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1 Introduction

The galileons [1] are a fascinating class of higher-derivative scalar effective field theories

which display rich and varied structure and phenomenology. They have elegant geometrical

origins as the description of brane fluctuations in the DGP model [2, 3] (further elaborated

upon in [4–7]), describe the helicity zero mode of a ghost-free interacting massive spin-

2 field [8, 9], are the key players in interesting IR modifications of GR which display

Vainshtein screening [10, 11] near heavy objects [1, 12], and possess an S-matrix with

many special properties [13–17].1

1The galileons also possess unusual features: for solutions around heavy sources, perturbations can

propagate superluminally [1, 18] (though this can be alleviated in other examples [19, 20]), and, treated

in isolation, there are arguments that galileons have no local, Lorentz invariant UV completion [21, 22]

(however, when incorporated into full massive gravity, these obstructions are lifted in some cases [23]).

See [24–29] for interpretations of these features in terms of non-standard UV completions.
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In this paper we focus on another property of galileons: their non-renormalization

theorem. Certain galileon operators are not renormalized by galileon loops [3, 30]. We are

interested in understanding both the importance of this fact and how it compares to other,

superficially similar, non-renormalization theorems obeyed by other effective field theories.

The simplest example of a galileon is a single scalar field, φ(x), which obeys a shift

symmetry linear in coordinates,

φ(x) 7−→ φ(x) + c+ bµx
µ , (1.1)

with c, bµ constant. Any term built out of ∂µ∂νφ, and its derivatives, will be strictly

invariant under (1.1). However, there also exist special operators with fewer than two

derivatives per φ, which are not strictly invariant, but rather are invariant up to a total

derivative. The cubic galileon interaction is the canonical term of this type

Scubic =

∫

d4x

(

−1

2
(∂φ)2 − 1

Λ3
(∂φ)2�φ

)

, (1.2)

with Λ some strong coupling scale. These special operators are reviewed in section 2.1.

The statement of the non-renormalization theorem is that loops of galileon fields only

serve to renormalize the higher derivative operators built from ∂µ∂νφ. For example, Λ

in (1.2) doesn’t run. This is in accord with general folklore stating that terms invariant only

up to a total derivative are typically protected in some way against quantum corrections.

Examples are the Wess-Zumino-Witten (WZW) term [31] in the chiral Lagrangian and

Chern-Simons terms in three dimensional Yang-Mills theory [32] whose coefficients don’t

run and, further, are quantized [31, 33]. The special galileon operators to which the non-

renormalization theorem applies are, in fact, an analogue of the WZW term [7], albeit there

is no argument to suggest their coefficients should be quantized.

One puzzle is that the theorem is simultaneously non-trivial and trivial, in some sense.

It is non-trivial in that there exists a diagrammatic proof of the theorem [30] which heavily

relies on the detailed structure of the special galileon operators. It is trivial in that the same

conclusions also essentially follow from dimensional analysis arguments applied to self-loop

graphs in dimensional regularization, with no reference to the detailed form of the galileon

operators. These dimensional analysis arguments can be made for many other massless,

derivatively-coupled theories including General Relativity (GR), P (X) theories and the

conformal dilaton field (alternatively known as the conformal galileon [1, 34]). Certain

low-dimension operators in these other theories are also not renormalized by self loops.

What, then, is the non-trivial content of the galileon renormalization theorem? Are

the renormalization properties of galileons qualitatively different from those of GR, P (X)

and conformal dilaton, or do they follow similarly from the derivative expansion of effective

field theory?

In this paper, we argue that the essential difference comes once we consider loops

of heavy fields which couple to the galileon, φ(x). The galileon renormalization theorem

implies that the special galileon operators are not renormalized even by heavy fields —

provided that they couple in a way which respects the galileon symmetry. This effect

is not visible by considering only self-loops in dimensional regularization, which captures
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only logarithmic corrections. It is, loosely speaking, captured by power divergences in

graphs. The detailed diagrammatic proof of the galileon renormalization theorem tells us

that the entire quantum contribution to the galileon vanishes, including power corrections.

This suggests that coupling heavy fields to the galileon should not renormalize the galileon

operators, and indeed this is what we will find in explicit examples. In contrast, coupling

heavy fields to GR, P (X) and the conformal dilaton do affect the operators in these theories

which are not renormalized by the logarithmic part of self loops. In this precise sense the

galileon non-renormalization theorem is stronger.

In section 2 we review galileon theories in more detail and discuss the detailed version

of the non-renormalization theorem. In section 3 we review how the non-renormalization

theorem follows from dimensional analysis, apply the same arguments to other theories,

and discuss the motivations behind our above statements. In section 4 we illustrate how

heavy physics affects the operators in these theories by coupling in a massive scalar field and

integrating it out. The methods used for integrating out the heavy field are summarized

in appendix A, and we conclude in section 5.

Conventions. Throughout we use mostly plus metric signature. We denote the flat-space

d’Alembert operator by ∂2 ≡ ηµν∂µφ∂νφ.

2 Review of Galileons and their non-renormalization

In this section we briefly review some of the basic properties of the galileon and the non-

renormalization theorem. A galileon scalar field, φ(x), has an action which is invariant

under the extended shift symmetry (1.1). In order for the action to be invariant under this

symmetry, the interaction terms must involve derivatives. Many of the operators invariant

under (1.1), powers of ∂2φ for example, will lead to higher order equations of motion (EOM)

and hence will generically run afoul of Ostrogradski’s theorem [35], leading to instabilities

(see [36, 37] for nice reviews). These instabilities are not problematic as long as the theory

is treated as an effective field theory (EFT) [38–40].

Interestingly, not all operators invariant under the galileon symmetry are of this type;

there exist a finite number of operators which have fewer than two derivatives per field

and thus are not constructed from the invariant building block ∂µ∂νφ. In addition, they

yield strictly second order equations of motion. The existence of such operators opens up a

regime in which we can reliably study the non-linear, classical phenomena dictated by these

terms, while consistently ignoring the effects of the higher derivative operators discussed in

the preceding paragraph [12, 41]. This can be thought of in analogy with Einstein gravity:

there is a regime where classical non-linearities are important, for example in the vicinity

of the event horizon of a black hole, while quantum mechanical phenomena are (at least

from the point of view of local effective field theory) expected to be unimportant.

In d spacetime dimensions, there are d + 1 of these special operators, all of which

change by a total derivative under (1.1). In four dimensions, they take the form [1]

L1 = φ

L2 = (∂φ)2

L3 = ∂2φ(∂φ)2

– 3 –
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L4 = (∂φ)2
(

(∂2φ)2 − (∂µ∂νφ)
2
)

L5 = (∂φ)2
(

(∂2φ)3 + 2(∂µ∂νφ)
3 − 3∂2φ(∂µ∂νφ)

2
)

. (2.1)

These operators can be compactly written using the Levi-Civita symbol, which makes many

of their properties manifest,

Ln ∝ ǫµ1···µn−1αn···α4ǫ
ν1···νn−1αn···α4φ∂µ1∂ν1φ · · · ∂µn−1∂νn−1φ . (2.2)

The anti-symmetric structure of the epsilons guarantees that having two derivatives with ei-

ther a µ or ν index acting on a φ vanishes, making it easy to see that the galileon terms have

second order equations of motion and shift under the symmetry (1.1) by a total derivative.

For the remainder of the paper, we will follow common conventions and refer to the

special terms in (2.1) alone as “galileons.” All other terms compatible with the galileon

symmetry will simply be called “higher order operators.”

2.1 The non-renormalization theorem

Loops of φ fields don’t renormalize the galileon interactions (2.2) at any order in pertur-

bation theory. This was first noted for the cubic galileon theory in [3] and then extended

to the fully general case in [30]. The argument of [30] is phrased in terms of the 1PI action

and is diagrammatic. We present a simple path integral version of the same argument here.

The detailed form of the galileon interactions is crucial to each of these arguments.

Consider calculating the 1PI effective action via the background field method [42] for

a galileon Lagrangian, L(φ) = ∑5
i=1 ciLi with Li as in (2.1) (higher order operators with

more derivatives can also be added to the action without altering the conclusions of the

following argument). The effective action, Γ[φ̄], for an arbitrary field profile φ̄(x) can be

derived by taking the bare Lagrangian L(φ), expanding the field about the background

φ = φ̄+ϕ and path integrating over the fluctuation ϕ keeping only bubble diagrams which

are 1PI with respect to fluctuation lines:

exp iΓ[φ̄] =

∫

1PI
Dϕ exp iS[φ̄+ ϕ] . (2.3)

We would like to verify that there are no corrections to the coefficients of the galileon

operators (2.1). We perform the replacement φ = φ̄ + ϕ in the galileon operators (2.1).

When written in terms of ǫ tensors, it is immediately clear that we can always integrate

the result by parts so that every φ̄ factor has exactly two derivatives acting upon it. For

instance, making the replacement in the cubic operator we find that L3 generates terms of

the form

L3(φ̄+ ϕ) ⊃ ∼ ǫν1ν2α3α4ǫ
µ1µ2α3α4

(

∂µ1 φ̄∂
ν1ϕ∂µ2∂

ν2ϕ
)

, (2.4)

we can then integrate the ∂ν1 derivative by parts, to turn this operator into

L3(φ̄+ ϕ) ⊃ ∼ ǫν1ν2α3α4ǫ
µ1µ2α3α4

(

ϕ∂ν1∂µ1 φ̄∂µ2∂
ν2ϕ

)

. (2.5)

It is clear that this argument will generalize to all of the galileon operators; note that this

relies crucially on the particular structure of these terms.
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In the resulting path integral (2.3), S[φ̄ + ϕ] thus contains terms involving ϕ with

either zero, one or two derivatives acting upon it, but it depends on φ̄ strictly through the

combination ∂2φ̄. Path integrating over ϕ, the result Γ[φ̄] will be build from propagators

and vertices which depend on ∂µ∂ν φ̄ and derivatives thereof. All generated terms must

therefore have at least two derivatives per φ̄, while the galileons (2.1) have fewer than

this, hence the galileons are not renormalized by self loops.2 Similar arguments hold in

scalar-tensor generalizations of the galileon [43], and underlie the technical naturalness of

ghost-free massive gravity [44].

3 Non-renormalization and power counting

We now argue that the non-renormalization theorem as previously stated also follows as

a simple statement about power counting in effective field theory, and that essentially all

derivatively-coupled theories enjoy a similar non-renormalization for their leading opera-

tors.

3.1 General power counting

To make invariant statements about non-renormalization in EFTs, we will want to be able

to estimate the way that various diagrams scale with the external momenta of particles.

These estimates will allow us to quickly check whether an operator can be renormalized by

a loop diagram.

We will want to make estimates of the scaling of observables in theories of the form

Leff = Λ4
∑

j

cj

Λfj+dj
Oj (φ, ∂) . (3.1)

Here Oj (φ, ∂) stands for any operator built out of φ and derivatives thereof, cj are order

one dimensionless coefficients, and fj and dj count the number of fields and derivatives

appearing in Oj , respectively. In (3.1), we have assumed that only one scale Λ enters

the Lagrangian, for simplicity. The extension to multiple scales is straightforward, but

unnecessary for our interests. Throughout the body of this paper, we will only discuss

massless theories (apart from a short discussion in the conclusions of how the following

estimates and results change when the theory is massive).

In the theory (3.1), the momentum dependence of anN -point scattering amplitude3 (or

off-shell amputated correlator) M(N), can easily be estimated, following [45]. The overall

mass dimension of the amplitude is 4 − N , every loop integral leads to an integration

∼
∫

d4k, and every internal line contributes ∼ 1
k2

(we only consider bosonic theories). The

only other way factors of momenta can appear is through derivatives in the interaction

terms, Oj (φ, ∂). Denoting the number of loops in the diagram by L, the number of

internal lines by I, and the number of vertices with i lines and n derivatives by V(i,n), we

2Because the galileon is massless, Γ is expected to have non-local terms involving objects like log ∂2 and

∂−2, so one might worry that powers of inverse ∂2’s could somehow “cancel out” the derivatives acting on

φ̄’s. The dimensional analysis arguments of the next section ensure that this doesn’t happen.
3The special case of N = 2 can be thought of as the amputated vacuum polarization diagram.
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find that the amplitude scales as ∼ k4L−2I+
∑

i,n nV(i,n) . Dividing by powers of Λ to ensure

the correct dimension, we obtain the estimate

M(N) ∼ Λ4−N

(

k

Λ

)4L−2I+
∑

i,n nV(i,n)

, (3.2)

where k represents some combination of the external momenta. The result (3.2) can sim-

plified somewhat with the use of simple graph-theoretic identities [45]. First, the number

of internal and external lines are related via

N + 2I =
∑

i,n

iV(i,n). (3.3)

Similarly, the number of internal lines is related to the number of loops in the graph via

L = 1 + I −
∑

i,n

V(i,n) . (3.4)

It is convenient to use (3.4) to eliminate I from (3.2), which leads to the final power-

counting estimate for M(N),

M(N)(k) ∼ Λ4−N

(

k

Λ

)2L+2+
∑

in(n−2)V(i,n)

, (3.5)

which depends only on the number of vertices (and the number of derivatives contained

therein) and the number of loops. Using (3.5), it is easy to check what types of diagrams

can renormalize coefficients in the Lagrangian, as we will see in the following sections.

The formula (3.5) requires two important comments:

• In writing (3.2), we have implicitly assumed that we are using dimensional regular-

ization or some other mass-independent regularization scheme. This ensures that the

only scales which can emerge from loop integrals correspond to factors of external mo-

menta. Had we instead used a mass-dependent regularization such as Pauli-Villars or

a cutoff, then factors of the regularization mass scale ΛUV would also appear in (3.2).

Physical results are of course regulator independent, so nothing essential is lost by

using a mass-independent scheme. Thus, unless stated otherwise, we use dimensional

regularization for all calculations.

• Logarithmic factors ∼ log(k2/µ2), with µ the regularization scale, are not captured by

the power counting estimate. Therefore, one should think of (3.5) as also potentially

containing logarithmic factors when the diagrams involve loops. Dependence on the

regularization scale is only through these logarithmic factors.

We now use this power-counting estimate (3.5) to explore the behavior of various

derivatively-coupled EFTs.

– 6 –
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∼ k6 ∼ k12 ∼ k12 ∼ k12 ∼ k12

Figure 1. The various 2 → 2 diagrams built solely from galileon operators (2.1), up to one loop,

and their scaling with external momenta. It is clear that the loop diagrams contribute at higher

orders in momenta than the tree amplitude.

3.2 Galileons

First, we can re-derive the non-renormalization theorem for the galileon in this language.

Consider a galileon scattering process with N external φ legs. Both the galileon operators

and higher derivative terms ∼ ∂m(∂2φ)n are included in the action.

Start by examining tree diagrams built solely from vertices drawn from the special

galileon terms (2.1). The operator with i fields has 2i−2 derivatives, meaning that
∑

i,n(n−
2)V(i,n) = 2(N − 2), as follows from the topological relations (3.3) and (3.4) evaluated at

L = 0. Therefore,

M(N)
gal. tree ∼ Λ4−N

(

k

Λ

)2(N−1)

. (3.6)

Now, we apply the estimate (3.5) to all possible loop diagrams with N external legs and

attempt to build anything with the scaling (3.6), corresponding to a renormalization of

the galileon operators. We will find that this is not possible. It is easy to check that

loop diagrams built only from galileon vertices cannot renormalize the original operators.

Using (3.3) and (3.4) for a diagram with L loops, we now have
∑

i,n(n− 2)V(i,n) = 2(N +

2L− 2), yielding the estimate

M(N)
gal. loop ∼ Λ4−N

(

k

Λ

)2(N−1)+6L

. (3.7)

An L-loop diagram thus carries 6L more powers of k than the original tree diagrams,

and therefore none of these graphs can renormalize the original interactions. Further,

evaluating (3.7) at L = 1, it can be deduced that the higher derivative operators of the

form (∂2φ)n or ∂∂(∂2φ)n are not renormalized by loops of φ, either. This is in agreement

with explicit computations of the 1PI effective action [3, 12].

If we also use higher derivative vertices, then a vertex with i external legs has at least

2i − 2 derivatives. This changes the relevant sum to a lower bound
∑

i,n(n − 2)V(i,n) ≥
2(N+2L−2). Such diagrams therefore have at least as many powers of k as (3.7), meaning

that they also will not renormalize the galileon operators.

The above analysis is merely a formalization of the intuition that quickly becomes

obvious when one draws diagrams. Consider 2 → 2 scattering to one-loop using only

galileon operators, as shown in figure 1. The tree diagrams built from L4 ∼ (∂φ)2(∂2φ)2

or two insertions of L3 ∼ (∂φ)2∂2φ clearly scale as ∼ k6, while the loop diagrams can

be easily estimated to scale as ∼ k12. Thus, the loops cannot renormalize the tree-level

contribution. (See also [13] for galileon power counting.)
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Note that — in contrast to section 2.1 — nowhere in the preceding argument did we

have to make any use of the detailed structure of the galileon interactions. Instead, the

result just follows from the fact that there are certain numbers of derivatives per φ and that

the galileon is massless.4 In fact, as we will see next, the galileon is not even the unique

theory which has a non-renormalization theorem of this type, it is a generic property of

derivatively coupled theories.

3.3 General relativity

As a first example, consider calculating graviton scattering diagrams in pure Einstein grav-

ity with the cosmological constant tuned to zero,

S =
M2

Pl

2

∫

d4x
√−gR+ · · · , (3.8)

where · · · contains higher order operators ∼ ∇mRn. Perturbing the metric about flat space

as gµν = ηµν +
1

MP
hµν , the Einstein-Hilbert term is of the schematic form

S ∼
∫

d4x
∞
∑

n=0

(

h

MPl

)n

(∂h)2. (3.9)

Each interaction vertex now has exactly two derivatives, so that a tree diagram with N

external legs built from Einstein-Hilbert vertices has the scaling

M(N) ∼ M4−N
Pl

(

k

MPl

)2

. (3.10)

MPl now plays the role of Λ. In comparison, an N -point, L-loop diagram built from the

Einstein-Hilbert terms scales as5

M(N) ∼ M4−N
Pl

(

k

MPl

)2+2L

. (3.11)

Building loops using vertices drawn from the higher order operators contained in the · · ·
in (3.8) only increases the scaling with k.

Therefore, we see that loops cannot correct the Einstein-Hilbert vertices: the Planck

mass is not renormalized in pure flat-space GR. Additionally, graviton loops will not cause

the cosmological constant to be renormalized and so there is no cosmological constant

problem in pure GR. These statements have long been known6 [46, 48–50].

4If the field were massive then some of the k’s in (3.5) could correspond to factors of mass m instead

of external momenta and the above analysis would not be guaranteed to work. This is further discussed in

the conclusions.
5Precisely the same estimate appears in DeWitt’s early paper on quantum gravity [46].
6At one-loop, the only counterterms needed are those proportional to R2 and to R2

µν (the other

dimension-4 counterterm, proportional to R2
µνρσ, is degenerate with the others by the Gauss-Bonnet theo-

rem). This is the origin of the statement that pure GR is one-loop finite in four dimensions: the divergences

all correspond to redundant operators which can be field redefined away and hence do not contribute to the

S-matrix. The two-loop calculation was performed in [47], where it was found that a non-redundant coun-

terterm ∝ RµνρσRρσκλR
κλ

µν is required. The scaling of all of these results agrees with the estimate (3.11).
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3.4 P (X) theories

As the next example, consider the effective field theory of a scalar with derivative self-

interactions which have at most one derivative per field. Specifically we consider La-

grangians of the form L = Λ4P (X), where X ≡ −1
2(∂φ)

2/Λ4 and P is an arbitrary

function. Theories of this type can be considered the leading terms in a derivative ex-

pansion of theories which possess a shift symmetry φ 7→ φ + c. Consequently, they arise

in myriad places, perhaps most famously as the EFT of the Nambu-Goldstone mode for a

complex scalar with a symmetry breaking Mexican hat potential. P (X) models have been

used extensively in theoretical cosmology, both in K-inflation models [51, 52], and to drive

late-time acceleration in K-essence models [53–55]. The ghost condensate [56] is another

example in this class. In string theory, the scalar part of the action for D-branes is a special

case of a P (X) theory — the Dirac-Born-Infeld (DBI) model [57]. The DBI model enjoys

an enhanced symmetry, δφ = xµ+φ∂µφ, and has been used in various cosmologies [58–61].

Shift-symmetric models have also found application in condensed matter settings, the pure

P (X) theories we consider describe the effective action of superfluids [62, 63] and suitable

multi-field generalizations can describe general fluids [64, 65].

All operators in a P (X) Lagrangian will have at least one derivative per φ and, after

sufficient integrating by parts, can be made strictly invariant under the shift symmetry;

there are no analogues of the galileon operators (2.1) for P (X) theories (apart from the

trivial tadpole term L ∝ φ).

A generic P (X) action can be written as a Taylor series7

S =

∫

d4xΛ4
∞
∑

n=1

cnX
n + · · · , (3.12)

where · · · contains terms with more derivatives per φ. Using (3.5), we find that a diagram

with N external legs built from the operators in (3.12) scales as

M(N) ∼ Λ4−N

(

k

Λ

)N+4L

, (3.13)

where we have used the fact that all the operators of interest have one derivative per field,

so
∑

i,n(n− 2)V(i,n) =
∑

i,n(i− 2)V(i,n) = N + 2L− 2, after application of (3.3) and (3.4).

We therefore see that the contribution from loops to a given N -point amplitude is

suppressed by positive powers of k/Λ, so the leading momentum contribution to a given

amplitude is not corrected by loops. This is another example of non-renormalization: the

cn coefficients in (3.12) cannot be changed by loops, because this would require correcting

the tree level amplitudes, and loop contributions have too many powers of k to do so.

Note that no part of this argument relies upon the precise form of P (X), or equivalently

the precise relations between the various cn. We therefore see that an arbitrary function

P is radiatively stable in this sense. In fact, because each loop adds a factor of k4 to the

amplitude, we can actually further deduce that if we added operators of the schematic form

7Assuming that P (X) is an analytic function of X, which will be the case if Minkowski is a sensible

vacuum of the theory. There are interesting examples where this assumption fails, e.g., [66, 67].
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L ∼ ∂∂Xn to the action, these would not be renormalized by loops of φ, either. This is in

accord with the results of [68], who argued that an arbitrary functional form for P (X) is

radiatively stable — when considering self-loops and tracking only logarithmic divergences

— by explicitly computing the 1-loop effective action, and that the leading corrections

come with 4 additional derivatives.

3.5 Conformal dilaton

Finally, we consider the theory of the conformal dilaton — the Goldstone of the spontaneous

breaking of conformal symmetry down to Poincaré. In addition to the normal linear action

of the Poincaré group, this theory is invariant under the following symmetries

δφ = c(1 + xµ∂µφ) , δφ = bµ
(

2xµ + 2xµxν∂νφ− x2∂µφ
)

, (3.14)

for constant c and bµ, which nonlinearly realize the conformal group, SO(4, 2). The scalar

φ also has a geometric interpretation as the small-field limit of the brane-bending mode of

a Minkowski brane embedded in an Anti-de Sitter bulk [4, 5].8

This theory arises in various contexts. It was proposed as a type of “IR completion” of

the galileon [1], and for this reason it often goes by the name conformal galileon. It was also

studied long ago by Volkov as a prototypical example of a spontaneously broken spacetime

symmetry [72]. In [73] it was argued that the conformal dilaton shares many properties with

gravity (including a version of the CC problem). It has been used to construct alternative

scenarios to cosmological inflation [34, 74–76] and also plays a prominent role in the proof

of the a-theorem in four dimensions [77, 78].

Despite the complicated appearance of the non-linear symmetries in (3.14), it is easy

to construct invariant actions for φ, by simply building diffeomorphism invariant actions

using the effective metric gµν = e2φηµν . The kinetic term for φ is just given by the Einstein-

Hilbert term (with the “wrong” overall sign):

Skin = −Λ2

12

∫

d4x
√−gR[g] =

∫

d4x

(

−Λ2

2
e2φ(∂φ)2

)

, (3.15)

after integrations by parts. The free kinetic term ∼ (∂φ)2 is accompanied by an infinite set

of specific interactions9 ∼ φn(∂φ)2. The cosmological constant term yields an exponential

potential
√−g = e4φ and higher order operators are built from higher order curvature

invariants made from the Riemann tensor and its covariant derivatives.

The O(R2) operators in this theory are particularly interesting and require a brief

discussion. The three operators {R2
µνρσ, R

2
µν , R

2} are degenerate with each other and,

after integrations by parts, only yield a single independent operator

LR2 ∝
[

∂2φ+ (∂φ)2
]2

. (3.16)

8The worldvolume theory of a flat co-dimension one brane in an AdS space nonlinearly realizes the

conformal group even away from the small-field limit. This nonlinear realization is actually equivalent to

the parameterization we consider, with the two theories related by a complicated field redefinition [69–71].
9Note that (3.15) alone is a free theory in disguise, as can be seen via the field redefinition φ̂ = Λeφ.

When other terms are added to the action, this is no longer true, of course.
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This follows the expected counting: the Gauss-Bonnet theorem removes one combination

and the vanishing of the Weyl tensor removes another, resulting in the above redundancy.

However, there also exists another four derivative operator which cannot be written in

terms of four dimensional curvature invariants, is different from (3.16), and is symmetric

under (3.14), up to a total derivative:

Lwz ∝ (∂φ)4 + 2∂2φ(∂φ)2. (3.17)

The operator (3.17) is the only operator in the EFT without a four-dimensional geometric

description. It has a natural interpretation as a Wess-Zumino term, hence the notation, and

can be derived by coset methods applied to the breaking pattern SO(4, 2) → SO(3, 1) [7].10

It is a direct analogue of the special galileon operators (2.1) and the Wess-Zumino-Witten

term of the chiral Lagrangian [7]. Finally, the operator also appears in the flat space limit

of the Wess-Zumino anomaly functional (for the a anomaly of a 4D CFT) [77, 78].

We now apply the power counting formula (3.5). As in the General Relativity case, we

will need to tune the cosmological constant term,
√−g = e4φ, to zero in order to have a

Poincaré invariant solution to expand about. After canonically normalizing, φ 7→ φ/Λ, we

start by considering arbitrary diagrams built from only the kinetic term and its associated

interactions (3.15) (as these have the fewest derivatives). We estimate that the L-loop

diagram scales as

M(N)

e2φ(∂φ)2
∼ Λ4−N

(

k

Λ

)2L+2

. (3.18)

From this estimate, it appears that that one-loop diagrams constructed from (3.15) alone

will renormalize the 4-derivative operators (3.17) and (3.16). However, as noted in foot-

note 9, (3.15) is really a free kinetic term in disguise and hence any S-matrix element

constructed solely from vertices taken from this operator will vanish, after all diagrams are

summed up [79, 80], so the expression (3.18) actually vanishes.

Our loop diagrams must therefore use at least one insertion of a 4-

derivative (3.16) (3.17), or higher, vertex. Using a single four-derivative vertex and ar-

bitrarily many vertices from the kinetic operator, we find

M(N) ∼ Λ4−N

(

k

Λ

)2L+4

, (3.19)

so the first operators that can possibly be renormalized are the 6-derivative ∼ R3 and

∼ R�R terms. Replacing the 4-derivative vertex with a higher order operator or going to

higher loops only increases the scaling with k. Therefore, loops of φ only renormalize 6-

derivative, and higher order, operators. Thus, the potential, kinetic terms and 4-derivative

terms do not run in the pure conformal dilaton theory.

4 Coupling to heavy fields

Given the apparent ubiquity of non-renormalization statements for derivatively coupled

theories, we are led to ask: what is special about the galileon non-renormalization theorem?

10A different way of deriving (3.17) is by constructing curvature invariants for gµν = e2φηµν in arbitrary

d, where the Gauss-Bonnet term no longer vanishes, before taking a limit to d → 4 [1].
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Specifically, the detailed argument of section 2.1 would seem to be superfluous given that

the same results can be derived by dimensional analysis. Does the detailed proof of non-

renormalization in some way distinguish the galileon from GR, P (X) and the dilaton?

We argue that indeed it does; the galileon non-renormalization theorem ensures that

even coupling additional heavy fields to φ will not cause the galileon operators to be renor-

malized. As we will see, this is in stark contrast to the other theories we have considered,

whose leading operators will generically be corrected by heavy fields.

A heuristic argument for the above claim is the following. All of the estimates we have

performed so far have assumed a mass-independent regulator. Consider, instead, using a

cutoff, Pauli-Villars or some other mass-dependent scheme. A new scale ΛUV will now arise

from loop diagrams and complicate the estimates. For instance, the 4-point loop diagram

coming from two insertions of the ∼ X2 ∼ (∂φ)4/Λ4 vertex in the P (X) theory will now

have the schematic form

M(4)
X2,X2 ∼

(

k

Λ

)8

+

(

Λuv

Λ

)2( k

Λ

)6

+

(

Λuv

Λ

)4( k

Λ

)4

, (4.1)

whereas only the first term appears in dimensional regularization. This does not change

the conclusions of section 3.4, but just complicates the expressions. In particular, only the

first term in (4.1) has a logarithmic divergence and we would again conclude that P (X)

loops only cause 8-derivative and higher order operators to run. Still, we generically find

power law divergences11 proportional to k6 and k4, corresponding to ∼ ∂∂X2 and ∼ X2

operators which, we saw, receive no running from self-loops.

In contrast, if we used a cutoff to calculate the loops contributing to 2 → 2 scattering

in the purely galileon theory, we would find an expression of the form

M(4)
gal. loops ∼

(

k

Λ

)12

+

(

Λuv

Λ

)2( k

Λ

)10

+

(

Λuv

Λ

)4( k

Λ

)8

. (4.2)

There are power divergences corresponding to ∼ ∂∂(∂2φ)4 and ∼ (∂2φ)4 operators (which,

we found, do not run from φ loops), but no power divergence corresponding to the galileon

operators (2.1). This is assured by the detailed non-renormalization theorem of section 2.1:

all contributions to the galileon operators, logarithmic and power law, are vanishing, re-

gardless of the regulator.

Power laws capture, in some rough sense, the effect of coupling heavy fields to the

theory. For instance, consider pure λφ4 theory in d = 4,

L = −1

2
(∂φ)2 − m2

2
φ2 − λ

4!
φ4 . (4.3)

Calculating the one-loop vacuum polarization diagram using a cutoff, one finds that there is

a quadratic divergence which needs to be removed by a counterterm, δm2 ∼ λΛ2
UV. Essen-

tially, this quadratic divergence12 indicates the generic result of coupling heavy fields to φ.

11Taking power law divergences too seriously can yield misleading conclusions, see, e.g. [81]. Logarithms

provide the sharpest information, and these power law corrections should really be thought of as an estimate

of the logarithmic part of the result of integrating out a heavy particle.
12There is also a logarithmic divergence, indicating that m2 runs with β(m2) ∼ λm2, but this is not

crucial for the following discussion, so it is omitted.
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For instance, imagine that the action (4.3) represented the leading terms in the EFT

that arose from integrating out a heavy field Φ of mass M which couples to φ in the

following way,

LUV = −1

2
(∂φ)2 − m2

2
φ2 − 1

2
(∂Φ)2 − M2

2
Φ2 − g

2
φ2Φ2 + . . . . (4.4)

The one-loop vacuum polarization diagram for φ, with Φ running in the loop, now generates

logarithmic running with β(m2) ∼ gM2. This expression for the beta function is valid only

for energies larger than ∼ M . At energies below Φ’s mass, this heavy field quickly decouples

and its contribution to beta functions is driven to zero; see [82] for a relevant review. So,

if m2(EUV) is the value of φ’s mass squared parameter at a scale EUV ≫ M , then its value

at very low energies EIR ≪ M (denoted by m2(EIR)) is given by an expression of the form

m2(EIR) ≈ m2(EUV) + gM2 log

(

EUV

M

)

, (4.5)

up to O(1) factors. Above, we’ve ignored all other sources of running and, again, used the

fact that the heavy matter decouples at energies below M in order to only run m2 between

the scales EUV and M (as opposed to between EUV and EIR, which would be incorrect).

The above line of reasoning is an example of the sense in which power divergences

demonstrate the existence of hierarchy problems. The quadratic divergence we found in the

low energy theory ∼ λΛ2
UV mimics the gM2 logEUV/M correction13 above with the rough

correspondence ΛUV ∼ M . Though only logarithmic divergences are unambiguous [81],

power laws serve as acceptable proxies for how heavy physics can affect parameters in the

action and the conclusions reached through either analysis are typically in agreement.

Since GR, P (X) and the conformal dilaton have no non-renormalization argument

which is regulator independent, we expect their amplitudes to generically have power di-

vergences corresponding to all possible operators, hence we expect that the terms which

are not renormalized by self-loops will still be sensitive to the effects of heavy fields. We

expect that the same will not be true of galileons: coupling them to heavy fields will not

renormalize the special operators (2.1).

The remainder of the paper is devoted to examining this claim in detail. We couple

a heavy matter field to all of the theories we discussed previously and integrate out the

heavy field. For simplicity, we couple in a non-self-interacting scalar Φ of mass M , being

careful to use couplings which respect the symmetries of the effective theory. We first show

that the lowest-derivative galileon operators are not affected by this procedure. We then go

on to Einstein gravity, P (X) theories, and the conformal dilaton in turn and demonstrate

that heavy fields can affect the coefficients of all the operators of interest.

4.1 Integrating out fields via functional determinants

In this section, we briefly introduce the formalism we employ to integrate out the heavy

field, Φ. For simplicity, we only consider a non-self-interacting heavy scalar Φ — coupled

13For φ to be active at low energies, we must have m(EIR) ≪ M . This is very unnatural, as it is only

true if m2(EUV) lies in a very narrow window in which it can cancel off most of the gM2 logEUV/M term,

otherwise m2(EIR) ∼ O(M2). A priori, there is no good reason why this should be the case, which is the

usual hierarchy problem.
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to the fields of interest in a manner preserving the symmetry of the EFT — so that the

action is quadratic in Φ. In this case, the path integral over Φ can be done exactly, and

the effective action for φ is given by a functional determinant

exp iSeff [φ] =

∫

DΦ exp iSφ,Φ = det

(

δ2Sφ,Φ

δΦδΦ

)

−1/2

exp iSφ,Φ=0 . (4.6)

Much machinery has been built to evaluate determinants of this type, for instance using

heat kernels [83, 84]. We choose to evaluate the functional determinant perturbatively,

in powers of the field φ. To facilitate this, it is often best to write the determinant as a

contribution to the effective action:

exp i∆ΦSeff = det

(

δ2Sφ,Φ

δΦδΦ

)

−1/2

= exp

(

−1

2
Tr log

δ2Sφ,Φ

δΦδΦ

)

. (4.7)

As a simple example, consider the two scalar action from the previous section (4.4),

Lφ,Φ = −1

2
(∂φ)2 − m2

2
φ2 − 1

2
(∂Φ)2 − M2

2
Φ2 − g

2
φ2Φ2. (4.8)

The contribution to the action from integrating out Φ is then

∆ΦSeff =
i

2
Tr log

δ2Sφ,Φ

δΦδΦ
=

i

2
Tr log

(

∂2 −M2 − gφ2
)

. (4.9)

Dividing through by a factor of the propagator — this shift can be absorbed into the

normalization of the path integral, and corresponds to canceling the vacuum bubbles of

the field Φ — we can cast this as

∆ΦSeff =
i

2
Tr log

(

1− 1

∂2 −M2
gφ2

)

(4.10)

We now want to evaluate this expression perturbatively in φ by expanding the loga-

rithm

∆ΦSeff = − i

2
Tr

(

1

∂2 −M2
gφ2

)

− i

4
Tr

(

1

∂2 −M2
gφ2 1

∂2 −M2
gφ2

)

+ · · · . (4.11)

Each term in this expression can be mapped to a particular Feynman diagram contribution.

We first evaluate the O(φ2) contribution to the action; in order to do this, we introduce sets

of position and momentum eigenstates as outlined in appendix A and trace over momentum

eigenstates14

= − i

2

∫

d4p 〈p| 1

∂2 −M2
gφ2|p〉 = ig

2

∫

d4xφ2(x)

∫

d4p

(2π)4
1

p2 +M2
. (4.12)

The (divergent) integral can then be evaluated in dimensional regularization to yield the

contribution to the effective action

∆ΦSeff ⊃ −
∫

d4x
gM2

(4π)2

(

1

ǫ
− logM/µ

)

φ(x)2, (4.13)

14The mapping between this situation and the notation in equation (A.18) is SJ
(n)[ip]J = gφ(x)2,

S−1 I

(0) [ip]I = −(p2 +M2)−1.
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where we absorbed all finite terms into the definition of µ. The 1/ǫ divergence is canceled

by a counterterm for the φmass, after which we can smoothly take ǫ → 0, and the logarithm

combines with the φ mass term in the full action to form

Seff ⊃
∫

d4x − 1

2

(

m2 − 2gM2

(4π)2
logM/µ

)

φ(x)2 . (4.14)

Demanding that the action be independent of the arbitrary mass scale15 µ yields the beta

function β(m2) = −2gM2

(4π)2
, in accord with our previous expression (4.5). This result agrees

with the standard diagrammatic analysis.

For emphasis, the beta function we just derived is only valid at energies larger than

the mass of the heavy particle. Its behavior is approximately piecewise:

β(m2) ≈







−2gM2

(4π)2
E & M

0 E . M
, (4.15)

though the exact form of the low energy behavior is scheme dependent [82]. The decoupling

at energies below M is entirely general and simply represents the fact that short distance

physics has little effect on long distance physics. In the following sections, we will derive

many more beta functions and they should all be understood in the above manner, being

only valid at energies larger than the heavy mass scale (which we always write as M).

4.2 Galileons

First, consider the galileon. We couple a heavy scalar Φ to the galileon in a galileon invariant

way and integrate it out. None of the galileons are ever affected; this is for the same reason

that underlies the proof of the non-renormalization theorem in section 2.1: for the coupling

between Φ and φ to be invariant, φ should only appear through ∂2φ (or with more deriva-

tives) and path integrating over Φ therefore only generates terms built strictly from ∂2φ.

For example, consider the case where there is a linear in Φ coupling, so that there will

also be tree-level contributions to the effective action which comes from eliminating Φ via

its equation of motion. In order to see that this will not lead to galileon terms, note that

there is essentially only one way to write an invariant linear coupling: L ∼ f(∂n∂2φ)Φ, with

f(∂n∂2φ) an arbitrary scalar function of ∂µ∂νφ and derivatives thereof. It can be reasoned

that any other galileon invariant coupling can be put in this form after integrations by

parts. Therefore, the classical EOM will take the schematic form

(∂2 +M2)Φ = f(∂n∂2φ) + · · · , (4.16)

where · · · contains Φ self-interaction terms. Then, in order to integrate out Φ at tree-level,

one would merely take the original Lagrangian L(φ,Φ) and replace Φ by

Φ 7→ 1

M2

(

1− ∂2

M2
+ . . .

)

f(∂n∂2φ) . (4.17)

15More generally, wavefunction renormalization factors also have to be taken into account when deter-

mining the beta function, but simply demanding independence from µ will be sufficient for all the examples

we consider. The general procedure is given in, for example, [85], where it is phrased in terms of the 1PI

action. The functional determinants we consider can be thought of as (part of) the one-loop contribution

to the 1PI action, as calculated using the background field method [42].
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This will never lead to galileons, since all φ fields have too many derivatives acting upon

them.

As an example of an explicit loop computation, take the galileon invariant coupling to

Φ to be

Sint =

∫

d4x

(

−1

2
(∂Φ)2 − M2

2
Φ2 +

λ

2Λ
Φ2∂2φ

)

. (4.18)

Integrating out Φ, the effective action then contains the terms

∆ΦSeff =
i

2
Tr log

(

∂2 −M2 +
λ

Λ
∂2φ

)

. (4.19)

Notice that inside the functional trace the field φ already has two derivatives acting on

it. Hence, it is already clear that no operators with fewer than two derivatives will be

generated from integrating out Φ. We can check this explicitly by computing the lowest

order corrections in derivatives, at order ∂2φ we find

∆ΦSeff ⊃
∫

d4x
λ2

32π2Λ2

(

1

ǫ
− logM/µ

)

(∂2φ)2 +
1

192π2M2

(

λ

Λ

)3

(∂2φ)3 + · · · , (4.20)

where · · · indicates terms which are both higher order in fields with 2 derivatives per field

and terms with more derivatives per field. We see from this cubic action that in particular

the cubic galileon is not generated. This continues to be true at higher order — only terms

with at least two derivates per field are generated.

Again, these results can be seen to follow from the fact that the interaction always

involves a power of ∂2φ which always results in effective actions built from ∂2φ. A more

interesting case would be if there were a Wess-Zumino like coupling between Φ and φ

which was invariant under (1.1) up to a total derivative but could not be integrated by

parts into a form where there are at least two derivatives per φ, however we are not aware

of any such couplings. Note that if the coupling is not invariant, for example the standard

∼ φT matter coupling often considered in studies of the Vainshtein mechanism, then these

non-renormalization statements do not strictly hold [86].

We’ve been somewhat agnostic about the role of the heavy Φ field, but one might

have hoped that it could play some significant part in the UV completion of the non-

renormalizable galileon theory. The above calculations then provide explicit evidence

against the possibility of UV completing galileons in a standard, local manner, in ac-

cordance with the general arguments of [21] against any such completion.

4.3 General relativity

Now we will see that the non-renormalization of the Planck mass and cosmological constant

of section 3.3 does not hold upon integrating out a heavy field. Consider coupling minimally

a heavy scalar, Φ, to GR,

S =

∫

d4x
√−g

(

M2
PlR

2
− Λ +

1

2
Φ(�−M2)Φ

)

. (4.21)
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The result of integrating out Φ is well known (see e.g. [87], or [88, 89]). There is a con-

tribution to the cosmological constant which can be computed from the zero momentum

part of the diagram

. (4.22)

The contribution to the effective action is

Seff ⊃
∫

d4x
√−g

[

−Λ +
M4

32π2

(

1

ǫ
− logM/µ

)]

. (4.23)

We introduce the renormalized CC as Λ = ΛR + δΛ with δΛ = 1
ǫ

M4

32π2 , take ǫ → 0 safely

and then demand that Seff be independent of µ to yield the beta function for Λ,

β(Λ) =
M4

32π2
. (4.24)

There is a contribution to the Planck mass which can be computed from the order ∂2

part of the diagram

(4.25)

which leads to a contribution to the effective action of the form

Seff ⊃
∫

d4x
√−g

[

M2
Pl −

M2

48π2

(

1

ǫ
− logM/µ

)]

R

2
+ · · · . (4.26)

In order to cancel off the pole, we introduce a renormalized Planck mass and associated

counterterm. Then, demanding that the answer is independent of the renormalization scale,

µ, yields the beta function for the Planck mass

β(M2
Pl) =

M2

48π2
. (4.27)

4.4 P (X) theories

In this section we couple Φ to P (X) theories, and integrate it out to see to the renormal-

ization of P (X). We do this in several different ways.

4.4.1 ∂µφ∂νφT
µν coupling

The couplings we consider must respect the φ 7→ φ + c symmetry of P (X) theories. One

coupling which satisfies this criterion is coupling the stress tensor of the Φ field to derivatives

of φ, as might arise from certain brane-world constructions,

L = Λ4P (X)− 1

2
(∂Φ)2 − M2

2
Φ2 +

λ

Λ4
∂µφ∂νφT

µν(Φ). (4.28)

Here the stress tensor for Φ is

Tµν(Φ) = ∂µΦ∂νΦ− ηµν

(

1

2
(∂Φ)2 +

M2

2
Φ2

)

. (4.29)
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Integrating out Φ, the effective action then contains the generated terms

∆ΦSeff=
i

2
Tr log

(

�−M2−λM2

Λ4
(∂φ)2− 2λ

Λ4
�φ∂µφ∂µ+

λ

Λ4
(∂φ)2�− 2λ

Λ4
∂µφ∂νφ∂µ∂ν

)

.

(4.30)

The simplest possible computation we can do is to check if this coupling to the heavy

field Φ induces a wavefunction renormalization of the kinetic term ∼ −1
2(∂φ)

2. The only

operator that can contribute to this is the −λM2

Λ4 (∂φ)2 term in (4.30), so we just have to

compute the single insertion trace involving this operator:

= − i

2
Tr

(

1

∂2 −M2

λM2

Λ4
(∂φ)2

)

=

∫

d4x− 1

2
(∂φ)2

λM4

(4π)2Λ4

(

1

ǫ
− logM/µ

)

.

(4.31)

We see that the P (X) kinetic term does get renormalized by the heavy field, i.e., an

anomalous dimension16 is acquired, when we couple φ to Φ as in (4.28). In comparison,

loops of φ in a pure P (X) theory do not induce such an anomalous dimension.

4.4.2 DBI

Next, we consider a special case of P (X) theories: the DBI Lagrangian. This theory de-

scribes the dynamics of a Minkowskian 3-brane embedded in a five dimensional spacetime.

The action is built through the induced metric on the brane,

ḡµν = ηµν +
1

Λ4
∂µφ∂νφ , (4.32)

and its associated curvature invariants, including the extrinsic curvature tensor Kµν =

−γ∂µ∂νφ. In particular, the DBI kinetic term comes from the volume element:

SDBI = −Λ4

∫

d4x
√−ḡ = −Λ4

∫

d4x

√

1 +
(∂φ)2

Λ4
. (4.33)

In addition to the φ 7→ φ+ c symmetry of all P (X) theories, DBI is further symmetric

under φ 7→ φ + bµ(x
µ + φ∂µφ). In this context, the P (X) symmetry is the worldvolume

consequence of higher-dimensional translation invariance of the brane along the transverse

direction, while the second symmetry is a consequence of higher-dimensional boosts mixing

brane directions with the transverse direction.

Couplings to a heavy scalar which are DBI-invariant are easy to engineer by utilizing

the induced metric ḡµν in (4.32). The simplest such coupling takes the form:

Scoupling =

∫

d4x
√−ḡ

(

−1

2
ḡµν∂µΦ∂νΦ− M2

2
Φ2

)

. (4.34)

We would like to understand how the presence of this heavy scalar renormalizes the tension

Λ. To calculate this, we will determine the contributions to the ∼ (∂φ)2 and ∼ (∂φ)4 terms

in the effective action, and verify that they match the expansion in (4.33).

16The anomalous dimension is γφ = λM2

2(4π)2Λ2 , as can be derived using eq. (1a.1.39) of [85].
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The functional determinant we want to compute is (again, we drop the contribution

from
√−ḡ)

∆ΦSeff =
i

2
log det

(

�̄−M2
)

=
i

2
Tr log

(

�̄−M2
)

(4.35)

with �̄ = ḡµν∇̄µ∇̄ν built from covariant derivatives with respect to ḡµν . The easiest way

of computing �̄ is to use

�̄ =
1√−ḡ

∂µ
[

ḡµν
√−ḡ∂ν

]

= ∂2 − 1

Λ4
∂2φ∂µφ∂

µ − 1

Λ4
∂µφ∂νφ∂µ∂ν

+
1

Λ8
∂2φ(∂φ)2∂µφ∂µ +

1

2Λ8
∂µ(∂φ)2∂µφ∂

νφ∂ν +
1

Λ8
(∂φ)2∂µφ∂νφ∂µ∂ν · · · , (4.36)

where we have used ḡµν = ηµν − γ2

Λ4∂
µφ∂νφ , γ ≡ 1/

√

1 + (∂φ)2

Λ4 , and indices are raised and

lowered with ηµν . We are only looking for terms which can generate terms ∼ (∂φ)2 or

∼ (∂φ)4, and the pieces in (4.36) which have two derivatives acting on a φ cannot give rise

to these. The relevant trace is then reduced to

∆ΦSeff =
i

2
Tr log

(

∂2 −M2 − 1

Λ4
∂µφ∂νφ∂µ∂ν +

1

Λ8
(∂φ)2∂µφ∂νφ∂µ∂ν

)

. (4.37)

The contribution to the ∼ (∂φ)2 term is given by a single insertion trace over the

−∂µφ∂νφ∂µ∂ν operator:

= − i

2
Tr

(

1

∂2−M2

1

Λ4
∂µφ∂νφ∂µ∂ν

)

=

∫

d4x
1

2
(∂φ)2

M4

32π2Λ4

(

1

ǫ
−logM/µ

)

.

(4.38)

and, summing up both a single and double insertion trace, the ∼ (∂φ)4 terms are given by

+ =

∫

d4x− 1

8Λ4
(∂φ)4

M4

32π2Λ4

(

1

ǫ
− logM/µ

)

. (4.39)

The relative coefficient matches precisely what we obtain from the expansion of the volume

element:

Λ4√−ḡ ≈ 1 +
1

2
(∂φ)2 − 1

8Λ4
(∂φ)4 + . . . (4.40)

Comparing to (4.33) the renormalized tension Λ is seen to run as

β(Λ4) =
M4

32π2
. (4.41)

Therefore, we explicitly see that a heavy scalar renormalizes the infinite tower of ∼ Xn

operators which appear in the DBI action.

Note that we have essentially just repeated the calculation of the CC running of sec-

tion 4.3: Φ couples to φ via minimal coupling to ḡµν , which is just a specific choice of

metric. It is therefore not surprising that the two beta functions (4.41) and (4.24) agree.
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4.5 Conformal dilaton

Finally, we couple Φ to the conformal dilaton field, denoted by φ. We take Φ to transform

as a primary field of weight ∆ so that under the conformal symmetries Φ transforms as

δΦ = c (∆ + xµ∂µ) Φ , δΦ = bµ
(

2∆xµ + 2xµxν∂ν − x2∂µ
)

Φ , (4.42)

with constant c, bµ, while the dilaton transforms non-linearly as in equation (3.14).

After fixing the mass and scaling dimension of Φ and canonically normalizing, there

exists a one-parameter class of two derivative interactions which are quadratic in Φ and

symmetric under (4.42) and (3.14):

Sint =

∫

d4x − e2φ(1−∆)

2
(∂Φ)2 − M2e2φ(2−∆)

2
Φ2 −

(

λ+∆− 2λ∆−∆2
) e2φ(1−∆)

2
Φ2(∂φ)2

− λe2φ(1−∆)Φ∂µΦ∂µφ . (4.43)

The ∆ = 1, λ = 0 case was considered in [77], as a check of their arguments in the proof

of the a-theorem.

Working to fourth order in derivatives, we integrate out Φ and find, after a lengthy

calculation:

∆ΦSeff =

∫

d4x
[

dV e
4φ − dRe

2φ(∂φ)2 + dR2

(

�φ+ (∂φ)2
)2
]

(

1

ǫ
− logM/µ

)

(4.44)

+

∫

d4x
[

fV e
4φ − fRe

2φ(∂φ)2 + fR2(�φ+ (∂φ)2)2 + fWZ

(

�φ+ 2�φ(∂φ)2
)

]

,

where the coefficients of the divergent and finite terms are:

























dV
dR
dR2

fV
fR
fR2

fWZ

























=
1

(4π)2

























M4

2

−M2(∆ + λ− 1),
1
2(∆ + λ− 1)2

3M4

8

−M2

3
1
60 + (∆+λ)(∆+λ−1)

3

− 1
180

























. (4.45)

In order to consistently calculate (4.45) using dimensional regularization, one must also

work with the invariant operators
√−g ,

√−gR, etc. (where, again, gµν = e2φηµν)

as constructed in arbitrary dimensions. This induces additional factors of ǫ’s, as in√−g = edφ = e(4−ǫ)φ, which contribute non-trivially to the finite parts of the functional

determinant. Such terms are necessary in obtaining a conformally invariant answer.

We see that the Wess-Zumino term receives a finite renormalization. The coefficient

of the Wess-Zumino term, fWZ, is notably independent of both λ and ∆, as it should be,

since fWZ is directly related to the a-anomaly which characterizes a fundamental property

of the free scalar field which shouldn’t depend on how one couples the dilaton to Φ. Its

numerical value is in full agreement with the result in [77].
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5 Conclusions

Many massless, derivatively coupled effective theories have non-renormalization theorems

that follow simply from dimensional analysis, without reference to the detailed structure of

the interactions. Essentially, their interactions have so many derivatives that the self-loops

can only affect operators of a certain minimum dimension. Among the theories in this

class are General Relativity, P (X) theories, the conformal dilaton (sometimes called the

conformal compensator, or conformal galileon), and galileons.

Galileons, however, possess a stronger, diagrammatic non-renormalization theorem

that depends on the detailed structure of the galileon interaction terms [30]. We have

interpreted the extra strength of the galileon non-renormalization theorem as the statement

that the galileon operators are not renormalized even by loops of other heavy fields, as long

as they are coupled in a galileon invariant way. In the other theories like GR or P (X), the

leading operators are renormalized by these heavy loops.

We have tested this interpretation by coupling a heavy scalar field to each of these

theories in ways that respect the symmetries of each theory. None of the five special

galileon operators are affected by heavy fields. In comparison, the operators in the GR,

P (X) and conformal dilaton theories which were not affected by self-loops are renormalized

by loops of the heavy field.

Finally, we note that even if the galileon symmetry is not an exact symmetry but is

weakly broken, the non-renormalization theorem still controls corrections to the galileon

terms, rendering them proportional to the small breaking, a fact which can be useful, for

example in constructing technically natural cosmological models [90, 91].

As an example of this, we note another difference in the non-renormalization theorem of

galileons compared with other theories that becomes apparent when we consider deforming

the theory with a mass. In the power counting formula (3.5), we were able to find the scaling

of arbitrary diagrams with powers of the scale Λ and the external momenta of the diagram k.

When the theory is massless, k truly refers to an external momenta, but if there are massive

particles running in the amputated diagram, then factors of k can also represent mass

scales. For instance, consider adding a mass term to the leading operators in a P (X) theory:

L = −1

2
(∂φ)2 − m2

2
φ2 − λ

Λ4
(∂φ)4 + . . . . (5.1)

The power counting formula (3.5) still tells us that the tree and one-loop 2 → 2 diagrams

scale as

M(4)
(∂φ)4

∼
(

k

Λ

)4

, M(4)
(∂φ)4,(∂φ)4

∼
(

k

Λ

)8

, (5.2)

respectively. However, the meaning is different now, since some of the k’s can correspond to

mass scales and so in addition to terms like
(

k
Λ

)8
we can also have terms like ∼

(

m
Λ

)4 ( k
Λ

)4
.

This would correspond to a running of λ with β(λ) ∼ λ2
(

m
Λ

)4
.

Therefore, we see that generically adding mass scales ruins the analyses in section 3.

However, there is an exception with the galileons. Though it would seem that powers of

k2 could turn into factors of m2 in the power counting formulae and result in running
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galileon couplings, the detailed version of the non-renormalization theorem ensures that

this does not occur. This can be seen from the path integral proof in section 2.1; adding a

mass term changes nothing about the argument. This is yet another way that the galileons

are different from GR, P (X) and the conformal dilaton: the non-renormalization theorem

survives when the theory is deformed by a mass [92].
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A Evaluating functional determinants

In this appendix, we review the procedure for evaluating the traces in the functional de-

terminants. For another recent application of this general technique, see [93]. The general

object we are interested in computing is the 1-loop correction to the action

∆Γ(1) =
i

2
log det

(

δ2S

δφiδφj

)

=
i

2
Tr log

(

δ2S

δφiδφj

)

, (A.1)

where the φi are the fields in the theory. Defining δ2S
δφiδφj ≡ Sij we can expand in powers of

φi as

Sij = S(0)ij + S(1)ij + S(2)ij · · · , (A.2)

after factoring out S0ij (which is field independent), we can expand the logarithm to obtain

∆Γ(1) =
i

2
Tr logS(0)

(

1+ S−1
(0)S(1) + S−1

(0)S(2) + · · ·
)

(A.3)

=
i

2
Tr logS(0)+

i

2
Tr

(

S−1
(0)S(1)

)

+
i

2
Tr

(

S−1
(0)S(2)

)

+
i

2
Tr

(

S−1
(0)S(1)S

−1
(0)S(1)

)

+ · · · ,

where we have employed matrix notation S(n) ↔ S(n)ij . The piece Tr logS(0) is indepen-

dent of the fields in the action, and just represents a constant shift of the vacuum energy

of the theory, so we will often discard it.

In order to evaluate the traces in (A.3), it is useful to make a quantum-mechanical

analogy, the operators whose trace we want to evaluate are local functions of coordinates

– 22 –



J
H
E
P
1
1
(
2
0
1
6
)
1
0
0

and derivatives: S(n)ij(x, ∂). We therefore promote the coordinates and derivatives to

operators acting on a Hilbert space as

xµ 7→ x̂µ , ∂µ 7→ ip̂µ. (A.4)

We then introduce sets of position eigenstates, |x〉 and momentum eigenstates |p〉, which
satisfy the orthogonality and completeness relations

〈x|y〉 = δ(x− y) 〈p|k〉 = δ(p− k) (A.5)
∫

ddx |x〉〈x| = 1

∫

ddp |p〉〈p| = 1. (A.6)

The inner product between these two bases is given by

〈x|p〉 = 1

(2π)d/2
eip·x. (A.7)

The action of the x̂µ and p̂µ operators on these eigenstates is the obvious one

x̂µ|x〉 = xµ|x〉 (A.8)

p̂µ|p〉 = pµ|p〉. (A.9)

Any local operator O(x, ∂) is of the form

O(x, ∂) = O(x) +Oµ1(x)∂µ1 +Oµ1µ2(x)∂µ1∂µ2 + · · · ≡ OI(x)∂I , (A.10)

where I is a multi-index. The coefficients Oµ1µ2···(x) in this expression are built out of the

fields φi and their derivatives. To evaluate the traces, we make the replacement (A.4)

O(x, ∂) 7→ OI(x̂)[ip̂]I . (A.11)

We will evaluate the traces in momentum space, so we want to evaluate the matrix element

of this operator between momentum eigenstates

〈k|OI(x̂)[ip̂]I |p〉 =
∫

ddx 〈k|OI(x̂)|x〉〈x|[ip̂]I |p〉 =
∫

ddxOI(x)[ip]I〈k|x〉〈x|p〉

=

∫

ddx e−i(k−p)·x(2π)−dOI(x)[ip]I = (2π)−dÕI(k − p)[ip]I , (A.12)

where tilde refers to the Fourier transform.17 with this rule we can evaluate any trace that

we encounter.

17We employ the following convention for Fourier transformation

f(x) =

∫
ddk

(2π)d
eik·xf̃(k) f̃(k) =

∫
ddx e−ik·xf(x). (A.13)
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Propagator. The matrix element of the operator S(0)(∂) = SI
(0)ij [ip̂]I , with all the

SI
(0)ij = const. can be evaluated as

〈k|SI
(0)ij [ip̂]I |p〉 = SI

(0)ij [ip]Iδ(p− k). (A.14)

The matrix elements for the propagator S−1
(0) can be evaluated similarly:

〈k|S−1 I
(0)ij [ip̂]I |p〉 = S−1 I

(0)ij [ip]Iδ(p− k). (A.15)

Single insertion trace. Frequently, we will want to compute the trace involving an

insertion of a single operator of order n in the background fields. This takes the form

i

2
Tr

(

S−1
(0)S(n)

)

=
i

2

∫

ddp 〈p|S−1 I ij
(0) [ip̂]I S

J
(n)ij(x̂)[ip̂]J |p〉 (A.16)

=
i

2
S̃J
(n)ij(0)

∫

ddp

(2π)d
[ip]JS

−1 I ij
(0) [ip]I , (A.17)

where to get to the second line we have inserted a complete set of momentum eigenstates

and used the formulae (A.12) and (A.15). The factor S̃J
(n)jk(0) seems at first sight somewhat

strange, but we can rewrite the Fourier transform at zero momentum as an integral over

all of position space to obtain the form

i

2
Tr

(

S−1
(0)S(n)

)

=
i

2

∫

ddxSJ
(n)ij(x)

∫

ddp

(2π)d
[ip]JS

−1 I ij
(0) [ip]I , (A.18)

which is of the form that we evaluate in the text.

Double insertion trace. We will also want to compute the trace involving two insertions

of the operator S−1
(0)S(1), which can be evaluated as

− i

4
Tr (S−1

(0)S(1)S
−1
(0)S(1))=− i

4

∫

ddp〈p|S−1 I ij
(0) [ip̂]IS

J
(1)jk(x̂)[ip̂]JS

−1K kl
(0) [ip̂]KSL

(1)li(x̂)[ip̂]L|p〉

= − i

4

∫

ddp

(2π)d
ddq

(2π)d
S−1 I ij
(0) [ip]I S̃

J
(1)jk(p− q)[iq]JS

−1K kl
(0) [iq]K S̃L

(1)li(q − p)[ip]L. (A.19)

This can be simplified by shifting q 7→ q + p so that we have

− i

4
Tr

[

(S−1
(0)S(1))

2
]

= − i

4

∫

ddq

(2π)d
S̃J
(1)jk(−q)S̃L

(1)li(q) (A.20)

×
∫

ddp

(2π)d
S−1 I ij
(0) [ip]I [i(q + p)]JS

−1K kl
(0) [i(q + p)]K [ip]L

The integral over q can now be thought of as a convolution in Fourier space at zero mo-

mentum, so transforming back to position space, we obtain:

− i

4
Tr

[

(S−1
(0)S(1))

2
]

= − i

4

∫

ddxSI
(1)li(x) (A.21)

×
(∫

ddp

(2π)d
[∂ + ip]IS

−1 J ij
(0) [ip]JS

−1K kl
(0) [∂ + ip]K [ip]L

)

SL
(1)jk(x),

where the derivatives should be understood as acting on SJ
(1)(x).
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Higher insertions. This pattern generalizes to higher numbers of insertions. At nth

order for an operator at ℓth order in the fields we have

i(−1)n−1

n
Tr

[

(S−1
(0)S(ℓ))

n
]

=
i(−1)n−1

n

∫

ddxSI
(ℓ)ni(x) (A.22)

×
(∫

ddp

(2π)d
[∂ + ip]IS

−1 J ij
(0) [ip]JS

−1K kl
(0) [∂ + ip]KSL

(ℓ)jk(x)[∂ + ip]L

· · ·S−1M lm
(0) [∂ + ip]MSN

(ℓ)mn(x)[ip]N

)

,

where in the above expression all derivatives should be thought of as acting on everything

to their right.
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