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1 Introduction

Fascinating connections between a class of spin systems and two dimensional gravity have
been uncovered in the past few years. The SYK model [1–3] is the best studied example
of such a spin system and exhibits an interesting pattern of symmetry breaking, with its
low-energy dynamics being governed by Goldstone-like modes described by the Schwarzian
action. The same Schwarzian theory arises in JT gravity [4, 5] in two dimensional Anti-
de Sitter space (AdS) which in turn has been shown to quite universally describe the
near-horizon dynamics of a wide class of near-extremal black holes, [6–9].

JT gravity in two dimensional de Sitter space (dS) is another interesting system to
study. One can hope to use the simplicity of this theory for understanding some of the
conceptually interesting and deep questions of de Sitter space in general. In [10, 11] it
was proposed that JT gravity in dS space can also be described by a version of Random
Matrix theory which arises in the study of the AdS case, [12], and which is related to the
low-energy sector of the SYK theory.

This paper has two motivations. First, to study the behaviour of JT gravity in dS
space in more detail, including the pure JT theory and also the theory with extra matter
which gives rise to propagating degrees of freedom in the bulk. Second, to analyse certain
divergences which arise both in the AdS and dS cases for JT gravity coupled to matter,
when we consider the theories at higher genus or with multiple boundaries, as has been
discussed in earlier work, [13], in more detail.

Some of the key results of the paper are as follows.
We consider the pure JT theory in dS space and discuss the path integral in the second

order formalism. We argue that there is a non-trivial amplitude in the quantum theory for
producing a single universe, or an arbitrary number of disconnected universes, by “tunnelling
from nothing”. The path integral is carried out along the contour discussed in [10], and
involves in general an intermediate “-AdS2” geometry with two time-like directions, i.e. with
signature (0, 2). It gives rise to the Hartle-Hawking (HH) wave function for producing one
or several disconnected universes, or alternatively, depending on the analytic continuation
which is carried out in the vicinity of each boundary, it gives the transition amplitude
for n− initial disconnected universes to tunnel to n+ disconnected universes in the future,
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with n−, n+ taking arbitrary values. The higher genus or additional boundary amplitudes
are suppressed by a factor of eχS0 , where χ = 2 − 2H − B is the Euler character of the
intermediate geometry and B,H are the number of boundaries and handles. S0 is related,
upto a factor of 2 to the entropy of the extremal black hole in 4 dimensions from which the JT
theory arises after dimensional reduction. This quantisation of dS JT gravity therefore leads
us to the dizzying picture of a multiverse, where quantum tunnelling can change the number
of universes. These results also agree with those obtained in the first order formalism, [11].

We also discuss the proposal, [10, 11], mentioned above, that dS JT theory has a
hologram consisting of Random Matrix theory (RMT) in the double scaled limit considered
in [12]. The RMT hologram lives on the various spatial boundaries of the disconnected
universes involved in the HH wave function or the transition amplitudes, with the matrix
giving rise to spatial translations along each boundary. We suggest that in fact this proposal
can be further extended with the SYK theory being the hologram instead of RMT. The
SYK model and RMT should approximately agree when the (renormalised) length of each
boundary is big in units of the scale J , which is the single energy scale that characterises
the SYK model. This extension should correspond to adding extra degrees of freedom on
the gravitational side which remain to be understood better.1 In fact this is an interesting
proposal to consider both in the context of 2 dim. gravity in dS and AdS space. For some
discussion along these lines see also, [11].

Another topic we discuss in the paper is to consider an orbifold of dS space, obtained
by making an identification along a spatial direction. The spatial direction shrinks to
vanishing size at some time in the orbifold theory giving rise to an interesting toy model for
a big crunch or big bang singularity. Once matter is added we argue, based on the method
of images, that the classical theory has a singularity where the dilaton, φ → −∞. The
interpretation that a sufficiently negative value of the dilaton corresponds to a singularity
is motivated by thinking about JT theory as the dimensional reduction of a near extremal
black hole in 4 dim. dS space, with the dilaton being the radius of the S2. One might wonder
if quantum effects can cure this singularity. We study this question in the semi-classical
limit where quantum effects of conformal matter are included and find that the singularity
persists along a spacelike locus in the resulting theory.

Next, we turn to the full quantum theory where the gravity-dilaton system is also
quantised. After carrying out a path integral quantisation of the “double trumpet” geometry
we find that the system can have a well defined transition amplitude for the universe to start
off as a contracting dS spacetime in the far past and tunnel to an expanding dS phase in the
far future. The resulting final state wave function for the matter fields depends on the initial
conditions for matter. And the spectrum of perturbations, which is the analogue of CMB
perturbations in this toy model, shows interesting departure from scale invariance which can
persist up to length scales much smaller than the size of the universe. This toy model there-
fore illustrates the possibility of a cosmology, alternative to the big bang, where the expanding
universe arises after tunnelling from an initial smooth spacetime with potentially observable
consequences in the spectrum of quantum perturbations which are produced at late times.

1See [14, 15] for some discussion on this issue in AdS space.
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More precisely, we find the well defined transition amplitude, referred to in the previous
paragraph, arises only if the massless scalar fields we study have appropriate twisted
boundary conditions along the spatial direction. In the quantum theory, the path integral
involves a sum over a modulus, which is related to the size of the spatial direction, and
if the matter boundary conditions are periodic instead, without a twist, the integral over
moduli space blows up, as was discussed earlier in [13], and the path integral is ill-defined.
With twisted boundary conditions too, while the divergence is avoided for the particular
tunnelling amplitude we analyse, it is likely to arise at higher genus or in the case with
additional boundaries.

The divergence in moduli space, or their absence, is also a feature of the path integral
with matter in AdS space, instead of dS space, since the path integrals are closely connected
to each other. We have mentioned above in the discussion of the pure JT theory the
possibility of a boundary hologram being the SYK model. In the presence of extra matter,
to control the divergences in moduli space in general, we suggest that one can consider
a further extension of this proposed hologram where additional light matter is added to
the SYK theory. We discuss how this can be done and argue that the resulting quantum
mechanical system should then give finite results. A proper understanding of how this
works on the gravitational side is left for the future.

Two other results we obtain are worth mentioning here. For massless scalar fields we
find that even with periodic boundary conditions the divergence in moduli space can be
avoided if one is calculating the path integral with an appropriate number of cross-boundary
correlators connecting the different boundaries. The analysis we carry out is in AdS space
and is similar to what was found in [16, 17] with massive fields. We also analyse with
considerable care the double trumpet path integral with matter in AdS space and argue
that changing ensembles and going from the canonical to the microcanonical one, does not
allow us to control this divergence and extract a finite result.

The paper is organised as follows. In section 2 we elaborate on the classical solutions of
JT gravity. In particular, in the JT theory in de Sitter space with a black hole we verify that
the second law of thermodynamics is satisfied if the matter satisfies the null energy condition,
when one includes both the cosmological and black hole horizons. In section 3 we study
the semiclassical theory of JT gravity with matter in the orbifold backround mentioned
above. In section 4, we discuss the full quantisation of JT gravity in the presence of matter
and the various related points concerning analytic continuations from AdS, multi-boundary
generalization, connections to Random matrix theory etc. In section 5 we discuss the double
trumpet geometry in the presence of matter with twisted boundary conditions and also
correlations functions with insertions on both boundaries. In 6, we discuss that spectral form
factor and its behaviour in the micro-canonical ensemble. Section 7 ends with a discussion
about SYK theory coupled to additional matter as a possible hologram to JT gravity with
matter in dS and some open questions. Appendix D contains detailed discussion about
attempts to canonically quantise the JT theory in AdS/dS space. Appendix E, F contains
some important details related to section 5. including the calculation of the 4 point OTOC
in the double trumpet geometry. Appendix G is has more details concerning section 6.

Some important references pertaining to this paper include, [6–8, 10–13, 18–81].
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2 De Sitter JT gravity with classical matter

In this section, we shall first analyze the classical behaviour of JT gravity in dS2 spacetime.
Let us introduce the basic setup. To avoid repetition of various equations in the absence and
presence of matter, we write most the of equations in general form in the presence of matter
but restrict to matter-less case wherever needed by turning the off the stress tensor for
them. The action for Jackiw-Teitelboim (JT) model in 2D de Sitter spacetime is given by,

IJT = −i
16πG

(∫
d2x
√
−g φ(R− 2)− 2

∫
bdy

√
−γφK

)
, (2.1)

where G is the 2D Newton’s constant, R is the Ricci scalar, K is the extrinsic curvature of
the boundary and φ is the dilaton field. The boundary term in the above action is the usual
Gibbons-Hawking term added to render the variational principle well-defined for Dirichlet
boundary conditions on the metric and dilaton. Note that a boundary term proportional
to length of the boundary is added in AdS consistent with holographic renormalization,
as a counterterm to cancel divergence that arise in the path integral when the length of
boundary diverges. In de Sitter context that we are interested here, we use eq. (2.1) to
compute the wavefunction and such a counterterm is not to be added. Note we have chosen
units where the cosmological constant is 2.

We consider the JT theory along with conformally invariant massless scalar fields whose
action denoted by Im, is given by

Im =
N∑
k=1

i

2

∫
d2x
√
−g(∇µϕk)2 (2.2)

where N is the number of species of matter fields. The factor of i inlcuded in the actions
above is so that the path integral in terms of the action just becomes

Z =
∫

[Dg] [Dφ] [Dϕk] e−IJT−Im (2.3)

The matter fields only couple to gravity and not to the dilaton φ. So, the equation of
motion obtained by varying the dilaton is given by

R− 2 = 0 (2.4)

which shows that spacetime is always dS space. Working in the conformal gauge in which
the metric takes the form,

ds2 = e2ω(x+,x−) dx+dx− (2.5)

eq. (2.4) becomes

8∂+∂−ω + 2e2ω = 0 (2.6)

with one of the solutions being given by

e2ω = 4
(x+ − x−)2 ⇒ ds2 = 4

(x+ − x−)2dx
+dx− (2.7)
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Varying the JT action eq. (2.1) with respect to the metric gives

2√
−g

δIJT
δgµν

= i

8πG(∇µ∇νφ− gµν∇2φ− gµνφ) (2.8)

Including the contribution from the matter fields, the equations of motion obtained by
varying the metric are given by

− 1
8πG(∇µ∇νφ− gµν∇2φ− gµνφ) = T (m)

µν , (2.9)

with T (m)
µν being the matter stress tensor, defined by

iT (m)
µν ≡

2√
−g

δIm
δgµν

(2.10)

Note that the above definition of stress tensor might seem odd at first sight due to an extra
factor of i, but a glance at eq. (2.2) shows that there should indeed be such a factor to
compensate for a factor of i in the definition of the action. In the conformal gauge eq. (2.5),
eq. (2.9) becomes

−e2ω∂±
(
e−2ω∂±φ

)
= 8πGTm±±, (2.11)

2∂+∂−φ+ e2ω φ = 16πGTm+−. (2.12)

Let us first analyze the theory in the absence of matter. Working in the coordinate system
eq. (2.7) and setting T (m)

µν = 0, we get the solution for the dilaton as

φ = a+ b(x+ + x−) + cx+x−

(x+ − x−) (2.13)

where a, b, c are arbitrary constants. Doing an SL(2,R) transformation of the coordinates
x+, x−, we can get the dilaton to the form

φ = 1− µx+x−

x+ − x−
, µ = b2 − ac (2.14)

where µ is a real parameter which can be either positive, negative or zero.
We analyse all three cases below. Before doing so, let us note the following two facts.

First, dS2 in global coordinates is given by

ds2 = −dτ̂2 + cosh2 τ̂ dθ̂2 (2.15)

with τ̂ ∈ [−∞,∞], and θ̂ ∈ [0, 2π], spanning a circle of length 2π. These coordinates cover
all of dS space. The transformations eq. (A.9)(A.11)(A.13), relates these to x± poincare
coordinates above. The transformation eq. (A.9) the relates the coordinates to ζ± = θ̂± r̂∗,
with r̂∗ ∈ [0, π], θ̂ ∈ [0, 2π] in terms of which one can easily obtain the Penrose diagram
shown in 6. Note that, as is well known, the Penrose diagram for global dS is a rectangle,
and a light ray which starts at θ̂ = 0 at time r̂∗ = 0 reaches the antipodal point of the circle
θ̂ = π asymptotically in the far future.

– 5 –
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Second, 2 dim. JT gravity can be thought of as arising from higher dimensions after
carrying out a dimensional reduction, with φ being related to the volume of the internal
space. Keeping this interpretation in mind we will impose that a singularity arises in the JT
theory when φ becomes sufficiently negative in value. For example, as was discussed in [10],
the JT theory is obtained from 4 dim Einstein theory with a positive cosmological constant
after dimensional reduction, by considering a black hole which is close to extremality, with
the cosmological and black horizons close together. Assuming spherical symmetry, the 4
dim. metric can be written as

ds2 = gαβdx
αdxβ + Φ2

0(1 + φ)dΩ2 (2.16)

where gαβ is the two dim. metric and Φ0 is the value of the horizon radius at extremality.
φ then plays the role of the dilaton in the 2 dim. JT theory which arises in the near-
extremal limit.

We see in this case that when

φ = −1 (2.17)

the volume of the internal S2 vanishes and in fact a curvature singularity arises in the 4
dimensional theory at that locus. With this example in mind, in our subsequent discussion
for definiteness we will take the singularity in JT theory to be located at φ = −1. No
important consequences will depend on this precise value.

Let us now consider the three solutions found in Poincare coordinates in eq. (2.14).
For µ < 0 after a rescaling x± → − x±√

|µ|
and using eq. (A.13), (A.9) to go from Poincare to

global coordinates we find the dilaton to be

φ = −
√
|µ| sinh τ (2.18)

We see that when τ becomes sufficiently big a spacelike singularity arises. E.g., for φ = −1,
the singularity occurs when sinh τ = 1/

√
|µ|.

Next consider the case µ = 0. Here, a singularity will occur along a curve x+ − x− =
const which is again spacelike. For the dilaton taking the form, φ = A/(x+ − x−), which is
obtained by rescaling the coordinates in eq. (2.14), the singularity with φ = −1 occurs at
x+ − x− = −1/A, which is shown in figure 7.

Finally, we take the case µ > 0. Here, rescaling x± → − 1√
µx
±, and a further change of

variables to (r, θ), by the series of transformation eq. (A.27), (A.25), (A.23), allows us to
recast the solution as,

ds2 = − dr2

r2 − µ
+ (r2 − µ)dθ2 (2.19)

φ = r (2.20)

The variables (r, θ) do not cover all of dS2 but can be extended to do so, patch -wise in
standard fashion. The variable θ has the range, θ ∈ [−∞,∞]. For r ∈ [−√µ,√µ] we get the
static patch of dS between a cosmological and black hole horizon, see figure 1. The region
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r < −√µ lies inside the black hole horizon, while r > √µ lies outside the cosmological
horizon. The black hole singularity, at φ = −1, lies at r = −1. Requiring this singularity to
be inside the black hole horizon gives the condition

√
µ < 1 (2.21)

Bigger values of µ give rise to a naked singularity. On the other hand, the smallest value µ
can take is µ = 0 which gives the extremal or Nariai limit.

It is worth noting that the Penrose diagram for this case can actually be extended
infinitely to give a chain of universes connected across regions containing black holes, as
shown in figure 9.

Finally let us mention that we can consider an orbifold of the solution eq. (2.19) which
is obtained by an identification along the θ direction, which is an isometry. To describe this
orbifold we first rescale the coordinates and reexpress the solution in eq. (2.19) as

ds2 = − dr2

r2 − 1 + (r2 − 1)dθ2 (2.22)

φ = Ar (2.23)

where A = √µ. Next let us make the identification

θ ' θ + b. (2.24)

This is done in the two Milne patches, corresponding to r2 > 1, which are marked regions I
and II in figure 1. The regions III and IV, where r2 < 1, are not included in the spacetime
anymore, this can be done consistently since no world line leaves the resulting spacetime.
We will discuss this orbifold and the resulting cosmology in greater detail below.

For now let us note that once the regions r2 < 1 are removed from the spacetime it
does not have a singularity where the dilaton takes value φ = −1, more generally where the
dilaton becomes sufficiently negative. However, the resulting spacetime now has a conical
singularity at r = 1 where the θ circle shrinks to zero size. This spacetime can therefore
be thought of as a simple prototype of a cosmology containing a big crunch/ big bang
singularity. Let us also note that while there are no closed time like curves in it, there are
closed null curves, as will be discussed in subsection 3.1 briefly.

2.1 Some aspects of thermodynamics

In this subsection, we shall discuss some aspects of thermodynamics in dS2. We will work
in the static patch, shown as region III in figure 1, which has metric

ds2 = −(µ− r2)dθ2 + dr2

µ− r2 (2.25)

with a time-like Killing vector ∂θ. This region contains a cosmological horizon located at
r = rc = √µ and a black hole horizon at r = rb = −√µ. The entropy of both horizons

– 7 –
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is proportional to the value the dilaton takes on them. Matching with the 4 dim theory,
appendix C, gives

Sh = φh
4G, (2.26)

so we learn that the cosmological and black hole horizons have entropy ±
√
µ

4G . Negative
entropy is strange, in fact more correctly, the entropy in the dimensionally reduced case for
each horizon is given by S = (1+φ)

4G but we will drop the constant term in this section since
we are mostly interested in changes of entropy. It is easy to see that the cosmological and
black hole horizons both have temperature

T =
√
µ

2π . (2.27)

Thus while the black hole horizon has a negative specific heat, dS/dT = − π
2G , the cosmolog-

ical horizon has a positive specific heat, dS/dT = π
2G . There is no natural notion of mass

one can associate with the black hole in this case; a “thermodynamic” definition could be
given so that the first law dM = TdS, is satisfied. This leads to the change in mass being
related to the change in the parameter µ by, δM = − 1

16πGδµ. We remind the reader that
the parameter µ takes values 0 < µ < 1.

We will now consider what happens in the presence of matter. Let us summarise the
behaviour here. We see below that when matter (satisfying the weak energy condition)
comes out of the past horizon of the black hole and falls into the cosmological horizon, the
entropy of the black hole decreases and that of the cosmological horizon increases by the
same amount, keeping the net change to be zero. Also, the temperature of the black hole
goes up, since it has negative specific heat, while that of the cosmological horizon also goes
up by the same amount, making them both equal in the future as well. When matter falls in
from the cosmological horizon into the black hole the entropy of the black hole goes up and
its temperature goes down, while the entropy of the cosmological horizon goes down, and
its temperature also goes down by the same amount. In all cases, whether matter comes
out of the past horizon of the black hole or the past cosmological horizon, the entropy of
the future black hole or cosmological event horizons are non-decreasing functions of horizon
affine time in accordance with the second law of thermodynamics.

In more detail, consider the black hole configuration in Poincare coordinates as

ds2 = 4dx+dx−

(x+ − x−)2

φ = 1− µ0x
+x−

x+ − x−
(2.28)

These coordinates are related to (r∗, θ) (A.39) by2

x+ = − 1
√
µ0

coth
(√

µ0(θ + r∗)
2

)
, x− = − 1

√
µ0

tanh
(√

µ0(θ − r∗)
2

)
(2.29)

2The Poincare coordinates actually do not cover the whole static patch and break down at θ+r∗ = 0 where
x+ → ±∞. To be careful one can use the coordinates 1/x+, x− instead, or use the Poincare coordinates in
coordinate patches where they are valid, and paste the resulting solutions together.
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T−−
T++

H
1

H
2

r
=
√ µ

r =∞ r = −1

r =
− √
µ

r
=

0

III

II

I

IV
x+

x−

Figure 1. The yellow line corresponds to a pulse of shockwave coming out from the past black hole
horizon and falling into the future cosmological horizon. The blue line corresponds to a pulse of
shockwave falling from the past Cosmological horizon to the future black hole horizon.

Now consider general infalling classical matter satisfying the null energy condition such that

T++ > 0, T−− > 0, T+− = 0 (2.30)

The general solution to the equations governing dilaton eq. (2.11), (2.12) can be
written as

φ = h(x−) + k(x+)
x+ − x−

+ 1
2(h′(x−)− k′(x+)) (2.31)

where the functions h(x−), k(x+) satisfy

h′′′(x−) = −16πGT−−
k′′′(x+) = 16πGT++ (2.32)

Thus the general solution can be obtained simply by linearly superposing the response to
the left and right-moving stress tensors. The starting solution eq. (2.28) can be obtained
by taking,

h(x−) = 1− µ0(x−)2, k(x+) = 0, (2.33)

Now consider a shock wave consisting of right moving matter with the stress tensor,

T−− = µ−
8πGδ(x

−), (2.34)

which falls into the black hole from the cosmological horizon moving along the trajectory
x− = 0, The resulting solution is given by

h(x−) = 1− µ0(x−)2 + Θ(−x−)µ−(x−)2 (2.35)

(with k(x+) = 0), where Θ(x) is the Heavyside theta function. We see that the value of µ0
decreases to µ = µ0−µ− once the shock wave passes. It is easy to see that this corresponds
to the “mass” of the black hole going up, once the shock wave falls into it, with an increases
in its entropy and a corresponding decrease in the cosmological horizon’s entropy.
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Similarly we can consider a shock wave which comes out of the past black hole horizon
with stress tensor,

T++ = µ+
8πGδ(x

+ − x+
1 ) (2.36)

(we take a non-zero value of x+
1 , since

√
µ0|x+| ≥ 1, eq. (2.29)). Starting with eq. (2.33)

the solution is now given by

k(x+) = µ+(x+ − x+
1 )2Θ(x+ − x+

1 ) (2.37)

with h(x−) being unchanged from eq. (2.33). The resulting value of the dilaton for x+ > x+
1

is then

φ = 1 + µ+x
2
1 − µ+x

+
1 (x+ + x−)− (µ0 − µ+)x+x−

x+ − x−
(2.38)

so that the discriminant, eq. (2.14), takes the value, b2 − ac = µ0 + µ+(µ2
0(x+

1 )2 − 1) which
is greater than µ0 since from eq. (2.29) (√µ0 x

+
1 )2 = coth2

(√
µ0(r∗1+θ1)

2

)
> 1. Comparing

with the discussion in the previous section we find that the entropy of the black hole goes
down at late times, and once the shock wave passes the cosmological horizon its entropy
goes up by the same amount.

In the examples above we took the stress tensor to satisfy the null energy condition and
in both cases, as mentioned before the entropy of the future black hole and cosmological
horizon increases. It is easy to argue that this will be true in general. Consider a situation
where initially matter falls in from the past cosmological horizon or out from the past
black hole horizon for some time and then things settle down with the metric at late times
being of the form eq. (2.25) with a time-like killing vector. Let the final black hole and
cosmological event horizons be located at x+ = x+

b and x− = x−c respectively and let λb
and λc be the affine parameters for the two horizons which satisfy,

dx−

dλb
= −(x− − x+

b )2

dx+

dλc
= (x+ − x−c )2 (2.39)

respectively.
Then using eq. (2.31) and from the equations of motion eq. (2.32) it is easy to see that

d2S

dλ2
b

= (x+
b − x

−)2∂−((x+
b − x

−)2∂−S) = −2π(x+
b − x

−)4T−− < 0 (2.40)

d2S

dλ2
c

= (x+ − x−c )2∂+((x+ − x−c )2∂+S) = −2π(x−c − x+)4T++ < 0 (2.41)

Now in the far future when λb,c →∞, since the time dependence ceases, dS/dλc and dS/dλb
vanish. It then follows that dS/dλc, dS/dλb must be non-negative at finite λb,c respectively
and thus the entropy along the two future horizons must be a non-decreasing function of
affine time.
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T−−

Figure 2. A shockwave of appropriate strength causes the spacelike singularity originally hidden
behind the black hole horizon to stretch outwards covering an entire spacelike slice.

We end this section with two comments. First, we considered here the effects of classical
matter. One can also consider the behaviour of the generalised entropy, along an event
horizon or a future Q screen, in the semi-classical theory, which we describe below, with
matter being in various quantum states. We leave such a more complete analysis for the
future. Second, we discussed above what happens in the presence of in-falling or outgoing
matter in the static patch region of spacetime. It is also interesting to look at the behaviour
in other regions. When matter is thrown in from the asymptotic past (the lower Milne
patch shown as in figure 1, the black holes goes towards extremality and eventually the
cosmological and black hole merge. Any excess matter above the extremal limit, when
thrown in from past infinity, causes a spacelike singularity to appear. E.g., starting with a
black hole with mass parameter µ, if we throw in matter along a shock wave with a stress
energy tensor of the form in eq. (2.34) with µ− = µ0, we find that a singularity forms,
stretching along an entire spacelike slice extending outside the infalling shockwave. This is
shown in figure 2, spacelike singularity inside the black hole has extended over a spacelike
slice outside the shockwave.

In this sense then dS JT gravity is “prone” to forming singularities. The µ < 0 and µ = 0
solutions, eq. (2.14) already have spacelike singularities as discussed above near eq. (2.18).
The µ > 0 solution has a singularity but hidden safely inside a black hole horizon. However
once enough matter is sent in, past extremality, again a spacelike singualrity appears.

3 Quantum matter and an orbifold

Here we consider the effects of quantum matter. More precisely we work in the semiclassical
limit where we add N massless scalar fields, with the action eq. (2.2), where

G→ 0, N →∞, GN = const (3.1)

In this limit the metric and dilaton continue to be described by their classical equations
of motion, since their action in eq. (2.1) has a 1/G factor in front, while the matter fields
which evolve in this classical background are quantum mechanical. We see from eq. (2.2)
that the matter fields do not couple to the dilaton. Its equation of motion is therefore
unchanged from eq. (2.4) and tells us that the geometry continues to be (locally) dS space.
The equation of motion for the metric are now given by eq. (2.11), (2.12) with the stress
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tensor Tµν being replaced by its expectation value 〈Tµν〉 in the appropriate quantum state
for the matter fields.

First let us consider Poincare vaccum for the left and right movers, with the conformal
anomaly given by

Tµµ = NR

24π (3.2)

Working with Poincare coordinate system eq. (A.28) the general solution for the dilaton is
given in general by

φ = a+ b(x+ + x−) + c x+x−

(x+ − x−) + GN

3 . (3.3)

Comparing with eq. (2.13) we see that the effect of matter is only to shift the value of the
dilaton. The discussion in section 2 about the three kinds of solutions, eq. (2.14) therefore
carries over here too once we account for this shift. Note that in obtaining eq. (3.3) we used
the fact that if the metric is given by

ds2 = −f(ζ+, ζ−) dζ+ dζ− (3.4)

in some set of conformal coordinates (ζ+, ζ−), the stress tensor in the ζ+, ζ− vacua is
given by

Tζ±ζ± = − 1
12πf

1
2∂2

ζ±f
− 1

2 , (3.5)

see eq. (B.15) and therefore vanishes in the Poincare vaccuum.
Now consider dS space containing a black hole, after suitable rescaling this is the

solution in which the metric is given as in eq. (2.22). Starting with this case we saw in
the previous section that when matter meeting the null energy condition is thrown in, the
black hole evolves towards extremality and if additional matter is thrown, past that point,
it leads to a spacelike singularity. The quantum stress tensor however does not have to
meet the null energy condition and it is interesting to ask about the more general behaviour
that can then result.

We will in particular be interested in the “lower Milne wedge” region shown in figure 1
which is bounded by two cosmological horizons, and in what happens when matter is
thrown in from this region in the far past. Well defined coordinates on the two cosmological
horizons where r → 1 are given by Kruskal coordinates, see eq. (A.32) and figure 8,

X+
K = −eθ+r∗ , X−K = er∗−θ (3.6)

at H1 where θ → ∞, r∗ → −∞, X−K = 0, while at H2 where θ → −∞, r∗ → −∞,
X+
K = 0. It is easy to see that the Kruskal and Poincare coordinates are related by

SL(2,R) transformations and therefore the stress tensor components in both the Kruskal
and Poincare vacua are the same and vanish. As a result, in particular the stress tensors in
these vacua are well behaved at the two cosmological horizons.

– 12 –



J
H
E
P
0
6
(
2
0
2
2
)
1
3
8

Now let us consider more general states. The metric eq. (2.19) has an isometry along
the ∂θ direction and an interesting class of states are those for which 〈Tµν〉 is invariant
under translation along this direction. Imposing that the Lie derivative of the stress tensor
along this direction vanishes and that it is conserved leads to a two parameter family of
allowed stress tensors, which in Poincare coordinates becomes:

Tx+x+ = A
(1− (x+)2)2 (3.7)

Tx−x− = B
(1− (x−)2)2 (3.8)

where A,B are free to vary taking values which can be both positive and negative.
The corresponding components in Kruskal coordinates, obtained using eq. (A.36), are

TX+
KX

−
K

= A
4(X+

K)2

TX−KX
−
K

= B
4(X−K)2 (3.9)

We see if A, B are non-vanishing the corresponding components in Kruskal coordinates
blows up at either H1 or H2 and one therefore expects that the back reaction becomes big
in the vicinity of the locus r → 1.

In fact the solution for the dilaton is easy to obtain. For simplicity let us take the case
where B = A. In poincare coordinates the solution is then given by

φ= GN

3 +4πGA+4πGA
(
x+x−−1
x+−x−

)
(tanh−1x+−tanh−1x−)+ c1x

+x−+c2(x++x−)+c3
x+−x−

(3.10)

The last term dependent on c1, c2, c3 is simply the solution to the homogeneous equations
without the stress tensor source turned on. By an appropriate choice of these constants we
get a solution which preserves the symmetry under ∂θ translations with the dilaton given
in terms of r∗ defined in eq. (A.27), by,

φ = GN

3 + 4πGA− 4πGA r∗ coth r∗ − c̃ coth r∗ (3.11)

In the asymptotic past, where r∗ → 0− with c̃ > 0 we see that the solution meets the
boundary condition that φ→∞. When we come close to the region, r → 1, r∗ → −∞,

φ→ −4πGA|r∗|. (3.12)

And for A > 0, when the null energy condition is satisfied, we see that φ → −∞ and it
follows that a spacelike singularity forms as r∗ → −∞, as we would have expected from the
previous discussion of classical matter. But when A < 0 and the quantum stress tensor
violates the null energy condition, something different and quite interesting happens —
now φ → +∞. The reader will recall that φ arises as the radius of the internal space
when we obtain JT gravity from dimensional reduction; φ→ +∞ therefore would imply
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that the internal volume is diverging and the spacetime is de-compactifying. However this
happens for finite affine or proper time for geodesics in the resulting spacetime and not in
an asymptotic dS region, suggesting that perhaps in the underlying theory one might be
able to go past the region near r = 1. Unfortunately, a proper analysis requires us to go
beyond the realm of validity of the JT theory, and we will have to leave the study of this
fascinating possibility, in a more complete model, for the future.

3.1 The orbifold

We now turn to studying an orbifold of dS space and its behaviour in the presence of
quantum matter. The orbifold we discuss was introduced above in eq. (2.22) and eq. (2.24).
More precisely we start with dS space consisting of the four regions — the two Milne regions,
I, II, and the “Rindler” regions III and IV, see figure 1, but after carrying out the orbifold
identification, eq. (2.24) we only retain the Milne regions I and II in the spacetime, see
figure 3. We can do this because no world lines leave the regions I and II, once the orbifold
identification eq. (2.24) has been made. As r → 1 we note that the length along the spatial
θ direction between 0 ≤ θ ≤ b shrinks to zero size, making this spacetime an interesting
prototype for a big crunch/big bang singularity.

The nature of the underlying spacetime becomes clearer in Kruskal coordinates X+
K , X

−
K ,

eq. (3.6). In the lower Milne patch, the metric and dilaton are given in these coordinates by

ds2 = 4 dX+
KdX

−
K

(1 +X+
KX

−
K)2

φ = A
(1−X−KX

+
K)

1 +X+
KX

−
K

(3.13)

The boost eq. (2.24) under which the points are identified acts by taking

X+
K → X+

Ke
b, X−K → X−Ke

−b (3.14)

We see that the locus r = 1 is given by X+
KX

−
k = 0. Thus the spacetime has null closed

curves, along, X−K = 0 and X+
K = 0 and an orbifold singularity at X+

K = X−K = 0
Before considering quantum states for matter let us briefly consider the effects of adding

classical matter. One might intuitively expect that the back reaction becomes big near the
orbifold point, where space is shrinking, and a singularity arises in its vicinity. This ties in
with what we observed in the previous section for dS space without the orbifold, namely
that excess matter beyond the extremal limit causes a spacelike singularity to appear at
which spacetime terminates. Intuitively, one would expect any matter in the orbifold theory
to have “multiple images” and these images to amplify the effect of the matter leading to a
singularity near the orbifold point.

We have carried out a preliminary analysis which supports this intuition. For concrete-
ness let us take a shock wave travelling along the x+ direction (right moving) from the
asymptotic past. One can calculate its effect on the dilaton by the method of images as
discussed in appendix B.1. One finds after adding the images that the total mass being
added to the system is very high, in fact it diverges, see appendix B.1. And this leads to
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r=
1

r=∞

Figure 3. The Milne patch where the orbifold identification is made. The green coloured region
corresponds to the orbifold geometry.

the conclusion that a spacelike singularity, in effect a big crunch at which spacetime ends,
should appear. However, this conclusion is a bit preliminary, since it could be that the
method of images might itself be perhaps breaking down. and we leave a more complete
analysis of this issue for the future. For a discussion of the use of the method of images for
studying back reaction in such orbifold models in higher dimensions see [82] and for related
discussion, see [83, 84].

Next, let us consider some quantum states. Like above we consider states which preserve
the ∂θ symmetry of spacetime, the resulting stress tensor should then also preserve this
symmetry and be of the form discussed above in eq. (3.7), (3.8). One would expect that
the orbifold identification which has lead to the spacelike direction θ becoming compact
would result in an extra contribution to the stress tensor due to the Casimir effect and this
contributions scales inversely with b. The Casimir contribution is also expected to violate
the null energy condition, i.e. the resulting contribution to T++ or T−− would be negative.

In appendix B.2 we describe one state for which this Casimir effect is calculated. The
resulting stress tensor has the form, eq. (3.7), (3.8), for T++ and similarly for T−− with
A = B and its value being given by

A = − 1
12π

(
1 + 4π2

b2

)
(3.15)

Note, that in the b → ∞ limit this is the stress energy in the state which is the vacuum
for the modes, log

(
−X+

K

)
, log

(
X−K

)
, i.e. the “Schwarzschild” modes. We see that as b→ 0

the Casimir effect gets more pronounced and A more negative. From the analysis above it
follows that in this case φ will diverge near the orbifold singularity where r → 1. It would
be wonderful to be able to investigate the behaviour of the higher dimensional version of
such a model more completely.

In the following section we will turn to quantising the full theory, including the metric
and dilaton sector. It will turn out that the path integral, for appropriate topology, involves
a sum over all values of b. After carrying out the path integral we will find in some cases
that a transition from the far past to an expanding universe in the future is indeed possible.
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4 Quantisation of JT dS gravity

We now turn to quantising the full theory including the metric and dilaton sector. In fact,
in this section we will only consider pure JT gravity, without matter. The JT theory can
be quantised in the first order formalism where it gives rise to BF theory, see e.g., [12] or in
the second order formalism, [13], where one works directly with gµν , φ.

Let us summarise some of the key points in the previous literature and also in the
discussion below at the outset here. With one boundary, the path integral, subject to
appropriate boundary conditions, gives rise to the Hartle-Hawking wave function of the
universe, which describes the universe being “born” by tunnelling out of “nothing”, [37].
When we are dealing with multiple boundaries the path integral, depending on the contour
chosen and the analytic continuation carried out, either gives rise to the HH wave function
for producing several disconnected universes, or transition amplitudes for some number, n,
of universes in the past to evolve to m universes in the future.

We will be interested here in asymptotic boundaries in dS space, which can only be
reached along geodesics at diverging proper or affine time. This corresponds to obtaining
the wave function at “late times” when the universe has a diverging size, or to transition
amplitudes from the far past to the far future. The metric in the vicinity of such an
asymptotic boundary takes the form,

ds2 ' r2dθ2 − dr2

r2 (4.1)

We will be interested in boundaries of fixed length l̂i where the dilaton φBi takes specified
boundary value. Both l̂i, φBi at an asympytotic boundary diverge and we can write them as

φBi = 1
Jεi

, l̂i = li
εi
, εi → 0. (4.2)

Here εi is a cut-off defined for each boundary independently and we will be interested in
the limit εi → 0. In eq. (4.2) we see that the ratio φBi/l̂i = 1

Jli
remains finite as εi → 0; li

can be thought of as a “renormalised” length which is also finite.
In general we are interested in the multi-boundary case and at arbitrary genus. The

path integral will then depend on the values φBi , l̂i at each boundary.
The JT path integral is evaluated by rotating the contour for the dilaton to be along

the imaginary direction, by taking φ→ iφ. This gives rise to a constraint that localises the
metric to have constant curvature R = 2. The metric path integral is then done using a
spacetime of constant curvature with (0, 2) signature and analytically continuing it to the
dS spacetime of signature (1, 1), eq. (4.1). The degrees of freedom which remain are the
moduli, and the boundary reparametrization modes, at each boundary. These are valued in
Diff(S1)/SL(2, R) and described by a Schwarzian action. Each set of these reparametrisation
modes are integrated with a measure which follows from the ultra-local measure for metric
deformations [13] and which exactly agrees with the measure considered earlier in the
literature, [12, 38]. Finally, as mentioned above, in the vicinity of each boundary which lies
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in the asymptotic -AdS2 region where the metric can be taken to have the form

ds2 ' −
(
r2dθ2 + dr2

r2

)
(4.3)

for r � 1, we need to continue the metric from signature (0, 2) to (1, 1) arriving at dS space
in the asymptotic region where the metric is given by eq. (4.1).

4.1 Analytic continuations

In fact two analytic continuations are possible to go from a metric eq. (4.3) to eq. (4.1).
at each boundary and we turn to describing them in some detail next. Note that the
coordinate r in eq. (4.3) can locally be taken to be positive at the boundary of interest, To
continue to dS2 in the vicinity of that boundary we can then either take

r → +ir (4.4)

or

r → −ir (4.5)

As was mentioned above the dilaton path integral is done by rotating φ→ iφ, the bulk
term in the JT action then gives rise to a delta function, δ(R− 2), which restricts the sum
over metrics to constant curvature ones. The only remaining term in the action in eq. (2.1)
then is the boundary term which in -AdS2 takes the form,

SJT,∂ = − φB
8πG

∫
∂
dsK (4.6)

The extrinsic curvature K = ∇µnµ where nµ is the outward drawn normal, then goes like
K = 1 + corrections, and this gives for the boundary located at rB

SJT,∂ = − φB
8πG(2πrB) (4.7)

at leading order. Now taking the continuation eq. (4.4) or eq. (4.5) gives rise to the action

SJT,∂ = ∓ iφB8πG(2πrB) ' ∓ iφB l̂8πG, r → ±ir (4.8)

where we used the fact that the length of the boundary is l̂ ' 2πrB . Since the path integral
in our conventions involves the weighting factor Ψ ∼ e−S we get the phase factor in the
wave function

Ψ ∼ e±
iφBl̂

8πG (4.9)

with the + arising for eq. (4.4) and the − sign for eq. (4.5). From eq. (4.2) we also see that
at each boundary the phase factor in eq. (4.9) diverges.

What is the physical interpretation of these two analytic continuations? If we carry out a
minisuperspace quantisation in the second order formalism for one universe, the momentum
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conjugate to the length l̂ is [10] πl̂ = − φ̇
8πG , see eq. (D.3), eq. (D.4). Canonical commutation

relations mean that πl̂ = −i∂l̂. Now if the direction of time is taken towards the increasing
value of the dilaton, φ̇ > 0, and therefore we learn that for the wave function describing an
expanding universe πl̂ ln Ψ = −i∂l̂ ln Ψ < 0. This tells us that for one boundary carrying

out the analytic continuation eq. (4.5) which gives from eq. (4.9) Ψ ∼ e
−iφBl̂

8πG , leads to the
amplitude for a universe which is expanding whereas taking the continuation as in eq. (4.4),
which gives Ψ ∼ e

+iφBl̂
8πG , leads to the amplitude for a contracting universe.3 The divergence

in the phase factor in eq. (4.9) can be understood in the minisuperspace approximation
as arising from the fact that for a large expanding or contracting universe one is in the
classical regime, where the WKB approximation is valid.

Similarly, when we consider the canonical quantisation in the first order formalism as
described in appendix D, we find that one can take e1

θ to be a physical clock tphys in the
system. For an expanding universe (in the future where t defined in eq. (D.26) satisfies the
condition t > 0), e1

θ = l̂
2π , where as for a contracting universe, t < 0 in eq. (D.26), e1

θ = − l̂
2π .

Thus we see that the continuation eq. (4.5) gives rise to a state where i∂tphys ln Ψ > 0 in the
future whereas the continuation eq. (4.4) gives rise to a state for which i∂tphys ln Ψ > 0 in
the past.

In an analogous manner when we have several boundaries and we continue n of them
using the continuation eq. (4.4) and m using eq. (4.5) we would be describing a transition
amplitude to start in the far past with n contracting universes which tunnel in the far
future to m expanding universes. If all the n boundaries are continued in the same way we
have the HH wave function for producing n expanding universes, eq. (4.5), or n contracting
universes, eq. (4.4).

The different continuations are illustrated for two boundaries in figure 4.
Let us end this subsection with one comment. In AdS space the path integral with one

or more boundaries corresponds to the partition function or to correlations functions of
the partition function of the boundary theory(ies). And a divergent term related to the
one we have discussed above is absent, after a counterterm is added in the action as per
the procedure of holographic renormalisation. This counterterm is local in the boundary
theory and we are legitimately allowed to add it, as per standard renormalisation theory,
when calculating the partition function. However in the dS case we are calculating a wave
function (or a transition amplitude) and the divergent term cannot be cancelled and in fact
has physical significance, as we have discussed above.

4.2 One and two boundary cases

Let us give some more details for the one and two boundary cases now.

One boundary. The one boundary case gives the wave function for one universe with
dilaton φB and length l̂, denoted Ψ[l̂, φB].

3Also, while we are not considering matter in this section, as discussed in [10], the phase factor, e
−iφBl̂

8πG ,
with a Klein Gordon norm, 〈Ψ̄,Ψ〉 =

∫
dl[Ψ̄∂lΨ− ∂lΨ̄Ψ], gives rise to a sensible positive norm |Ψmatter|2 for

the matter part of the wave function, which we will use in section 5.
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r → −ir

Past to Future

Nothing to two universes

r → −irr → −ir

r → ir

Figure 4. AdS to dS double trumpet analytic continuations.

This case is special and one can either consider a contour with metric of (0, 2) signature,
as mentioned above, or (2, 0) signature, in evaluating the path integral with one boundary.
The dilaton integral forces the metric to be of constant positive curvature and the (0, 2)
and (2, 0) signature contours involve the same metric

ds2 = −
(

(r2 − 1)dθ2 + dr2

r2 − 1

)
, (4.10)

with r taking values r > 1 and r < 1 for the (0, 2) and (2, 0) cases respectively. The resulting
path integral gives rise to the Hartle-Hawking (HH) wave function which is obtained by
continuing the result to dS2 space.

To continue to dS2 from -AdS2 case we go to r � 1 and can then take r → −ir, eq. (4.5).
In the (2, 0) case we continue at r = 0 by taking r → −ir. Both calculations give the same
answer, as was discussed in section 5 of [13] and gives the wave function corresponding to
the branch of the HH wave function which describes an expanding universe,

Ψexp
HH[l̂, φB] = N eS0

(
φB

l̂

)3/2
e
− iφBl̂8πG + iπφB

4Gl̂ (4.11)

where S0 is the half the 4D extremal entropy, discussed in appendix C. This result also
agrees with what is obtained in the first order formalism. From the discussion in the
previous subsection it follows that this wave function corresponds to a universe which is
expanding. Note that we have not fixed the overall normalisation N of the wave function.
This normalisation is uncertain partly because the overall normalisation of the measure in
the path integral is ambiguous and also because there is a phase factor whose value needs
to be decided carefully.4

Alternatively continuing the (0, 2) or (2, 0) metrics by taking r → +ir as given in
eq. (4.4) gives rise to the wave function for a contracting universe, as also follows from the

4With the definition of the measure and our conventions as chosen in [13] we get N = (−32πiG)− 3
2 . This

gives rise to the phase factor of N , referred to above eq. (4.15), to be θ = 3π
4 or θ = −π4 .
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discussion above, leading to,

Ψcon
HH[l̂, φB] = (N )∗eS0

(
φB

l̂

)3/2
e
iφBl̂

8πG −
iπφB
4Gl̂ (4.12)

Note that while the overall normalisation of this branch cannot be determined either, it can
be shown to be the complex conjugate of the expanding branch wave function.5 Accordingly
we have denoted it by (N )∗. Thus we see that the expanding and contracting branches of
the HH wave function are complex conjugates of each other.

We also remind the reader that we have only carried out the path integral in the
asymptotic dS limit where both the dilaton and the length diverge, meeting the condition,
eq. (4.2). Also, strictly speaking, the wave function in both branches contains an extra factor
of the ratio of determinants

√
det′ P †P

det(∇2+2) , see eq. (5.40), (5.41) of [13]. This ratio, depending
on how the determinants are regulated, could go like ecl̂. Such a term, for the asymptotic
dS case, can be absorbed by shifting φB by a constant.6

Adding the expanding and contracting branches we see from above that the result we
obtain is

ΨHH(l̂, φB) = Ψexp
HH(l̂, φB) + Ψcon

HH(l̂, φB), (4.13)

which is real.
The (2, 0) signature contour is an S2 hemisphere which is continued to dS space at the

equator, this is the 2 dimensional analogue of the S4 instanton for dS4 which was considered
by Hartle and Hawking in defining their wave function [37]. In that case the boundary
condition imposed was that Ψ should vanish for

√
h < 0, where

√
h is the volume element

of the 3-geometry in ADM gauge, and this also gave rise to a real wave function (its being
real is tied to the CPT invariance of the state).

From the discussion in appendix D it follows that in the minisuperspace approximation
the wave function which agrees with the asymptotic limit, eq. (4.13) is given by,

Ψ(l̂, φB) = eS0 |N |
4
√
G

(
l̂φ2
B

l̂2 − 4π2

)eiαH(2)
2

φB
√
l̂2 − 4π2

8πG

+ e−iαH
(1)
2

φB
√
l̂2 − 4π2

8πG


(4.14)

where H(1)
a , H

(2)
a are the Hankel functions of the first and second kind respectively and

denoting the normalisation N in eq. (4.11) by N = |N |eiθ we have

eiα = −ei(θ−
π
4 ) (4.15)

For α = 0 we find a rather nice result,

Ψ(l̂, φB) = −eS0 |N |
2
√
G

(
l̂φ2
B

l̂2 − 4π2

)
J2

φB
√
l̂2 − 4π2

8πG

 (4.16)

5Any phase in the overall normalisation of the measure will be common to both branches and is a
standard phase ambiguity in the wave function in Quantum Mechanics.

6When there are more than one boundaries this shift (by the same constant) will take care of such a
term at all boundaries.
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This wave function is well defined at the turning point where l̂2 = 4π2 and it vanishes when
l̂→ 0 or φ→ 0. However, as mentioned above, we are not able to fix the phase eiθ with full
certainty and therefore cannot establish whether this is the wave function which arises from
the path integral quantisation described above. For other values of α the wave function
diverges at the turning point.

It is also worth commenting on our result above in relation to some of the recent
literature. The expanding branch of the HH wave function was discussed in [10] and [39].
In [39] the wave function for finite l̂, φ, as opposed to the asymptotic limit, was obtained
and a wave function of the form eq. (4.14) was also considered. In [18] these wave functions
were also discussed and by quantising the closely related Kantowski-Sachs model in the
mini-superspace approximation it was found that the HH wave function was in fact of
another form. We leave a further study of these discrepancies and different possibilities for
the future.

Two boundaries. For two boundaries the path integral is carried out using the “double
trumpet” geometry of (0, 2) signature and analytically continuing it, as discussed in section 6
of [13]. This gives,7

Ψ[l̂R, φBR , l̂L, φBL ] =
∫
b dbZ±f (φBL , l̂L, b)Z

±
f (φBR , l̂R, b) (4.17)

Each “flaring” boundary of the double trumpet gives rise to a Zf factor which is a
function of the respective boundary values φB, l̂. The two boundaries are denoted by L,R
here. The two different analytic continuations, eq. (4.4), eq. (4.5) give rise to the two
possible factors Z±f respectively at each boundary, with Z±f (φB, l̂, b) being given by

Z±f (φB, l̂, b) = 1√
±16iπ2GJl

e
±i
(
φBl̂

8πG+ b2
16πGJl

)
(4.18)

and

1
Jl

= φB

l̂
(4.19)

. Note that in our conventions here
√
±i = e±iπ/4.

The r.h.s. in eq. (4.17) arises after integrating over boundary diffeomorphisms at the
two boundaries. The two sets of diffeomorphisms decouple from each other, both sets are
governed by a Schwarzian action, and the path integral involves the measure we mentioned
above which arises in the one-boundary case, The variable b in eq. (4.17) is a modulus
which arises from the metric degrees of freedom, we see that the Zf factors also depend
on b. In fact both the b modulus and the boundary diffeomorphisms correspond to metric
degrees of freedom which arise from zero modes of the operator P †P , defined in section 2.1

7There is an additional factor given by
√

det′ P†P
det(∇2+2) in eq. (4.17) which can be b-dependent. However, there

is an ambiguity in this b-dependence due to the way the determinants are regulated, as discussed in detail
in [13]. To get agreement with the results in the first order formalism, we take this factor to be unity here
and in the rest of the paper.
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of [13]. The measures for integrating over them arises from the ultra local measure over the
space of metric deformations (the Weil-Petersson metric),

〈δgab, δgcd〉 =
∫
d2x
√
ggacgbdδgabδgcd (4.20)

This has a close parallel to what happens in the first order formalism where these degrees of
freedom arise from flat connections and a measure on flat connections give rise to the same
measure as obtained in the second order formalism, for summing over the diffeomorphisms
and the b modulus.

In the discussion below we will be particularly interested in the case where one boundary
say L is continued to the “past” using eq. (4.4), while the second say R is continued to the
“future”, using eq. (4.5). This will give rise to a tunnelling amplitude describing an initially
contracting universe which will tunnel to an expanding one at late times. In this context it
is worth noting that in the double trumpet integral for a fixed value of the modulus b the
dS2 geometry after continuation from -AdS2 is given by the metric

ds2 = (r2 − 1)dθ2 − dr2

(r2 − 1) , θ ∼ θ + b (4.21)

where θ ∼ θ + b. We therefore see that for any given value of b we have an orbifold of the
type discussed in section 3 above, and the full quantum path integral involves a sum over
all values of the orbifold parameter b. Once this sum is done, in the full quantum theory,
one can avoid the big crunch singularity we encountered in the semi-classical theory in
section 3 and for suitable boundary conditions on the matter at least, get a finite transition
amplitude to go from a contracting universe in the past to an expanding universe in the
future as we will see below in section 5.

Let us note that the geometry for the tunnelling amplitude we are considering has two
boundaries, and is therefore suppressied compared to the one boundary HH wave function
by a factor of e−S0 .

Multiple boundaries and higher genus. The second order formalism has not been
fully fleshed out beyond the two cases mentioned above. However there is good reason to
expect, based on the first order formalism, [10–12], that the result for the path integral
should be given by,

I(n, g) = eS0(2−2g−n)
∫ n∏

i=1

[
bidbiZ

±
f (φBi , l̂i, bi)

]
Vg(b1, b2, · · · bn) (4.22)

Here Z±f (φBi , li, bi) is the factor given in eq. (4.18) that would be associated with each
“flaring trumpet”, depending on the analytic continuation carried out, and Vg(b1, b2, · · · bn)
is the volume of moduli space, which follows from the Weil-Petersson metric, eq. (4.20), for
bordered Riemann surfaces of genus g with n boundaries of geodesic lengths bi, i = 1, · · ·n

In the second order formalism the boundary diffeomorphisms and moduli would both
arise from the zero modes of P †P [13]. We note that Fenchel-Nielsen type coordinates (bi, τi)
in hyperbolic space can be extended to describe spaces with the “flaring trumpet” asymptotic
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boundaries considered here as well, with one extra pair of moduli (b, τ) corresponding to
each asymptotic boundary. A symplectic form can then be defined in moduli space using
these coordinates [48, 49, 85] given by, Ω =

∑
i dbi ∧ dτi, and it is reasonable to expect,

based on the double trumpet case worked out in [13] as well, that the associated top form
Ωk
k! then agrees with the volume form in moduli space arising from the Weil-Petersson
metric,8 [47], leading to eq. (4.22).

4.3 The hologram for the multi-boundary dS case

In an important analysis [12] showed that the path integral in JT theory in AdS2, for any
number of boundaries, can be related to the correlation functions in a Random Matrix theory
in the double scaled limit and this correspondence holds to all orders in the genus expansion.

In [10] and [11] it was pointed out that the analysis of [12] could be extended to the dS
case and the same Random matrix model in the double scaled limit could also provide a
hologram for dS2. This is a very interesting proposal which needs to be studied further.
We will only elaborate on a few points here.

First, note that the JT path integral in dS space gives rise to an extra phase factor
e
±iφBl̂

8πG . This factor is removed in the AdS case by adding a boundary term in the action,
and the correspondence with the RMT follows thereafter. To extend the discussion to the
dS case we therefore have to remove this phase factor on the gravity side for each boundary
and then relate the result to the matrix theory.

Since these phase factors are independent of the bi moduli appearing in eq. (4.22) they
can be taken out of the moduli space integral. Defining

Ẑ±f (φBi , li, bi) = e
∓iφBi l̂i

8πG Z±f (φBi , l̂i, bi) (4.23)

we then consider in the gravity theory the integral

Î(n, g) = eS0(2−2g−n)
∫ n∏

i=1
bidbiẐ

±
f (φBi , li, bi)Vg(b1, . . . bn) (4.24)

Note that li is related to l̂i as in eq. (4.19). The arguments in [10] and [11] then imply that
Î is related to appropriate correlation functions in the hologram.

It is worth reviewing some of the details. Consider the integral

T̂ (li, l̃j , g) = e(2−2g−n−−n+)S0

∫ n−∏
i=1

n+∏
j=1

bidbib̃jdb̃jẐ
+
f (φBi , li, bi)Ẑ−f (φBj , l̃j , b̃j)

× Vg(b1, · · · bn− , b̃1, · · · b̃n+) (4.25)

which gives the genus g contribution for the transition amplitude to go from n− contracting
universes to n+ expanding ones. Summing over all genus then gives

T̂ (li, l̃j) =
∑
g

T̂ (li, l̃j , g) (4.26)

8We thank Mahan Mj. for patiently explaining some of these points to us.
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The argument is that this transition amplitude is equal to a correlation function of the
Random matrix H

T̂ (li, l̃j) = 〈Tre−il1H · · ·Tre−iln−HTreil̃1H · · ·Treil̃n+H〉 (4.27)

where on the r.h.s. we are computing the expectation value in a particular RMT in the
double scaling limit (corresponding to eq. (58) in [12]). For the case when n− = 0 in
eq. (4.25) we are dealing the with expanding universe branch of the Hartle-Hawking wave
function and we obtain a relation between this branch Ψexp

HH and the matrix theory. More
correctly we define, in analogy with Ẑ−f in eq. (4.23), the “stripped off” expanding branch
wave function

Ψ̂exp
HH(l̃i) = e+

iφBi
ˆ̃li

8πG Ψexp
HH(l̃i). (4.28)

Then we get from eq. (4.25) the relation

Ψ̂exp
HH(l̃i) = 〈Treil̃1H · · ·Treil̃n+H〉 (4.29)

In a similar way we can relate the contracting branch of the HH wave function after removing
the phase factor,

Ψ̂con
HH(li) = e−

iφBi
l̂i

8πG Ψcon
HH(li) (4.30)

to the matrix model by

Ψ̂con
HH(li) = 〈Tre−il1H · · ·Tre−iln−H〉 (4.31)

The correspondence in eq. (4.27) arises from noting that the r.h.s. after an integral
transform gives the correlation functions for the Resolvant of H , which can be expanded in
a genus expansion. The same integral transform of the l.h.s. gives rise to an expression for
the genus g contribution coming from eq. (4.26), involving the volume of moduli space of
genus g bordered Reimann surfaces. These two expression are known to be equal from the
work of [45] and [46]. The integral transform of the l.h.s. is

n−∏
i=1

∫ −i∞
0

dli(izie−iliz
2
i )

n+∏
j=1

∫ i∞

0
dl̃j(−iz̃j)eil̃j z̃

2
j T̂ (li, l̃j) (4.32)

which gives

Wg(zi, z̃j) = 1
2n−+n+

∫ n−∏
i=1

bidbi

n+∏
j=1

b̃jdb̃je
−
√

2γ
∑

i,j
(bizi+b̃j z̃j)Vg(b1, · · · bn− , b̃1, · · · b̃n+)

(4.33)

Here γ = 1
8πGJ . On the r.h.s. of eq. (4.27) we get

(−1)n−+n+
∏
i,j

ziz̃j〈R(−z2
1) · · ·R(−z2

n−)R(−z̃2
1) · · ·R(−z̃2

n+)〉 (4.34)
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where R(−z2) the Resolvant is given by

R(z2) = Tr
( 1
z2−H

)
(4.35)

On setting γ = 1
2 , it follows from [45] that eq. (4.34) and eq. (4.33) are equal order by order

in the genus expansion.
One can consider a further extension of this holographic correspondence by replacing the

double scaled RMT by the SYK theory, in the large N limit, see also, [11]. The low-energy
spectrum of the SYK theory agrees with the spectrum in the RMT but at higher energy the
SYK theory is different. An important comment in this context is that the genus counting
parameter S0 of the JT theory, which is the analogue of the entropy of dS space, (in fact on
dimensional reduction from 4 dim. S0 is the entropy of the extremal dS black hole geometry,
upto a factor of 2, as was noted in appendix C) goes like the number of fermions, N , with
a constant of proportionality that is calculable in the SYK model. Also, in the SYK case
the hologram comes equipped with a well defined Hilbert space of N/2 qubits on which the
N Majorana fermions act. The operator H is the “momentum operator” which generates
translations along the spacelike boundary. Thus while there is a well-defined Hilbert space
and an operator which generates translations along the boundary theory, there is no notion
of time in the hologram.

There are several important issues that remain to be understood. Most importantly,
in our minds, an inner product needs to be defined to obtain probabilities from the wave
function or transition amplitudes (this is of course different from the inner product on
the space of the N/2 qubits mentioned above). We have not been able to define such an
inner product yet. The fact that transitions which can change the number of universes
are allowed, suggests that one should work in the third quantised theory, consisting of the
multi-verse with an arbitrary numbers of universes, to define a norm which is conserved.
We hope to return to this question in further work. Also, let us note that the SYK model
is just one example of a whole class of theories which exhibit the same pattern of symmetry
breaking at low energies — resulting in reparametrisation modes governed by a Schwarzian
action. There is also the option of considering a version of these SYK theories with random
couplings or a particular realisation for these couplings. This whole class are candidate
holograms for dS2, and constitute a large set of possibilities. Perhaps additional consistency
conditions, including the existence of a well defined norm, might cut down this set.

Let us mention that it was also suggested recently in [86] that the SYK model in a
particular limit could be a hologram for dS space. But in this case the hologram being
considered is on the cosmological horizon, instead of at asymptotic inifinity, as in our
discussion, and also the limit being considered is at high temperature, whereas in our
discussion we expect a match approximately with the JT gravity limit when T � J .

5 Addition of matter

We will now turn to the discussion in the presence of conformal matter. We focus on the two
boundary case with the double trumpet topology. Mostly we will consider massless scalar
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fields, our analysis can be extended to other kinds of conformal matter in a straightforward
manner. The one boundary case, which gives the HH wave function, was discussed in [10, 13].

It was argued in [13] that for Euclidean AdS2, in the two boundary case, the b modulus
integral, discussed in section 4, diverges when b → 0 in the presence of matter. This
divergence can be thought of as arising due to the Casimir effect which gives rise to a negative
ground state energy. The metric for the double trumpet belongs to the conformal class,

ds2 = dθ2 + dr2
∗ (5.1)

where θ ' θ + b, r∗ ∈ [0, π]. To study the b → 0 limit we can do a rescaling and take θ
to have periodicity 2π while r∗ now has range [0, 2π2

b ]. If H is the Hamiltonian generating

translations along r∗, the matter integral evaluates the transition amplitude 〈SI |e
−2π2H

b |SF 〉,
where |SI〉, |SF 〉 denote the initial and final states at the initial and final values of r∗. As
long as their overlap with the ground state |0〉 of H is non-zero the ground state will give the
leading contribution to the transition amplitude, when b→ 0, giving rise to an exponential
dependence,

〈SI |e
−2π2H

b |SF 〉 ' 〈SI |0〉〈0|SF 〉e
−2π2E0

b (5.2)

If E0, the ground state energy, is negative this diverges when b→ 0. In fact, it is well known
that for a real scalar field satisfying periodic boundary conditions along the θ direction
(with periodicity 2π), E0 = − 1

12 leading to a divergence which goes like e
π2
6b . When we go

to dS space by continuing the AdS2 result, the divergence persists.
Here we will discuss two possible ways to control this divergence. First, in subsection 5.1

we take the scalars to be in a twisted sector where they do not satisfy periodic boundary
conditions along the θ direction. For a range of values of the twist parameter the ground
state energy is now positive and the path integral is well behaved. Continuing to dS space we
show that the final state of the universe, produced by tunnelling from an initial contracting
phase, is different from the state described by the HH wave function, analysed in [10].The
tunnelling transition amplitude is suppressed compared to the HH wave function by a
factor of e−S0 . This toy calculation suggests the interesting possibility for the universe to
have been born by a tunnelling event from a prior dS or Robertson Walker phase and for
quantum perturbations, which in this model are analogous to those giving rise to the CMB
perturbations in 4 dimensions, then allow us to distinguish between the tunnelling wave
function and other possibilities like the HH wave function.

Second, in subsection 5.2 we consider standard periodic boundary conditions for the
scalars but now study correlation functions which include cross-boundary correlations. We
find that sometimes the calculation for such correlations can also be free from the divergence
mentioned above.

Before going any further let us alert the reader to one notational inconsistency which
we will indulge in here. In section 4.2 we referred to the two boundaries in the double
trumpet as the left and right boundaries, L,R. The superscripts ± in Zf , eq. (4.17) referred
to the two different analytic continuations, eq. (4.4), eq. (4.5). In this section, we will
almost exclusively focus on a transition amplitude which is obtained by carrying out the
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continuation eq. (4.5) on the R boundary and eq. (4.4) on the L boundary. And at the
risk of some confusion, we then refer to the L,R boundaries here as the −,+ boundaries
respectively, so that the − boundary corresponds to the past with a contracting universe,
and the + boundary to the future with an expanding one. The notation of this section will
also be used in rest of this section and in the appendices E, F. Another important point is
that the analytic continuations discussed in section 4.1, in particular eq. (4.4), (4.5) are
based on a local coordinate system at each asymptotic boundary. However, for the case of
double trumpet there exists a single coordinate chart that covers the entire geometry and is
given by

ds2 = (r2 + 1)dθ2 + dr2

r2 + 1 (5.3)

where the asymptotic boundaries are now located at r = r+ � 1, r = r− � −1. The
corresponding analytic continuations to obtain a past to a future transition in terms of this
r coordinate is then given by

r+ → −ir+

r− → ir−. (5.4)

The analytic continuation for two expanding universes to be produced from “nothing” is

r+ → −ir+

r− → −ir−, (5.5)

Before going to the twisted boundary conditions let us warm up with the periodic
boundary case and work out a formula for the path integral with two boundaries as a
function of the boundary values taken by the scalar field. This will already bring out some
of the important differences between the wave function obtained from tunnelling and the
HH wave function.

The metric for AdS2 asymptotically takes the form

ds2 ' r2dθ2 + dr2

r2 (5.6)

For the b modulus having value b, θ ∈ [0, b]. We expand the scalar field in modes

ϕ =
∞∑

k=−∞
eik̃θϕk(r) (5.7)

where k takes values over integers and

k̃ = 2πk
b

(5.8)

At the boundary

r → −∞, ϕk(r)→ ϕ−k

r →∞, ϕk(r)→ ϕ+
k . (5.9)
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The full path integral then gives9

I =
∫
bdb[Dθ−][Dθ+]e

−
φB+ ε+

8πG

∫
du Sch

{
tanh

(
θ+(u)

2

)}
−
φB− ε−

8πG

∫
du Sch

{
tanh

(
θ−(u)

2

)}
e−SM,bZM

(5.10)

where Sch denotes the Schwarzian action. Expanding θ±(u) as

θ±(u) = b

2πu+ ε±(u) (5.11)

and noting that u ∈ [0, 2π], the path integral becomes

I =
∫
bdb[Dε−][Dε+]e

−b2
16πGJ

(
1
l+

+ 1
l−

)
e
−
(
S{ε−}
l−

+S{ε+}
l+

)
e
(
−SM,b+···

)
ZM (5.12)

where Dε± corresponds to the integral over the time reparametrization modes at the left
and right boundaries. The measure for the sum over these modes is the symplectic measure
discussed in [13, 38] and S{θ} denotes the action for these modes given by

S{θ} = 1
8GJ

∫ 2π

0
du

(
θ′(u)2 + 4π2

b2
θ′′(u)2

)
(5.13)

with u being the proper time along the respective boundary.
Here we have carried out the path integral over the scalar. SM above is given in terms

of the boundary values of the scalar by, see appendix F.2 for an analogous calculation in dS,

SM,b = b

2

∞∑
k=−∞

k̃
(
(ϕ+
−kϕ

+
k + ϕ−−kϕ

−
k ) coth k̃π − 2ϕ+

−kϕ
−
k csch k̃π

)
(5.14)

The ellipses in the last exponent in eq. (5.12) denote the couplings of these boundary values
to the time reparametrisation modes at the two boundaries which we have denoted by
θ−, θ+. l−, l+ are the renormalised lengths of the two boundaries and

ZM [b] = e−b/24

η( ib2π )
(5.15)

is the matter determinant. The couplings of the boundary values of the scalars to the
reparametrisation modes results in corrections to the matter correlations which are sup-
pressed in G, the gravitational coupling. Neglecting these couplings and integrating out the
reparametrisation modes then gives

I =
∫
bdb e

−b2
16πGJ

(
1
l+

+ 1
l−

)
1

16π2GJ
√
l+l−

ZM [b]e−SM,b (5.16)

9Note that there is in general an additional factor, due to various determinants, which is b-dependent as
was also metioned near eq. (4.17). Again, to get agreement with the first order formalism without matter
we set this factor to unity.
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We can continue to dS space in different ways as discussed in the previous section. If
we consider the transition amplitude obtained by the continuations eq. (5.4) we get

I = e−
iφB+ l̂+

8πG e
iφB− l̂−

8πG

∫
bdb e

−ib2
16πGJ

(
1
l+
− 1
l−

)
1

16π2GJ
√
l+l−

ZM [b]e−SMb (5.17)

Here, besides introducing the relevant factors of i we have also introduced the two phase
factors in front, which were discussed extensively in the previous section. To summarise,
eq. (5.17) gives the transition amplitude to go from an initial contracting dS universe with
dilaton and length φB− , l̂− to a final universe with values φB+ , l̂+. The initial and final
asymptotic values of the scalar are ϕ−k , ϕ

+
k respectively. Note also that φB

l̂
= 1

Jl , at both
boundaries, eq. (4.2).

Now consider the case where we start with an initial state for the matter field of the form,

〈ϕ−|SI〉 = exp
(
−2π

∞∑
m=−∞

Emϕ
−
−mϕ

−
m

)
(5.18)

where the state |ϕ−〉 is an eigenstate of the asymptotic value of the field operator ϕ̂ in the
far past. When

r → −∞, ϕ̂→
∑
m

ϕ̂−me
imθ (5.19)

and |ϕ−〉 satisfies the condition,

ϕ̂−m|ϕ−〉 = ϕ−m|ϕ−〉 (5.20)

An initial state |SI〉 with such a Gaussian wave function is a reasonable one to consider, e.g.
the ground state in the vacuum with respect to the coordinates, z±, defined in eq. (A.29).
The details of the computation of eq. (5.18) for this ground state are shown in appendix F.3,
for which we get Em = |m|.

We can now compute the final state wavefunction’s dependence on ϕ+ by integrating
over ϕ− for the initial state eq. (5.18) to get

Ψ[ϕ+] = e−
iφB+ l+

8πG +
iφB− l−

8πG

∫
bdbe

− ib2
16πGJ

(
1
l+
− 1
l−

)
ZM [b]

16π2GJ
√
l−l+

×
∫

[Dϕ−] exp(−SM,b)〈ϕ−|SI〉 (5.21)

On carrying out the ϕ− integral this gives

Ψ[ϕ+] = e−
iφB+ l+

8πG +
iφB− l−

8πG

∫
bdbe

− ib2
16πGJ

(
1
l+
− 1
l−

)
ZM [b]

16π2GJ
√
l−l+

(
2π2

b+4π2E0

) 1
2

e
−2πbE0(ϕ+

0 )2

b+4π2E0

×
∏
m>0

π

4πEm+bm̃cothm̃π exp
{
−ϕ+

mϕ
+
−m

(
bm̃cothm̃π− b2m̃2 csch2 m̃π

4πEm+bm̃cothm̃π

)}
.

(5.22)
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We note that the b modulus integral above diverges. In the next section we consider twisted
boundary conditions for which it will converge. The reason why we have all the details
of eq. (5.22) is that the dependence on ϕ+ in the twisted case will not be very different
from the equation above which is somewhat simpler and allows us to extract most of the
important physics as we will see in subsection 5.1.1.

5.1 Twisted boundary condition

We now turn to considering twisted boundary conditions. We take a complex scalar field
satisfying the boundary condition

ϕ(θ + b) = e2πiαϕ(θ), −1
2 ≤ α ≤

1
2 (5.23)

A standard calculation now shows that the Casimir energy for the ground state of H — the
translation operator along r∗, eq. (5.1) — is given by

E = 1
12 −

1
4(2|α| − 1)2 (5.24)

For
1
2 −

1
2
√

3
< |α| ≤ 1

2 (5.25)

we see that E0 > 0 and the divergence when b→ 0 discussed above will be absent.
In this case, as discussed in appendix E.1 the scalar determinant is given by

det
(
−∇2

)
= e

b
12 q

α2
2

iϑ11(v, τ)
2 sin(πα)η(τ) (5.26)

where

ϑ11(v, τ) = −2 sin(πv)q
1
8

∞∏
m=1

(1− qm)(1− zqm)(1− z−1qm),

η(τ) = q
1

24

∞∏
m=1

(1− qm)

τ = 2πi
b
, v = 2πiα

b
, q = e2πiτ , z = e2πiv (5.27)

with ZM [b] = 1
det(−∇2) . With the scalar field operator taking the form

r →∞, ϕ̂→
∞∑

m=−∞
ϕ̂+
me

i(m̃+α̃)θ

r → −∞, ϕ̂→
∞∑

m=−∞
ϕ̂−me

i(m̃+α̃)θ (5.28)

the on-shell action is obtained to be, see F.2

SM = b
∞∑

k=−∞
(k̃ + α̃)

(
((ϕ+

k )†ϕ+
k + (ϕ−k )†ϕ−k ) coth

(
k̃ + α̃

)
π

− ((ϕ+
k )†ϕ−k + (ϕ−k )†ϕ+

k ) csch
(
k̃ + α̃

)
π
)

(5.29)
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We choose an initial state of the form

|SI〉 = exp
(
−2π

∞∑
m=−∞

Em(ϕ−m)†ϕ−m

)
(5.30)

This gives a final state wave function

Ψ[ϕ+
m,ϕ

+
n ] = e−

iφB+ l̂+
8πG +

iφB− l̂−
8πG

∫
bdbe

− ib2
16πGJ

(
1
l+
− 1
l−

)
ZM [b]

16π2GJ
√
l−l+

×
∞∏

m=−∞

π

2πEm+b(m̃+α̃)coth(m̃+α̃)π

×exp
{
−ϕ+

m(ϕ+
m)†

(
b(m̃+α̃)coth(m̃+α̃)π− b2(m̃+α̃)2 csch2(m̃+α̃)π

2πEm+b(m̃+α̃)coth(m̃+α̃)π

)}
.

(5.31)

Note that the b integral above is now finite but complicated to carry out, and depending
on the relative importance of the various terms the support for b in the integral can come
from different regions of moduli space.

Let us end this subsection with one more comment. The contribution to the wave
function with two disconnected boundaries, i.e. with two disks, would be enhanced compared
to the double trumpet geometry by a factor of e2S0 . However once twisted boundary
conditions for the matter fields are imposed the disk amplitude, i.e. the amplitude to tunnel
out of nothing, vanishes. Thus the tunnelling amplitude would be the leading contribution.

5.1.1 Some consequences

Let us now discuss some of the physical consequences of the wave function eq. (5.31)
obtained above. For the HH wave function as was noted in [10, 13], the dependence of the
wave function on the boundary values of the scalar (for a real scalar) is given by

Ψ ∼ exp
{
−2π

∑
m>0

ϕ+
−mϕ

+
mm

}
(5.32)

This is to be compared with the dependence on the boundary values for the real scalar
with periodic boundary conditions in eq. (5.22) and in eq. (5.31) for a complex scalar with
twisted periodic boundary conditions. Note that eq. (5.31) has double the number of modes,
ϕ+
m, ϕ̃

+
n since we are dealing with a complex scalar.

Comparing eq. (5.22) and eq. (5.31) it is easy to see that the effect of the twisted
boundary condition, as far as the dependence on boundary values ϕ+ are concerned, drop
out when we take modes of mode number m,n� 1, since then m+ α ' m. This is simply
because modes which are sensitive to the boundary conditions must have a wavelength of
order the size of the universe and for modes which are much smaller in size the dependence
on boundary condition, parametrised by α, becomes unimportant.

More interesting is the deviation compared to the HH case in the width of the Gaussian
in ϕ+ which appears in the wave function. The dependence in the HH case corresponds to
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a scale invariant spectrum, with

〈ϕ+
mϕ

+
−m〉 = 1

4π|m| (5.33)

In contrast we see from eq. (5.22) and eq. (5.31) that the two point function now has
departures from scale invariance. It is easy to see that the departure persists for mode
numbers, m ≤ b. How big these departures end up being therefore depend on what region
of the b modulus integral contributes dominantly. This could depend on the details of what
the total matter content is, etc. If the region b� 1 contributes, then only the smallest mode
numbers, corresponding to wavelengths of order the size of the universe, will be sensitive to
the departure. However if the region b� 1 contributes in a significant way, the departures
will persist upto much larger mode numbers, i.e. upto wave lengths much smaller than the
size of the universe.

These departures from scale invariance lead to a bigger value for the width of the
Gaussian than in the HH case and thus to smaller power at the wavelengths where the
departures occur. The departures also depend on the parameters Em which are determined
by the initial state, thus the departures from scale invariance would tell us about the nature
of the initial state from which the tunnelling occurs. If in a variant of our model the final
dS phase can end and match at late times to a more conventional FRW type cosmology,
then the shorter wavelengths will re-enter the horizon earlier than the very long ones and
there would be a chance of observing them, and thus by detecting the departure from scale
invariance observe the nature of the wave function of the universe and the initial state.

Suppressing the twist angle α, we see from eq. (5.22) that the width of the scalar
Gaussian is determined by the function f [m, b,Em] given by

f [m, b,Em] =
(
m coth m̃π − m2 csch2 m̃π

2Em +m coth m̃π

)
(5.34)

Thus the ratio m/f [m, b,Em] is a measure of the departure of the scalar power spectrum
from scale invariance. We give a plot of this ratio in figure 5 with Em = m, which illustrates
that the departure from scale invariance persists uptill bigger momentum m, as b increases.

The suggestive lesson which can be drawn for the early universe from this toy model is
then as follows: there could be alternatives to the HH wave function in which the universe
tunnels from a prior dS or FRW phase and the spectrum of perturbations could carry
signatures of this tunnelling wave function which depends on the initial state.

We end this subsection with two comments. First, the breaking of scale invariance in
the matter correlators in eq. (5.34) is connected to the dependence of the matter correlator
on the b modulus. The disk geometry has an SL(2,R) isometry and this is reflected in the
matter correlators which arise from the HH wave function being scale invariant. In contrast,
the double trumpet geometry only has an U(1) isometry, corresponding to translations along
the θ direction, eq. (A.42). The remaining two isometries are broken by the identification
θ ' θ+b, and this breaking then allows for the lack of scale invariance in f [m, b,Em]. When
b → 0, the two boundaries, in effect, move far apart with a distance going like 1/b, and
the past boundary become unimportant; this is why f [m, b,Em] approaches the HH result,
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Figure 5. The plot for the ratio m
f [m,b,m] shows that the departure from scale invariance in the

scalar two-point function persists for modes with momentum m <∼ b.

eq. (5.33) when m/b → ∞. In this way we see that the geometry of the double trumpet
instanton is directly responsible for the violations of scale invariance in the matter correlators.

Second, while using twisted boundary conditions allowed us to avoid the divergence
in the b modulus integral, similar divergences are expected, even with the twisted boundary
conditions, at higher genus or with larger numbers of boundaries in the path integrals. To get
a finite result at all orders, we therefore have to consider embedding the JT theory in a more
complete UV theory, analogous to SYK model with matter, as we discuss further in section 7.

5.2 Matter correlators

Here we return to the case AdS2 and take matter fields to have periodic boundary conditions.
The action is given by eq. (5.17) with the matter action SM,b being given by eq. (5.14).

Writing the matter action in position space variables on the boundaries gives,

SM,b = 1
2

(2π
b

)2 [∫
+

∫
+
dθdθ̃ϕ̂+(θ)ϕ̂+(θ̃)G(θ, θ̃) +

∫
−

∫
−
dθdθ̃ϕ̂−(θ)ϕ̂−(θ̃)G(θ, θ̃)

]
−
(2π
b

)2 [∫
+

∫
−
dθdθ̃ϕ̂+(θ)ϕ̂−(θ̃)H(θ, θ̃)

]
(5.35)

where G(θ, θ̃), H(θ, θ̃) are defined as

4π2

b
G(θ, θ̃) =

∑
n∈Z−{0}

ñ coth(ñπ)eiñ(θ−θ̃)

4π2

b
H(θ, θ̃) =

∑
n∈Z−{0}

ñ csch(ñπ)eiñ(θ−θ̃) (5.36)

with

ñ = 2πn
b

(5.37)
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In general the θ variables along each boundary differ from the proper time u1, u2 along them
due to reparametrisation modes being turned on, but neglecting these modes here, since
their coupling will make a subdominant contribution to the correlators we are calculating,
we can take

θ(u) = b

2πu (5.38)

The Kernel functions G,H defined in eq. (5.36) can be written in terms of Weierstrass
functions after a rewriting of them in terms of csc function series, some of the details of
which are provided in appendix E.2, see p.434 of [87], as follows

4π2

b
G(u1, u2) =

∑
n 6=0

ñ coth(ñπ)einu12 = −℘(û12, ω1, ω2) + c,

4π2

b
H(u1, u2) =

∑
n 6=0

ñ csch(ñπ)einu12 = −℘(û12 + ω2, ω1, ω2) + c, (5.39)

where ℘(z, ω1, ω2) is the Weierstrass P function with half periodicities ω1 and ω2 satisfying

℘(z, ω1, ω2) = ℘(z + 2ω1, ω1, ω2) = ℘(z + 2ω2, ω1, ω2). (5.40)

Also, in the formula above u12 = u1 − u2, and the coordinate û, the half-periodicities ω1, ω2
and the constant c are

û =

√
b

π

u

2 , ω1 = π

2

√
b

π
, ω2 = iπ

√
π

b

c = −π
b

1
3 −

∑
n∈Z−{0}

csch2
(

2nπ2

b

) (5.41)

Now, we come to main point of this subsection. Consider a two point function for
boundary operator dual to the scalar ϕ with one operator being on inserted the 1st boundary
and the other on the 2nd boundary. In this case only the term proportional to H(u1, u2)
will be relevant and we get

δ2I

δϕ(1)(u1)δϕ(2)(u2)

∣∣∣∣
ϕ(1)=0,ϕ(2)=0

≡ 〈O(u1)O(u2)〉

= 1
16πGJ

√
l+l−

∫ ∞
0

bdbe
− b2
leffGeZM [b]H(u12) (5.42)

where

Ge = 16πGJ, leff = l+l−
l+ + l−

(5.43)

As an aside, if the reader is wondering physically how relative locations on the two
boundaries are being compared, we note that for any value of the b modulus there is a
minimum length geodesic from any point on the 1st boundary to some point on the 2nd

boundary and this allows us to relate the locations on the two boundaries.

– 34 –



J
H
E
P
0
6
(
2
0
2
2
)
1
3
8

We will see now that the b integral on the r.h.s. is well behaved when b → 0. This
follows from eq. (5.15) that while ZM → e

π2
6b , H(u12) → e

−π2
b , independent of u12, as

discussed in appendix E.4. The integral is also well behaved as b→∞, since ZM → O(1),
in that limit while,

H(∆u) =

−k2b
2 + . . . , b→∞, ∆u = 0,

−k2b
2 exp(−k3b) + . . . , b→∞, ∆u 6= 0

(5.44)

where k2, k3 are O(1), which can be obtained from the full expression eq. (E.38), (E.37).

As a result the factor e
−b2
leffGe in eq. (5.42) dominates the behaviour and ensures convergence.

For N matter fields if there are n cross boundary contractions the integral will be well
defined as long as

n >
N

6 (5.45)

Some saddle points which can arise in evaluating such correlators when N →∞ are
discussed in appendix E.4.

Let us note that there will of course always continue to be some correlators which are
divergent. The path integral without any operator insertions is the simplest example, or
more generally if the number of cross-boundary contractions is small in number not meeting
eq. (5.45).

We end with three comments. First, in the paper, [16] similar cross-boundary correlators
were considered for massive matter and it was argued that the modular integral would then
be finite. Second, let us also comment on the dS case. Doing the analytic continuation
to go from -AdS2 to dS2 leaves the matter action SM the same as eq. (5.14) above, with
the qualification that ϕ̂+, ϕ̂− now refer to the asymptotic values the scalar takes at the
two dS boundaries. Consider the transition amplitude discussed in eq. (5.17). For this
case, the calculation above of the two point function, with one matter operator inserted at
each boundary, tells us about how the wave function of the state in the future will change
in response to a change in the wave function of the initial state in the far past. This is
connected to what we saw in the previous subsection, namely that the matter correlators
do depend on the initial state, e.g. the parameter Em, eq. (5.30).

Third, though not related to moduli stabilization, in appendix E.3, we discuss the
calculation of the four point out-of-time order (OTOC) correlator, which is useful to diagnose
the chaotic nature of a system. Interestingly, we find that the OTOC for the double trumpet
geometry does not exhibit exponential growth at large time, as opposed to the case of the
disk geometry which is well known to have exponential growth with the Lyapunov exponent
saturating the chaos bound. Instead, in the double trumpet the OTOC has an oscillating
exponential at large times eq. (E.55), (E.56), (E.58). The underlying reason for this can be
traced to the absence of an SL(2,R) worth of zero modes for the time reparametrisation
modes in the double trumpet which instead only has an U(1) worth of zero modes. We
elaborate more on this in appendix E.3.
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6 Comments on the double trumpet spectral form factor

The spectral form factor is defined to be

SFF(β, T ) = 〈Z(β + iT )Z(β − iT )〉 = 〈Tre−(β−iT )HTre−(β+iT )H〉. (6.1)

It has proved to be an important correlator to study, for understanding chaos and more
generally the behaviour of complex systems. Here we will consider its behaviour for the
theory with conformal matter and specifically will be interested in the contribution made
by the Double trumpet topology to it.

Before we turn to a detailed analysis let us briefly review some basic features. The
specific heat of the theory arises from the disk topology. The presence of matter fields does
not change the β dependence of the partition function, so that the specific heat of the JT
theory with matter is the same as that without matter and given by

C = π

2GβJ + 3
2 (6.2)

Thermodynamics is a good approximation when C � 1, i.e.

β � 1
GJ

(6.3)

In terms of energy, E = π/4GJβ2 + 3/2β, the condition is

E � GJ (6.4)

For the case without matter the leading contribution to the SFF which arises from the
topology of two disconnected disks gives,

SDisk, SFF = e2S0 e
πβ

2GJ(β2+T2)

16πG3
e(β2 + T 2)3/2 (6.5)

where Ge is defined in eq. (5.43). For the Double trumpet we get

SDT,SFF =
√
β2 + T 2

4β (6.6)

For large times

T � β (6.7)

we get, from eq. (6.5), eq. (6.6)

SDisk, SFF ' e2S0 e
πβ

2GJT2

16πG3
eT

3 →
e2S0

16πG3
eT

3 (6.8)

SDT,SFF '
T

4β (6.9)
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We see that for T ∼ eS0/2
(
β
G3
e

)1/4
the double trumpet topology begins to dominate over

the disconnected disk ones and one enters what is referred to as the “ramp” region, [44].
Now let us turn to the case with matter. From eq. (5.16) it is easy to see that after the

matter path integral is done we get

ZDT(β − iT, β + iT ) =
∫ ∞

0
bdbZM [b]

exp
{
− b2

Ge

(
2β

β2+T 2

)}
√
G2
e(β2 + T 2)

(6.10)

Here ZM [b] is the matter determinant, eq. (5.15), it is β, T independent, and only depends
on the b modulus. This is easy to see since the matter does not couple to the dilaton and by
dimensional analysis the lengths of the two boundaries only appear together with the scale J
characterising the fall off of the dilaton towards the boundaries, eq. (4.2). It then follows that
the b integral in eq. (6.10) diverges when b→ 0, since in this limit ZM → e

π2
6b , eq. (5.15).

One way to try and get a meaningful answer is to consider the microcanonical, instead
of canonical, ensemble in the SFF. More specifically we carry out an inverse Laplace
transform of the SFF, eq. (6.1), going from β to energy E,

ZDT(E, T ) =
∫
C
dβ e2βEZDT(β − iT, β + iT ) (6.11)

and examine if ZDT(E, T ) is well behaved. The contour for the β integral above is the
Bromwich contour, β ∈ (γ − i∞, γ + i∞), where γ is real and chosen so that the contour is
to the right, i.e., at a larger value along the horizontal-axis, than all the singularities of
the integrand in the complex β plane and it is parallel to the imaginary axis. We can then
write the integral variable β = γ + ix where, x ∈ [∞,∞]. Note that we will also take the
energy E to be big enough and satisfying eq. (6.4).

To flesh this out more, notice that by exchanging the order of the b modulus and β
integrals on the r.h.s. of eq. (6.11) we get

ZDT(E, T ) =
∫
bdbZM [b]

∫ γ+i∞

γ−i∞
dβe2βE

exp
{
− b2

Ge

(
2β

β2+T 2

)}
√
G2
e(β2 + T 2)

(6.12)

The idea is that perhaps ZDT(E, T ) as defined in eq. (6.12), after reversing the order of
the b, β integrals, will be well defined. Although at first sight this looks promising, here we
argue after a more careful analysis, that it is not true. Even with the order reversed the
integrals on the r.h.s. of eq. (6.12) give a diverging answer with the divergence coming still
from the b→ 0 region of the b modulus integral.

The reason to be hopeful at first sight [71] is as follows. Taking the limit T � β in

eq. (6.12), one might then like to approximate the exponential term, e
− b2
Ge

(
2β

β2+T2

)
' e−

2βb2

GeT2

This gives,

ZDT(E, T ) '
∫
b dbZM [b]

∫ ∞
−∞

dx

GeT
e

2(γ+ix)
(
E− b2

GeT2

)
(6.13)

'
∫
db
bZM [b]
2GeT

δ

(
E − b2

GeT 2

)
(6.14)

' 1
2TZM [b0] (6.15)
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where

b20 = EGeT
2 (6.16)

So it seems that the divergence at b → 0 has indeed been successfully cut-off by the δ
function which only has support at b = b0.

However this argument is too quick. As a first pass at being more careful let us express
the δ function above as a distribution

δ

(
E − b2

GeT 2

)
= lim

α→0

1
2
√
πα

e−

(
E− b2

GeT2

)2

4α , (6.17)

then eq. (6.14) gives

ZDT(E, T ) = lim
α→0

1
2
√
πα

∫ ∞
bc

bdbZM [b]e−

(
E− b2

GeT2

)2

α (6.18)

where we have introduced a lower cut-off in the b integral as well. Now since ZM [b]→ e
π2
6b

when b→ 0 we see that if we take bc → 0 first and then take α→ 0, the result will diverge,
whereas if we take the limit the other way around it will be finite. This alerts us to the fact
us that we need to be more careful in evaluating eq. (6.12).

6.1 A more careful analysis

To proceed more carefully, we break up the b integral in eq. (6.12) into two parts. From
[0, bc] and [bc,∞], where bc is sufficiently small. We will make more precise how small bc
needs to be shortly. This gives,

ZDT(E, T ) =
∫ bc

0
db
bZM [b]
Ge

Ẑ(b) +
∫ ∞
bc

db
bZM [b]
Ge

Ẑ(b) (6.19)

where with x = β
T we have

Ẑ(b) =
∫
C
dx

eS(x)
√

1 + x2

S(x) = 2ETx
(

1− b2

b20

1
1 + x2

)
(6.20)

Here C in the Bromwich contour and b0 is given by eq. (6.16).
Now consider the case where 0 < b < bc. To evaluate it we expand the exponent

eS(x) = e2ETx
(

1− b2

b20

1
1 + x2 + · · ·

)
(6.21)
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This gives10

Ẑ(b) =
∫ γ+i∞

γ−i∞
dx

e2ETx
√

1 + x2

(
1− 2ETx

1 + x2
b2

b20
+O(b4)

)

= J0(2ET )
(

1−
(2ETb

b0

)2
+O(b4)

)
(6.22)

Here J0 is the Bessel function of the first kind with index 0. We see that subsequent terms
in the expansion are suppressed in

2ETb
b0

� 1⇒ b� 1√
EG−1

e

(6.23)

We take bc in eq. (6.19) to satisfy this condition,

bc <
1√
EG−1

e

(6.24)

and this is the precise condition referred to above for its smallness.
In particular we have learnt that in the region 0 < b < bc, Ẑ(b) makes a leading order

contribution independent of b. On the other hand ZM diverges as e
π2
6b . It therefore follows

that the contribution to ZDT(E, T ) from this region diverges.
On the other hand we will argue below and in appendix G that when b > bc the

contribution of the second term in eq. (6.19) is finite. Putting these together then leads
to the conclusion that working in the microcanonical ensemble does not help after all and
ZDT(E, T ), like its Laplace transform ZDT(β, T ), also diverges. In fact once a lower cut-off
bc is non-vanishing — the argument in eq. (6.14)-eq. (6.18) would already suggest that
the second term in eq. (6.19) is well behaved and finite. A careful analysis outlined in
appendix G indeed establishes that this is true.

The main points of the argument in the appendix G are as follows. We divide the
integration region into three parts:

b > b0, (6.25)
b− b0
b0

� 1, (6.26)

b2EG−1
e ≥ 1 & b < b0 (6.27)

Note that the lower limit in eq. (6.27) can be made of order bc, which is the upper limit in
eq. (6.23). We then argue that the saddle point approximation involved in evaluating Ẑ(b)
eq. (6.20) is a good one when b lies in 1st and 3rd regions, eq. (6.25), eq. (6.27). From this
we obtain an estimate of Ẑ(b) which leads to the conclusion that the b integral in these
regions is finite and in fact in region 3, eq. (6.27), its contribution mainly comes from the
region near the lower limit, which is of order, bc. In the middle region eq. (6.26) the x
integral involved in Ẑ(b) has a rapidly oscillating phase factor which suppresses it and we

10A quick way to obtain the result eq. (6.22) is to use the “InverseLaplaceTransform” function in
Mathematica.
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use this to conclude again the finiteness of the result. These arguments establish that the
dominant contribution to eq. (6.19) comes from the first term on the r.h.s. which we have
argued diverges.

We will have more to say about how to control this divergence in a more complete
embedding of JT coupled with matter in section 7.

7 Discussion

We end with a discussion of some open questions.
We saw above that once matter is added, the partition function in AdS, for surfaces with

two or more boundaries or at higher genus, and correspondingly wave function/transition
amplitudes in dS space, can be divergent, due to contributions arising from the boundaries
of moduli space. While this divergence is absent in the double trumpet, once the matter
satisfies suitable twisted boundary conditions, it is expected to reappear in higher genus
contributions, because states in the vacuum sector of the theory, as opposed to the twisted
sector, can propagate along the additional handles. We studied conformal matter above but
such a divergence is also expected with massive matter, of mass m. This is because in the
limit when the modular parameter b defined in eq. (A.42) vanishes, b→ 0, the divergence
arises from wavelengths much smaller than 1/m.

Let us now discuss a proposal for how such divergences might be avoided once the
JT theory with matter is embedded in a more complete SYK theory which also contains,
correspondingly, additional matter.

7.1 SYK + additional matter

We had mentioned in section 4.3 while discussing the pure JT theory without matter, a
somewhat revised proposal for holography with the RMT being replaced by SYK theory,
see also [11]. This could serve as the hologram in both the AdS or dS cases along the
lines discussed in section 4.3. Here we will discuss a further revision of this proposal which
includes additional matter coupled to the SYK theory, and argue that it could serve as a
hologram for the gravity theory with additional massless or light matter.

For completeness, before proceeding, let us briefly note that the SYK theory is given
by the action (here for simplicity we only consider the q = 4 model):

SSYK =
∫ ∑

i

dtψi∂tψ
i +

∑
i1<i2<i3<i4

Ji1i2i3i4ψ
i1ψi2ψi3ψi4 (7.1)

In eq. (7.1) ψi, i = 1 · · ·N are N flavours of Majorana fermions, and the coupling Ji1i2i3i4 is
a random coupling drawn from a Gaussian ensemble with two-point correlator

〈Ji1i2,i3,i4Jj1j2j3j4〉 = 6J2

N3 δi1j1δi2j2δi3j3δi4j4 (7.2)

J is the only energy scale in the theory, and the large N limit is obtained by taking N →∞
while keeping J fixed. The system can be solved in this limit using saddle point methods.
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At low energies, E � J , in the conformal limit, the saddle point value of the two-point
flavour singlet Green’s function is given by

Gc = 1
N

∑
i

〈ψi(t)ψi(t′)〉 = gψ
|t− t′|1/2

, g4
ψ = 1

4πJ2 (7.3)

At low temperatures, T , or energies, E, with, T/J,E/J � 1 the fluctuations about the
saddle point are given by the time reparametrisation modes. At higher E, T , extra degrees
of freedom come into play. This means that pure JT gravity will agree with the SYK theory
when the length of boundaries becomes small, 1/Jl � O(1), where l is the renormalised
length eq. (4.2), but will differ when 1/Jl ≥ O(1). It would be interesting to figure out
on the gravity side what the additional high energy degrees of freedom are when the dual
hologram is taken to be the SYK model.

Now consider adding an additional scalar field ϕ to the SYK theory with the action,

Sscalar =
∫
dt

 ϕ̇2

2 +
∑

i<j<k<l

gijklψ
iψjψkψlϕ

 (7.4)

where the coupling gijkl is taken to be random and drawn from a Gaussian ensemble

〈gijklgijkl〉 = g2

N4 (no sum). (7.5)

At low enough energies the time derivative term in eq. (7.4) can be neglected. Integrating
out the fermions gives a description in terms of the flavour singlet bi-local Gψ,Σψ fields.
The resulting coupling to ϕ is

Slsc = g2

48N4

∫
dtdt′Gψ(t, t′)4ϕ(t)ϕ(t′) (7.6)

It is easy to see that the saddle point equations can be consistently solved by taking ϕ at
the saddle to vanish. For good measure, note that we have taken the coupling g2 to be
O(1) rather than O(N) in eq. (7.6) to ensure that the coupling g is sufficiently weak and
the saddle point for the fermions continues to be that discussed in the theory without ϕ.
With Gψ replaced by Gc, eq. (7.3) we then get eq. (7.6) to become

Slsc =
g2g4

ψ

48N4

∫
dt

∫
dt′
ϕ(t)ϕ(t′)
|t− t′|2

(7.7)

This shows that ϕ behaves like the source of a dimension 1 operator.
In general a bulk scalar of mass m2 (in RAdS units) would give rise to an operator of

dimension

∆ = 1
2 +

√
1
4 +m2 (7.8)

we see therefore that ϕ above corresponds to a massless scalar in the bulk. This was to be
expected since its coupling to the fermions was marginal.
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We note in passing that a Yukawa-like coupling of ϕ to the fermions, which would be
the simplest one to consider,

Syuk =
∫
dtgijψ

iψjϕ, (7.9)

after averaging over the random coupling gij , would give rise to a bulk scalar of mass
m2 = −1/4. This is the lowest mass allowed in AdS space.

The coupling of time reparametrisations to ϕ follow from the action eq. (7.7) and it is
easy to see that the resulting dynamics of the reparametrisation modes coupled to ϕ would
then exactly agree with what is obtained in the bulk by coupling a bulk massless scalar
to JT gravity theory with ϕ(t) playing the role of the boundary value for the bulk scalar.

In this way we see how degrees of freedom corresponding to extra massless or light
matter (with mass m2R2

AdS ≤ 1) on the gravity side can be added to the SYK theory. Our
proposal is then to consider this SYK theory with the additional matter as a UV completion
of the JT theory in AdS with additional massless or light matter.

The SYK theory with the extra matter is of course finite with no divergences in multi-
boundary correlation functions. This suggests that the extra degrees of freedom in the
SYK theory must regulate the divergences we discussed above which appear in the JT
theory [68, 88]. Understanding how this works more explicitly is an interesting question
which we leave for the future.

The discussion above can also be extended to dS space. As discussed in section 4.3, one
could also consider a version of holography for pure JT theory in dS space with the SYK
theory rather than RMT being the hologram. This could then be extended with additional
matter on both sides along the lines above.

In parallel with the AdS discussion above, here one expects that the resulting transition
amplitudes or wave functions obtained from the SYK+matter theory would be closely
related to JT dS gravity with matter, when the renormalised lengths of all boundaries are
large, meeting the condition 1

Jl � 1. Note also that the correspondence in the dS case
extends to both transition amplitudes of the type considered in section 4.3 and also to those
where the boundary value for matter fields are turned on, giving rise to the wave function
or transition amplitudes as a function of these boundary values. This more general case
would correspond on the SYK side to calculating correlations of Tr e±iHl in the presence of
the corresponding sources for the matter fields.

7.2 Some additional comments

Let us end with three more comments. First, as also noted in section 4.3, the proposals for
a hologram in the dS2 case are incomplete in one important respect. We have not defined a
suitable norm on the space of wave functions. This will probably need to be done in the third
quantised theory, since the number of universes can change through quantum tunnelling.

Second, there are several different models besides the SYK model which give rise to
the same low-energy theory of boundary reparametrisation modes and all of them can be
candidates for dS holograms as well. It will be interesting to explore if additional consistency
conditions can cut down this bewilderingly large set of possibilities.
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An important distinction is between models which involve random averages over
couplings and those which involve single realisations of these couplings. The (connected)
correlation functions for the partition function in a single realisation case would vanish, and
this suggests that the related transition amplitudes or multi-boundary wave functions in
the dS case would also vanish. The presence or absence of the multiverse in these systems
would therefore seem to depend on whether we are dealing with a boundary theory that has
a random average over couplings or one whose coupling constants are fixed, say at typical
values. It is worth emphasising that the random average theories might be sensible ones to
consider, especially in the dS context, as candidate holograms.

Finally, one of our motivations behind this work was to explore in the precise manner
afforded to us in two dimensions, Coleman’s important idea that wormholes could determine
the values that coupling constants take in nature [89]. In studying this idea one wants a
model where there are local degrees of freedom present, along with their associated coupling
constants, and this was one of our motivations for considering gravity in the presence of
extra matter. Hopefully, having dealt with some of the issues outlined above in a satisfactory
manner, we can also complete a careful study of Coleman’s ideas in the context of two
dimensional gravity.

We leave an exploration of these fascinating ideas for the future.
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A Coordinate transformations

In this appendix we will list out various coordinates systems and the corresponding trans-
formations between them that are used throughout the main text. We will also show
important Penrose diagrams that illustrate the regions in the full spacetime covered by
these coordinate systems. First let us consider the de Sitter spacetime.

A.1 de Sitter

Let us first note that dS2 can be thought of as an embedding in R1,2 Minkowski spacetime as

ds2 = −dx2
0 + dx2

1 + dx2
2,

−x2
0 + x2

1 + x2
2 = 1 (A.1)

– 43 –



J
H
E
P
0
6
(
2
0
2
2
)
1
3
8

where we have taken the dS radius to be unity. The global coordinate parametrization of
de Sitter is obtained by taking

x0 = sinh τ̂ , x1 = cosh τ̂ cos θ̂, x2 = cosh τ̂ sin θ̂ (A.2)

Using this to find the metric in terms of τ̂ , θ̂ will give

ds2 = −dτ̂2 + cosh2 τ̂ dθ̂2 (A.3)

It is easy to see from eq. (A.2) that with the range of τ̂ , θ̂

τ̂ ∈ (−∞,∞), θ̂ ∈ [0, 2π], (A.4)

the coordinates xi have the range xi ∈ [−∞,∞] satisfying the constraint in eq. (A.1) and
so cover whole dS spacetime. Casting the line element eq. (A.3) in the conformal form by
defining the coordinate r̂∗ as

dr̂∗ = dτ̂

cosh(τ̂)

⇒ r̂∗ = 2 arctan
(

tanh
(
τ̂

2

))
(A.5)

the metric in the r̂∗, θ̂ coordinates becomes

ds2 = dθ̂2 − dr̂2
∗

cos2 r̂∗
(A.6)

We will find it useful to shift the r̂∗ coordinate by π
2 ,i.e.,

r̂∗ → r̂∗ + π

2 (A.7)

so that the range of the coordinate r̂∗ and the new line element are

ds2 = dθ̂2 − dr̂2
∗

sin2 r̂∗
, r̂∗ ∈ [0, π], θ̂ ∈ [0, 2π] (A.8)

as in eq. (A.8), it is easy to see that the Penrose diagram in this case would be as shown below.
Various other useful coordinate systems to describe the global dS are the following.

The transformation

r = cot r̂∗ = sinh τ̂ (A.9)

gives

ds2 = (1 + r2)dθ̂2 − dr2

r2 + 1 (A.10)

Defining the null coordinates
ζ± = θ̂ ± r̂∗ (A.11)
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r̂∗

θ̂

0 2π

π

Figure 6. The coloured horizontal line corresponds to fixed r̂∗ and coloured vertical line corresponds
to fixed θ̂ and the wavy line indicates the singularity where φ = −1.

the line element in these coordinates becomes,

ds2 = dζ+dζ−

sin2( ζ+−ζ−
2 )

(A.12)

The coordinate transformation

x+ = tan
(
ζ+

2

)
, x− = tan

(
ζ−

2

)
(A.13)

The line element eq. (A.12) becomes

ds2 = 4 dx+dx−

(x+ − x−)2 (A.14)

Written in terms of the conventional Poincare coordinates η, z given by

x± = z ± η (A.15)

in terms of which the line element becomes

ds2 = dz2 − dη2

η2 (A.16)

The metric in eq. (A.16) can be obtained by the following parametrization of the embedding
coordinates xi in terms of η, z

x0 = 1
2

(1
η
− η

)
+ z2

2η , x1 = 1
2

(1
η

+ η

)
− z2

2η , x2 = z

η
(A.17)

Instead of using the above to construct the Penrose diagram, we use the relations between
Poincare and global coordinates to understand the region of full dS covered by these
coordinates. From eq. (A.13), we have

z ± η = tan
(
θ̂ ± r̂∗

2

)
, (A.18)
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η

z

η = 0

η =
−∞
, z =
−∞

η
=
−∞

, z
=
∞

x+

x−

Figure 7. The green curves correspond to curves of constant η and blue curves corresponds to
cuves of constant z and red curve corresponds to φ = −1 singularity.

It is easy to see from the above relations that

z = sin θ̂
cos θ̂ + cos r̂∗

, η = sin r̂∗
cos θ̂ + cos r̂∗

(A.19)

Using the above information, it is easy to see that the patch of the full dS spacetime covered
by the Poincare coordinates can be represented as below,

The Milne patch is given by the metric

ds2 = − dr̃2

r̃2 − 1 + (r̃2 − 1) dθ2, r̃ > 1 (A.20)

Defining the coordinate τ as

r̃ = cosh τ (A.21)

the line element becomes

ds2 = −dτ2 + sinh2 τ dθ2, τ ∈ (−∞,∞) (A.22)

To rewrite the metric eq. (A.20) in conformally flat form, we define r∗ coordinate as

r̃ = − coth r∗ (A.23)

in terms of which the line element becomes

ds2 = dθ2 − dr2
∗

sinh2 r∗
, r∗ ∈ (−∞, 0) (A.24)

Defining the null coordinates

ζ± = θ ± r∗ (A.25)

the line element in terms of ζ± becomes

ds2 = dζ+dζ−

sinh2( ζ+−ζ−
2 )

(A.26)
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Further defining the coordinates x± as

x± = tanh
(
ζ±

2

)
(A.27)

the line element becomes

ds2 = 4 dx+dx−

(x+ − x−)2 (A.28)

When we consider the theory with identification of θ coordinate, discussed in section 3, one
particular set of null coordinates z± that will be useful, are defined as

z± = exp
(
π2

b
± i2π

b
ζ±
)

(A.29)

Let us now analyze the Penrose diagram. We see that the above coordinate system
breaks down at r̃ = ±1. Indeed, the cosmological and black hole horizons are located
at r̃ = ±1 where the geometry is smooth even though coordinates break down. So these
locations are just coordinate singularities. To find the maximal extension of the spacetime,
we devise a pair of Kruskal-like coordinates. As a first step, we define the coordinates u, v as

v = θ +
∫

dr̃

r̃2 − 1 = θ + 1
2 ln

∣∣∣∣ r̃ − 1
r̃ + 1

∣∣∣∣ = θ + r∗

u = θ −
∫

dr̃

r̃2 − 1 = θ − 1
2 ln

∣∣∣∣ r̃ − 1
r̃ + 1

∣∣∣∣ = θ − r∗ (A.30)

Define the Kruskal coordinates X+
K , X

−
K in the future Milne wedge, shown as region I in

figure below where r̃ > 1 as

X−K = −e−u = −e−θ+r∗ , X+
K = ev = eθ+r∗ . (A.31)

These X+
K , X

−
K coordinates can be extended to the regions II, III, IV by just taking

the appropriate signs

X−K = ±e−θ+r∗ , X+
K = ±eθ+r∗ (A.32)

From the above, we see that

r̃2 − 1 = −4X+
KX

−
K

(1 +X+
KX

−
K)2 . (A.33)

Moreover, we also have that

r̃ → 0 =⇒ X+
KX

−
K → 1, r̃ → 1 =⇒ X+

KX
−
K → 0, r̃ → −1 =⇒ X+

KX
−
K →∞

(A.34)

From the above, we see that the X+
K , X

−
K coordinates break down near the black hole horizon

corresponding to r̃ = −1. So, we need to define a new pair of Kruskal-like coordinates
X̃+
K , X̃

−
K as

X̃+
K = −eu, X̃−K = −e−v (A.35)
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X+
KX

−
K = −1

X+
KX

−
K = −1

X+
K < 0

X−K > 0

X+
K > 0

X−K > 0

X+
K > 0

X−K < 0

X+
K < 0

X−K < 0

θ
=
−∞

θ
=
∞

θ =
−∞

θ =
∞

θ =
∞

θ
=
∞θ =

−∞
I

III

II

IV

X+
K

X−K

Figure 8. Region of the Penrose diagram of dS covered by one set of Kruskal coordinates.

. . . .. . . .

Figure 9. Maximal extended Penrose diagram for dS.

This procedure can be repeated infinitely and so we get an infinite chain for the Penrose
diagram.

For completeness, we note down the relation between the Kruskal coordinates eq. (A.32)
and the Poincare coordinates eq. (A.27), say in the region II, to be

x+ = X+
K + 1

X+
K − 1

, x− = 1−X−K
X−K + 1

(A.36)

The analog of the coordinate system eq. (A.20) in the static patch corresponding to the
region III in figure 8 is given by

ds2 = dr̃2

1− r̃2 − (1− r̃2) dθ2, |r̃| < 1 (A.37)

So, in this region we have a time-like Killing vector ∂θ. To go to the conformally flat form,
we can define the coordinate r∗ as

r̃ = − tanh r∗ (A.38)

in terms of which the metric becomes

ds2 = dr2
∗ − dθ2

cosh2 r∗
(A.39)
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To further go to the Poincare coordinate system, we can do the coordinate transformation

x+ = − coth
(
θ + r∗

2

)
, x− = − tanh

(
θ − r∗

2

)
(A.40)

following which the metric becomes

ds2 = 4dx+dx−

(x+ − x−)2 (A.41)

A.2 Euclidean AdS double trumpet

The line element for this geometry is given by

ds2 = (r2 + 1)dθ2 + dr2

(r2 + 1) , θ ∼ θ + b (A.42)

The two boundaries correspond to the limits r → ∞ and r → −∞. Performing the
coordinate transformations

r = sinh(ρ) (A.43)

we find that the metric is given by

ds2 = dρ2 + cosh2(ρ)dθ2 (A.44)

It has to be noted that the θ direction is periodic with period 2π. Defining r∗ coordinate as

r = cot(r∗) (A.45)

In term of the r∗ coordinates the metric becomes

ds2 = dr2
∗ + dθ2

sin2(r∗)
(A.46)

This can be written in complex coordinates as

ζ = r∗ + iθ, ζ̄ = r∗ − iθ (A.47)

the metric becomes

ds2 = dζ dζ̄

sin2
(
ζ+ζ̄

2

) (A.48)

To get it to the Poincare form, consider the further coordinate transformation

x = i tan
(
ζ

2

)
, x̄ = −i tan

(
ζ̄

2

)
(A.49)

and hence the metric becomes
ds2 = − 4dxdx̄

(x− x̄)2 (A.50)
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B Orbifold theory

B.1 Classical matter

In this subsection, we shall mention some formulae to compute the stress tensor in the
orbifold theory discussed in section 3. Consider a matter stress tensor T++ of the form

T++ = µ+
0 δ(x+ − x+

0 ) (B.1)

where

x±0 = tanh
(
θ0 ± r∗0

2

)
(B.2)

To compute the backreaction in the orbifold theory, it is convenient to use the procedure of
method of images and work in the un-orbifolded theory. Let the full stress tensor including
the images be given by

T I++ =
∑
n

µ+
n δ(x+ − x+

n ) (B.3)

where

x±n = tanh
(
θ0 + nb± r∗0

2

)
(B.4)

Now, we need to find the compute the strength of the images µn, n 6= 0. To do this, we
note that the full stress tensor with images in eq. (B.3) should be invariant under the shift
of the coordinate θ as θ → θ + b, where x± is related to θ by eq. (A.27).Viewing the shift
θ → θ + b as a coordinate transformation under which x± → x̂± where x̂± are given by

x̂± = tanh
(
θ + b± r∗

2

)
(B.5)

and hence, using the transformation rule for the stress tensor as a rank two covariant
tensor, and noting that the full stress tensor remains unchanged under this coordinate
transformation, we arrive at

∑
m

µ+
mδ(x̂+ − x+

m) = (1− (x+)2)
(1− (x̂+)2)

∑
n

µ+
n δ(x+ − x+

n ) (B.6)

From the above, we get

µ+
n+1 = µ+

n

(1− (x+
n )2)2

(1− (x+
n+1)2)2 (B.7)

And so, we get

µ+
n = µ+

0
(1− (x+

0 )2)2

(1− (x+
n )2)2 (B.8)

Now, we need to solve for the dilaton given the stress tensor eq. (B.3). Since, the equations
of motion involving the dilaton in eq. (2.12), (2.11) are linear in dilaton and the stress tensor,
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we can solve for each of the image sources and obtain the full solution by superposition
of the response from each image source. Starting from a dilaton solution of the form
eq. (2.31), (2.33), and noting the solution eq. (2.37) for a source of the form eq. (2.36), we
get the full solution for the stress tensor eq. (B.3) to be given by

k(x+) =
∑
n

µ+
n (x+ − x+

n )2Θ(x+ − x+
n ) (B.9)

We can now construct the solution for the dilaton by substituting this function in eq. (2.31).
Consider x+

j < x+ < x+
j+1 for some j. We find the dilation solution to be given by

φ = ã+ b̃(x+ + x−) + c̃x+x−

x+ − x−
(B.10)

where

ã = 1 +
∑
n≤j

µ+
n (x+

n )2, b̃ = −
∑
n≤j

µ+
n x

+
n , c̃ = −µ− +

∑
n≤j

µ+
n (B.11)

. We see from eq. (B.8) and eq. (B.4) that for b large, the sources become larger as n
increases and so the backreaction becomes stronger and stronger.

B.2 Stress tensor transformation

In this appendix we give some formulae for the stress tensor of a massless free scalar field
transforms corresponding to a choice of the coordinates with respect to which the vaccuum
state of the matter fields is defined [40, 90]. Consider two coordinate systems denoted by
(X+, X−) and (x+, x−) with metric,

ds2 = −F (X+, X−)dX+dX−, (B.12)
ds2 = −f(x+, x−)dx+dx−. (B.13)

Then, the stress tensor components for the system in the vaccuum with respect to coordinates
X± but computed in the coordinate system x± is given by

〈X|Tx+x+ |X〉 = 〈x|Tx+x+ |x〉 −
1

24πSch(X+, x+), (B.14)

where
〈x|Tx+x+ |x〉 = − 1

12πf
1
2∂2

x+f−
1
2 . (B.15)

There is an analogous formula with (X+, x+) being replaced by (X−, x−).
Now, in the case of orbifold theory considered in section 3, for the matter fields in the

vaccum with respect to the coordinates eq. (A.29),

〈z+|Tz+z+ |z+〉 = 1
48π(z+)2

(
1 + b2

4π2

)
(B.16)

Using the coordinate transformations eq. (A.25), we get the stress tensor components as

〈Tζ±,ζ±〉 ≡
A
4 = − 1

48π

(
1 + 4π2

b2

)
< 0 (B.17)
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where ζ± are defined in eq. (A.25). Further using the coordinate transformation to go to
the Poincare coordinates, (A.27), we see that the stress tensor becomes

〈T±,±〉 ≡ 〈Tx±,x±〉 = A
(1− (x±)2)2 (B.18)

C dS2 from dS4

In this subsection, we shall show the steps illustrating how dS2×S2 arises in the near-Nariai
limit of the dS4 black hole. The 4D black hole solution to the action

I4D = 1
16πG4

∫
d4x
√
−g(R− 2) (C.1)

is given by

ds2 = −f(r)dt2 + dr2

f(r) + Φ2dΩ2
2 where f(r) = 1− r2 − µ

r
, Φ = r (C.2)

Requring f(r) = 0 gives a cubic equation in r whose solutions correspond to horizons. Let
them be denoted by rc, rb, ra where rc > rb > ra. It is easy to see that these satisfy the
relations

rc + rb + ra = 0, rcrbra = −µ (C.3)

The cosmological horizon is given by r = rc and the black hole horizon by r = rb. The
temperature, as computed by requiring that the Euclidean circle shrinks smoothly, say as
r → rc is given by

Trc = f ′(rc)
4π = 1− 3r2

c

4πrc
(C.4)

In the near-Nariai limit rc → rb. Let the extremal value of the horizon be rh. The value of
rh can be easily calculated from eq. (C.3) and is found to be

rh =
(
µ

2

) 1
3

= 1√
3

(C.5)

In this limit, f(r) has a double zero given by

f(r) ' −3(r − rh)2 (C.6)

Slightly away from this limit, parametrizing rc, rb as

rc = rh + δ, rb = rh − δ, δ � rh (C.7)

we get the form of f(r) as

f(r) = −3((r − rh)2 − δ2) (C.8)
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Let r̃ = r−rh
δ and so f(r) = −3δ2(r̃2 − 1). Taking t→ t

3δ the line element becomes

ds2 = 1
3

(
− dr̃2

r̃2 − 1 + (r̃2 − 1)dt2
)

+ Φ2
0(1 + φ)dΩ2

2 (C.9)

where

Φ0 = rh, φ '
2(r − rh)

rh
(C.10)

We see from eq. (C.9), the geometry becomes dS2× S2. The full 4D entropy would be given
by the sum of contributions from the cosmological and black horizons and reads

S4D = π

G4

(
Φ2

0

∣∣∣∣
BH

+ Φ2
0

∣∣∣∣
CH

)
→ 2πΦ2

0
G4

= πµ3

4G4
(C.11)

where the limit at the end in the above equation corresponds to the extremal limit with BH
and CH denoting black hole and cosmological horizons respectively. Doing a dimensional
reduction of the action in eq. (C.1) with the ansatz

ds2 = g̃αβdx
αdxβ + Φ2

0(1 + φ)dΩ2
2 (C.12)

would give the 2D JT action in eq. (2.1) with the identification

1
G

= 4π
G4

(C.13)

The genus counting parameter in JT gravity that corresponds to the topological term has
the value

S0 = 4πΦ2
0

4G4
= πµ3

8G4
(C.14)

which is half the extremal entropy of the full 4D black hole solution eq. (C.11).
The spacetime is defined to have a singularity when the dilaton, φ, becomes sufficiently

negative that the radius of the transverse sphere in 4D shrinks to zero. This happens at

φ = −1 (C.15)

D Remarks on canonical quantisation

In this section, we shall discuss some aspects of canonical quantisation of the JT theory in
dS both in the second and first order formalisms.

Second order formalism. The quantisation of the theory in the second order formalism
was carried out in [41] and [42]. Here we will mainly review a few points which allow us to
connect to the main text especially section 4.1, and also bring out some key features of the
quantisation.

Writing the metric as

ds2 = −dt2 + e2ρdθ2, θ ∼ θ + 2π (D.1)
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The action for JT gravity in the minisuperspace approximation in which φ, ρ depend only
on time t, becomes

SJT = − 1
4G

∫
dt (φ̇ρ̇+ φ)eρ (D.2)

The canonical conjugate variable πφ, πρ are given by

πρ = − φ̇ e
ρ

4G , πφ = − ρ̇ e
ρ

4G (D.3)

Written in terms of the length of the boundary l̂ = 2πeρ, we get

πl̂ = πρ

l̂
= − φ̇ e

ρ

4Gl̂
(D.4)

We see that φ̇ > 0 leads to πl̂ < 0 as discussed in section 4.1.
The Hamiltonian constraint for the wavefunction in the quantum theory then be-

comes, [10],

((8πG)2∂l̂∂φ + φl̂)Ψ[l̂, φ] = 0 (D.5)

A more careful quantisation, as discussed in [41], see also, [39] which keeps track of
factor ordering ambiguities shows that it is Ψ̃(l̂, φ) = Ψ(l̂,φ)

l̂
which actually satisfies the

WDW equation. Keeping this in mind it is easy to see that an exact solution of the WDW
equation is given by

Ψ(l̂, φ) = l̂φ2

l̂2 − 4π2

AH(2)
2

φ
√
l̂2 − 4π2

8πG

+BH
(1)
2

φ
√
l̂2 − 4π2

8πG

 (D.6)

where A,B are two constants and H(1,2)
2 are the Hankel functions with index 2 of first or

second kind. For appropriate A,B this agrees with eq. (4.14) in section 4.2.
The WDW equation is second order and involves two functional derivatives. One of the

main points in the quantisation discussed by Henneaux [41] is to simplilfy the constraints
in the classical theory by partial solving and replacing them with constraints which involve
only one functional derivative. And then going to the quantum theory where these simplified
constraints are imposed. The step where the constraints are partially solved gives, see
also [39],

Πρ = ±
√

(∂θφ)2 + (M +W (φ))e2ρ → ±eρ
√
M +W (φ) (D.7)

Πφ = ±
1
2Ue

2ρ + ∂2
θφ− ∂θφ∂θρ√

(∂θφ)2 + (M +W (φ))e2ρ → ±
1
2Ue

ρ√
M +W (φ)

(D.8)

Here ∂φW = U , and U = Λφ, with Λ = 2 in our notation, eq. (2.1), in units where 8πG = 1.
M is an integration constant, and the last expression on the r.h.s. in both equations are
the values in the mini superspace approximation. Comparing with the mini superspace
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approximation, eq. (D.3) we see that we have to choose the − sign in eq. (D.7), eq. (D.8),
to describe the expanding branch and the + sign to describe the contracting branch.

However to describe the possibility of a tunnelling solution which goes from a contracting
universe to an expanding one, we cannot make a particular choice and one must instead
therefore return to the original WDW equation which involves second order functional
derivatives and try to solve it. This is more complicated and provides us with the motivation
for considering the canonical quantisation in the first order formalism which we describe next.

First order formalism. The quantisation of the theory in the first order formalism was
considered by Strobl, [43] and we briefly review it next. In particular we will not be working
in the mini-superspace approximation, and instead consider the theory with all its degrees
of freedom. It will then turn out that imposing the constraints allow us to set all the
spatially varying modes to vanish, showing that the mini-superspace approximation is in
fact exact in this theory.

The action is

S =
∫
L

L = πA

(
dXA + 1

2f
A
BCX

B ∧XC
)

(D.9)

where XA is the vector of 1-forms made of Vierbeins, e0, e1 and spin connection, ω, and
fABC are the structure constants of the de Sitter symmetry group SO(2, 1) parametrized by
the generators TA, where

XA = (e0, e1, ω)
πA = (π0, π1, πω)

TA = 1
2(σ1, iσ2, σ3) (D.10)

with σi being the Pauli matrices. Note that πω is the dilaton φ. In order to describe
tunnelling transitions we take the bulk manifold to have a cylindrical topology with the
spacelike direction being identified, θ ' θ + 2π.

Expanding the Lagrangian eq. (D.9) in terms of components reads

L = πA

(
∂tX

A
θ − ∂θXA

t + 1
2f

A
BC

(
XB
t X

C
θ −XB

θ X
C
t

))
(D.11)

We see that the momenta conjugate to XA
θ are πA, and the momenta conjugate to XA

t

vanish. The XA
t variables therefore serve as Lagrange multipliers imposing the Gauss law

constraints which are given by

GA ≡
δL
δXA

t

= ∂θπA + fBACπBX
C
θ = 0 (D.12)

To quantise the theory we take the dynamical variables to be πA, XA
θ and impose the

canonical commutation relations on the pair (πA, XA
θ ){

XA
θ (t, θ1), πB(t, θ2)

}
= δABδ(θ1 − θ2) (D.13)

In addition we impose the constraints GA ' 0 on the states.
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The constraints eq. (D.12) satisfy an SO(2, 1) algebra

{GA(t, θ1), GB(t, θ2)} = fCABδ(θ1 − θ2)GC(t, θ1) (D.14)

and in particular close among themselves. The constraints are therefore not Abelian, i.e.
do not commute with each other. One strategy followed by Strobl [43], which is the one
we discuss below, is to carry out a canonical transformation on the πA, XA

θ variables after
which the constraints become Abelian. This is done for the non-zero modes with respect to
the spatial direction θ.

One set of such variables are(
G+
π+

,−Gω
π+

, Q;πω, π+, P
+
)

(D.15)

with

∂θQ = π+G− + π−G+ (D.16)

and

π± = π0 ± π1, X±θ = 1
2(e0

θ ± e1
θ)

P+ = −X
−
θ

π+ , Q = π+π− + π2
ω (D.17)

Straightforward algebra then shows that the only non-zero commutation relations at equal
time are

{Q(θ1), P+(θ2)} = δ(θ1 − θ2),{
G+
π+

(θ1), πω(θ2)
}

= −δ(θ1 − θ2){
−Gω
π+

(θ1), π+(θ2)
}

= −δ(θ1 − θ2) (D.18)

Having Abelianised the constraints we can now simply set the constraints to vanish,
G+
π+ = G−

φ+
= Q = 0 (D.19)

and remove all the non-zero mode degrees of freedom.
All that remains then is the sector involving the zero modes of θ. Thus we see clearly

that the system has no local degrees of freedom, and that the mini-superspace approximation
is in fact exact.

For the zero mode sector we continue to work with the original variables, i.e. with the
θ independent modes of πA, XA

θ , satisfying the commutation relations {XA
θ (θ1), πB(θ2)} =

δABδ(θ1 − θ2).
The constraints in this sector become,

G+ = 2X−θ πω −X
3
θπ+ = 0,

G− = 2X+
θ πω −X

3
θπ− = 0

Gω = X+
θ π+ −X−θ π− = 0 (D.20)

Only two of these three constraints are independent.
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To proceed, we now fix gauge in the zero mode sector by setting

X0
θ = 0 (D.21)

It then follows from the Gω constraint that

π+ + π− = π0 = 0 (D.22)

From the other independent equation, we get

X1
θπω +X3

θπ1 = 0 (D.23)

In the quantum theory we then have the variables X1
θ , X

3
θ and their conjugate momenta

π1, πω. Let us remind the reader that πω is actually the dilaton, φ, and X1
θ = e1

θ, which we
denote below as e1. The spatial component of the metric gθθ = (e1)2. And the length along
the spatial direction is then given by

l̂2 = (2πe1)2 (D.24)

In the quantum theory with X3
θ = i∂φ, π1 = −i∂e1 we then get from eq. (D.23)

(∂φ∂e1 + φe1)Ψ = 0 (D.25)

We see that this agrees with the equation we obtained above in the second order formalism,
eq. (D.5), (noting that we have set 8πG = 1 here) with one important caveat. l̂ — the
length of the spatial circle — must be positive but e1 — the value of the vierbein — can be
either positive or negative.

Indeed, for the case of transition amplitude from the past to future, the spacetime has
the metric and the dilaton given by

ds2 = −dt2 + sinh2 t dθ2, φ = A cosh t (D.26)

Taking the vierbein to be e1 = sinh t, we see that it continuously extrapolates from the far
past to the future, being negative in the far past, as t→ −∞ and positive in the far future
t→∞. Thus e1 could serve as a good “clock” for describing such transitions. See also the
discussion in section 4.1 in this context.

In summary, we see that the variables of the first order formalism could provide a more
convenient description for the study of transition amplitudes. We have not completed this
study, including an analysis of how to solve the problem of time, define a good norm, and
the relation to the quantisation in the second order formalism. We leave this for the future.

E Matter in AdS double trumpet

E.1 General boundary conditions for scalar fields

In this appendix we shall outline the calculations for the determinant of the scalar fields for
the general boundary conditions mentioned in eq. (5.23).
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We shall carefully evaluate the determinant of scalar laplacian, det(−∇2). We will
consider massless scalar in the background of the AdS double trumpet topology with the
metric written in conformally flat coordinate system, eq. (A.46), as

ds2 = dr2
∗ + dθ2

sin2 r∗
, r∗ ∈ [0, π] , θ ∈ [0, b] (E.1)

We can compute the dependence on b by noting that the metric above is conformally flat
and so we can use the conformal anomaly to evaluate the contribution due to the conformal
factor and then compute the contribution from the flat metric separately. The b dependence
coming from the conformal factor can be evaluated using the conformal anomaly since
the theory of a massless scalar field is a conformal field theory. The relation between
determinants of conformally related metrics gab = e2σ ḡab is given by

det(−∇2)
det(−∇̄2)

= exp
{
− 1

6π

[1
2

∫
d2x

√
ḡ(ḡab∂aσ∂bσ + R̄σ) +

∫
∂
ds̄K̄σ

]}
(E.2)

where quantities denoted by bars are calculated with respect to the metric ḡ. The computa-
tion for the conformal factor is explained in detail in [13] in appendix I and we shall just
present the results here which is

det(−∇2)
det(−∇̄2)

= e
b

12 (E.3)

Now, we shall compute the contribution from the flat part of the metric in eq. (E.1). To
implement these boundary conditions, we expand the scalar fields in a mode expansion as

ϕ(r∗, θ) =
∑
m

ei(m̃+α̃)θϕm(r∗) (E.4)

The eigenvalue equation for the scalar field then becomes

∂2
r∗ϕm − (m̃+ α̃)2ϕm = −λϕm (E.5)

where

m̃ = 2πm
b

, α̃ = 2πα
b

(E.6)

The general solution to the above equations is given by

ϕm = Ame
i
√
λ−(m̃+α̃)2r∗ +Bme

−i
√
λ−(m̃+α̃)2r∗ (E.7)

Imposing the Dirichlet boundary conditions at the boundary r∗ = 0 then relates Am and
Bm as

Am = −Bm (E.8)

following which the solution becomes

ϕm = 2iAm sin
(
r∗

√
λ− (m̃+ α̃)2

)
(E.9)
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Further imposing Dirichlet boundary condition on this solution at r∗ = π then gives the
eigenvalues to be

λm,n = n2 + (m̃+ α̃)2, n ≥ 1,m ∈ Z (E.10)

The determinant is then given by

det
(
−∇̄2

)
=
∞∏
n=1

∞∏
m=−∞

λm,n (E.11)

We shall compute the product above by using the ζ-function regularization. Following are
some useful formulae that we shall use,

∞∑
n=1

log(n− n0) = − ln Γ(1− n0)√
2π

∞∏
n=1

(n2 + α̃2) = 2
α̃

sinh(πα̃)

∞∑
n=1

(n− α) = 1
24 −

1
8(2α− 1)2 (E.12)

First, let us regulate the product over n in eq. (E.11). Using the second formula in eq. (E.12),
we get

det
(
−∇̄2

)
=

∞∏
m=−∞

b

π(m+ α) sinh
(

2π2

b
(m+ α)

)

= b

πα
sinh(πα̃)

∞∏
m=1

b2e
2π2
b

((m+α)+(m−α))

4π2(m+ α)(m− α)

(
1− e−

4π2
b

(m+α)
)(

1− e−
4π2
b

(m−α)
)

= sinh(πα̃)Γ(1 + α)Γ(1− α)q
α2
2 + 1

12

πα

∞∏
m=1

(1− zqm)(1− z−1qm)

= iq
α2
2 ϑ11(v, τ)

2 sin(πα)η(τ) (E.13)

where ϑ11(v, τ) is the theta function with characteristics and η(τ) is the Dedekind Eta
function.

ϑ11(v, τ) = −2 sin(πv)q
1
8

∞∏
m=1

(1− qm)(1− zqm)(1− z−1qm)

η(τ) = q
1

24

∞∏
m=1

(1− qm)

q = e2πiτ , z = e2πiv

τ = 2πi
b
, v = 2πiα

b
(E.14)
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which then implies that q = e−
4π2
b , z = e−

4π2α
b . The full determinant including the

contribution from the conformal factor is given by

det
(
−∇2

)
= e

b
12
iq

α2
2 ϑ11(v, τ)

2 sin(πα)η(τ) (E.15)

We can now look at the various limiting cases. First consider the limit b→ 0. It is easy to
see that in this limit q → 0 and so we have

η(τ)→ q
1

24 , ϑ11(v, τ)→ −eπ|α̃|q
1
8 ⇒ det

(
−∇̄2

)
→ ie

2π2
b
E

2 sin(πα) (E.16)

where E is given in eq. (5.24). So the matter contribution in the partition function can
be made finite by choosing α that satisfies eq. (5.25). Now let us analyze the limit of
b→∞. To estimate the value of the determinant in this limit, we have to use the modular
transformation properties of the ϑ11 and η functions which read

ϑ11(v, τ) = i(−iτ)−
1
2 e−

iπv2
τ ϑ11

(
v

τ
,−1

τ

)
η(τ) =

η(− 1
τ )

(−iτ)
1
2

(E.17)

Using these transformation properties, we find that the determinant is given by

det
(
−∇̄2

)
= − e−

iπv2
τ

2 sin(πα)
q
α2
2 ϑ11( vτ ,−

1
τ )

η(− 1
τ )

(E.18)

In the limit of b→∞, we find

det
(
−∇̄2

)
∼ e−

b
12 ⇒ det

(
−∇2

)
∼ O(1) (E.19)

Now, we show an alternative way to derive the casimir energy in eq. (5.24). The alternate
way is to canonically quantise the scalar matter field and compute the zero point energy
directly. For the complex scalar field with the action

S =
∫
d2x ∂aϕ

†∂aϕ (E.20)

The equations of motion then read ∇2ϕ = 0 the solution for which can be written in the
mode-expanded form as

ϕ = 1√
2

∞∑
n=−∞

(
an√
2πωn

e−iωn(t+θ) + ãn√
2πω̃n

e−iω̃n(t−θ)
)

(E.21)

The periodicity condition that

ϕ(θ + 2π) = e2πiαϕ(θ) (E.22)
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determines the quantisation condition on ω, ω̃ as

ωn = n− α, ω̃n = n+ α (E.23)

Without loss of generality, we take α > 0. The canonical conjugate momenta are given by
Πϕ = ϕ̇†,Πϕ† = ϕ̇. We then impose the canonical commutation relations [ϕ(θ),Πϕ(θ′)] =
iδ(θ − θ′). The Hamiltonian is given by

H =
∫

(ϕ̇†ϕ̇+ ∂θϕ
†∂θϕ) (E.24)

which after inserting the mode expansions becomes

H =
∞∑

n=−∞
ωna

†
nan +

∞∑
n=−∞

ω̃nã
†
nãn (E.25)

To compute the normal ordering constant, we note from the expansion eq. (E.21) that the
annihilation operators for the right movers correspond to an for n ≥ 1 and for the left
movers correspond to ãn for n ≥ 0. Thus, the zero point energy that is obtained by the
normal ordering of the operator expansion above for the Hamiltonian gives

E =
∞∑
n=1

ωn +
∞∑
n=0

ω̃n =
∑
n=1

(n− α) +
∑
n=0

(n+ α) (E.26)

which gives the correct Casimir energy mentioned in eq. (5.24) upon using eq. (E.12).

E.2 Bosonic fields in AdS double trumpet

In this appendix, we will elaborate on the details of the calculations related to the two-point
kernels for the matter action in AdS double trumpet given in eq. (5.36). We will show the
steps leading to eq. (5.39). First consider the function G(u) given by

4π2

b
G(u) =

∞∑
n=−∞

ñ coth(ñπ)einu (E.27)

The derivation goes as follows.

4π2

b
G(u) = −2πi

b
∂u

 ∞∑
n=−∞,n 6=0

coth(ñπ)einu


= −2πi
b
∂u

( ∞∑
n=1

coth(ñπ)einu
)

+ (u→ −u) (E.28)

So we shall focus on the computation of the sum above for n ≥ 1. We can futher split this
sum as follows

∞∑
n=1

coth(ñπ)einu ≡ t1 + t2 =
∞∑
n=1

einu +
∞∑
n=1

2einu−ñπ

eñπ − e−ñπ
(E.29)

– 61 –



J
H
E
P
0
6
(
2
0
2
2
)
1
3
8

where t1 and t2 denote the first and second sums after the last equality above. The sum
denoted by t1 is easier to do for which we get

t1 = eiu

1− eiu (E.30)

The sum in t2 is slightly non-trivial which is done as follows

t2 =
∞∑
n=1

2einu−ñπ

eñπ − e−ñπ
= 2

∞∑
n=1

∞∑
p=1

en(iu−2πp̃) = 2
∞∑
p=1

1
e(2πp̃−iu) − 1

(E.31)

Combining these, we get
∞∑
n=1

coth(ñπ)einu = eiu

1− eiu + 2
∞∑
p=1

1
e(2πp̃−iu) − 1

−2πi
b
∂u

( ∞∑
n=1

coth(ñπ)einu
)

= − π2b csc2
(
u

2

)
− π

b

∞∑
p=1

csc2
(
u

2 + iπp̃

)
(E.32)

From eq. (E.28) we then get

4π2

b
G(u) = −π

b

∞∑
p=−∞

csc2
(
u

2 + iπp̃

)
(E.33)

It then immediately follows from p.434 of [87] that the function G(u) is related to the
Wieierstrass function as in eq. (5.39) The above series for G(u) is well-suited to analyze
the region b → 0 but not for the region b → ∞. A small manipulation can be done to
rewrite this series in a different form as below. We will have to use the following infinite
sum representations of the csc and csch functions which are given by

csc2(u) = −
∞∑

m=−∞
(u−mπ)−2, csch2(u) =

∞∑
m=−∞

(u− imπ)−2 (E.34)

Using the csc sum above, we have

4π2

b
G(u) = −π

b

∞∑
p=−∞

csc2
(
u

2 + iπp̃

)

= −π
b

∞∑
p=−∞

∞∑
m=−∞

(
u

2 + 2π2ip

b
−mπ

)−2

= − b

4π

∞∑
p=−∞

∞∑
m=−∞

(
bu

4π −
mb

2 + iπp

)−2

= − b

4π

∞∑
m=−∞

csch2
(
bu

4π + mb

2

)
(E.35)

where we used csch representation as an infinite sum in eq. (E.34) to obtain the final result.
We shall now repeat the steps for the function H(u) in eq. (5.39)

4π2

b
H(u) =

∞∑
n=−∞,n 6=0

ñ csch(ñπ)einu (E.36)
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Following the same series of steps as in the case of G(u) above to obtain eq. (E.33), we get

4π2

b
H(u) = −2πi

b
∂u

( ∞∑
n=1

csch(ñπ)einu
)

+ (u→ −u)

= −4πi
b
∂u

 ∞∑
n=1

∞∑
p=1

en(iu−(2p−1) 2π2
b

)

+ (u→ −u)

= −4πi
b
∂u

 ∞∑
p=1

(
e−iu+(2p−1) 2π2

b − 1
)−1

+ (u→ −u)

= −π
b

∞∑
p=−∞

csc2
(
iu

2 − (2p− 1)π
2

b

)
(E.37)

A similar manipulation as in eq. (E.35) will then give a csch function representation for the
function H(u) as

4π2

b
H(u) = − b

4π

∞∑
n=−∞

csch2
(
bu

4π + iπ

2 −
nb

2

)
(E.38)

E.3 OTOC calculations

In this appendix, we calculate few out-of-time order correlation functions for the matter
fields in AdS double trumpet geometry. For this appendix and the next one, E.4, we follow
the convention used in section 5.2. We introduce a time reparametrization as

θ(u) = b

2πu+ ε(u) (E.39)

The reparametrization mode ε(u) at the boundaries is mode expanded as follows

ε(u)
∣∣
r→±∞ = ε±(u) =

∑
ε±me

imu (E.40)

We now expand various terms in the action in eq. (5.35) noting that the boundary values
of the scalar field ϕ̂±(θ) remain fixed under these reparametrizations, i.e. ϕ̂±(θ)→ ϕ̂±(u).
Thus, we get, the terms of O(ε) as

SM,b =S
(0)
M,b+S

(1)
M,b

S
(1)
M,b = π

b

∫
+

∫
+
dudũ ϕ̂+(u)ϕ̂+(ũ)((ε+′(u)+ε+′(ũ))G(u, ũ)+ε+(u)∂uG(u, ũ)+ε+(ũ)∂ũG(u, ũ))

+π

b

∫
−

∫
−
dudũ ϕ̂−(u)ϕ̂−(ũ)((ε−′(u)+ε−′(ũ))G(u, ũ)+ε−(u)∂uG(u, ũ)+ε−(ũ)∂ũG(u, ũ))

− 2π
b

∫
+

∫
−
dudũ ϕ̂+(u)ϕ̂−(ũ)((ε+′(u)+ε−′(ũ))H(u, ũ)+ε+(u)∂uH(u, ũ)+ε−(ũ)∂ũH(u, ũ))

(E.41)

where S(0)
M,b is just given by the O(ε0) term, eq. (5.14). We now calculate various 4-pt

functions. For this we consider two different species of matter fields V,W . Also, to study the
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4-pt functions of matter correlators, we need the propagator for the time reparametrization
mode ε(u). This can be derived from the action for these modes which is given by

Sε = − 1
8πGJl+

∫
∂+
du Sch

[
tanh

(
θ(u)

2

)
, u

]
− 1

8πGJl−

∫
∂−
du Sch

[
tanh

(
θ(u)

2

)
, u

]
(E.42)

where l+, l−, J are the quantities that characterizes the dilaton on the boundary and the
length of the boundary in the asymptotic AdS limit as

φ± ∼
1
Jε
, l̂± ∼

l±
ε

(E.43)

and Sch(u) is the Schwarzian function given by

Sch [f(u), u] = f ′′′(u)
f ′(u) −

3
2

(
f ′′(u)
f ′(u)

)2
(E.44)

Expanding the action in eq. (E.42) to quadratic order using eq. (E.39), (E.40), we get

Sε = π

4GJ

(2π
b

)2
∑
m 6=0

m2
(
m2 +

(
b

2π

)2)(ε+mε+−m
l+

+
ε−mε
−
−m
l−

) (E.45)

The propagator for the ε modes is then given by

〈ε±mε±−m〉 = 4GJl±
π

(
b

2π

)2 1
m2

(
m2 + ( b

2π )2
) (E.46)

In terms of position space the propagator becomes

〈ε±(u)ε±(0)〉 = 4GJl±
π

[
(|u| − π)2

2 − 2π2

b
csch

(
b

2

)
cosh

(
b

2π (|u| − π)
)

+ 4π2

b2
− π2

6

]
(E.47)

One crucial thing to note here in the above propagator for the time reparametrization mode
is the presence of hyperbolic cosh function unlike the case of disk where we would get the
trignometric sin function. The reason for this can be traced to the momentum space two
point function for εm in eq. (E.46) which is different from the case of disk which has

〈εmε−m〉disk ∼
1

m2(m2 − 1)

⇒ 〈ε(u)ε(0)〉disk =
[
−(|u| − π)2

2 + (|u| − π) sin(|u|)
]

(E.48)

Moreover to construct the position space propagator one has to exclude the m = 0,±1
modes which are the SL(2,R) zero modes on the disk whereas in the double trumpet we
have to only exclude the m = 0 mode corresponding to the U(1) isometry. This difference
results in the absence of an exponential growth of the 4pt OTOCs as we show below.
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For two different matter fields V,W , there are various combinations of four point
function with two V ’s and two W ’s on either of the boundaries. We shall focus particularly
on two types of correlators, one which has all the fields on the same boundary and another
in which one field is on either boundary for each of the species,

〈V +(u1)W+(u3)V +(u2)W+(u4)〉
〈W+(u3)W+(u4)〉〈V +(u1)V +(u2)〉 ,

〈V +(u1)W+(u3)V −(u2)W−(u4)〉
〈W+(u3)W−(u4)〉〈V +(u1)V −(u2)〉 (E.49)

We shall compute these correlators with the ordering of the times as

u4 < u2 < u3 < u1 (E.50)

To compactify the notation a bit, we shall use shorthand notation as mentioned below

uij = ui − uj , ∂i = ∂ui , ε±i = ε±(ui), ε±ij = 〈ε±(ui)ε±(uj)〉,

Gij = G(uij), G̃ij = ∂iG(uij)
G(uij)

Hij = H(uij), H̃ij = ∂iH(uij)
H(uij)

(E.51)

Using the vertex functions in eq. (E.41), we have for the first of the correlators above

〈V +(u1)W+(u3)V +(u2)W+(u4)〉
〈W+(u3)W+(u4)〉〈V +(u1)V +(u2)〉

=
〈(

∂1ε
+
1 + ε+1 ∂1G12

G12
+ ∂2ε

+
2 + ε+2 ∂2G12

G12

)(
∂3ε

+
3 + ε+3 ∂3G34

G34
+ ∂4ε

+
4 + ε+4 ∂4G34

G34

)〉
= −∂2

1ε
+
13 − ∂

2
1ε

+
14 − ∂

2
2ε

+
23 − ∂

2
2ε

+
24 + G̃12G̃34(ε+13 − ε

+
14 − ε

+
23 + ε+24)

+ (G̃12 − G̃34)(∂2ε
+
24 − ∂1ε

+
13) + (G̃12 + G̃34)(∂2ε

+
23 − ∂1ε

+
14) (E.52)

The exact analysis for arbitrary value of b is difficult as the functions G(u), H(u) are
complicated functions of b. We first consider the limiting case of b→ 0. In this limit, the
function G(u) becomes

G(u) ' − 1
4π csc2

(
u

2

)
(E.53)

To diagnose the chaos behaviour, we consider the analytic continuation to Minkowski time
and take the coordinates ui as

u1 = π, u2 = 0, u3 = π + it, u4 = it (E.54)

Further, we take l± = 2π and t to be large so that tb� 1. In this limit, we get

〈V +(u1)W+(u3)V +(u2)W+(u4)〉
〈W+(u3)W+(u4)〉〈V +(u1)V +(u2)〉 = α

b2
sin2

(
tb

4π

)
+O

(1
b

)
(E.55)

where α is a constant, the exact value of which is not important for the following discussion.
Thus, we see that the t dependence is not an exponential but a phase factor. In the
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case of disk the sin function appearing above is replaced by sinh and so gives rise to an
exponential growth. As mentioned earlier, although the function G matches with the disk
case, the propagator for time reparametrization differs from the case of disk in that it has a
hyperbolic function, see eq. (E.47), whereas the disk propagator has a trignometric function,
see eq. (E.48). More generally, this conclusion about the 4pt correlation function holds true
for any value of b and we will not get a exponential growth in the double trumpet. As
another special case, we consider the case of b = 2π. Using the exact form of the function
G in eq. (5.39), we find that the OTOC in eq. (E.52) is of the form

〈V +(u1)W+(u3)V +(u2)W+(u4)〉
〈W+(u3)W+(u4)〉〈V +(u1)V +(u2)〉 = α0 + α1e

it + α2e
−it (E.56)

where α0, α1, α2 ∼ O(1).
Now for the second correlator in eq. (E.49) with operators on two boundaries, again

using the vertex functions in eq. (E.41), we get

〈V +(u1)W+(u3)V −(u2)W−(u4)〉
〈W+(u3)W−(u4)〉〈V +(u1)V −(u2)〉

=
〈(

∂1ε
+
1 + ε+1 ∂1H12

H12

)(
∂3ε

+
3 + ε+3 ∂3H34

H34

)〉
+
〈(

∂2ε
+
2 + ε+2 ∂2H12

H12

)(
∂4ε

+
4 + ε+4 ∂4H34

H34

)〉
=−(∂2

1ε
+
13+∂2

2ε
+
24+H̃12H̃34(ε+13+ε+24)+(H̃12+H̃34)(∂1ε

+
13−∂2ε

−
24)) (E.57)

Again letting the coordinates ui to take the values in eq. (E.54), with l± = 2π, b = 2π,
we get

〈V +(u1)W+(u3)V −(u2)W−(u4)〉
〈W+(u3)W−(u4)〉〈V +(u1)V −(u2)〉 = α̃0 + α̃1t+ α̃2e

−it (E.58)

where again α̃0, α̃1, α̃2 ∼ O(1). So, we again see that we do not get an exponential behaviour
rather a phase factor, which is again tied to the presence of a hypergeometric function in
eq. (E.47).

Thus, we conclude that we do not have a chaotic growth of the OTOC’s on a double
trumpet geometry with two boundaries. Indeed the argument can be extended to an
arbitrary higher genus surfaces with more than one boundary. As shown by working in
the first order formalism in [12] the partition function of the surfaces with higher genus
or boundaries can be written as an integral over moduli with the integrand containing
a factor of volume of the underlying bordered Reimann surface and products of Single
trumpet partition function for each of the asymptotic boundaries, see eq. 127 of [12]. Each
of such single trumpet partition function will have a time reparametrization mode whose
propagator is of the form in eq. (E.47) which when used in the computation of OTOC leads
to a phase factor as in eq. (E.58), (E.56). Finally, matter 4-pt functions in de Sitter are
discussed in [10, 11].

E.4 Moduli stabilization and saddle points

In this subsection we shall show how to stabilize the double trumpet by inserting operators
at the boundaries. Suppose we have N species of scalar matter fields. Each of these N
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species of matter has 2-pt functions as given in eq. (5.39). Now consider 2n operators with
n of them inserted at each of the boundaries. We would like to analyze the 2n-pt function of
these operators. For the moment let us only examine the cross-boundary correlations. Even
in this case, one has to do a bit of combinatorics to get the exact 2n-pt correlator. Let us
look at any one particular configuration. The 2n-pt function in the double trumpet geometry
will be given by an expression analogous to eq. (5.42) for the 2-pt function and reads

〈O1(u1) . . . O2n(u2n)〉 =
∫
bdb e

− b2
Geff

(√
det(−∇2)

)−N
H(∆u)n (E.59)

where Geff = Geleff with Ge, leff as given in eq. (5.43), ∆u is the difference between the
locations that are contracted, one on either boundary, which is taken to be the same for
every pair of contraction. The scalar determinant is given by√

det(−∇2) = e
b

24 η

(
ib

2π

)
(E.60)

and so the correlator above can be written as

〈O1(u1) . . . O2n(u2n)〉 =
∫ ∞

0
db exp

(
ln b− b2

Geff
− Nb

24 −N ln η + n lnH
)

(E.61)

Let us denote the full exponent above by Fexp and is given by

Fexp = ln b− b2

Geff
− Nb

24 −N ln η + n lnH (E.62)

The asymptotic forms of the Dedekind Eta function read

η

(
ib

2π

)
=


√

2π
b e
−π

2
6b b→ 0

e−
b

24 b→∞
(E.63)

For the case of n = 0, we see that the integrand diverges near b→ 0 due to the η function.
The presence of cross-boundary contractions can control that divergence as we will see. The
asymptotic behaviour of the H(∆u) is given by

H(∆u) =


k1e
−π

2
b b→ 0

−k2b
2 + . . . , b→∞, ∆u = 0,

−k2b
2 exp(−k3b) + . . . , b→∞, ∆u 6= 0

(E.64)

where k3, k2 > 0, k1 are constants of O(1) that can be obtained from the full expression for
H in eq. (E.37), (E.38). We see from the b → 0 behaviour above, that the full exponent
has the behaviour in this limit given by

Fexp = −
(
n− N

6

)
π2

b
(E.65)

which renders the integrand finite for

n >
N

6 ≡ nth (E.66)

– 67 –



J
H
E
P
0
6
(
2
0
2
2
)
1
3
8

Having stabilized the b integrand, one can look for possible saddle points. Just looking at
the asymptotic values of Fexp, we have

Fexp =

−
(
n− N

6

)
π2

b b→ 0
− b2

Geff
b→∞

(E.67)

So, the function Fexp→ −∞ both near b→ 0,∞ as long as eq. (E.66). Thus there should
be atleast one extremum for this function. Although it will be hard to exactly evaluate
the saddle points, we shall be able to evaluate the saddle points analytically in the limits
of b→ 0,∞ where one expects various expressions to get simplified.

Let us first analyze the saddle around b ∼ 0. Using the corresponding asymptotic forms
for Dedekind Eta function in eq. (E.63) and correlation function H in eq. (E.64), the full
exponent in eq. (E.62) in this limit becomes

Fexp '
(

1 + N

2

)
ln b− b2

Geff
− Nb

24 −
(
n− N

6

)
π2

b
(E.68)

Extremizing it we get

∂Fexp
∂b

=
(

1 + N

2

) 1
b
− 2b
Geff
− N

24 +
(
n− N

6

)
π2

b2
(E.69)

Now considering the limit of b2 � GeffN , we have that

∂Fexp
∂b

= 0 =⇒
(
n− N

6

)
π2

b2
− 2b
Geff

= 0

b =
(
Geff

(
n− N

6

)
π2

2

) 1
3

(E.70)

For the special case of n = N
6 , we can still have a saddle point provided GeffN is sufficiently

small so that the first two terms in eq. (E.69) become important for which we get the saddle
point as

b =
√
Geff

2

(
1 + N

2

)
(E.71)

Both these extrema are stable saddle points which is easy to either using by evaluating the
second derivative of Fexp or just by looking at the qualitative graph of the function.

Now we look for saddles in the region b� 1. In this region the function Fexp has the
following form after using eq. (E.63), (E.64)

Fexp = (2n+ 1) ln b− b2

Geff
− nk3b (E.72)

Extremizing it gives

∂Fexp
∂b

= 2n+ 1
b
− 2b
Geff
− nk3 = 0. (E.73)
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Since k3 > 0 for generic ∆u 6= 0 and b� 1, it is not possible to obtain an extrema in this
region. However, for the special case of k3 = 0 as in the case of ∆u = 0, we do find an
extrema, whose location is given by

b '
√(

n+ 1
2

)
Geff (E.74)

It is easy to see that this too corresponds to a stable saddle point.
One should analyze the full form of Dedekind Eta function and H function to understand

the saddle points for other generic values of b, which is not analytically tractable, as far
as we can say. However, one interesting observation one can make is for the case when we
have saddle points both in b→ 0 and b� 1 regions, which as mentioned earlier correspond
to stable saddles. Thus, there must be atleast one more saddle point in between these two
saddle, which is unstable.

We shall now repeat the analysis for the case of same boundary insertions. The strategy
remains the same except that now all the operators are inserted on the same boundary and
so the analog of eq. (E.59) now reads

〈O1(u1) . . . O2n(u2n)〉 =
∫
bdb e

− b2
Geff (

√
det(−∇2))−NG(∆u)n (E.75)

where the function G(u) is given in eq. (E.35) The full exponent in this case is given by

Fexp = ln b− b2

Geff
− Nb

24 −N ln η + n lnG (E.76)

From eq. (E.35), we find

G(∆u) =

−
1

4π csc(∆u)2 +O(e−
1
b ) b→ 0

−k̃2b
2 exp

(
−k̃3b

)
+ . . . , b→∞,∆u 6= 0

(E.77)

where k̃2, k̃3 are again constants of order unity. We see from the above that the b → 0
behaviour of the function G is a constant which cannot counteract the divergence due to
the scalar determinant. The expression eq. (E.76) then becomes

Fexp '
(

1 + N

2

)
ln b− b2

Geff
− Nb

24 + N

6
π2

b
− n ln

(
4π sin2(∆u)

)
(E.78)

Extremizing this gives

−Nπ
2

6b2 +
(

1 + N

2

)1
b
− N

24 −
2b
Geff

= 0 (E.79)

for which no extrema are possible. Let us now analyze the region b � 1. Comparing
eq. (E.77) and eq. (E.64), we see that both G(∆u) and H(∆u) have similar behaviour in
this region for ∆u 6= 0 and so we can rely on our earlier analysis to conclude that there
will be no extrema in this region for the same boundary correlators. Although it is hard to
prove that there are no extrema in the intermediate region, the numerical plots that we
had obtained have shown no presence of an extrema.
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F dS double trumpet

F.1 Schwarzian action calculation

In this section, we shall derive various results related to the de Sitter double trumpet. First
let us extend the calculations related to the b dependence in eq. (6.20). The boundary term
in -AdS2 is given by

S−AdS,i = − φBi
8πG

∫
∂i

ds(K − 1) (F.1)

The metric for -AdS2 double trumpet is taken to be

ds2 = −
(

dr2

r2 + 1 + (r2 + 1)dθ2
)
, θ ∼ θ + b (F.2)

The outward pointing normal vector at the boundaries located at r � 1, normalized as
nµnµ = −1, are given by

nr+ =
√
r2 + 1, nr− = −

√
r2 + 1 (F.3)

The extrinsic curvature at the boundaries is then given by

K± = ∇µnµ± = ∂rn
r
± = ± r√

r2 + 1
(F.4)

The line element on the boundary is given by

ds =
√
|gθθ|dθ =

√
1 + r2 dθ (F.5)

The on-shell action at the right boundary r → r+ > 0 is given by

S−AdS,+ = −
φB+

8πG

∫
∂+
dθ
√
γ(K − 1)

=
φB+b

16πGr+

= b2

16πGJl+
(F.6)

where we used that r+ = 2π
bε+

. Analytic continuation gives

SdS,+ = ∓
ib φB+

16πGr+
= ∓ ib2

16πGJl+
, r+ → ±ir+ (F.7)

Similarly, at the other boundary r → r− < 0, we get

S−AdS,− = −
φB−
8πG

∫
∂−
dθ
√
γ(K − 1)

= −
φB−b

16πGr−

= b2

16πGJl−
(F.8)

where we have used the fact that at the boundaries r− = − 2π
bε−

. Analytic continuation gives

SdS,− = ±
ib φB−

16πGr−
= ∓ ib2

16πGJl−
, r− → ±ir− (F.9)
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F.2 Matter in dS double trumpet

In this subsection we shall show some steps detailing the calculation of on-shell action for
matter fields in dS spacetime. We shall follow the same template of first working in -AdS
spacetime and then analytically continuting to the dS spacetime. To begin with, consider
the double trumpet geometry in (0,2) signature AdS spacetime whose metric is given by
eq. (F.2) The action for a massless scalar field in the (0,2) AdS DT is given by

SM = −1
2

∫
d2x
√
g(∇φ)2 (F.10)

Note the presence of an additional minus sign in the action above compared to the conven-
tional action in the (2,0) signature metrics. This minus sign is required to render the path
integral well defined in the (0,2) signature. The on-shell action after imposing the equations
of motion, noting the outward normals given in eq. (F.3), to leading order in |r| � 1 at the
asymptotic boundaries becomes

SOS
M = 1

2

∫
∂+
r2dθϕ(r)∂rϕ(r)− 1

2

∫
∂−
r2dθϕ(r)∂rϕ(r) (F.11)

Now doing the analytic continuation in

r− → ir−, r+ → −ir+ (F.12)

gives the matter on-shell action as

SOS
M = − i2

∫
∂+
r2dθ ϕ(r)∂rϕ(r)− i

2

∫
∂−
r2dθ ϕ(r)∂rϕ(r) (F.13)

For the other analytic continuation corresponding to

r− → −ir−, r+ → −ir+ (F.14)

we get the matter action to be

SOS
M = − i2

∫
∂+
r2dθϕ(r)∂rϕ(r) + i

2

∫
∂−
r2dθϕ(r)∂rϕ(r) (F.15)

We shall now use these results to compute the dependence of the wavefunction on the
boundary configuration of the matter field. For now, the matter fields are taken to have
periodic boundary conditions along the θ direction, i.e.

ϕ(r, θ + b) = ϕ(r, θ) (F.16)

First consider the solution of the equation of motion for a matter field in the AdS Double
trumpet geometry. The most general solution is given by

ϕ(r, θ) =
∑
k

eik̃θϕk(r), ϕk(r) = c1

(
r + i

r − i

) ik̃
2

+ c2

(
r + i

r − i

)− ik̃2
(F.17)
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This expansion is only valid for k 6= 0. For k = 0 mode, the most general solution is given by

ϕ(r, θ) = ϕ0(r) = a1 + a2 tan−1(r) (F.18)

We shall first calculation the on-shell action for modes k 6= 0. Expanding this solution near
r → ±∞ following the phase conventions

ln z = ln |z|+ iArg(z), Arg(z) ∈ [−π, π] (F.19)

we find

ϕk = c1 + c2 + k̃

r
(c2 − c1), r →∞

= c1e
−k̃π + c2e

k̃π + k̃

r

(
c2e

k̃π − c1e
−k̃π

)
, r → −∞ (F.20)

In the de Sitter region, we would like to impose the boundary conditions

lim
r→r+

ϕk = ϕ+
k

lim
r→r−

ϕk = ϕ−k (F.21)

Let us first consider the case of past to future transition. Doing the analytic continuations
as in eq. (F.12), we get

ϕk = c1 + c2 + ik̃

r
(c2 − c1), r →∞

= c1e
−k̃π + c2e

k̃π − ik̃

r

(
c2e

k̃π − c1e
−k̃π

)
, r → −∞ (F.22)

and hence the boundary conditions eq. (F.21) read

c1 + c2 + ik̃

r+
(c2 − c1) = ϕ+

k

c1e
−k̃π + c2e

k̃π − ik̃

r−

(
c2e

k̃π − c1e
−k̃π

)
= ϕ−k (F.23)

Solving these for c1, c2 and plugging them back to find the solution for the matter field,
we find

ϕk = ϕ̂+
k −

ik̃

sinh k̃π
(ϕ+

k cosh k̃π − ϕ−k )
(1
r
− 1
r+

)
, r →∞

= ϕ−k + ik̃

sinh k̃π
(ϕ+

k − ϕ
−
k cosh k̃π)

(1
r
− 1
r−

)
, r → −∞ (F.24)

Now using these results to compute the on-shell matter action in eq. (F.13) as a function
of ϕ+

k and ϕ−k , we get

SM = b

2
∑
k 6=0

k̃
(
(ϕ+
−kϕ

+
k + ϕ−−kϕ

−
k ) coth k̃π − 2ϕ+

−kϕ
−
k csch k̃π

)
(F.25)
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Now, for the k = 0 modes, expanding the solution eq. (F.18) near large |r| gives

ϕ0(r) = a1 + a2

(
π

2 −
1
r

)
, r →∞

= a1 − a2

(
π

2 + 1
r

)
, r → −∞ (F.26)

which after analytic continuations eq. (F.12) becomes

ϕ0(r) = a1 + a2

(
π

2 −
i

r

)
, r →∞

= a1 − a2

(
π

2 −
i

r

)
, r → −∞ (F.27)

The boundary conditions then mean that

a1 + πa2
2 − ia2

r+
= ϕ+

0

a1 −
πa2
2 + ia2

r−
= ϕ−0 (F.28)

The on-shell action for these modes using eq. (F.13) then becomes

S0 = b

2π (ϕ+
0 − ϕ

−
0 )2 (F.29)

So, the net action, combining eq. (F.25) and (F.29) then becomes

SM = b

2
∑
k

k̃
(
(ϕ+
−kϕ

+
k + ϕ−−kϕ

−
k ) coth k̃π − 2ϕ+

−kϕ
−
k csch k̃π

)
(F.30)

where the sum is now over all integers, with the k = 0 term understood to be taken as a limit.
Now, we shall redo the same analysis for the case of transition from nothing to two

expanding universes. Again, starting from the nAdS solution in eq. (F.20) and eq. (F.26),
we now have to do the analytic continuation in eq. (F.14). Imposing then the boundary
conditions in eq. (F.21) we find, the analog of eq. (F.23) as

c1 + c2 + ik̃

r+
(c2 − c1) = ϕ+

k

c1e
−k̃π + c2e

k̃π − ik̃

r−

(
c2e

k̃π − c1e
−k̃π

)
= ϕ−k

a1 + πa2
2 − ia2

r+
= ϕ+

0

a1 −
πa2
2 − ia2

r−
= ϕ−0 (F.31)
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which upon solving leads to

ϕk = ϕ+
k −

ik̃

sinh k̃π
(ϕ+

k cosh k̃π − ϕ−k )
(1
r
− 1
r+

)
, r →∞

= ϕ−k −
ik̃

sinh k̃π
(ϕ+

k − ϕ
−
k cosh k̃π)

(1
r
− 1
r−

)
, r → −∞

ϕ0 = ϕ+
0 −

i

π
(ϕ+

0 − ϕ
−
0 )
(1
r
− 1
r+

)
r →∞

= ϕ−0 −
i

π
(ϕ+

0 − ϕ
−
0 )
(1
r
− 1
r−

)
r → −∞ (F.32)

Inserting this solution in eq. (F.15), we find that the on-shell action is still given by
eq. (F.30).

One can repeat the above steps to compute the on-shell action for the complex scalar
field with the twisted boundary condition eq. (5.23). The solution for the complex scalar
field now is still given by eq. (F.17) but with k̃ → k̃ + α̃. The action for the complex scalar
field is taken to be eq. (E.20) which has an extra factor of 2 compared to the real scalar
field. These facts combine to give the final on-shell action to be that in eq. (F.30) with k̃
replaced by k̃ + α̃ and an additional factor of 2, and so the final expression reads as given
in eq. (5.29).

F.3 Initial state

In this subsection, we shall evaluate the inner product of an appropriate initial state with
a field eigenstate. The natural initial state in the past is vacuum state with respect to
the coordinates in eq. (A.29) for which we have carried out the semi-classical analysis in
section 3. The scalar field ϕ will have the mode expansion

ϕ = ϕ0 −
ib

4ππ0 ln(z+z−) +
∞∑

n=−∞,n 6=0
(a+(n)z−n+ + a−(n)z−n− ) (F.33)

where z± are related to r∗, θ as

z± = exp
(2πi
b

(r∗ ± θ)
)

(F.34)

The initial state is the vacuum state annihilated by the modes a±(n), i.e

a±(n)|0〉 = 0 ∀n > 0 (F.35)

Defining an operator An

An =

a+(n), n > 0,
a−(−n), n < 0

(F.36)

in terms of which the condition of vacuum state in eq. (F.35) becomes

An|0〉 = 0 ∀n 6= 0 (F.37)
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However, the Hamiltonian H , which involves derivatives acting on ϕ, will be independent of
ϕ0. Thus a general vacuum will be a one-parameter state |p〉 satisfying eq. (F.35) and also
π0|p〉 = p|p〉, with p being a continuous eigenvalue. For now, we consider the case of p = 0
and the corresponding vacuum state is denoted |0〉. The scalar field mode expansion becomes

ϕ = ϕ0 + π0r∗ +
∑
n 6=0

An exp
(
−2πi

b
(nθ + Enr∗)

)
(F.38)

where En = |n|. The vacuum state condition then becomes(
ϕn + ib

2πEn
∂r∗ϕn

)
|0〉 = 0 (F.39)

where ϕn is the Fourier transform of ϕ(θ) and is given by

ϕm = 1
b

∫
dθe

2iπmθ
b ϕ(θ) (F.40)

The equation eq. (F.39) should now be expressed in terms of the field ϕ and its canonically
conjugate momentum Πϕ = ∂r∗ϕ. Imposing the canonical equal-time commutation relations

[ϕ(θ),Πϕ(θ′)] = iδ(θ − θ′)⇒ [ϕm,Πϕ,n] = i

b
δm+n,0 (F.41)

Thus the operator Πϕ,n in terms of ϕm is given by Πϕ,n = − i
b∂ϕ−m . Taking inner product

of eq. (F.39) with field eigenstate 〈ϕ| gives(
∂

∂ϕ−n
+ 2πEnϕn

)
〈ϕn|0〉 = 0 (F.42)

which has the solution

〈ϕn|0〉 = exp(−2πEnϕ−nϕn) (F.43)

and so it follows

〈ϕ−|0〉 = exp

−2π
∑
n 6=0

Enϕ
−
nϕ
−
n

 (F.44)

A more general vacuum state with a non-zero eigenvalue for π0 will have the sum in the
exponent above to also include n = 0 term with E0 being a function of that eigenvalue.

The above calculations can be generalized to the case of twisted boundary conditions
eq. (5.23). For the complex scalar field, the mode expansion is still given by

ϕ =
∞∑

n=−∞

(
a+(n)z−(n−α)

+ + a−(n)z−(n+α)
−

)
(F.45)

The annihilation operators that define the vacuum are now given by

An =

a+(n), n > 0,
a−(n), n ≥ 0

(F.46)
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The vacuum state condition still is given by eq. (F.39) but with En now given by En = |n+ α|.
Noting that Πϕ† = ∂r∗ϕ and that upon imposing canonical commutation relations

[ϕ(θ),Πϕ(θ′)] = iδ(θ − θ′)⇒ [ϕm,Πϕ,n] = i

b
δm,n

[ϕ†(θ),Π†ϕ(θ′)] = iδ(θ − θ′)⇒ [ϕ†m,Πϕ†,n] = i

b
δm,n (F.47)

where now ϕ†n,Πϕ†,n are now defined to be

ϕn = 1
b

∫ b

0
dθe−i(ñ+α̃)θϕ(θ),

Πϕ,n = 1
b

∫ b

0
dθei(ñ+α̃)θΠϕ(θ)

(ϕ†)n = 1
b

∫ b

0
dθe−i(ñ+α̃)θϕ†(θ),

Πϕ†,n = 1
b

∫ b

0
dθei(ñ+α̃)θΠϕ†(θ), (F.48)

Further noting that Πϕ,n = − i
b

∂

∂ϕ†n
, we get the analog of eq. (F.42) to be

(
∂

∂ϕ†n
+ 2πEnϕn

)
〈ϕn|0〉 = 0 (F.49)

and so we get

〈ϕ−|0〉 = exp
(
−2π

∞∑
n=−∞

En(ϕ†)−nϕ
−
n

)
(F.50)

where now En = |n+ α|.

G Double trumpet SFF

In this appendix, we shall show expliclity in detail, the way the integral eq. (6.20) is
evaluated. Consider the integral

Ẑ(b) =
∫
C
dx

eS(x)
√

1 + x2

S(x) = 2ETx
(

1− b2

b20

1
1 + x2

)
(G.1)

Here C is the Bromwich contour in terms of the variable x = β
T . Our aim in this appendix

is to show that the integral in eq. (G.1) is finite in the region

b2EG−1
e ≥ 1 (G.2)

It is difficult to do the x-integral exactly in eq. (G.1) and so we will carry out the
analysis in the saddle point method wherever possible. We shall see that we can further

– 76 –



J
H
E
P
0
6
(
2
0
2
2
)
1
3
8

split the region eq. (G.2) into various sub-regions. In some such sub-regions saddle point
analysis leads to a good estimate of the integral. In regions not amenable to saddle point
analysis, we shall use other arguments to justify that the value of the double trumpet SFF
is finite in that region. The various sub-regions are as follows

b > b0,

b− b0
b0

� 1,

b2EG−1
e ≥ 1 & b < b0 (G.3)

As can be seen from eq. (G.1), the integrand has a square root branch cut. To
compute the saddle point and the corresponding on-shell action, we first adopt the following
conventions where we work with two Riemann sheets with the following definitions

1st sheet⇒
√

(1 + x2) =
∣∣∣∣√(1 + x2)

∣∣∣∣e 1
2 arg (1+x2)

2nd sheet⇒
√

(1 + x2) = −
∣∣∣∣√(1 + x2)

∣∣∣∣e 1
2 arg (1+x2) (G.4)

where arg x ∈ [−π, π].
The saddle point equation for the x integral obtained from eq. (G.1) is given by

1− b2

b20

1− x2

(1 + x2)2 + 1
2b0
√
EG−1

e

x

1 + x2 = 0 (G.5)

For the saddle point analysis to be a good approximation, we require

ET � 1 , (G.6)

which in effect plays the role of ~−1. It is easy to see from eq. (6.16) and eq. (6.24) that
b0 � bc when eq. (G.6) is satisfied. Since we are working in the regime where eq. (6.4), (G.6)
is satisfied, it is easy to see from the saddle point eq. (G.5) that we can neglect the last
term and so the saddle point equation becomes

1− b2

b20

1− x2

(1 + x2)2 = 0 (G.7)

The saddle points are given by

y = x2 = −
(

1 + b2

2b20

)
± b

2b0

√
b2

b20
+ 8 (G.8)

For b > b0, two of the saddle points in eq. (G.8) are along the imaginary axis and two along
the real axis of the complex x-plane. For the case b < b0, all the four saddle points are
along the imaginary axis. At b = b0, two of the saddle points are at the origin while the
other two are along the imaginary axis. Following are the values of the saddle points in the
extreme limits

x '


±i
(
1 + b√

2b0

)
,±i

(
1− b√

2b0

)
b� b0

±i
(
b
b0

+ 3
2
b0
b

)
,±
(
1− 2 b

2
0
b2

)
b� b0

0, 0,±i
√

3 b = b0

(G.9)
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The saddle points have a small positive real part when the contribution of the last term in
eq. (G.5) is treated perturbatively. The saddle point value is a good approximation only
when the following condition is met∣∣∣∣S′′′(x∗)S′′(x∗)

(x− x∗)
∣∣∣∣� 1⇒

∣∣∣∣∣ S′′′(x∗)S′′(x∗)
3
2

∣∣∣∣∣� 1 (G.10)

where x∗ is one of the saddle points in eq. (G.8) through with the contour is deformed to
pass. Computing the second and third derivatives of the action from eq. (G.1) by ignoring
the log term for reasons mentioned around eq. (G.6), we get

S′′(x) = −4ETb2x
(
x2 − 3

)
b0

2 (x2 + 1)3

S′′′(x) = −12ETb2
(
x4 − 6x2 + 1

)
b0

2 (x2 + 1)4 (G.11)

using which the consistency condition eq. (G.10) becomes∣∣∣∣∣ S′′′(x)
S′′(x)

3
2

∣∣∣∣∣ = 3b0
(
x4 − 6x2 + 1

)√
(x2 + 1)

2b
√
ET (x (x2 − 3))3/2 (G.12)

It is easy to see from the above expression and using the saddle point values in the limiting
cases given in eq. (G.9), that the saddle point condition fails in the region b ' b0 or
alternately |q| � 1. The failure of the saddle point analysis in this region is due to the
smallness of the second derivative as a result of two of the saddle points coming close to
each other around the origin. Away from this region, the saddle point approximation is
good and we shall show then that the value of the b integral is finite in those regions.

G.1 b > b0

The relevant saddle point in this region is given by

x∗ =

√√√√ b

2b0

√
b2

b20
+ 8−

(
1 + b2

2b20

)
(G.13)

The range of the saddle point for b > b0 is x∗ ∈ (0, 1). The appropriate contour that passes
through this saddle point is shown in figure 10. The x-integral in eq. (G.1) gives

Ẑ(b) = eS(x∗)+iπ2√
(1 + x2

∗)|S′′(x∗)|
(G.14)

where the phase factor of π
2 is due to the steepest descent direction. Now, the b integral

becomes

ZDT(E, T ) '
∫ ∞

(1+q)b0
db
bZM [b]
Ge

eS(x∗)+iπ2√
(1 + x2

∗)|S′′(x∗)|
(G.15)

where q = b−b0
b0

> 0 but is not very small compared to unity. As it is hard to do the
b-integral exactly for b in the range under consideration, we shall argue for the finiteness
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1st Sheet

2nd Sheet

x2

x4

x3

b > b0b < b0

x3

x1

x1

x2

x4

Original contour
(in First sheet)

Figure 10. Double trumpet contours.

of the integral indirectly. First notice that the value of the integrand is finite near the
lower limit as long as q is not sufficiently close to zero. Moreover the integrand is a smooth
function of b. Let us now look at the upper end of the integral. In this region, b� b0 and
the saddle point gets closer to unity,

x∗ ' 1− 2b20
b2

(G.16)

This region in comparitively easier to analyze. We shall see that the integrand is an
exponentially decaying function of b in this region. Combined with the finiteness at the
lower end and smoothness of the integrand in the range under consideration, this will allow
us to conclude that the full integral is finite. The on-shell action and its second derivative
are given by

S(x) ' −b
2

b0

√
EG−1

e , S′′(x) ' b2

b0

√
EG−1

e (G.17)

Doing the x integral and using the asymptotic form of the matter contribution from
eq. (5.15), then gives, upto numerical factors,

ZDT(E, T ) ' i
√

T

2Ge

∫
db e

− b
2
b̃0

√
EG−1

e (G.18)

As mentioned earlier, the integrand for the b-integral is exponentially decaying in this region
and hence there will be no divergence arising from this region. This result combined with
arguments mentioned earlier suffice to argue that the net value of the b-integral is finite in
the region q ≥ 1. Let us now analyze the region around b− b0 � b0.
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G.2 b−b0
b0

� 1

As discussed earlier after eq. (G.12), the saddle point method fails in this region for the
saddles corresponding to the contour deformations in figure 10 and so we shall argue for
the finitiness of the second term in eq. (6.19) in a different way. The x-integral in eq. (G.1),
exactly at b = b0 becomes

Ẑb =
∫
dx
e

2ET x3
x2+1

√
x2 + 1

(G.19)

Taking x = γ + iu, with γ � 1 and dropping all the γ dependent terms, we get

Ẑb =
∫ ∞
−∞

du
e
−2iET u3

1−u2

√
1− u2

(G.20)

Away from u = 0, the phase of the above integral is wildly oscillating due to the large factor
of ET in the exponent which leads to a suppression of the total integral. In particular for
u� 1, the phase is wildly oscillating and the magnitude is also suppressed. Near u = 0, the
integrand is well behaved. The only region which appears to be troublesome is the region
near u ' ±1. Let us consider the region around u = 1. Let u = 1 + ε and hence the above
integral becomes

Ẑb '
∫
dε
e
iET
ε

√
−2ε

(G.21)

This integral is convergent around ε = 0 as can be easily checked by doing a variable
transformation ε = 1

s and looking at the region s � 1. So, in all, the above integral
eq. (G.19) is well-behaved and leads to a finite answer. Let us now analyze the last of the
regions in eq. (G.3).

G.3 b2EG−1
e � 1 & b < b0

This region is amenable to saddle point analysis as we shall detail below. The region under
consideration is

1√
EG−1

e

� b < b0 (G.22)

The contour can be deformed to go through two saddle points in the first sheet and none in
the second, which is shown in the first of the plots in figure 10. The corresponding saddle
points through which the contour passes are complex conjugates of each other, labelled
x2, x3 in figure 10, and are given by

x∗ = ±

√√√√ b

2b0

√
b2

b20
+ 8−

(
1 + b2

2b20

)
(G.23)

The x-integral then gives the analog of eq. (G.14) with the contribution from both the saddle
points included. The b-integral is hard to do exactly. But, since the range of the b integral
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is finite, and the matter contribution in eq. (6.19) is also finite as b is away from zero, the
value of the b integral in this range will be finite. However, we can show that the b-integral
is dominated by the contribution from the lower end of the region eq. (G.22). Hence, we
shall just focus on the region 1√

EG−1
e

� b � 1. In this region, the matter contribution
increases towards smaller b which results in the b-integral dominated by its lower limit as
we shall show in detail below. In this region the saddle point, the corresponding on-shell
action and its higher derivatives are

x ' ±i
(

1− b√
2b0

)
S(x) ' ±i2b0

√
EG−1

e

(
1−
√

2b
b0

)

S′′(x) ' ±4i
√

2b
2
0
√
EG−1

e

b

S′′′(x∗) '
6b2
√
EG−1

e

b0

(√
2b0
b

)4

(G.24)

The steepest descent angles at the saddle points are π
4 ,

3π
4 . The b-integral,upto numerical

factors, then reads

ZDT(E, T ) '
∫
db

b2e
π2
6b

2πGeb0(EG−1
e )

1
4

(
e2i
√
EG−1

e (b̃0−
√

2b)+ iπ
4 + e−2i

√
EG−1

e (b0−
√

2b)+ 3iπ
4

)
(G.25)

The condition for the saddle point estimate to be good is given by
1

√
b(EG−1

e )
1
4
� 1 (G.26)

which is satisfied in the range eq. (G.22). So, we need to do the integrals of the form

Iα =
∫ α

y0
dy e

±iy+α
y , α� 1 (G.27)

where y0 is such that it satisfies 1 � y0 � α, with α ∼ O(
√
EG−1

e ) and the variable y
is related to b as y = b

√
EG−1

e . It is easy to see that the above integral gets maximum
contribution from the lower limit of the integral, i.e. near y = y0

Iα ∼ e
α
y0 (G.28)

So, we are forced to estimate the value of the integral when b is even smaller than the
regime mentioned in eq. (G.22). This region has already been analyzed with the result in
eq. (6.22). Thus we see that the contribution to the spectral form factor from the double
trumpet geometry diverges.
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