understanding of the

notion of gauge symmetry.

In fact, there is already a non-Abelian gauge theory for a 2-form potential. It is the

effective theory for a single M5-brane in the background of large C-field [56–58]. The

non-Abelian algebra is characterized by the Nambu-Poisson bracket as a result of the C-

field background.

In previous works [12, 26, 27], a model was proposed for the gauge field degrees of

freedom in a system of multiple M5-branes. Its 6-dimensional base space is compactified

on a circle of finite radius R, and it satisfies the following criteria:

1. When KK modes are removed on dimensional reduction, it reduces to the Yang-Mills

theory, the gauge field sector of multiple D4-branes.

2. When the gauge group U(N) is replaced by U(1)N , it reduces to decoupled multiple

copies of the 6D self-dual gauge theory.

1See also [54, 55] as a different class of applications of 2-form gauge theory in physics so that the no-go

theorems are not relevant.
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3. It has a consistent non-Abelian gauge symmetry algebra2 for a self-dual 2-form po-

tential in 6 dimensions, without any excessive physical degrees of freedom (such as

an extra 1-form potential).

This proposal [12, 26, 27] stands out as the only existing model that has been shown to

satisfy all three criteria above. However, it misses the ingredients of matter fields and

supersymmetry. One of the purposes of this paper is to show that an existing proposal [30]

of the supersymmetric theory for multiple M5-branes3 can be viewed as the gauge-fixed

version of the supersymmetrization of this non-Abelian self-dual gauge theory. It has

the right field content, although only part of the (2, 0)-supersymmetry is manifest. With

SUSY, one may proceed to study various aspects of the system in more detail, such as

supersymmetric classical configurations, which are the other focus of the paper.

The plan of the paper is as follows. We review and elaborate on the non-Abelian

2-form gauge theory [12, 26, 27] in section 2. We show that there are infinitely many

conserved charges associated with the translation symmetry in the compactified direction.

In section 3 we extend the supersymmetry algebra proposed in ref. [30] to a larger algebra

that closes on the gauge transformation, so that the former can be viewed as the gauge-

fixed version of the latter. In section 4, we construct BPS configurations which involve

KK modes, including those describing M2-branes lying along a non-compactified direction

with non-trivial distribution in the compactified direction. We take the large R limit of

these BPS solutions and evaluate their behavior. We also find BPS states corresponding

to M-waves, that is, propagating waves in the compactified direction. In section 5, we

point out that supersymmetric gauge theories can be defined for more general set-up of

non-Abelian gerbes in 4+1 dimensions [27]. Finally, in section 6, we comment on other

approaches to multiple M5-branes and conclude.

2 Non-Abelian 2-form gauge theory

In this section, we review the gauge symmetry and action for the non-Abelian self-dual

gauge field proposed in refs. [12, 26, 27]. We will also analyze the theory in more detail,

giving expressions for the Hamiltonian, Poisson brackets and conserved charges. An inter-

esting feature of the theory is that there are infinitely many conserved charges, as a result

of the property that all KK modes interact only through zero modes.

2.1 The non-Abelian gauge symmetry

The base space of the theory is R5×S1. The coordinates xµ (µ = 0, 1, 2, 3, 4) are used for R5

and x5 for S1. Naturally, the 2-form potential BMN (M,N = 0, 1, 2, 3, 4, 5) is decomposed

into two sets of components Bµ5 and Bµν . It is also natural to decompose all fields into

2The gauge transformation should be parameterized by a 1-form in the adjoint representation of the

gauge group, with a redundancy parametrized by a 0-form.
3The theory of [30] is derived from the framework of supersymmetric theories developed in a series of

works [59–65].
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zero modes and Kaluza-Klein (KK) modes as4

Φ = Φ(0) + Φ(KK). (2.1)

The gauge potential BMN and gauge transformation parameter ΛM take values in

a non-Abelian Lie algebra. It should be u(N) for N M5-branes in flat spacetime. We

identify the Wilson loop (zero mode) of the one-form gauge parameter ΛM as a 0-form

gauge parameter λ

λ ≡ 2πRΛ
(0)
5 =

∮
dx5 Λ5, (2.2)

which is independent of x5. With respect to this 5D gauge parameter λ, we shall treat the

zero mode of Bµ5 as the corresponding 5D 1-form potential Aµ.

The non-Abelian gauge transformation law for the 2-form potential is defined by [12]5

δBµ5 = [Dµ,Λ5]− ∂5Λµ +
[
B

(KK)
µ5 , λ

]
, (2.3)

δBµν = [Dµ,Λν ]− [Dν ,Λµ] + [Bµν , λ]−
[
Fµν , ∂

−1
5 Λ

(KK)
5

]
, (2.4)

where the 5-dimensional covariant derivative and field strength are

Dµ = ∂µ +Aµ, (2.5)

Fµν = [Dµ, Dν ], (2.6)

with the gauge potential Aµ identified with the zero mode of Bµ5 through the relation

Aµ ≡ 2πRB
(0)
µ5 =

∮
dx5 Bµ5. (2.7)

The coefficient 2πR shows up from the relation between the field theories on M5 and D4

and may be interpreted as the coupling constant g on D4 [12]. The appearance of ∂−1
5

in (2.4) is needed for a closed gauge symmetry algebra.

More explicitly, the transformation laws (2.3), (2.4) can be decomposed into zero modes

and KK modes as [12]

δAµ = [Dµ, λ], (2.8)

δB
(KK)
µ5 =

[
Dµ,Λ

(KK)
5

]
− ∂5Λ(KK)

µ +
[
B

(KK)
µ5 , λ

]
, (2.9)

δB(0)
µν =

[
Dµ,Λ

(0)
ν

]
−
[
Dν ,Λ

(0)
µ

]
+
[
B(0)
µν , λ

]
, (2.10)

δB(KK)
µν =

[
Dµ,Λ

(KK)
ν

]
−
[
Dν ,Λ

(KK)
µ

]
+
[
B(KK)
µν , λ

]
−
[
Fµν , ∂

−1
5 Λ

(KK)
5

]
. (2.11)

This gauge symmetry algebra is closed. It is [12]

[δ, δ′] = δ′′ (2.12)

4In fact, a quantity only has to be periodic up to a gauge transformation, so the decomposition of a field

into zero modes and KK modes as in (2.1) is not always possible. We will comment on twisted boundary

conditions in section 2.1.1.
5Fµν here is different from the Fµν in ref. [12] by an overall factor of 2πR.
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with the corresponding gauge parameters related via the following relations:

λ′′ = [λ, λ′], (2.13)

Λ′′5
(KK)

=
[
λ,Λ′5

(KK)
]
−
[
λ′,Λ

(KK)
5

]
, (2.14)

Λ′′µ = [λ,Λ′µ]− [λ′,Λµ]. (2.15)

As the case of Abelian gauge symmetry for 2-form potentials, there is a redundancy

in using Λµ and Λ5 to parametrize the non-Abelian gauge transformations defined above.

The gauge transformation is unchanged when Λµ and Λ5 are changed by

δΛ(KK)
µ =

[
Dµ, ξ

(KK)
]
, δΛ

(KK)
5 = ∂5ξ

(KK) (2.16)

for an arbitrary function ξ(KK) that has no zero mode. Note that Λ
(0)
5 (equivalently λ) is

not transformed because it is the Wilson-loop degree of freedom of the gauge parameters.

This topological nature of λ is the qualification of its special role in the gauge transforma-

tion laws.

The field strength HMNP is defined by [12]

Hµν5 =
1

2πR
Fµν + ∂5Bµν +

[
Dµ, B

(KK)
ν5

]
−
[
Dν , B

(KK)
µ5

]
, (2.17)

H(KK)
µνκ =

[
Dµ, B

(KK)
νκ

]
+
[
Dν , B

(KK)
κµ

]
+
[
Dκ, B

(KK)
µν

]
+
[
Fµν , ∂

−1
5 B

(KK)
κ5

]
+
[
Fνκ, ∂

−1
5 B

(KK)
µ5

]
+
[
Fκµ, ∂

−1
5 B

(KK)
ν5

]
. (2.18)

In terms of the zero modes and KK modes, eq. (2.17) is equivalent to

H
(0)
µν5 =

1

2πR
Fµν , (2.19)

H
(KK)
µν5 = ∂5Bµν +

[
Dµ, B

(KK)
ν5

]
−
[
Dν , B

(KK)
µ5

]
. (2.20)

All the components of the field strength H defined above transform covariantly in

the form

δΦ = [Φ, λ]. (2.21)

Although the definition of the component H
(0)
µνκ is missing, luckily, in the self-dual gauge

theory, we can completely ignore H
(0)
µνκ by focusing on its Hodge dual H

(0)
µν5 [12], which is

essentially the ordinary Yang-Mills field strength Fµν in 5 dimensions. The self-duality

condition for the zero modes is replaced by the Yang-Mills equation [12].

From the definitions of the field strengths, it is straightforward to derive the Bianchi

identities [12]: ∑
(3)

[
Dµ, H

(0)
νκ5

]
= 0, (2.22)

∑
(3)

[
Dµ, H

(KK)
νκ5

]
= ∂5H

(KK)
µνκ , (2.23)

∑
(4)

[
Dµ, H

(KK)
νκρ

]
=
∑
(4)

[
Fµν , ∂

−1
5 H

(KK)
κρ5

]
, (2.24)
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in which the 2-form potential BMN appears only through the field strength HMNP ex-

cept the zero-mode B
(0)
µ5 (or equivalently the 1-form potential Aµ). Here

∑
(3) and

∑
(4)

refer to sums over permutations to totally anti-symmetrize all of the (3 or 4) indices in

each expression.

The gauge symmetry defined above has the following properties:

1. The gauge symmetry reduces to (multiple copies of) that for the Abelian 2-form

gauge potential when the Lie algebra is Abelian.

2. The “gauge symmetry of gauge symmetry” is consistently promoted to the non-

Abelian case. That is, the gauge transformation law (2.3) and (2.4) parametrized by

Λµ,Λ5 has the redundancy (2.16).

It will be useful in computations below to define the covariant quantity

B̂µν ≡ ∂−1
5 H

(KK)
µν5 . (2.25)

While B̂µν = B
(KK)
µν in the gauge B

(KK)
µ5 = 0, the quantity B̂µν transforms covariantly

before gauge fixing. In terms of B̂µν , the field strengths can be expressed as

H
(KK)
µν5 = ∂5B̂µν , (2.26)

H(KK)
µνκ = [Dµ, B̂νκ] + [Dν , B̂κµ] + [Dκ, B̂µν ]. (2.27)

2.1.1 Comment on boundary condition

Let us recall that, in gauge theories with one-form potentials, Wilson loop arises as a new

degree of freedom when a spatial direction is compactified on a circle along x5. It can

be represented by the zero mode of the gauge potential A
(0)
5 , which behaves as a gauge-

covariant scalar. In our two-form gauge theory, the analogue of A
(0)
5 is B

(0)
µ5 , which behaves

as a one-form potential in 5D.

Furthermore, when there is a compactification of an additional circle along x4 in the

one-form gauge theory, it is possible to turn on a quantized flux on the torus of (x4, x5).

It can be described by linear terms in the potential A4, A5. Although linear terms are not

periodic functions, they are allowed because the potential only needs to be periodic up to

gauge transformations. Similarly, if we add a linear term to a periodic two-form potential

BMN as

Bµν → B′µν = Bµν + Σµν(x)x5, (2.28)

Bµ5 → B′µ5 = Bµ5, (2.29)

where Σµν is independent of x5. If Bµν is periodic, B′µν is no longer of the form (2.1) and

satisfies the twisted boundary condition

B′µν(x5 + 2πR) = B′µν(x5) + 2πRΣµν . (2.30)

It is easy to check that if the tensor Σµν satisfies the relation∑
(3)

[Dµ,Σνλ] = 0, (2.31)

– 6 –
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all components of the new 3-form field strength,

H ′µνλ = Hµνλ, H ′µν5 = Hµν5 + Σµν , (2.32)

are still periodic as the old 3-form field strength. In particular, all gauge-invariant quantities

are periodic. Incidentally, the condition (2.31) is equivalent to the Bianchi identity if Σµν

is proportional to Fµν .

By analogy, the gauge transformation parameters ΛM , λ only need to be periodic up

to the transformation (2.16).

Since the operator ∂−1
5 is well defined only when (2.1) holds, twisted boundary con-

ditions requires an extension of our formulation on the 2-form potential. We leave the

complete theory including twisted boundary conditions for future works.

As a comment related to the issue of boundary conditions, the non-Abelian self-dual

gauge theory can be equivalently reformulated by adding a linear piece to Bµν so that

Bµν ≡ B(0)
µν +

1

2πR
Fµνx

5 +B(KK)
µν (2.33)

and simplifying (2.17) by dropping the first term

Hµν5 ≡ ∂5Bµν +
[
Dµ, B

(KK)
ν5

]
−
[
Dν , B

(KK)
µ5

]
, (2.34)

while keeping all other definitions intact. The linear term in Bµν does not affect the

periodicity of the field strength H.

2.2 Lagrangian

The action for Abelian self-dual gauge fields (also called “chiral bosons”) [44, 67, 68, 70–73]

can be found in various forms in the literature. Having a non-Abelianized gauge symmetry

for 2-form potentials, one would like to construct a gauge-invariant action.

To write down a Lagrangian for self-dual gauge fields in a manifestly Lorentz-covariant

way, one needs to introduce auxiliary fields. For simplicity, one often considers non-Lorentz-

covariant expressions for Lagrangians without auxiliary fields. They can be thought of

as the gauge-fixed versions of certain Lorentz-covariant formulations. For our purpose of

describing M5-branes compactified on a circle, the compactification partially breaks Lorentz

covariance, and it is natural to pick the compactified direction x5 as a special direction

in the Lagrangian formulation, with all Lorentz symmetry in the remaining directions

(x0, x1, · · · , x4) intact.

The action considered in ref. [12] for multiple M5-branes compactified on a circle is an

extension of the Abelian version [69]

S = −
∫
d6x H̃µν5(Hµν5 − H̃µν5) (2.35)

(up to an overall normalization), where

H̃µν5 ≡ −
1

6
εµνλσρH

λσρ. (2.36)

– 7 –
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Decomposing the fields into zero modes and KK modes, we note that this action for

an Abelian 2-form potential is equivalent to

S = − 1

2πR

∫
d5x

1

4
FµνF

µν −
∫
d6x H̃µν5

(KK)

(
H

(KK)
µν5 − H̃

(KK)
µν5

)
(2.37)

by suitably integrating out H
(0)
µνκ and redefining the gauge field Aµ via (2.7). The zero mode

H
(0)
µνκ disappears from this action, but its existence is guaranteed by the Maxwell equation6

∂µFµν = 0. (2.40)

In this case, the Maxwell equation is equivalent to the self-duality condition for the

zero modes.

The action for the non-Abelian theory is then taken to be of the same form but with

an overall trace [12]

S = − 1

2πR

∫
d5x

1

4
Tr[FµνF

µν ]−
∫
d6x Tr

[
H̃µν5

(KK)

(
H

(KK)
µν5 − H̃

(KK)
µν5

)]
, (2.41)

where all the fields are Lie-algebra valued. As a generalization of the Abelian theory, the

Yang-Mills equation is by definition an equivalent expression of the self-duality condition

on the zero modes.

To show that the self-duality condition for KK modes is equivalent to the equation

of motion derived from this action, it is crucial to notice that, in addition to the gauge

symmetry for the 2-form potential (2.3) and (2.4), this theory has a new gauge symmetry

δB(KK)
µν = Φ(KK)

µν , δBµ5 = 0, (2.42)

where Φ
(KK)
µν satisfies the constraint

εµνκσρ
[
Dκ,Φ

(KK)
σρ

]
= 0. (2.43)

This gauge symmetry is responsible for establishing the 1-1 correspondence between the

equivalence classes of solutions to the equations of motion for the KK modes

εµνκσρ
[
Dκ,

(
H

(KK)
σρ5 − H̃

(KK)
σρ5

)]
= 0 (2.44)

and the self-dual configurations defined by

H
(KK)
µν5 = H̃

(KK)
µν5 . (2.45)

6The Maxwell equation implies that there exits a tensor B
(0)
µν such that

Fµν =
1

2
εµνκσρ∂

κB(0)σρ. (2.38)

One can then define H
(0)
µνκ by

H(0)
µνκ = ∂µB

(0)
νκ + ∂νB

(0)
κµ + ∂κB

(0)
µν , (2.39)

and (2.38) is of the same form as the self-duality condition for the zero modes.

– 8 –
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Analogous additional gauge symmetries also appeared in other M5-brane actions in the

literature [44–47]. It is a universal feature of the Lagrangian formulation of chiral bo-

son theories.

There are other equivalent formulations of Abelian self-dual gauge fields that one can

start with and extend it to the non-Abelian theory. In particular, another choice of the

action is

S = − 1

2π

∫
d6x Hµν5(Hµν5 − H̃µν5), (2.46)

where x5 ∈ [0, 2πR), as a small modification of the previous action (2.35). It is different

from (2.35) only in the first factor Hµν5 of the Lagrangian. We study this formulation in

more detail now.

Like the previous action, this action also enjoys an additional gauge symmetry

δBµν = Φµν , (2.47)

where Φµν is an arbitrary function independent of x5. This gauge symmetry implies that

the zero mode of Bµν is a pure gauge artifact. The equation of motion for the KK modes

derived from this new action is

∂5

(
H

(KK)
µν5 − H̃

(KK)
µν5

)
= 0, (2.48)

and it is equivalent to the self-duality condition (2.45). The advantage of this choice is

that the equivalence between equations of motion and self-duality condition is particularly

simple. It is also very easy to check that the action (2.46) reduces directly to

S = − 1

2πR

∫
d5x

1

4
FµνF

µν −
∫
d6x Hµν5

(KK)

(
H

(KK)
µν5 − H̃

(KK)
µν5

)
, (2.49)

without having to use the gauge symmetry (2.47) or integrating out any field.

The non-Abelian counterpart of (2.49) is

S = − 1

2πR

∫
d5x

1

4
Tr[FµνF

µν ]−
∫
d6x Tr

[
Hµν5

(KK)

(
H

(KK)
µν5 − H̃

(KK)
µν5

)]
. (2.50)

Since the solutions to the equations of motion can be matched with self-dual configurations,

this Lagrangian is equivalent to the previous Lagrangian (2.41) at the classical level. It is

not clear how they may be related to each other at the quantum level. In general, there

are many classically equivalent Lagrangians for a self-dual gauge field [70, 72, 73]. It will

be interesting to investigate the quantum theories for these actions.

2.3 Canonical formulation

In this subsection, we provide basics of the Lagrangian and Hamiltonian formulations of

the theory.

Let us repeat the Lagrangian (2.50) here for convenience of the reader:

S = − 1

2πR

∫
d5x

1

4
Tr[FµνF

µν ]−
∫
d6x Tr

[
Hµν5

(KK)

(
H

(KK)
µν5 − H̃

(KK)
µν5

)]
. (2.51)
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When the gauge-fixing condition

B
(KK)
µ5 = 0 (2.52)

is imposed, this action is identical to the gauge field part of the supersymmetric action

proposed in ref. [30].

2.3.1 Equation of motion

Note that B
(KK)
µ5 appears in the action only through B̂µν (2.25). In terms of Aµ and B̂µν ,

the action (2.51) is

S = − 1

2πR

∫
d5x

1

4
Tr[FµνFµν ]−

∫
d6x Tr

[
∂5B̂

µν

(
∂5B̂µν +

1

2
εµνκσρ[D

κ, B̂σρ]

)]
. (2.53)

The equation of motion for the KK modes B̂µν is

∂5

(
∂5B̂µν +

1

2
εµνκσρ[D

κ, B̂σρ]

)
= 0. (2.54)

It is equivalent to

∂5B̂µν +
1

2
εµνκσρ[D

κ, B̂σρ] = 0, (2.55)

as ∂−1
5 is well defined on KK modes.

The equation of motion for the zero modes Aµ is

1

2πR
[Dν , F

µν ] +
1

2

∮
dx5 εµνκσρ[∂5B̂νκ, B̂σρ] = 0. (2.56)

This is of the form of the Yang-Mills equation with a source term. It reduces to the pure

Yang-Mills equation when KK modes vanish.

2.3.2 Hamiltonian formulation

In the Lagrangian as well as the equations of motion, the KK modes of Bµν and Bµ5 are

encoded in B̂µν , and the zero modes are present in terms of Aµ. All physical gauge degrees

of freedom in the theory reside completely in B̂µν and Aµ.

As there is no time-derivative terms of the temporal components A0 and B̂0i (i, j =

1, 2, 3, 4) in the Lagrangian (2.51), they are Lagrange multipliers. The corresponding con-

straints are

H
(KK)
0i5 = H̃

(KK)
0i5 (2.57)

for B̂
(KK)
0i (i, j = 1, 2, 3, 4), and a modified Gauss’ law for A0. As the canonical formulation

of Yang-Mills theory is well known, we will focus our attention on the KK modes.

The BRST anti-field formulation of the theory was already given in [26]. Here we

provide a simpler, more elementary Hamiltonian formulation. To describe the Hamilto-

nian formulation for the KK modes, we first solve the constraints (2.57), which determine

uniquely the values of the Lagrange multipliers

B̂0i = −1

6
εijkl∂

−1
5 Hjkl

(KK) (2.58)
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in term of the dynamical fields B̂ij . We can thus replace B̂0i everywhere in the Lagrangian

by this expression, so that the only dynamical fields of the KK modes are B̂ij .

As there is no more unsolved constraints, we can define the conjugate momentum of

B̂ij simply as

Π̂ij ≡
δS

δ∂0B̂ij
= −1

2
εijklH

kl5
(KK). (2.59)

Denoting the Fourier modes of a field Φ

Φ =
∑
n∈Z

Φ(n)e−inx
5/R (2.60)

by Φ(n) (n ∈ Z), the Poisson bracket is given by

{B̂(m)
ij , B̂

(n)
kl } = i

R

n
δm+n

0 εijkl. (2.61)

Here the superscripts (m), (n) are labels for the KK modes.

The Hamiltonian for the KK modes is

H(KK) =

∫
d6x Π̂ij∂0B̂

ij − S. (2.62)

It can be simplified using self-duality conditions as

H(KK) = −
∫
d6x

(
H

(KK)
0AB H0AB

(KK)

)
= 2

∫
d6x

(
H

(KK)
0ij H

(KK)
0ij +H

(KK)
ijk H

(KK)
ijk

)
, (2.63)

where A,B = 1, 2, 3, 4, 5 and i, j = 1, 2, 3, 4. It is positive-definite.

2.4 Conserved currents

Apart from the Hamiltonian, the momentum P5 is also conserved due to translation sym-

metry in the x5-direction. The contribution of the KK-modes of the gauge field is

P
(KK)
5 =

∫
d5x

(
H

(KK)
0ij H ij5

(KK)

)
. (2.64)

In fact, due to the property that KK modes only interact through zero modes, there are

infinitely many conserved charges. For any positive integer n, the KK modes labelled by

n and −n can be simultaneously created or annihilated by a zero mode. The number of

excitations of the KK mode with label n minus the number of excitations of the KK mode

with label −n is constant. There is thus a conserved current for each integer n > 0.

Formally, both actions (2.41) and (2.50) take the form B(−n)KB(n) (K is an operator

independent of fields), so they are invariant under the transformation

δB(n) = εnB
(n), δB(−n) = −εnB(−n) (n > 0). (2.65)

This is proportional to the transformation induced by a translation in x5 if all parameters

εn are given by εn = nε1. But the transformation parameters εn (n > 0) for different

Fourier modes are allowed to be independent. The translation symmetry in x5 induces

infinitely many symmetries because of the peculiar interaction feature of the theory.
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These infinitely many symmetries lead to an infinite number of conserved currents,

jµ(n) = πRεµνλρσTr
(
H

(n)
νλ5B

(−n)
ρσ −H(−n)

νλ5 B(n)
ρσ

)
= nπiTr

(
εµνλρσB

(n)
νλ B

(−n)
ρσ

)
(2.66)

for n = 1, 2, 3, · · · . The self-duality condition implies that they indeed satisfy the conser-

vation law ∂µj
µ
(n) = 0 in 5D. P5 is written in terms of them as (by taking εn = −inε/R)

P5 = −
∑
n>0

∫
d5x

in

R
j0
(n) . (2.67)

3 Supersymmetry

A supersymmetric gauge theory in 5 dimensions for the gauge-fixed fields Aµ and B
(KK)
µν

in the gauge (2.52) were proposed in ref. [30] to describe multiple M5-branes. Like our for-

mulation of the gauge theory for the 2-form potential, the zero modes and KK modes are

treated separately in the supersymmetric theory. We will show that the super-algbera in

ref. [30] can be viewed as the gauge-fixed version of a super-algebra with the full gauge sym-

metry. The extension of the supersymmetry to be fully consistent with the gauge symmetry

is necessary for the completeness of the M5-brane theory proposed in refs. [12, 26, 27].

From the viewpoint of 5D SUSY, upon the compactification on a circle of radius R,

the massless fields on M5-branes is composed of the following SUSY multiplets [30]:

(A(0)
µ , φ(0), χ(0)

a , Y
(0)
ab ) = a massless vector multiplet, (3.1)

(F (n)
µν , φ

(n), χ(n)
a , Y

(n)
ab ) = tensor multiplets with mass mn, (3.2)

(h(0)aḃ, ψ(0)ḃ) = a massless hypermultiplet, (3.3)

(h(n)aḃ, ψ(n)ḃ) = hypermultiplets with mass mn. (3.4)

The indices a, b, ȧ, ḃ (taking values 1, 2) are the labels of the fundamental representations

for two SU(2) groups as part of the rotation symmetry of the transverse dimensions of

the M5-branes. The 5-dimensional uncompactified spacetime indices are µ, ν = 0, 1, 2, 3, 4.

The fermions χ
(0)
a , ψ(0)ḃ, χ

(n)
a , ψ(0)ḃ are 5D spinors representing 6D Weyl spinors.

The mass of a field with KK-mode index n is

mn =
n

R
, (3.5)

and the auxiliary bosonic field Y ab has symmetrized indices: Y ab = Y ba.

In this theory of multiple M5-branes, all the fields are in the adjoint representation

of the gauge group. All the scalars φ, haḃ and fermions χa, ψḃ are covariant (2.21) under

gauge transformations. The field F
(n)
µν in ref. [30] should be identified with our gauge field

strength through the relation

F (n)
µν ≡ RH

(n)
µν5 = inB̂(n)

µν . (3.6)
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In comparison with the notation of ref. [30], other fields are also rescaled in a similar way.7

We will use the totally antisymmetrized tensors εab, εȧḃ to raise or lower SU(2) indices,

and we will use the NW-SE convention for contraction. For example,

Φa = εabΦb, Φa = Φbεba. (3.8)

There is an additional massless vector multiplet (A
(0)
µ , φ(0), χ

(0)
a , Y

(0)
ab ) defined in this

model [30]. But it is fixed to be a constant (see eq. (3.12) in ref. [30]), and hence will be

ignored. Although only the 5D N = 2 SUSY is manifest, but we hope that the rest of

the desired symmetry is hidden. In fact, a method is proposed in ref. [30] to upgrade this

model to another one with the full 6D N = (2, 0) superconformal symmetry. We will focus

on the simpler model in this work for clarity and simplicity.

The supersymmetry transformation laws (eq. (4.22) in ref. [30]) are given by

δAµ = −1

2
ε̄aγµχ

(0)
a , (3.9)

δφ(n) =
i

2
ε̄aχ(n)

a , (3.10)

δH
(n)
µν5 = ε̄aγ[µDν]χ

(n)
a −

i

2

[
φ(n), ε̄aγµνχ

(0)
a

]
+
i

2
ε̄aγµν(Dφχ

(n)
a ), (3.11)

δχ(n)a =
1

4
γµνH

(n)
µν5ε

a − i

2
D/ φ(n)εa − Y (n)abεb −

1

2
(Dφφ

(n))εa, (3.12)

δY (n)ab = −1

2
ε̄(aD/ χ(n)b) + i

[
φ(n), ε̄(aχb)

]
− i

2
ε̄(a(Dφχ

(n)b)), (3.13)

δh(n)aḃ = −iε̄aψ(n)ḃ, (3.14)

δψ(n)ḃ =
i

2
D/ h(n)aḃεa +

1

2
(Dφh

(n)aḃ)εa, (3.15)

where we have used the notation Dφ defined by

(DφΦ(n)) ≡ −imnΦ(n) + [φ(0),Φ(n)], (3.16)

and Φ[µν] ≡ 1
2(Φµν − Φνµ), Φ(ab) ≡ 1

2(Φab + Φba) for symmetrized and anti-symmetrized

indices. The covariant derivative is Dµ = ∂µ + Aµ.8 For any field Φ, its zero mode is

denoted as Φ(0). All the equations above are valid for n = 0 (the zero modes) as well.

Notice that the zero mode of the scalar φ(0) appears only through the operator Dφ in

the gauge transformation laws. (The same is true for the Lagrangian.) It is tempting to

interpretDφ as the covariant derivativeD5 in the Fourier basis, and φ(0) as the (missing) 5th

component A5 of the 1-form gauge potential. It is peculiar that a transverse coordinate φ(0)

of the M5-brane also resembles a component of the 1-form potential upon compactification.

7In view of the 6D theory, it is natural to rescale the fields in ref. [30], which are labelled with the

superscript [BGH]:

χ
[BGH]

(n)a = Rχ(n)a, φ
[BGH]

(n) = Rφ(n), Y
[BGH]

(n)ab = RY(n)ab. (3.7)

The variables on the right hand side are those used in this paper.
8The convention in ref. [30] is that Dµ = ∂µ−Aµ. As a result, Aµ, Fµν here differ from those in ref. [30]

by a sign.
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Our task here is to find the SUSY transformation law for the component B
(KK)
MN , which

is absent in the (gauge-fixed) SUSY transformation laws (3.9)–(3.15). The SUSY transfor-

mation of A
(0)
µ (3.9) more or less suggests that, before gauge fixing,

δB
(n)
µ5 = −1

2
ε̄aγµχ

(n)
a . (3.17)

In addition, the SUSY transformation law (3.11) for the gauge-covariant field H
(n)
µν5 suggests

that we define the gauge transformation of the rest of the gauge potential components

B
(n)
µν by

δB(n)
µν = − i

2
ε̄aγµνχ

(n)
a −

R

2n

[
φ(n), ε̄aγµνχ

(0)
a

]
+
R

2n

[
φ(0), ε̄aγµνχ

(n)
a

]
− iR

n

[
B

(n)
[µ5 , ε̄

aγν]χ
(0)
a

]
.

(3.18)

To summarize, the SUSY transformation laws for the zero modes are the same as that

for the 5D super Yang-Mills theory, and the SUSY transformation laws for the KK modes

are given by

δB
(KK)
µ5 = −1

2
ε̄aγµχ

(KK)
a ,

δB(KK)
µν = − i

2
ε̄aγµνχ

(KK)
a − i

2

[
∂−1

5 φ(KK), ε̄aγµνχ
(0)
a

]
+
i

2

[
φ(0), ε̄aγµν∂

−1
5 χ(KK)

a

]
+
[
∂−1

5 B
(KK)
[µ5 , ε̄aγν]χ

(0)
a

]
, (3.19)

together with (3.10) and (3.12)–(3.15).

Let us check whether the super-algebra for the SUSY transformations defined above

is closed up to gauge transformations. It is straightforward to check that SUSY transfor-

mations on B
(n)
µ5 satisfy the closure relation

[δ1, δ2]B
(n)
µ5 = αν∂νB

(n)
µ5 + β

in

R
B

(n)
µ5 + [Dµ,Λ

(n)
5 ] + [B

(n)
µ5 , λ]− in

R
Λ(n)
µ , (3.20)

or equivalently,

[δ1, δ2]B
(KK)
µ5 = αν∂νB

(KK)
µ5 + β∂5B

(KK)
µ5 +

[
Dµ,Λ

(KK)
5

]
− ∂5Λ(KK)

µ +
[
B

(KK)
µ5 , λ

]
, (3.21)

where the coefficients are given by

αµ =
1

2
ε̄a2γ

µε1a, (3.22)

β =
i

2
ε̄a2ε1a, (3.23)

Λ
(KK)
5 = −αµB(KK)

µ5 +
β

R
φ(KK), (3.24)

Λ(KK)
µ = ανB(KK)

µν + βB
(KK)
µ5 +

αµ
R
φ(KK) +

[
∂−1

5

(
βB

(KK)
µ5 +

αµ
R
φ(KK)

)
, φ(0)

]
, (3.25)

λ = −RαµB(0)
µ5 + βφ(0). (3.26)
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On the right hand side of (3.21), the first term is a translation in the xµ direction, the

second term is a translation in the x5 direction, the third and fourth terms are gauge

transformations by Λ
(KK)
i ,Λ

(KK)
5 and the last term is a gauge transformation by λ (the 5D

gauge transformation parameter). The gauge transformation pieces in the super-algebra

agree nicely with the gauge transformation of B
(KK)
µ5 (2.9).

It can be checked that the same super-algebra observed for B
(KK)
µ5 in (3.21), that is,

[δ1, δ2] = αipi + βp5 + δΛ + δλ (3.27)

applies to all other fields, with the parameters αi, β, Λ and λ defined by (3.22)–(3.26). Here

(δ1, δ2) are the SUSY transformations with parameters (ε1, ε2), δΛ is the gauge transforma-

tion for the KK modes of the 2-form potential, δλ is the 5D SYM gauge transformation,

and pi, p5 are generators of translations, which are for our case just derivatives ∂i, ∂5.

4 Solitonic solutions

All BPS states invariant under translation along x5 survives dimensional reduction and

can be represented by configurations in the 5D SYM theory. They are all automatically

included in the theory studied here, including those discussed in refs. [7] and [17]. In the

following, we will look for BPS solutions involving KK modes.

According to the SUSY transformation laws (3.9)–(3.15), a BPS configuration for

the KK modes should allow nontrivial solutions of the SUSY parameter ε to the

following equations

0 =
1

4
γµνH

(KK)
µν5 εa − i

2
D/ φ(KK)εa − Y ab

(KK)εb −
1

2
Dφφ

(KK)εa, (4.1)

0 =
i

2
D/ haḃ(KK)εa +

1

2
Dφh

aḃ
(KK)εa, (4.2)

assuming that all fermionic fields vanish. Here the derivative Dφ (3.16) and its complex

conjugate are defined by

(DφΦ(n)) ≡ −imnΦ(n) + [φ(0),Φ(n)], (4.3)

(D̄φΦ(n)) ≡ +imnΦ(n) + [φ(0),Φ(n)]. (4.4)

In various circumstances,9 the BPS conditions are not sufficient to guarantee the satis-

faction of all equations of motion. Hence we list here for reference the equations of motion

for the KK modes derived from the supersymmetric action of ref. [30]:

n

R
Hµν5

(n) −
i

2
εµνλσρDλH(n)σρ5 − i([φ(0), H

µν5
(n) ]− [φ(n), F

µν ]) = 0, (4.5)

DµD
µφ(n) −

n2

R2
φ(n) +

iR

2n
[Fµν , H(n)µν5]− iR

n
[Dµφ(0), Dµφ(n)]

− iR

n
[φ(0), D

µDµφ(n)]−
2iR

n
[Y ab

(0), Y(n)ab]

− in

R
[φ(0), φ(n)]− [φ(0), [φ(0), φ(n)]]−

iR

n
[φ(0), [φ(0), [φ(0), φ(n)]]] = 0, (4.6)

9For example, see [74].
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Y(n)ab −
iR

n
([φ(0), Y(n)ab]− [φ(n), Y(0)ab]) = 0, (4.7)

DµDµh(n)aḃ −
n2

R2
h(n)aḃ − [hb

(n)ḃ
, Y(0)ab]

− 2in

R
[φ(0), h(n)aḃ] + [φ(0), [φ(0), h(n)aḃ]] = 0. (4.8)

In the above we have set all fermions to zero.

In terms of Dφ (3.16) and D̄φ (4.4), they are simplified as

D̄φH
µν5
(n) −

i

2
εµνλσρDλH(n)σρ5 + i[φ(n), F

µν ] = 0, (4.9)

D̄φ(DµDµφ(n) +DφDφφ(n)) +
iR

2n
[Fµν , H(n)µν5]

− iR

n
[Dµφ(0), Dµφ(n)]−

2iR

n
[Y ab

(0), Y(n)ab] = 0, (4.10)

D̄φY(n)ab − [φ(n), Y(0)ab] = 0, (4.11)

(DµDµ +DφDφ)h(n)aḃ − [hb
(n)ḃ

, Y(0)ab] = 0. (4.12)

4.1 M2 along x4

An M2-brane stretched between two M5-branes separated by a finite distance in a trans-

verse direction intersects with either M5-brane on a one-dimensional space, and it is de-

scribed as a self-dual string from the viewpoint of the M5-brane worldvolume theory. The

description for these states is known for the zero modes (in SYM theory) [7], however this

description may not be complete. If the self-dual string lies along the x5-direction, it can

certainly be described by zero modes. But if it lies along other directions, say x4, the

zero modes can only describe the state when the self-dual string is smeared over the circle

along x5. We will consider the extension of these zero-mode BPS solutions by turning on

KK modes, in order to describe a self-dual string that is localized in the x5-direction. Our

strategy is to first find zero-mode BPS solutions, and then consider small fluctuations of

the KK modes with the zero-mode solution as a background, ignoring back-reactions.

4.1.1 Zero-mode solution

If an M2-brane is not wrapped around x5, but lies along x4, it is described by a static

string-like configuration [7]

Fi′j′ = εi′j′k′D
k′Φ, A0 = 0, A4 = sin θ Φ, X6 = cos θ Φ, (4.13)

where i′, j′, k′ = 1, 2, 3 and Φ satisfies D2Φ = 0. To regulate the total energy and mo-

mentum, we compactify x4 on a circle of radius R4. Let r ≡
√∑3

i′=1 x
2
i′ . At large r, the

solution of Φ is approximately

Φ = φ0σ
3 − qσ3

4πr
+ · · · , (4.14)
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where φ0 is an arbitrary constant and q ∈ Z. For

cos θ =
v/2√

v2/4 + 4π4n2/q2
, sin θ =

2π2n/q√
v2/4 + 4π4n2/q2

, φ0 =
√
v2/4 + 4π4n2/q2,

(4.15)

the momentum and magnetic charge are

P5 = −2πR4
4π2n

g2
YM

, QM4 =
vq

g2
YM

, (4.16)

where the YM coupling is related to the radius of the circle of x5 by

4π2

g2
YM

=
1

R
. (4.17)

The energy is

E = 2πR4

√
Q2
M4 + (P5/2πR4)2. (4.18)

This solitonic solution preserves half of the SUSY in the 5D SYM theory.

In ref. [7], it is claimed that the zero-mode solution above represents all the BPS

configurations for a self-dual string winding around the circle of x4. This has to be the

case if the 5D SYM theory is indeed the complete description of multiple M5-branes. In

our approach, while there are independent KK-mode degrees of freedom, one may wonder

if it is possible to find BPS states in which KK modes are excited on top of this zero-mode

configuration so that the self-dual string is not uniformly smeared over x5.

4.1.2 KK-mode solution

Despite the lack of a complete theory with Lagrangian and SUSY transformation rules, field

equations for the 2-form gauge potential and BPS conditions were proposed in ref. [29] for

M2-branes ending on multiple M5-branes. A solution exists [29] to represent an open

M2-brane stretched between two M5-branes, lying along the x4-direction, with an x5-

dependent distribution. (It can be extended to more general solutions for more than two

M5-branes [35].) The similarity and differences between the theory of ref. [29] with our

theory of multiple M5-branes will be discussed later in section 6.2, but coincidentally the

solution found in ref. [29] can be adopted for our calculation. (We will see later that the

equations considered in ref. [29] are only a subset of all the equations one needs to check

in the model studied here.)

For simplicity, we consider the special case of θ = 0 in (4.13) for the zero modes

Fi′j′ = −iεi′j′k′Dk′φ(0), A0 = A4 = 0, (4.19)

where i′, j′, k′ = 1, 2, 3. This implies that F0i′ = F04 = Fi′4 = 0. For the purpose of includ-

ing KK modes in a way that will be convenient for our discussions below, let us re-calculate

the zero-mode solution by starting with the ansatz for the ’t Hooft-Polyakov monopole:

Ai′ = εi′j′k′f(r)xj
′
σk′ , (4.20)

φ(0) = h(r)x · σ, (4.21)
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where x · σ ≡ xi′σi′ ,
r ≡
√
xi′xi′ (4.22)

and σi′ represents generators of the su(2) Lie algebra with the commutation relations

[σi′ , σj′ ] = εi′j′k′σk′ . (4.23)

(Repeated indices are summed over even when they are both subscripts or both

superscripts.)

Eq. (4.19) then implies that

1

r

df

dr
+ f2 =

1

r

dh

dr
+ fh, (4.24)

1

r

df

dr
+

2

r2
f = fh− 1

r2
h. (4.25)

(These two equations can be combined to give a single (non-linear) second order differential

equation for h(r).) An explicit solution to these equations was given in ref. [29]:

f(r) =
1

r2
− c

r sinh(cr)
, (4.26)

h(r) =
1

r2
− c

r
coth(cr) (4.27)

with a constant parameter c. The solution above is singular at r = 0, the location of the

M2-brane. The fact that it has to be singular somewhere is expected from the equation

Di′D
i′φ(0) = 0, (4.28)

which can be derived by taking covariant derivative on the first equation of (4.19), since

the second order differential operator D2 is negative definite.

To compare this solution with the expression (4.14) in the previous subsection, one

can carry out a gauge transformation

φ→ UφU−1, Fi′j′ → UFi′j′U
−1 (4.29)

by the SU(2) matrix

U ≡ exp

[
− (x1σ2 − x2σ1)√

(x1)2 + (x2)2
tan−1

(√
(x1)2 + (x2)2

x3

)]
, (4.30)

which is also singular at the origin to bring it to the form in which φ→ (c− 1
r )σ3 at large r.

In fact, we will not need the explicit solution for the discussion below. All we need is

that the zero-mode solution can be put in the form (4.20) and (4.21).

For the KK modes, as above, we focus on solutions with h
(n)

aḃ
= 0. First, we assume that

all interaction terms vanish in the equations of motion (to be verified later) by demanding

[φ(0), H
µν5
(n) ]− [φ(n), F

µν ] = 0, (4.31)

[Fµν , H(n)µν5]− 2[Dµφ(0), Dµφ(n)] = 0, (4.32)

[φ(0), φ(n)] = 0, (4.33)

Y(n)ab = 0, (4.34)
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so that the equations of motion are linearized

n

R
Hµν5

(n) −
i

2
εµνλσρDλH(n)σρ5 = 0, (4.35)

DµD
µφ(n) −

n2

R2
φ(n) = 0. (4.36)

We also extend the BPS conditions (4.19) for the zero-mode solution to the KK

modes by

H
(n)
i′j′5 = −iεi′j′k′Dk′φ(n), B̂

(n)
0i′ = B̂

(n)
i′4 = 0. (4.37)

According to the BPS conditions for the KK modes (4.1), (4.2), this ansatz (4.37) preserves

1/4 of the SUSY for SUSY parameters εa satisfying the conditions

γ5ε
a = −εa, γ04ε

a = εa. (4.38)

(Recall that the solutions for M2-branes wrapped around x5 are also 1/4-BPS states.)

Eq. (4.37) implies that H
(n)
0i′5 = H

(n)
i′45 = 0. (H

(n)
045 will not be zero.) The self-duality

condition then implies that H
(n)
0i′j′ = H

(n)
i′j′4 = 0.

The equations of motion (4.35) and (4.36) would be valid if

B̂
(n)
04 = φ(n), (4.39)

Di′D
i′φ(n) =

n2

R2
φ(n). (4.40)

What we need to do now is to find explicit solutions for (4.40). Then we can determine

the values of B̂
(n)
i′j′ and B̂

(n)
04 using (4.37) and (4.39).

Following (4.20) and (4.21), we take the ansatz

φ(n) = h(n)(r)x · σ (4.41)

to find solutions to the equation (4.40), which implies that h(n) satisfies the equation

d2h(n)

dr2
+

4

r

dh(n)

dr
+ 4fh(n) − 2r2f2h(n) =

n2

R2
h(n). (4.42)

An explicit solution to this equation was found in ref. [29]:

h(n)(r) = cn
e−|n|r/R

r2

(
1 +

cR

|n|
coth(cr)

)
(4.43)

for arbitrary parameters cn. Since all KK modes are decoupled from all other KK

modes, we have infinitely many parameters cn to parametrize the amplitude of each KK

mode independently.

It can now be checked that the assumptions (4.31)–(4.34) are valid. As only the

ansatz (4.20), (4.21) and (4.41) are needed for this check, all solutions of f(r), h(r), h(n)(r)

to the differential equations (4.24), (4.25) and (4.42) give legitimate BPS states in the

multiple M5-brane theory.

Note that the zero-mode solution in SYM theory discussed in the previous subsection

also represents an M2-brane along x4, but it is smeared over the circle of x5. Here we have

found the solutions with an arbitrary distribution along x5, including those localized around

a point in the x5-direction. This allows us to consider the localization of the M2-brane in

all transverse directions.
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4.1.3 Infinite R limit

We take the BPS solution above for M2-branes in the x4-direction as an example to demon-

strate how the theory of multiple M5-branes for finite radius R can also be used to obtain

information about infinite R, the uncompactified space.

In the limit of small R, the zero mode φ(0) dominates over the KK modes. For a

localized source in three large transverse dimensions (x1, x2, x3), the massless field φ(0)

should scale as 1/r with r =
√

(x1)2 + (x2)2 + (x3)2 at small r, when the kinetic term

dominates over the potential term in its field equation. This is indeed the case in the

solution of φ(0) above in (4.21) and (4.27). (Note that the factor (x · σ)/r can be gauge-

transformed to σ3 via U (4.30).) Similarly, the KK modes φ(n) behave as massive fields in

three large transverse dimensions and scales like e−|n|r/R/r in the UV limit. This can be

verified by examining the solution of φ(n) in (4.41) and (4.43).

On the other hand, for a large radius R of the compactified circle, φ should behave

as a massless field in four large transverse dimensions (x1, x2, x3, x5). Hence one expects

that, in the UV limit when the field equation is dominated by the kinetic term, φ scales

like 1/ρ2 (ρ =
√
r2 + (x5)2) as a result of rotation symmetry in (x1, x2, x3, x5). Note that,

since the 5D Lorentz symmetry in (x0, x1, x2, x3, x4) is manifest in the theory, this rotation

symmetry implies the full 6D Lorentz symmetry.

In the limit of large R, it is more convenient to replace the index n for KK modes by

the wave number

k ≡ n

R
. (4.44)

In this limit, the sum over KK modes
∑

n is approximated by an integral over k:∑
n∈Z

F (n) ' R
∫ ∞
−∞

dkF (Rk) (4.45)

for any function F (n). For a delta-function source at x5 = 0, we superpose all KK modes

with equal amplitude since
∫
dk e−ikx

5
= 2πδ(x5). That is, we choose cn = α to be

independent of n in the solution for each KK mode (4.43), and sum over n to find

φ =
∑
n∈Z

φ(n)e−inx
5/R

' αR

∫
dk

1

r
e−|k|r−ikx

5

(
1 +

c

|k|
coth(cr)

)
x · σ
r

=
2αR

ρ2

x · σ
r
− 2αRc

r
coth(cr) log(ρ/Λ)

x · σ
r
, (4.46)

where Λ is an IR cut-off parameter, and the factor x·σ
r can be transformed to σ3 by a gauge

transformation through the matrix (4.30). We should take α→ 0 as R→∞ such that the

solution φ is finite in the limit of large R.

In the UV limit, φ is dominated by the first term which indeed demonstrates the 1/ρ2

behavior implied by the 6D Lorentz symmetry. The second term in the expression of φ

depends on the parameter c which characterizes the profile of the soliton solution in the

(x1, x2, x3)-directions. Since we have taken a Dirac δ-function profile for the solution in
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the x5-direction, we do not expect this term to be invariant under the 4D rotations in

(x1, x2, x3, x5). For a nontrivial evidence of the 6D Lorentz symmetry, one should find a

solution (with a nontrivial x5-profile) invariant under the 4D rotation at finite r in the

large R limit.

4.2 BPS states for pure KK modes

Since all KK modes interact only with zero modes, they are all decoupled if we set all zero

modes to zero. The system becomes equivalent to an infinite set of free fields.

Setting the zero modes to zeros, the equations of motion (4.5)–(4.8) are simplified to

i ∗5 dF(n) −mnF(n) = 0, (4.47)

(∂µ∂µ +m2
n)φ(n) = 0, (4.48)

(∂µ∂µ +m2
n)h(n)aḃ = 0, (4.49)

Y(n)ab = 0, (4.50)

where F(n) ≡ 1
2RH(n)µν5dx

µ∧dxν is a two-form in 5D, and ∗5 denotes the Hodge dual in 5D.

Even though all the KK modes are decoupled in the equations of motion, they are

related by the BPS conditions for a BPS state. The BPS conditions (4.1) and (4.2) are

simplified as

−1

4
H(n)µν5γ

µνεa −
i

2
γµ∂µφ(n)εa − Y ab

(n)εb +
imn

2
φ(n)εa = 0, (4.51)

γµ∂µh
aḃ
(KK)εa −

n

R
haḃ(KK)εa = 0. (4.52)

In general it relates the KK modes H(n)µν5, φ(n) and Y(n)ab to one another.

4.2.1 M-waves

There are KK modes representing uniform sinusoidal waves propagating along the x5 di-

rection are BPS states. These M-waves solutions that we will present below were first

obtained [37] for a different proposal of the M5-brane theory [22]. But here these solutions

are to be checked against the field equations and BPS conditions of a complete theory with

a supersymmetric Lagrangian and gauge symmetry.

Consider the ansatz of self-dual configurations

H ij5
(n) =

1

2
εijklH(n)kl5. (4.53)

All equations of motion are satisfied by

H(n)ij5 = c(n)ije
inx0/R, φ(n) = const× einx0/R, h(n)aḃ = const× einx0/R, (4.54)

where c(n)ij is a self-dual constant matrix

c(n)ij =
1

2
εijkl c(n)kl, (4.55)
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and the equation of motion (4.47) implies that H(n)0i5 = 0. There are no relations among

the amplitudes as all KK modes are decoupled.

These independent waves of gauge fields and scalars are 1/4-BPS states symmetric for

SUSY parameters εa satisfying

γ1234ε
a = εa, γ0εa = −iεa. (4.56)

Obviously these solutions also survive in the large R limit by replacing the KK mode index

n by k (4.44).

5 Supersymmetric gerbe

The discussion in the previous sections can be straightforwardly generalized to the set-up

in ref. [27] where a formulation of non-Abelian gerbes was proposed. Let G be an arbitrary

Lie group and ρ be an arbitrary (not necessarily irreducible) representation. We write

g to represent the Lie algebra of G and ρ to be the representation of g. Let V be the

representation space where ρ acts. V can be regarded as an Abelian group by the action

of addition. For the example of N M5-branes, G = U(N) and V is the space of KK modes

in the adjoint representation.

In this set-up, we define the one-form (A, Ã) to take values in the semi direct product

g n V (A ∈ g, Ã ∈ V ) and the two-form B ∈ V . The pair g n V and V is an example of

crossed module, which is the standard ingredient to define a non-Ablian gerbe. In ref. [27],

we argued that a system with the structure of non-Abelian gerbe is often limited to free

or topological theory. Indeed, such topological theory was used to classify the phases of

non-Abelian gauge theory in four dimensions [54, 55]. Our example seems to be the only

exception where some modification of the gauge transformation enables us to define an

interacting field theory.

We also need to include a mass matrix M which is a linear map acting on V and

commute with the action of ρ. Suppose V is decomposed into the invariant subspaces

V = ⊕iVi, so that M = ⊕imiIi, where Ii is an identity matrix acting on Vi. Our discussion

so far corresponds to a specific choice V = ⊕∞n=1(Vn ⊕ V−n), mn = n/R and V±n is the

adjoint representation of g.

5.1 Gauge transformation

We introduce the zero-form gauge parameters Λ ∈ g and Λ̃ ∈ V and the one-form gauge

parameter ã ∈ V . The gauge transformation proposed in ref. [27] is,

δAi = ∂iΛ + [Ai,Λ], (5.1)

δÃi = ∂iΛ̃ + ρ(Ai)(Λ̃)− ρ(Λ)(Ãi) +Mãi, (5.2)

δB̃ij = ∂iãj − ∂j ãi + ρ(Ai)(ãj)− ρ(Aj)(ãi)− ρ(Λ)(B̃ij) +M−1ρ(Fij)(Λ̃) . (5.3)
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The last term in (5.3) is a modification necessary to have homogeneous gauge transforma-

tion of field strength,

Fij = ∂iAj − ∂jAi + [Ai, Aj ], (5.4)

F̃ij = ∂iÃj − ∂jÃi + ρ(Ai)(Ãj)− ρ(Aj)(Ãi)−MB̃ij , (5.5)

Z̃ijk =
∑
(3)

(
∂iB̃jk + ρ(Ai)B̃jk −M−1ρ(Fij)(Ãk)

)
, (5.6)

such that Fij = (Fij , F̃ij) ∈ gn V .

Transformation of curvature becomes

δFij = [Fij ,Λ] , (5.7)

δF̃ij = −ρ(Λ)(F̃ij) , (5.8)

δZ̃ijk = −ρ(Λ)(Z̃ijk) . (5.9)

In order to see the correspondence with the previous sections, one may consider taking

one of Vn in V = ⊕∞n=1(Vn ⊕ V−n) and translate the notation in the previous sections by

the following rules:10

B
(0)
µ5 → Aµ, B

(KK)
µ5 → Ãµ, B(KK)

µν → iB̃µν (5.10)

Λ
(0)
5 → Λ, Λ

(KK)
5 → Λ̃, Λ(KK)

µ → iãµ , (5.11)

H
(KK)
µν5 → F̃µν , H(KK)

µνκ → iZ̃µνκ , (5.12)

with ∂5 → iM (M = mn). We use different indices i, j instead of µ, ν since parts of this

section can be applicable to other dimensions.

5.2 Action for non-abelian gerbe

The homogeneity of the gauge transformations enables us to write the gauge

invariant action,

L = −1

4
Tr(Fij)

2 − 1

4
〈F̃ij , F̃ ij〉 −

1

12
〈Z̃ijk, Z̃ ijk〉 . (5.13)

Here 〈·, ·〉 is an inner product in V which is invariant under the action of G.

For our interest in self-dual gauge theories, a covariant action which leads to the self-

dual equation is

S =

∫
d5x Tr F̃µν(F̃µν − i(∗Z̃)µν). (5.14)

The gauge field part of our action for the multiple M5-branes is a special case of this

expression. The equation of motion derived from (5.14) is

F̃ − i ∗ Z̃ = 0. (5.15)

10Note that Aµ and Fµν in this section are different from Aµ and Fµν in other sections of this paper by

a factor of 2πR.
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5.3 SUSY partners and transformation laws in 5 dimensions

SUSY relates Ai with χa, φ and B̃, Ã with χ̃, φ̃, so χa, φ ∈ g and χ̃, φ̃ ∈ V . In ref. [30],

SUSY transformation closes without the extra gauge parameters Λ̃, ã, so it is natural to

define the fermion transformation to be homogeneous as the field strength,

δχa = [χa,Λ], δχ̃a = −ρ(Λ)χ̃a . (5.16)

The gauge transformations of Y, φ, φ̃, h̃, ψ̃ should be similar to χ, χ̃.

The SUSY transformation laws for the general case of non-Abelian gerbes are a

straightforward extension of the SUSY transformation laws (3.9)–(3.15) given the special

case of multiple M5-branes first given in ref. [30]. They are

δAµ = −1

2
ε̄aγµχa, (5.17)

δÃµ = −1

2
ε̄aγµχ̃a, (5.18)

δB̃µν = −1

2
ε̄aγµνχ̃a −

i

2M
ε̄aγµν

(
ρ(χa)(φ̃) + ρ(φ)χ̃a

)
+

1

M
ε̄aγ[νρ(χ̃a)Ãµ], (5.19)

δχa =
1

4
γµνFµνε

a − i

2
D/φεa − Y abεb −

1

2
Dφφε

a, (5.20)

δχ̃a =
1

4
γµνF̃µνε

a − i

2
D/ φ̃εa − Ỹ abεb −

1

2
Dφφ̃ε

a, (5.21)

δỸab = −1

2
ε̄(aD/χ̃b) + iρ(φ̃)(ε̄(aχb))− i

2
(Dφε̄

(aχ̃b)), (5.22)

where DφΦ̃ = −iM Φ̃ + ρ(φ)Φ̃. Thus we see that the 5D supersymmetric gauge theory for

multiple M5-branes allows us to choose any non-Abelian gerbe defined in [27].

6 Comments

6.1 On KK modes

Some [6, 7] proposed that the same 5-dimensional SYM theory for D4-branes can be inter-

preted as a theory for M5-branes even at finite radius. It was claimed that all momentum

modes on M5-branes are described by zero-mode configurations with non-zero 4D instanton

charges. This proposal attracted a lot of attention and was investigated by many (see for

example [13, 18, 20, 28, 31, 33]). On the other hand, we believe that, although the 4D

instantons carry P5-charge, there are other independent KK-mode degrees of freedom. The

KK modes should be kept explicitly in the M5-brane theory. Our arguments are as follows.

Roughly speaking, for a matter field Φ, the momentum density p5 is of the form

Π∂5Φ, (6.1)

where Π is the conjugate momentum of Φ. In the free field theory of a single M5-brane,

the momentum density p5 due to Bij is proportional to

H0ijH
ij5 =

1

2
εijklH

kl5H ij5. (6.2)
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While the zero mode contribution

1

2
εijklH

kl5
(0)H

ij5
(0) =

1

2
εijklF

ijF kl (6.3)

of the 2-form potential Bij is indeed the instanton density, the question is whether the KK

mode contribution in (6.1) and (6.2) should all be discarded in the multiple M5 theory. If

we accept the single M5-brane theory as a correct low energy effective theory (which can be

verified by studying solitonic solutions corresponding to M5-branes in the 11 dimensional

supergravity), both instantons on D4-branes and KK-modes of matter fields contribute to

the momentum p5 through (6.1) and (6.2), at least in the limit when all M5-branes are far

apart and decoupled.

Some may argue that KK modes in M theory are identified with D0-branes in string

theory, and D0-branes are identified with instantons on D4-branes, so KK modes are equiv-

alent to instantons. However, the identification of D0-branes with instantons is justified

only in the low energy, small R limit, because the SYM theory is only a low energy effective

theory in the limit of small R. More precisely, D4-brane is the KK reduction of M5-brane

compactified on a small circle. As KK reduction removes KK modes, zero-modes carrying

P5 charge (such as instantons) survive KK reduction and persist in the D4-brane theory.

The fact that D0-branes on D4-branes can be identified with instantons does not imply

that all D0-branes are described as instantons before taking the low energy, small R limit.

To claim that the instanton configurations of gauge fields accounts for all possible

sources of P5 requires a new type of gauge symmetry in which the KK-mode degrees of

freedom is gauge-equivalent to the instanton configurations. There has never been such an

example in field theory.

Finally, without the KK modes, it would be hard to imagine how one can describe

the BPS states we considered in section 4.1.2, that is, parallel M2-branes lying in the x4-

direction (or other large spatial directions) when they are not uniformly smeared over in

the x5-direction.

6.2 On zero-modes

A central idea in our formulation is to identify the vector field Aµ needed in a non-Abelian

gauge theory with certain components of the tensor field BMN by choosing a special direc-

tion (the compactified direction x5), to avoid excessive physical degrees of freedom. After

the proposal of ref. [12], a similar strategy was taken in ref. [22], followed by a series of

publications [29, 35, 37, 39]. We explain here the differences between their model and ours,

and hopefully through this discussion the reader will also understand our model better, in

particular about the zero mode sector.

The main difference of ref. [22] from our proposal lies in the treatment of the zero

modes of BMN , which leads to a difference in the equation of motion for Aµ. In our

approach, the equation of motion for Aµ reduces to the standard 5D YM equations when

we set all KK modes to zeros. This is not the case for the theory proposed in ref. [22].

In the discussion below, we label a quantity defined in ref. [22] by the symbol “[CK]”.

The work of ref. [22] defined the 1-form potential A
[CK]
µ via the equation (eq. (3.19) in
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ref. [22]):

F [CK]
µν =

∫
dx5H̃

[CK]
µν5 , (6.4)

where H̃
[CK]
µν5 is defined as (denoted as H̃µν in eq. (3.2) of ref. [22])

H̃
[CK]
µν5 =

1

2
εµνκσρ

[
Dκ, Bσρ

[CK]

]
. (6.5)

In ref. [22], eq. (6.4) restricts the zero-mode B
(0)[CK]

µν . In contrast, the zero-modes in our

model are defined only in terms of B
(0)
µ5 , without explicitly referring to B

(0)
µν .

The problem with eq. (6.4), or the reason why we have avoided explicit reference to

B
(0)
µν in our model, is its deviation from the Yang-Mills equation when KK modes are

removed on dimensional reduction. Taking the covariant derivatives on both sides of (6.4),

we get

[Dν , F [CK]
µν ] =

1

4

∫
dx5εµνκσρ

[
F νκ[CK], B

σρ
[CK]

]
. (6.6)

After removing all KK modes, the Yang-Mills equation is still modified by a term of the

form πR
2 [F[CK], B

(0)
[CK]] on the right hand side. (Note that B

(0)
[CK] is constrained by (6.4)

so one cannot set it to zero at will.) They need to prove that somehow the correction

term is negligible in the low energy limit in order for their model to be consistent with

D4-brane physics.

Another difference is that, in our model, we have a free 1-form parameter Λ for the non-

Abelian gauge transformations, while it is strongly constrained to a much smaller gauge

symmetry in ref. [22]. In fact, if one does not demand the explicit presence of such a gauge

symmetry and an invariant action at the same time, the no-go theorem [1–3] would not be

applicable, and the introduction of nonlocality may not be fully justified.

Incidentally, despite their claim, the 6D Lorentz symmetry in the model of ref. [22]

is not a genuine Lorentz symmetry in the usual sense, as the definition of the angular

momentum involves an integral over the whole space-time. Furthermore, their proposed

Lorentz transformation can be defined even after adding more symmetry-breaking terms

in the Lagrangian.

An interesting question is whether it is possible to write down an uncompactified

theory for multiple M5-branes. There are strong constraints on the S-matrix [19] for self-

interactions of the self-dual tensor multiplet from Lorentz symmetry and supersymmetry

in 6D. On the other hand, various physical aspects of the uncompactified theory can be

extracted in the large R limit of the compactified theory, as we did in section 4.1.3. An

uncompactified theory is not in crucial need unless it has some advantages such as manifest

covariance in Lorentz symmetry, supersymmetry and gauge symmetry.

6.3 Conclusion

In addition to the works mentioned above, there are many other attempts to formulate an

effective theory for multiple M5-branes, or just to explore potentially interesting higher-

form gauge theories in 6D. Some approached the problem through the mathematical notion
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of 3-algebra [5, 9, 11, 16, 32], higher gauge theory or twistor space [4, 24, 36, 38, 41]. Some

used holographical principle as a tool [21, 34, 42, 43]. The interest in multiple M5-brane

theory has also inspired new theoretical frameworks for higher gauge theories [14, 78–80],

which are interesting by themselves.

The model studied in this paper based on [12, 26, 27, 30] satisfies the following criteria

for an effective theory of multiple M5-branes: (i) It agrees with 5D SYM in the absence

of KK modes. (ii) It agrees with 6D single M5-brane when the gauge group is Abelian.

(iii) It has the full gauge symmetry for a 2-form potential. (iv) It has the correct field

content. It is the only model satisfying all of those requirements. However, only part

of the supersymmetry, and part of the rotation symmetry in the transverse directions of

the M5-brane are manifest. The full 6D Lorentz symmetry in the UV limit is also not

yet proven.

More tests on the model should be carried out, especially on its hidden Lorentz sym-

metry and supersymmetry. It will also be interesting to study the large R limit in more

detail, including scattering processes, and to compare the results with the no-go conclusion

based on supersymmetry of ref. [19].

We believe that a good comprehension of the multiple M5-brane system will be consid-

ered a significant breakthrough not only in string theory, but also in the context of general

field theories, as it will open a door to a new class of symmetries and related new physics

that we know very little of.
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