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Abstract 

In this paper we explore some of the features of large N super

symmetric and nonsupersymmetric gauge theories using Maldacena's 

duality conjectures. We shall sh.ow that the resulting strong coupling 

behavior of the gauge theories is consistent with our qualitative expec

tations of these theories. Some of these consistency checks are highly 

nontrivial and give additional evidence for the validity of the proposed 

dualities. 



1 Introduction 

The newest, and perhaps most interesting, of the dualities of string theory 

is that conjectured by Maldacena, which relates the large N expansion of 

conformal field theory in d dimensions to string theory in a AdSd+l X M 

spacetime background (where AdSd+l is ( d + 1 )-dimensional Anti de-Sitter 

space and M is a compact space) [1]. The dictionary that relates these dual 

descriptions identifies the 1/ N expansion of the field theory to the pertur

bative expansion of the string theory, and the strong coupling expansion of 

the field theory to the a' expansion of the string theory. This conjecture 

offers the exciting possibility of using perturbative string theory to explore 

the large N limit of field theory. 

The simplest case of Maldacena's conjecture is the duality between large 

N supersymmetric, conformally invariant, SU(N) gauge theory in four di

mensions (with coupling g'f M) and type liB string theory expanded about an 

AdS5 X 8 5 background. Here the string coupling, 9st, is proportional to g'f Mi 

N equals, in the string theory, the magnitude of the five-form flux on the 

five-sphere; and (g'fMN) 114 is proportional to the radius of curvature of the 

background AdS5 space. One can therefore hope to calculate gauge theory 

correlation functions, for large N and large (A = g'fMN), in terms of weak 

coupling string theory in the semiclassical approximation - i.e. supergrav

ity. 

The precise relation between the gauge theory correlation functions and 

the supergravity effective action has been given by [2, 3], following the earlier 

works [4]. In particular this prescription determines the dimensions of oper

ators in the conformal field theory in terms of the masses of particle in the 

string theory. This correspondence has been checked for the duality between 

SU(N) gauge theory in four dimensions and type liB string theory expanded 

about an AdS5 x 8 5 background; where it was shown that there is a precise 

correspondence between the chiral fields of the conformal gauge theory and 

the finite mass string states in the above limit, including the complete infinite 

tower of massive Kaluza-Klein states of ten-dimensional supergravity on the 

5-sphere [5, 6] 

In [7, 8], it was shown that the strong coupling limit of the large Wilson 

loop for large N can be evaluated using semiclassical string theory, thereby 

obtaining the interaction energy between infinitely massive quarks and anti

quarks (external sources in the fundamental representation of SU(N)), sep-
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arated by distance R as 

E - - - 47r2 J2): 
qq - f(l/4) 4 R ' 

(1) 

a result that is completely consistent with our limited understanding of the 

gauge theory, wherein the 1/ R behavior is dictated by conformal invariance. 

The proportionality to v0. suggests that the Coulomb forces is somewhat 

reduced from the weakly coupled value of ..\. Similar calculations have been 

performed for the monopole-monopole and monopole-quark potential, yield

ing, as expected, S-dual expressions [9]. 

One can regard Maldacena's duality as realizing the lorig sought goal of 

finding the master field representation of large N gauge theory correlation 

functions. What is most surprising from this point of view is that the mas

ter field lives in a compactified ten-dimensional space-time, and corresponds 

to supersymmetric type liB string theory. That there should exist a string 

representation of the N = 4 conformally invariant large N gauge theory is 

somewhat surprising, since the traditional arguments for such a representa

tion have been for confining theories, whereas here we have a string theory 

for the Coulomb phase of the gauge theory. Thus, even though the Wilson 

loop is given by the minimal area classical string configuration spanning the 

loop, the fact that the loop can meander into the extra dimensions and the 

nature of the geometry of AdS space lead to a 1/ R potential in this case. 

Although the duality between SU( N) gauge theory in four dimensions 

and type liB string theory expanded about an AdS5 x S5 background is of 

great academic interest, the most exciting extension of Maldacena's conjec

ture is to non-supersymmetric gauge theories, especially to the physically rel

evant case of four-dimensional, non-supersymmetric gauge theory-namely 

QCD4 • As Witten has shown [10], it is reasonable to extend the conjec

ture to cases where supersymmetry is broken, thereby obtaining properties 

of non-supersymmetric gauge theories in the large N limit. For example, one 

can easily extend the duality to discuss the finite temperature behavior of 

theN= 4 gauge theory, by compactifying the (Euclidean) time direction of 

the background space time of AdS on a circle of radius ex !/temperature, 

in which case supersymmetry is broken by the boundary conditions on the 

circle. One can argue that, since supersymmetry is broken, the fermions and 

the scalars acquire a mass and, at least for large temperature decouple, thus 
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yielding a duality to high temperature QCD. Witten showed that in this case 

one derives many of the expected features of high temperature gauge theory; 

including a non-zero expectation value of temporal (Polyakov) loops, an area 

law for spatial Wilson loops and a mass gap (i.e. a magnetic mass). 

Finally, Witten has proposed a strategy to study ordinary four dimen

sional QCD at zero temperature using string theory [10]. This can be done by 

using Maldacena's conjecture to relate the large N limit of the SU(N)-type 

(2, 0) theory in R 6 to M Theory on AdS7 x 54 and dimensionally reduc

ing these to four dimensions. (Throughout this paper, we consider theories 

on Euclidean signature spaces, and AdS7 here means its Euclideanized ver

sion.) To do this and to break the supersymmetry one sets the (2, 0) theory 

on S1 x S1 x R 4 with supersymmetry breaking boundary condition on the 

fermions around one of the S 1 's. 

An obvious candidate for its M Theory dual would be obtained by peri

odically identifying points on AdS7 corresponding to the periodicity's of the 

S1 
X S 1 and by imposing the supersymmetry breaking boundary condition 

on the fermions by hand. There is, however, another candidate which obeys 

the same boundary condition. It is the Anti-de Sitter Schwarzschild solution 

constructed by Hawking and Page (for AdS4 case) [15]. The supersymmetry 

breaking boundary condition is automatically imposed by the Schwarzschild 

geometry. It turned out that, the classical action for the AdS Schwarzschild 

solution is smaller than that of the vacuum AdS7 , and therefore is dominant 

in the large N limit [10]. 

To make contact with four dimensional QCD we must shrink the radii 

of the two circles to zero in a certain limit. In this construction, the six

dimensional (2, 0) theory is regarded as a regularization of the four-dimensional 

QCD. The ultraviolet cut-off scale is therefore set by the size of the compact 

space S1 x S1
. 

Denote the radius of the supersymmetry preserving circle by R1 and that 

of the supersymmetry breaking one by R2 • The gauge coupling constant gyM 

of QCD4 is given by the ratio of the radii g~ M = RI/ R2 . In the 't Hooft 

limit, where one keeps g~MN to be finite, the circle Sk
1 

shrinks to zero as 

one takes N -'-+ oo. This corresponds to the IIA limit of M Theory as Sk is 
. 1 

the supersymmetry preserving circle. Therefore one could have started with 

the theory on N D4 branes in the IIA theory, wrapped around a circle with 

nonsupersymmetric boundary conditions, rather than the six-dimensional 

theory. We will take this approach throughout the paper. QCD is then 
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regarded as the dimensional reduction of the :five dimensional theory at high 

temperature, with coupling g'fM = giT, where g5 is the :five dimensional 

coupling and T the temperature (inverse radius) of the circle. 

Witten has argued that Wilson loops exhibit a confining area law behavior 

in this geometry for large N and large g'fMN. However, as he points out, 

this does not establish that QCD is a confining theory. The gauge theory 

so constructed has an ultraviolet cutoff (<X T) and the coupling gyM should 

be thought of as the bare coupling at distances corresponding to 1/T. The 

string tension will turn out, for large,\= g'fMN (as we shall show below), to 

be proportional to .AT2
• To construct four dimensional QCD we must take 

,\ -+ ln ( _'L__) ' 
A qeD 

T-+ oo and 
b 

(2) 

where Aqco is the QCD mass scale. Presumably we would find, were we able 

to calculate the small ,\ behavior of the tension, that the tension behaves as 

exp[-~]T 2 "'A~co· This calculation is beyond our control at the moment. 

For small ,\ the background geometry develops singular behavior and the 

supergravity approximation surely breaks down. To deal with this continuum 

limit one would have to be able to calculate the properties of string theory 

with background Ramond-Ramond charge in a rather singular background. 

Thus, for the time being, the Maldacena-Witten conjecture only informs . 

us about the behavior of large N QCD, with a :fixed ultraviolet cutoff in the 

strong coupling(large .A) regime. The resulting physics should be compared 

best with strong coupling lattice gauge theory, where the lattice spacing a is 

analogous to 1/T, the radius of the fifth dimension. What is remarkable here 

is that the short distance cutoff, unlike in the case of lattice, does not destroy 

the rotational or Lorentz symmetry of the theory. Indeed, at short distances 

we see a higher dimensional theory with more symmetry, indeed enough 

symmetry to render the theory finite. We are using the six dimensional, 

ultraviolet finite, (2,0) theory to define the theory in the ultraviolet, yet its 

infrared behavior should be qualitatively the same as QCD. 

In this paper we shall explore some of the features of large N super

symmetric and nonsupersymmetric gauge theories using the above duality 

conjectures. We shall show that the resulting strong coupling behavior of 

the gauge theories is, in all cases, consistent with our qualitative expecta

tions of these theories. Some of these consistency checks are highly nontrivial 

and give additional evidence for the validity of the proposed dualities. 
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First we shall explore, in the next section, the connected correlation func

tion of Wilson loops. This kind of calculation can be used for many purposes 

among which are the evaluation of the electric mass (or screening length) of 

high temperature QCD, the glue ball spectrum of confining gauge theories 

and the demonstration that in the confining phase of QCD monopoles are 

condensed. In particular we outline how the glueball spectrum of this version 

of strong coupling QCD could be calculated. 

In Section III, we generalize the discussion of QCD to the case where 

the () parameter is non-zero and argue that we can demonstrate . oblique 

confinement. 

In Section IV we generalize the evaluation of Wilson loops in the fun

damental representation to higher representations. Here we find that the 

string theory naturally produces the behavior of higher representations that 

we would expect in a confining theory-a result that depends critically on 

the master field being described by fermionic strings. 

In Section V we argue that one can also use the duality to discuss heavy 

quark baryonic states and determine the effective energy of N fundamental 

representation quarks in a singlet state for large N. The construction of the 

baryon is possible because of the Chern-Simons term in the action for super

gravity on AdS. The same arguments allow us to show that the interaction 

energy between any finite number of quarks is zero for the conformally in

variant supersymmetric four dimensional gauge theory and infinite for the 

confining theory. 

Finally, we conclude with a discussion of the possibility of a large N phase 

transition. If such a phase transition exists the power of the conjectured 

duality would be significantly weaker. 

While this paper was being typed, we learned of the work [11] w~ere a 

similar construction of baryons is given. 

2 Confinement, Monopole Condensation and 

Glue ball 

In this section, we first review the works [10, 12, 13, 14] where it was shown 

how confinement in strong coupling QCDP can be seen in the dual description 

based on AdS supergravity. In particular, they demonstrated the area law 
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behavior of the Wilson loop expectation value. -we then discuss implications 

of this result and clarify an issue that was raised in (12, 13, 14] on the 

apparent divergence of the electric and magnetic masses. It turns out that 

this is related to the computation of the mass gap suggested in (10]. We 

discuss how one can compute glueball masses in this description. 

According to Maldacena's conjecture (1, 16], the (p+1)-dimensional max

imally supersymmetric gauge theory realized as the low energy dynamics of 

N Dp branes (p :::; 5) is dual to type II string theory on the near horizon 

geometry of the Dp brane, as given by 

(3) 

where ls is the string length, df!8 _P is the line element of ss-p, and g is related 

to the Yang- Mills coupling constant. We have neglected numerical factors 

that are not relevant to the following discussion. For p -/= 3, the dilaton <P 

depends on u and is given by 

~ 

e<l> = ( gN) 4 

g u7-p 
(4) 

In particular, for p = 3, the near horizon geometry (3) is AdS and the dilaton 

( 4) is constant, corresponding to the fact that the theory on D3 brane is 

conformal. 

Witten [10] proposed to study non-supersymmetric QCDp by compacti

fying the supersymmetric theory in (p + 1) dimensions on a circle and break 

the supersymmetry by imposing anti-periodic boundary conditions on the 

fermions. In the dual type II theory this corresponds to considering the AdS 

Schwarzschild geometry 

(5) 

with the dilaton <P given by (4). We can regard (r,x 1 , •• ,xp) as coordinates 

for the (p + 1 )-dimensional gauge theory. To make the horizon at u = uo 

6 



regular, the coordinate T has to be periodically identified as T --t T + 1/T 

with T being related to u0 by 

2 1 
u0 = (gNT )s-v. (6) 

Since the circle in the r-direction is contractible at u = u0 , the boundary 

condition on the fermions around the circle is automatically anti-periodic, 

breaking the supersymmetry. For large T, the (p + 1 )-dimensional theory 

becomes effectively p-dimensional, the fermions and scalars decouple, and 

the theory should resemble QCDP in the infra-red. 

If QCDP is confining, the vacuum expectation value of the Wilson loop 

operator W( C) should exhibit area law behavior. In [10, 12, 13] this was 

shown to be the case, for large gN, by evaluating the classical action of 

string worldsheet bounded by a loop on RP located at u = oo. Because of 

the u-dependent factor Ju7-PjgN in front of L,idx7 in the metric (5), it is 

energetically favorable for the worldsheet to drop near the horizon u = uo 

before spreading out in the RP direction. At the horizon, the u-dependent 

factor becomes 

1 Z=:E. 
= (gN)s-vTs-p, (7) 

where we used (6). Therefore the area dependent part of the Wilson loop 

expectation value becomes 

1 Z=:E. 
(W( C)) = exp(-(gN)s-vTs-v A( C)), (8) 

where A( C) is the area bounded by the loop C. Since the QCDp coupling 

constant gyM is related to g by g} M = gT, the string tension derived from 

the above formula is 

(9) 

For p = 3, 4, this agrees with the formulae derived in [12, 13]. 

In four dimensions, it is expected that confinement is associated with 

magnetic monopole condensation. It is interesting to see that this in fact 

happens in this construction 1
• To discuss QCD4 , we start with the five

dimensional theory on D4 branes. The magnetic monopole in five dimensions 

1 While this work was in progress, we received [14] where a related issue was discussed. 
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Figure 1: The string drops to the horizon first before spreading in the RP 

direction. 

is a string which is realized as a D2 brane ending on a D4 brane [17, 18]. 

The monopole in four dimensions is obtained by wrapping the string around 

the compactifying S1
. It is now straightforward to compute the potential 

between a monopole (m) and an anti-monopole (iii). Consider a pair of m 

and iii traveling along the x 1-axis in R 4 and separated in x 2 direction by 

distance L. In the large gN limit, the force between them is mediated by 

a D2 brane bounded by S 1 times the trajectories of m and iii, which are 

located at u = oo. Away from the boundaries, the D2 brane can spread in 

the u-direction. In its classical configuration, u would be a function of Xz 

only because of the symmetry of the problem. If we use ( r, x 1 , x 2 ) as the 

coordinates on the D2 brane, the induced metric on the brane is then 

Gn = Ju3, G22 = {iii (dujdxz)
2 

+ Ju3. (10) 
V# V~1-u5/u 3 V# 

By taking into account the dilaton configuration ( 4), which in this case is 

( 

u3 ) 1/4 

e4> = g gN ' 

the D2 brane action per unit length in the x 1 direction becomes 

Emm = foL drdxze-4>JGT7"Gu G22 

8 
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1 {L 
= gT lo dx2 (12) 

and it gives the potential energy for the m-m pair. 

The next task would be to minimize this action. In fact, essentially the 

same problem has already appeared in [12, 13] where the correlation function 

of temporal Wilson loops in five dimensions was studied. There one considers 

a string, rather than the D2 brane, wrapping in the r-direction and spreading 

in the x2-direction. Because of (10) and (11), we have 

e-<l>jQTTQ11Q22 = ~JGTTQ22· 
g 

(13) 

Therefore the classical action of the string is equal to g times that of the D2 

brane discussed in the above paragraph. Therefore, we can borrow the result 

of [12, 13] to discuss the m-m correlation. 

The new feature of this problem is a classical instability of the D2-brane 

worldvolume. When the distance L between m and m is less than a certain 

critical distance Lcrit, which is equal to 1/T times some numerical factor, 

there is a D2 brane configuration minimizing the action (12) and connecting 

m and m. If L exceeds this critical distance, there is no connected D2 brane 

configuration minimizing the action (Fig. 2). This happens because the GTT 

component of the induced metric (10) can be made arbitrary small by going 

near the horizon u = u0 reflecting the fact that the compactification circle 

along T is contractible in the AdS Schwarzschild geometry. Since the circle 

is contractible, the D2 brane can split into two pieces each of which has a 

topology of a disk and is bounded by the trajectory of m or m. Therefore, 

for L > Lcrit, the potential between m and m becomes constant and the 

force between them vanishes. This suggests that the magnetic monopole is 

completely screened. In this construction, therefore, confinement is in fact 

accompanied by monopole condensation. If we view this system as finite 

temperature QCDp+I, such a complete screening indicates that the magnetic 

mass is infinite. This is somewhat puzzling and we will address this issue 

later in this section. 

A similar classical instability also shows up when one studies correlation 

functions of Wilson loops. If one considers two Wilson loops in R 4 and 

repeats the above analysis to compute their correlation function, one finds 

that, beyond a certain critical distance determined by the size of the loops, 

9 



horizon 

' ' . . 
,_ 

u 

D2 brane 

Figure 2: For L > Lcrit, there is no volume-minimizing D2 brane configura

tion connection the m-m pair 

the correlation function vanishes identically. Once again, this is because the 

loops are contractible and the string stretched between the loops becomes 

classically unstable beyond the critical distance (Fig. 3). This result is again 

somewhat puzzling since one would expect that the Wilson loops correlation 

for large distance would be characterized by glueball exchange. This result 

seems to indicate that the glueball mass in QCDv is infinite. To address this 

issue, it is useful to look into the nature of the classical instability and discuss 

what happens at the critical distance and beyond. 

The instability of minimal surfaces has been know for a long time. It was 

L. Euler who showed that a minimal surface bounded by a two concentric 

circle in R 3 is given by a catenoid. Let us put the two circles of radius Ro at 

z = ±L/2. Euler's catenoid is given by 

(14) 

where Rmin is the minimum radius of the catenoid, which is a function of the 
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L<4n, 
horizon 

L>l.,n, 

string worldsheet 

' 
' 
' ' 

,_ 

u 

Figure 3: For L > Lcrit, there is no area-minimizing string worldsheet con

necting the two Wilson loops. The critical distance Lcrit is determined by 

the size of the loop. 

distance L between the circles and the radius Ro determined by the relation 

Ro = RminCOSh (
2
:miJ. (15) 

When the two loops coincide (L = 0), obviously this formula gives Rmin = Ro. 
As one increases L, the minimum radius Rmin decreases. As shown in Fig. 4, 

however, there is a critical value of Lcrit = 1.325Ro. For L > Lcrit, there is no 

solution to (15). There the only minimal surface is a pair of disks bounded by 

the two circles, called the Goldschmit discontinuous solution. At L = Lcrit, 

the catenoid becomes unstable. A small perturbation would make the surface 

to pinch anc!_ split into the two disks. . 

At L < Lcrit = 1.056Ro, the area of the catenoid is smaller than that of 

the Goldschmit solution and therefore the catenoid is absolutely stable. At 

L = Lcrit, the areas of the two solutions coincide and, for Lcrit < L < Lcrit, the 

catenoid becomes more voluminous than the Goldschmit solution. Therefore 

the transition from the catenoid to the Goldschmit solution at L = Lcrit is of 

11 



R.m,. cosh(U2R,.,;.J 

Figure 4: For 0 < L < 1.3525Ro, the solid curve R = RminCosh(L/2Rmin) 

intersects twice with the dotted line R = Ro, determining the minimum 

radius Rmin of the catenoid. For L > Lcrit, there is no intersection, indicating 

that a catenoid solution does not exist. 

the first order. 

What does this mean for the Wilson loop correlation function? When the 

distance between the loops C1 and C2 is less than the critical distance L < 
Lcrit, the main contribution to the connected part of the correlation function 

(W(Ct)W(C2)) comes from the classical string connecting C1 and C2 • At 

L = Lcrit, the string worldsheet becomes unstable and starts to collapse. 

Before the surface becomes disjoint, however, the supergravity approximation 

breaks down when the radius of the cylinder becomes of the order of the string 

length l 5 • After that, quantum fluctuations of the surface start to support the 

worldsheet against the total collapse, and the two disks would be connected 

by a thin tube of a string scale [5 • For large L, the thin tube is represented by 

the supergraviton exchange between the two disks. Therefore the correlation 

between the Wilson loops does not completely vanish, but are mediated by 

the supergraviton exchange between the disks (Fig. 5). This indicates that 

the supergravitons in the AdSp+Z Schwarzschild blackhole geometry should 

be identified with the glueballs of QCDp· 

Another way to obtain glueball masses would be to compute correla

tion functions of local operators in QCDp and look for particle poles. Ac

cording to [2, 3], a two-point correlation function of local operators in the 
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L<Lrot 

' collapse at L = Lcrit 

L > Lcrit 

II 

Figure 5: The string worldsheet connecting the Wilson loops collapses at 

L = Lcrit and is replaced by the supergraviton exchange. 

(p + 1 )-dimensional supersymmetric gauge theory is obtained by computing 

the Green's function of the corresponding supergraviton (or its Kaluza-Klein 

cousin) on AdSp+2 • Similarly a correlation function in QCDP should be re

lated to a Green's function on the AdSp+2 Schwarzschild geometry. The 

glueball masses computed in this way would be the same as the one that 

appeared in the Wilson loop correlators in the above paragraph as they are 

both extracted from the supergraviton propagator. 

Since the bulk geometry is invariant under translation in the S 1 x RP 

direction, we can expand the supergraviton wave </>( u, r, x) in the Fourier 

modes as 

-"( ) -""J dPk J. ( ) inr+ikx 
'f' U, T, X - 7 (

2
7r )P 'f'n,k U e . (16) 

Each Fourier mode corresponds to a particle pole of the correlation function 

on RP with mass k2
. Those with n =J 0 are Kaluza-Klein modes on S1 and are 

not of interest for QCDP. For a given k2
, the Fourier mode Jn,k(u) obeys the 

second order ordinary differential equation for u. Witten showed in (10] that 

the equation has a regular solution only for discrete values of k2
, suggesting 
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the mass gap in QCDp. 

In order to actually compute the glueball masses, one has to solve the 

differential equation. In the AdSp+2 geometry, the differential equation for 

the supergraviton has three regular singularities and therefore can be solved 

analytically using the hypergeometric function [4, 2]. For the Schwarzschild 

geometry, the differential equation has four regular singularities (for QCD3 ), 

with the additional singularity coming from the horizon, and requires nu

merical work. Various aspects of the glueball spectrum are currently under 

study using this technique [19]. 

Figure 6: The glueball in the strong coupling lattice QCD. 

The glue ball masses computed in this way are quantized in the unit of the 

temperature T. One might have worried that in the effective large N string 

theory of glue balls the mass gap (the lowest mass of glue balls) would vanish 

- corresponding to the massless mode of the string. In strong coupling 

lattice QCD, the leading contribution to the Wilson loop correlator comes 

from a thin rectangular tube of the size of the minimum lattice spacing a, 

as shown in Fig. 6. Therefore the glueball masses are of the order of 1/a 

in the strong coupling. Indeed, with the standard Wilson lattice action, 

the glueball mass, for strong coupling is given by mglue = 4/ a log(92 N)[1 + 
0(1/ 92 N)]. To make contact with the real world, one would have to sum the 

strong coupling expansion to obtain mglue = 4/ aj(92 N), and then let 92 N -+ 
bflog(1/AQcva) as a-+ 0, obtaining (hopefully) a finite result proportional 

to the QCD scale AQCD· In the AdS picture 1/T plays the role of a, and 
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as the string shrinks to distances of order 1/T the fluctuations in the extra 

dimensions produce a finite mass gap proportional toT. Thus mglue exT j(>..). 
As in the case of the string tension discussed above, the computation of the 

4d glueball spectrum would require control of the string theory in a singular 

background with R-R charge. 

3 () Parameter and Oblique Confinement 

4~-3cx 

~-- --------~--------~---
' ' 
' ' 
' ' 
' ' I = .. ,..,.,,. 

contractible 

' 
(3 ' : 

--- ----- --~--------l---
' ' 
' ' 
' ' 
' ' 

:ex 

Figure 7: When () /27r is a rational number, one can find a contractible cycle 

on the torus. 

It is interesting to generalize the discussion of the previous section to the 

case of QCD4 with non-zero () parameter. Its M Theory dual can be con

structed as follows. The() parameter couples to f trF 1\ Fin four dimensions, 

which is the DO brane charge on the D4 brane. Therefore, if we view QCD4 

as the high temperature theory of the theory in five dimensions, () can be 

interpreted as the chemical potential for DO branes. In M Theory, this is 

geometrically realized as a rotation of the supersymmetric circle by () as ones 

goes around the supersymmetry breaking circle once. As shown in [10], the 

M Theory dual of QCD4 with()= 0 is the AdS7 Schwarzschild solution times 

S4
, given by 

(17) 
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with periodicities 

a- cycle: 

(3- cycle: 

(r,p) ---+ (r,p+27r) 

(r,p) ---+ (r+27r,p). 

We can turn on () in this geometry by introducing a twist as 

a- cycle: (r,p) ---+ (r,p + 27r) 

(3-cycle: (r,p)---+ (r+27r,p+()). 

(18) 

(19) 

For non-zero (), the (3-cycle is not contractible. Correspondingly the 

monopole condensation does not take place. In fact the m-m potential would 

obey the area law in this case. If() = 27rp/ q for some co-prime integers (p, q), 
however, the cycle ( qf3 - pa) becomes contractible in the Schwarzschild ge

ometry (Fig. 7). A membrane ending on this cycle gives a dyon of an electric 

charge -panda magnetic charge q, and this dyon is screened since the mem

brane worldvolume can collapse. In this case, confinement is associated with 

the condensation of this ( -p, q) dyon, corresponding to oblique confinement. 

4 Higher Representations 

Another interesting generalization is to consider Wilson loops for higher rep

resentations of SU(N). Using the Frobenius formula, 

(20) 

one can relate the character XR( U) of a representation R to a product of 

traces in the fundamental representation of SU(N) as expressed in the right

hand side of the equation. Here n is the number of boxes of the Young 

tableau for R, XR( O") is the character of the permutation O" in the represen

tation of the symmetric group Sn associated to the same Young tableau. A 

permutation O" can be expressed as a product of cycles, and k1, ... , kKcr are 

lengths of the cycles. Therefore, the Wilson loops expectation values for 

higher representations are related to multiply wound loops in the fundamen

tal representation. The latter are computable by studying string worldsheet 

ending on such loops. 
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Let us summarize what we expect for the Wilson loops for higher repre

sentations from the field theory analysis. In QCD2 , they are all computed 

exactly [20] as 

(xn(U)) = (dimR)exp(-g~MCz(R)A(C)), (21) 

where C2(R) is the quadratic Casimir of R given by 

(22) 

with ri and Ci being the lengths of the rows and the columns of the Young 

tableau for R. 

It would be instructive to look at some examples. For n = 2, there 

are symmetric (S) and anti-symmetric (A) representations. Their quadratic 

Casimirs are 

C2(S) = 2N + 2- tr 
C2 (A) = 2N -2- ~-

The Frobenius formula (20) gives 

xs(U) = t((trU) 2 + trU2
] 

XA(U) = H(trU)Z- trU2
], 

which can be inverted as 

xs(U)- XA(U) 

(23) 

(24) 

N2e-2g~NNA(C) x ( -4g~~A + ~ + .. ·). (25) 

In general, (21) combined with the Frobenius formula gives 

~n (trUn) = ( -1)n- 1 g~'Ai (An-~+ 0 (g}~N)) exp( -ng~MN A( C)). 

(26) 
The factor ( -1 )n-1 An-1 is closely related to the presence of the quadratic 

Casimir in the string tension and it is reasonable to expect that this factor 

would appear in other confining theories as well. 
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The prefactor in (26) has the form of the a' expansion of the string theory. 

One might hope therefore to be able to derive the leading term ( -1)n-1 An-1 

without detailed knowledge of string theory on AdSp+Z· Let us see how far 

we can go. To evaluate (trUn) using Maldacena's duality, one sets the Wilson 

loop C at u = oo and considers a string worldsheet whose boundary winds 

around C n-times. With this boundary condition, the minimal surface in the 

AdSP+1 Schwarzschild geometry (5) should look as follows. As in the case of 

n = 1 in section 2, because of the u-dependent factor in front of I:i dx~, the 

worldsheet quickly drops to the horizon. After that, the worldsheet is allowed 

to spread in the RP direction. For fixed u, the metric in the RP direction 

is flat, so that we can use flat space intuition. It is possible to construct a 

smooth surface whose boundary winds around a circle n-times, but one can 

always reduce an area of such a surface by shrinking a part of the surface and 

creating branch points. The minimal surface constructed in this way should 

then have a form of n-disks on the top of each other connected by ( n - 1) 

Z2-branch points 2
• The classical action for the minimal surface is then 

_!_ !..=E. 
Sn-winding = n(gN)s-pTs-pA(C). (27) 

To understand the prefactor ( -l)n-1 An-t, we have to go beyond the 

supergravity approximation. In general, stringy corrections are difficult to 

control since we know little about the formulation of string theory in a back

ground with Ramond-Ramond (R-R) charges. Fortunately, we only need to 

study the 0-th order in the a'-expansion to understand the prefactor, conse

quently we can neglect the R-R charges as well as the spacetime curvature. 

Therefore, we can treat the string worldsheet as described by the free fields 

of the NS /R string. All we have to do then is to compute the disk amplitude 

of free string theory with ( n- 1) branch points. To the 0-th order in the a'

expansion, this simply amounts to computing determinants of the Laplace 

operators on the disk with ( n- 1) branch points and summing over all possi

ble locations of the branch points. The factor An-1 is then easy to explain as 

it corresponds to the entropy factor associated to the positions of the branch 

points. 

The sign factor ( -1 )n-1 is more interesting. It cannot come from the de

terminant factor since the worldsheet does not have obvious unstable modes. 

2In R 3
, it is known that a minimal surface bounded by any regular curve is smooth 

without branch point [21]. The boundary contour in our problem does not satisfy an 

assumption of this theorem as it winds around the identical circle C n-times. 

18 



We claim that it is a consequence of the GSO projection of the superstring 

theory. To the 0-th order in a', the R-R background does not affect the 

worldsheet theory and the distinction between NS and R states is well de

fined. 

When n = 1 (no branch point), the fermions around the contour Cobey 

NS-NS boundary conditions. Let us remind ourselves why this is the case. 

As a function of a coordinate z on the disk (lzl ~ 1), the fermion '1/J(z) in 

this case is single valued since there is no singularity in the interior of the 

disk. To study the boundary condition around the contour Cat lzl = 1, it is 

appropriate to use another coordinate () defined by z = ei
8

• Since the fermion 

is a spin-1/2 field, we have to multiply the transition function -/(E = e~ 8 Vd0. 

This means that a fermion obeys anti-periodic boundary conditions around 

C, i.e. it is in the NS-NS sector. 

For n > 1, we must take into account the presence of the branch points. 

Near lzl = 1, we can use the covering coordinate w which is related to z 

by z = wn. To change coordinates from z to w, we have to multiply the . 

transition function ffz = w n;t -..(;i;;;. To study the boundary condition 

around C, we use the coordinate () defined by w = ei
8

, and multiply the 

transition function W "2"
1 

-..{J;;; = ei~B VdO to the fermions. It is then clear that 

a fermion will obey anti-periodic or periodic boundary conditions around C 

depending on whether n is odd or even. Therefore, the closed string emitted 

from the Wilson loop C is in the NS-NS or in the R-R sector depending on 

the parity of n. 

It is known that the GSO projection requires that amplitudes in the R-R 

sector in this case should be multiplied by the sign factor ( -1) relative to that 

in the NS-NS sector. This was observed, for example, in [22] and was found 

to be responsible for the cancellation between the exchange forces of the 

NS-NS and the R-R fields. The string worldsheet in the AdS Schwarzschild 

geometry has a quasi-cylindrical region where the worldsheet quickly drops 

from u = oo to the horizon u = u0 to save the energy. If we look at this region 

in the open string channel, to reproduce the fermion boundary condition for 

even n, one has to insert the fermion number parity operator ( -1 )F as one 

goes around the loop C. It is then clear that the GSO projection require 

the sign factor ( -1) for the corresponding amplitude. It is interesting to 

note that this result depends critically on the fact that the master field is 

described by fermionic string. This confirms a long-standing conjecture as to 

the fermionic nature of the large N string theory that describes a confining 
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gauge theory [23, 20]. 

So far we have discussed the confining case, but the same argument should 

be applicable to the conformal case as well, leading to the sign factor ( -1 )n-1 

in (trUn). In order to see whether this is what one naturally expects, it is 

useful to first point out some puzzling feature of Maldacena's computation 

of the Wilson loop in the conformal case [7]. For a rectangular Wilson loop 

of sides L and R ( L » R) in the N = 4 theory in four dimensions, he finds 

(28) 

for the fundamental representation. Since U is a unitary matrix, there is an 

upper bound on its expectation value ~ (trU) :S 1 which contradicts with the 

sign in the exponent in the right-hand side of (28). One possible resolution of 

this puzzle would be that the unitarity bound is violated due to a renormal

ization of the operator U. The renormalization of U corresponds to the mass 

renormalization of the quark going around the loop, and we expect it to be 

zero in the N = 4 theory. However the nonrenormalization theorem assumes 

a supersymmetric regularization, which would typically violate the inequality 

of this type. With an explicit ultraviolet cutoff, A, which may break the su

persymmetry but preserves the inequality, the Wilson loop expectation value 

would be 

1 _ ( 471"
2 

J2g'fMN L) 
N(trU)- exp -cLA + r(l/

4
)4 R (29) 

for some positive constant c. If the mass renormalization cA for a represen

tation R is proportional to its quadratic Casimir, which is reasonable, one 

would find 

· 1 ( 1 ) ( 47r
2
n J2g}MN L) 

(trUn) rv (-It- Ln- + · · · exp -nNcoLA + r(l/
4

)4 R ' 

(30) 

obtaining the sign factor ( -1 )n-1 again. The factor Ln-1
, as opposed to 

An-1 in the confining case, indicates that the twist operators are constrained 

to stay along the minimum u point in the string worldsheet. It would be 

interesting to understand this phenomenon better from the point of view of 

the string theory in the AdS background. 
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5 Baryons and Stringy Exclusion Principle 

The M Theory dual of QCD4 can also be used to construct hadrons with 

heavy quarks and study their properties. To obtain mesons, one simply 

starts with a pair of quark and anti-quark represented by Wilson lines of 

opposite orientations on a D4 brane separated from N D4 branes. The 

quark anti-quark pair is then connected by a string extend~d through the 

AdS geometry (the Schwarzschild solution or AdS depending on whether one 

study the pure QCD or the superconformal theory). The string generates a 

potential between the quarks, which is either linear (confining case) or is 

inversely proportional to the distance between the quarks (conformal case). 

One can then study the non-relativistic quantum mechanics of the quarks in 

this potential to compute the meson spectrum. This is essentially the same 

analysis as the Bag model. 

quark 

u 

horizon string 

Figure 8: In the Schwarzschild geometry, there is no point where the open 

string attached to the quark can end. 

There is no free quark of finite energy in the confining case; whereas in 

the conformal case finite mass colored states exist. How do we see this in 

the supergravity picture? Both are a consequence of the fact that the string 

attached to the quark must end somewhere. In the conformal case, the string 

can end at u = 0. The energy of such a string is simply equal to the BPS mass 

of the quark [7]. In the confining case, the bulk geometry has the topology 

of a solid cylinder with the horizon u = u0 as its axis as shown in Fig. 8. 

In this case there is no point where the open string can end and the string 

has to stretch to x = oo in the RP direction, costing an infinite amount of 
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energy. 

This raises the interesting question of how one could construct a baryon, 

a SU(N) singlet bound state of N quarks, in this picture. We have to 

find a way to tie together N strings emerging from the quarks. In the flat 

space this is not possible because of the conservation of the NS-NS two-form 

charge. A quark and an anti-quark can be connected by a string since the 

NS-NS charge is canceled at the two end points. It is not obvious how this 

can be done with N end points with the same charges. It is an amazing 

consequence of supergravity that it is possible to do so in the AdS space. 

In the conformal case, the dual supergravity on AdS5 has the Chern-Simons 

term for the SL(2, Z) doublet two-forms s:v (a= NSNS, RR) 

Sass = N Eab { BaA dEb. 
2 jAdSs 

(31) 

This comes from the fact that the equation of motion for Ba in ten dimensions 

contains a coupling to the 5-form [24] as 

DJl.::l Ba - F put>;;) Bb 
U[Jl., vp] - -gf.ab f.LI/ Up <rt>" (32) 

A Lagrangian density which gives such an equation of motion would be3 

(33) 

On AdS5 X 8 5
' the 5-form F carries N units of flux on 8 5

• Thus, for sa's which 

are constant on 8 5
, the ten-dimensional Lagrangian (33) implies the Chern

Simons term (31) in five dimensions. Similarly the 3-form CJJ.vp in the eleven

dimensional supergravity has the Chern- Simons term f C A dC A dC, which 

upon compactification on 8 4
, gives the seven-dimensional Chern- Simons 

term on AdS1 

Scs
7 

= N
2 

{ C A dC. 
jAdS7 

(34) 

As we now explain, these Chern-Simons terms make it possible for the N 

strings to combine together and end on a point in the bulk AdS geometry. 

3 Although the complete Lagrangian for the liB supergravity in ten dimensions is not 

known, for the purpose of the discussion here, we only need a Lagrangian for the two-form. 

Since we are only considering the classical supergravity, any Lagrangian which gives (32) 

should be good enough. 
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Before explaining why the N strings can join together in AdS, it would 

be instructive to review a similar but more familiar phenomenon in the three

dimensional gauge theory with the Chern-Simons term, 

Scs3 = ~ j AdA (35) 

for an abelian gauge field A. Suppose the electric charge of the theory is 

quantized so that we allow a gauge transformation A --+ A + d() with () 

defined modulo integer. Let us perform a gauge transformation by () which 

has a discontinuity 8() = 1 across a two-dimensional surface D2 with the 

topology of disk. The variation of the Chern-Simons term under this gauge 

transformation is 

N [ d(OdA) 
}AdSa 

N [ dA = N 1 A, 
lD2 !c 

(36) 

where C is the boundary of the disk D 2 • Thus, if there is a Wilson loop C 

carrying N units of charge, we can absorb it into the Chern-Simons term by 

the gauge transformation. For the same reason, if we put N particles of unit 

charge on the top of each other, the composite particle decouples from the 

gauge field A. 

The above story can be immediately generalized to the case of string with 

the Chern-Simons term (31). The supergravity action is invariant under the 

gauge transformation BJ1V --+ BJ1V + a[Jl,Av]· Since the B-field charges are 

quantized with the unit charges carried by the fundamental string and the D 

string, the gauge transformation parameter A does not have to be a single

valued vector field on AdS5 , but its integral fc A around .a closed contour C 

can jump by an integer amount. Suppose such a discontinuity of A occurs 

across a four-dimensional subspace M 4 of AdS5 . Since the discontinuity dA 

has to be such that fc 8A is an integer and therefore is invariant under smooth 

deformation of the contour C, dA is closed d8A = 0 on M4 and it can locally 

be written as dA = d() with() is defined modulo integers. Under such a gauge 

transformation, the Chern-Simons term (31) changes as 

NEab { d(AadBb) 
}AdSs 

NEab { dAadBb = NEab { d(()adBb). 
}M4 }M4 . 

(37) 
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Suppose further that M 4 has the topology of S1 x M3 with M 3 being a three

dimensional space bounded by a two-dimensional surface E and that ()(RR) 

jumps by 1 across a point on S 1 (times M3 ) while ()(NSNS) is continuous. The 

gauge variation of Scs
5 

can then be written as an integral of B over E, 

8Scss = N h B(NSNS)_ (38) 

Therefore N string worldsheets wrapping on a contractible surface E in AdS5 

can be absorbed into the Chern-Simons term (31) by the gauge transforma

tion. This also means that, if we put N strings on the top of each other, it 

decouples from B(NSNS). 

The string can be viewed as a soliton of the supergravity with the B(NSNS)_ 

charge [25]. The fact that N strings decouple from B(NSNS) suggests that 

one can construct a supergravity solution in which N strings join together 

at a point in AdS5 
4

. This defines a baryon in the conformal case. The 

baryon in QCD3 is obtained by simply compactifying this picture on S1
. Be

cause of the Chern-Simons term (31), N strings can end on a point in the 

Schwarzschild geometry. The resulting string configuration is very similar to 

the one suggested much earlier in [26]. 

It is obvious that this phenomenon also holds for closed strings - N 

closed strings can join together and disappear in AdS5 . This may be viewed 

as a higher dimensional generalization of the stringy exclusion principle 

pointed out by Maldacena and Strominger [27]. They showed that there 

is an upper bound on the number of BPS particles in AdS3 • Although they 

derived this result by studying the spectrum of chiral primary fields in the 

dual conformal field theory in two dimensions, it is also possible to show this 

using the Chern-Simons term for the SU(2) x SU(2) gauge field in AdS3 [28]. 

The mechanism we described in the above is a natural generalization of this 

to AdS5 with the gauge field being replaced by B(NSNS). 

Let us turri to the case of QCD4 • To construct baryons in this case, we 

have to start with a membrane of the supergravity in AdS7 • Wrapping the 

membrane on the supersymmetry preserving circle gives a string on the AdS1 

Schwarzschild geometry. The membrane carries a charge with respect to the 

3-form C, and the Chern-Simons term (34) can create a membrane with N 

4 While this paper was being typed, we learned of the work [11] where it is shown that 

N strings can end on the 5-brane wrapping on S5 and localized on AdS5. This verifies our 

claim that such a supergravity solution should exist in AdS5. 
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. units of charges. Therefore, once again, N open strings can join together in 

the bulk. 

2 3 N 

u 

horizon string 

Figure 9: Baryon is constructed as N strings joining together at a point in 

the bulk. 

Thus, in both the conformal and confining cases, a baryon is constructed 

as N heavy quarks joined together by N open strings ending at a point 

in the AdS geometry. The total energy of the baryon is the sum of the 

geodesic length of the strings. In the confining case, it is proportional to a 

sum of four-dimensional distances between the quarks and the location of 

the string junction (projected to R 4
). In the conformal case, it is a sum 

of (distance)-1
. Although the location of the string junction is dynamical, 

in the large N limit, we can use the Born-Oppenheimer approximation and 

regard it as a fixed point in the AdS geometry. The N quarks then move 

independently under the potential given by the string stretched between them 

and the junction. The mass spectrum of the baryon can them be obtained 

by solving a one-body problem of the quark in the potential. 

It would perhaps be worthwhile to point out that the existence of the N 

string junction does not contradict with the vanishing of the q-q potential in 

the conformal ~ase. If you have a q-q pair, in addition to the obvious string 

configuration where a string stretched from each_ quark ends on u = 0, one 

may consider joining them at a point from which (N- 2) strings come out. 

This may seem to give a non-trivial potential between the quarks. However 

the (N- 2) strings should end somewhere, and the only place they can end 

is at u = 0. For N > 4, it is clear that it costs less energy if we move the 

N string junction toward u = 0. We then end up recovering the obvious 
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q q 

u=O 

Figure 10: It is energetically favorable to move the N string junction to 

u = 0, leaving the two separate strings. 

configuration where the two strings separately end at u = 0, without a non

trivial potential between q-q (Fig. 10). 

A similar configuration can be considered in the confining case. In this 

case, however, there is no place where the (N- 2) strings can end, except 

at x = oo in RP costing infinite energy to create (Fig. 11 ), as expected 

from the quark confinement. The same discussion holds for any non-singlet 

combination of quarks. 

-----------------~~---

.~horizon 

Figure 11: A similar configuration in the confining case costs infinite energy, 

as expected from the quark confinement. 
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6 Discussion 

In the previous sections we have discussed many aspects of the dynamics 

of large N gauge theory for strong coupling, as calculated using the dual 

supergravity, string or M theory. In all cases the results are remarkably 

consistent with our intuition and expectations. This strengthens our faith 

in the validity of the duality between these pictures. However, there is no 

strong evidence to date that these pictures actually overlap - they could be 

descriptions of two quite different phases of the same theory. 

Consider the duality between the conformally invariant N = 4 gauge 

theory in four dimensions and string theory in the AdS5 X S5 background. 

The strongest form of this duality is to claim that these two are equivalent 

for all values of N and >.. However, perturbative string theory is defined as 

an asymptotic expansion in 9s = gfM = >.IN. So perhaps a safer conjecture 

is the equivalence of these two formulations for N = oo, the classical limit of 

string theory and the planar limit of the gauge theory, or in the asymptotic 

1 IN expansion. 

Here one is on firmer ground since the weak coupling expansion of the 

N = oo conformally invariant gauge theory might very well converge [29, 30] 

and there is no reason to expect the 1 I>. "' curvature expansion of string 

theory to diverge. If so, one could then imagine, in principle, using the large 

>. expansion (or even better the exact solution) of classical string theory 

to define the gauge theory for all coupling. If one could do this for the 

compactified non-supersymmetric theory as well, then one could construct 

continuum QCD, by taking>. to zero ala asymptotic freedom, as one lets the 

compactification radii vanish. So far there is no strong evidence for even this 

form of the conjecture; since the calculations of quantities in string theory 

can only be done for large >. and in the gauge theory only for small >.. 
There is, however, a possibility that the conjecture has to be weakened 

even further. Namely, it is possible that the gauge theory picture is valid for 

weak coupling, the string theory for strong coupling, and there is no region 

where they are both valid - i.e. there is a phase transition at >. = Acr· 

This is a ubiquitous phenomenon in large N theories [31], including the one

plaquette model [32], QCD2 on the sphere [33, 34] and is believed to be 

the case (even for finite N) for lattice QCD. In the case of lattice QCD 

such a transition leads one to suspect that the effective string theory that 

can be deduced from the strong coupling expansion cannot be extended to 
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the continuum theory. If this were the case here as well, it would mean, 

unfortunately, that these dualities are not as powerful as one might hope, 

and in particular one might not be able to use them to construct the master 

field, string theory, of QCD. On the other hand, the existence of such a 

phase transition would make the conjectured duality seem more reasonable, 

by eliminating some of the paradoxical aspects of the duality [35]. 
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