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1 Introduction

The low energy behavior of N M2-branes on Zk-orbifold is described by the N = 6 ABJM

theory with Uk(N) × U−k(N) gauge group at level k [1]. Due to the non-dynamical na-

ture of the Chern-Simons gauge fields, an interesting extension is realized by use of a

supersymmetry-preserving mass deformation, which gives rise to the mass-deformed ABJM

(mABJM) theory [2, 3]. The mass parameter is originated from the self-dual constant 4-

form field strength accompanied by the Wess-Zumino type coupling with M2 branes [4, 5]

in the 11-dimensional supergravity. Gravity dual of the mABJM theory is identified as the

LLM geometry [6] with Zk orbifold. It also turns out that the 4-form field strength with one

spatial coordinate dependence allows an N = 3 supersymmetry maximally. Accordingly,

the ABJM theory with spatially dependent mass-function was constructed [7]. We will

call such a theory the inhomogeneously mass-deformed ABJM (ImABJM) model in what

follows. The spatially varying mass-function m = m(x) whose functional form is arbitrary

breaks a half supersymmetry of the original mABJM theory of N = 6 supersymmetry.
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Gravity dual of the ImABJM model with periodic mass-functions is qualitatively simi-

lar to the holographic lattice models [8], which are dual to conformal field theories deformed

by spatially periodic sources. The holographic lattice models in various gravity theories

have been successful in describing many aspects including transport mechanism of con-

densed matter system with momentum relaxation e.g. [9–27]. In particular, the Q-lattice

solution [11] was constructed to describe lattice structures with global symmetries in the

bulk. One important advantage of the Q-lattice is that the solution can be constructed

by solving ordinary differential equation rather than partial differential equation. Later,

supersymmetric (SUSY) Q-lattice solution was found in 4-dimensional gauged supergrav-

ity, and then it can be uplifted to 11-dimensions [28]. It was also generalized to the

case of mass-functions with spatial modulations [29]. For a special form of mass-function

m(x) ∼ sin(q x) with a constant q, it was argued that the corresponding dual field theory

of the 11-dimensional Q-lattice solution is the N = 3 ImABJM model [7] with the same

mass-function. One of interesting properties of SUSY Q-lattices is that the geometries

describe the boomerang RG flowing from the AdS4 geometry in the UV to the same AdS4
geometry in the IR [30–32]. On the other hand, there are other class of solutions [33, 34]

related to inhomogeneous mass functions in the 11-dimensional supergravity, which are

not included in the Q-lattice solution. In particular, some of solutions in [34] have lower

supermetries with more mass functions, which may be related to the N = 1, 2 ImABJM

models in this paper.

In [28, 29], the strongly coupled limit of the vacuum expectation values (vevs) for

chiral primary operators (CPOs) with the deformed ABJM Lagrangian ∆L = m′(x)O1 +

m(x)O2 + · · · [7] was investigated by using the holographic method. It was shown that

some special cases of the gravity description admit the SUSY Q-lattice solutions. For the

weakly coupled limit of the ImABJM models, however, the holographic method is not a

useful tool, while the field theoretic perturbative methods on vacuum solutions can be

alternatives. In this point of view, studying vacuum structure of the ImABJM model itself

would be an interesting subject to understand weak coupling behavior of the theory.

In this paper, we construct lower (N = 1, 2) supersymmetric ImABJM models and gen-

eral vacuum solutions for the N = 3 ImABJM model with periodic mass-functions. The

N = 3 model has only one arbitrary mass-function, whereas N = 1 and N = 2 cases need

two and three arbitrary mass-functions, respectively. We also show that there are two types

of vacuum solutions according to the reference value of periodic mass-functions. Specifi-

cally, all vacuum configurations of scalar fields Y A
0 ’s become diagonal, when

∫ τ
0 dxm(x) = 0

with a spatial period τ . On the other hand, for
∫ τ
0 dxm(x) 6= 0 case, the corresponding

vacuum configurations Y A
0 ’s are proportional to the GRVV matrices [3], which construct

vacuum solutions in the constant mass deformation of the ABJM theory. We also dis-

cuss conformal dimension ∆ = 1, 2 CPOs in terms of classical limit of the vevs and those

gravity duals.

This paper is organized as follows. In section 2, we find a general supersymmetric

condition for the space-dependent mass matrices and N = 6 supersymmetric parameters.

As special cases, we obtain N = 1 and N = 2 supersymmetric ImABJM models. In

section 3, we obtain conditions for supersymmetric vacuum energy configurations. We
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show that the energy of the vacuum configuration, which satisfies δψA = 0 for the variation

of fermion fields, is determined by a boundary term only. In section 4, we construct two

types of general vacuum solutions depending on the shape of periodic mass-functions in

the N = 3 ImABJM model. In section 5, we conclude with a summary and a discussion for

future directions. In appendix A, we derive vacuum equation from the condition δψA = 0.

In appendix B, we display several vacuum solutions for the diagonal and GRVV types.

2 N = 1, 2 ImABJM models

The ABJM action with Uk(N)×U−k(N) gauge group at Chern-Simons level k is given by

S =

∫

d3xLABJM =

∫

d3x (L0 + LCS − Vferm − Vbos) , (2.1)

where

L0 = tr
(

−DµY
†
AD

µY A + iψ†AγµDµψA

)

,

LCS =
k

4π
ǫµνρ tr

(

Aµ∂νAρ +
2i

3
AµAνAρ − Âµ∂νÂρ −

2i

3
ÂµÂνÂρ

)

,

Vferm =
2πi

k
tr
(

Y †
AY

Aψ†BψB − Y AY †
AψBψ

†B + 2Y AY †
BψAψ

†B − 2Y †
AY

Bψ†AψB

+ ǫABCDY †
AψBY

†
CψD − ǫABCDY

Aψ†BY Cψ†D
)

,

Vbos = −
4π2

3k2
tr
(

Y †
AY

AY †
BY

BY †
CY

C + Y AY †
AY

BY †
BY

CY †
C + 4Y †

AY
BY †

CY
AY †

BY
C

− 6Y AY †
BY

BY †
AY

CY †
C

)

. (2.2)

Here ‘tr’ denotes the trace over gauge indices. This ABJM action is invariant under the

N = 6 supersymmetric transformation, δ1 + δ2 + δA,

δ1Y
A = iωABψB, δ1Y

†
A = iψ†BωAB,

δ1ψA = γµωABDµY
B, δ1ψ

†A = −DµY
†
Bω

ABγµ,

δ2ψA =
2π

k
ωAB

(

Y BY †
CY

C − Y CY †
CY

B
)

+
4π

k
ωBCY

BY †
AY

C ,

δ2ψ
†A =

2π

k
ωAB

(

Y †
CY

CY †
B − Y

†
BY

CY †
C

)

− 4π

k
ωBCY †

BY
AY †

C ,

δAAµ = −2π

k

(

Y Aψ†BγµωAB + ωABY †
AγµψB

)

,

δAÂµ = −2π

k

(

ψ†BγµY
AωAB + ωABY †

AγµψB

)

, (2.3)

where the supersymmetric parameters ωAB satisfy the reality condition,

ωAB = −ωBA = (ωAB)
∗ =

1

2
ǫABCDωCD. (2.4)

A noteworthy character of the ABJM theory is that it admits the supersymmetry pre-

serving mass deformation [2, 3]. Assuming the mass parameter depends on one spatial
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coordinate x, the deformed action with this arbitrary mass-function m(x) can preserve

maximally N = 3 supersymmetry [7], the so-called ImABJM model. In this section, we

discuss general procedure extending to various ImABJM models preserving lower super-

symmetry of N = 1, 2, 3.

In order to construct the general ImABJM models, we begin with a deformation of the

supersymmetry transformation rules for spinor fields,

δJψA = M̄B
A (x)ωBCY

C ,

δJψ
†A = M̄A

B (x)ωBCY †
C , (2.5)

where M̄B
A (x)’s are arbitrary space-dependent mass parameters. Application of the varia-

tion δJ to the kinetic term L0 in (2.1) gives

δJL0 = δ1V̂ferm − i
(

∂µM̄
A
B

)

ωBCtr
(

Y †
Cγ

µψA

)

+ i
(

∂µM̄
B
A

)

tr
(

ψ†AγµωBCY
C
)

, (2.6)

where δ1 is defined in (2.3) and V̂ferm is given by

V̂ferm = iM̄B
A tr

(

ψ†AψB

)

. (2.7)

Using the supersymmetric transformation rules (2.3) and the deformed one in (2.6),

we obtain

δtot

(

LABJM − V̂ferm
)

+ δJVferm + (δ2 + δJ)V̂ferm

= −i
(

∂µM̄
A
B

)

ωBCtr
(

Y †
Cγ

µψA

)

+ i
(

∂µM̄
B
A

)

tr
(

ψ†AγµωBCY
C
)

, (2.8)

where δtot = δ1 + δ2 + δA + δJ . In order to complete the supersymmetry transformation

of the deformed ABJM theory in (2.8), we perform the transformation δJ on the mass

deformation Vferm in (2.1) and consequently it turns out that

δJVferm = iµ̄EBtr
(

ψ†BωEFβ
FA
A

)

+ 2iM̄E
A tr

(

ψ†BωEFβ
AF
B

)

− i

2
M̄B

E ǫABCDǫ
EFGHtr

(

ψ†DωGHβ
AC
F

)

+ (c.c.)

= −δ2V̂ferm − δtotV̂flux, (2.9)

where the (c.c.) denotes the complex conjugate of the previous expressions and the β

matrices are defined by

βAB
C ≡ 2π

k

(

Y AY †
CY

B − Y BY †
CY

A
)

,

βABC ≡
2π

k

(

Y †
BY

AY †
C − Y

†
CY

AY †
B

)

. (2.10)

Also, the quartic scalar term V̂flux in (2.9) is given by

V̂flux = −2M̄B
A tr

(

Y †
Bβ

AC
C

)

. (2.11)

In the last equality of (2.9), we imposed the traceless condition of the mass matrix M̄B
A ,

M̄A
A = 0. (2.12)

– 4 –



J
H
E
P
1
2
(
2
0
1
9
)
1
5
3

Plugging (2.9) into (2.8), we obtain

δtot

(

LABJM − V̂ferm − V̂flux
)

+ δJ V̂ferm

= −i
(

∂µM̄
A
B

)

ωBCtr
(

Y †
Cγ

µψA

)

+ i
(

∂µM̄
B
A

)

tr
(

ψ†AγµωBCY
C
)

. (2.13)

We also have the expression for action of δJ to V̂ferm:

δJ V̂ferm = −µ̄BAδtottr(Y †
BY

A), (2.14)

where µ̄BA is another mass matrix satisfying the relations with the mass matrix M̄B
A as

M̄B
A M̄

C
BωCD − µ̄BDωAB = 0. (2.15)

For the case of the constant mass parameter of ∂µM̄
B
A = 0, the right-hand side of (2.13)

vanishes and thus the two conditions (2.12) and (2.15) are automatically satisfied for a

particular choice of mass matrices,

M̄B
A = diag(m,m,−m,−m),

µ̄BA = diag(m2,m2,m2,m2) (2.16)

without any restriction on ωAB. In synthesis, the total Lagrangian,

Lm = LABJM − V̂ferm − V̂flux − V̂mass, (2.17)

including a quadratic scalar mass term,

V̂mass = µ̄BAtr
(

Y †
BY

A
)

, (2.18)

preserves the N = 6 supersymmetry of the original ABJM theory [2, 3]. In what follows,

we take into account the spatially varying mass parameters of ∂µM̄
B
A 6= 0, and check the

amount of residual supersymmetries.

2.1 N = 3 deformation

Suppose that the mass parameter m in (2.16) becomes a mass-function m(x) depending

on a spatial coordinate x in the mABJM theory in (2.17). An intriguing question at the

moment is about the residual supersymmetry from the original N = 6 supersymmetry.

The right-hand side (r.h.s.) of (2.13) is given by

r.h.s. = tr
(

− im′M̄A
BY

†
Cω

BCγ1ψA + im′M̄ B
A ψ†Aγ1ωBCY

C
)

, (2.19)

where m′(x) = dm
dx . Under the following projection of the supersymmetric parameter by γ1,

γ1ωab = −ωab ←→ ωabγ1 = ωab,

γ1ωai = ωai ←→ ωaiγ1 = −ωai, (2.20)
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we obtain

r.h.s. = tr
[

im′
(

Y †
b ω

baψa − Y †
i ω

iaψa + Y †
a ω

aiψi − Y †
j ω

jiψi

)]

+ (c.c.)

= tr
[

m′δtot

(

Y †
a Y

a − Y †
i Y

i
)]

, (2.21)

where a, b = 1, 2 and i, j = 3, 4. Inserting (2.21) into (2.13) with the help of the projec-

tion (2.20), we obtain the N = 3 ImABJM model [7],

δtot

(

LABJM − V̂ferm − V̂flux − V̂mass − V̂J
)

= 0,

where the quadratic mass term is

V̂J = m′tr
(

Y †
a Y

a − Y †
i Y

i
)

. (2.22)

2.2 N = 2 deformation

The N = 3 ImABJM model is derived from the N = 6 mABJM theory in the previous

subsection. Naturally enough, we begin with the N = 4 supersymmetric constant mass

deformation of the ABJM theory [5] and construct the N = 2 Inhomogeneous deformation

in this subsection. With specific mass matrices,

M̄B
A = diag(m1,−m1,m2,−m2),

µ̄BA = diag(m2
2,m

2
2,m

2
1,m

2
1), (2.23)

the supersymmetric conditions (2.12) and (2.15) are satisfied with two nonvanishing super-

symmetric parameters,

ω12 = 0, ω13 6= 0 & ω14 6= 0, (2.24)

where no additional restriction is assigned to the nonvanishing parameters ω13 and ω14.

Therefore, the resultant deformed theory possesses N = 4 supersymmetry for constant

mass parameters of ∂µM̄
B
A = 0, which make the right-hand side of (2.13) vanish.

For mass-functions mi = mi(x) varying along x, the right-hand side of (2.13) is writ-

ten as

r.h.s.=tr
(

−im′
1ψ

†1γ1ω31Y
3−im′

1ψ
†1γ1ω41Y

4+im′
1ψ

†2γ1ω32Y
3+im′

1ψ
†2γ1ω42Y

4

−im′
2ψ

†3γ1ω13Y
1−im′

2ψ
†3γ1ω23Y

2+im′
2ψ

†4γ1ω14Y
1+im′

2ψ
†4γ1ω24Y

2
)

. (2.25)

Imposing the projection conditions,

γ1ω13 = ω13, γ1ω14 = −ω14, (2.26)

one can rewrite the r.h.s. as

r.h.s. = tr
[

−m′
1δtot(Y

†
3 Y

3) +m′
1δtot(Y

†
4 Y

4)−m′
2δtot(Y

†
1 Y

1) +m′
2δtot(Y

†
2 Y

2)
]

. (2.27)

Insertion of (2.27) into (2.13) gives

δtotLN=2 = 0, (2.28)
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where the terms are

LN=2 = LABJM − V̂ferm − V̂flux − V̂mass − V̂J ,
V̂J = tr

[

m′
1(Y

†
3 Y

3 − Y †
4 Y

4) +m′
2(Y

†
1 Y

1 − Y †
2 Y

2)
]

. (2.29)

Due to the projections in (2.26), the supersymmetry of the current ImABJMmodel becomes

N = 2, which includes two arbitrary mass-functions.

2.3 N = 1 deformation

Above all we recall the N = 2 mass-deformed ABJM theory with a constant mass param-

eter [5]. When the following mass matrices,

M̄B
A = diag(m1,m2,m3,m4) with a constraint m1 +m2 +m3 +m4 = 0,

µ̄BA = diag(m2
2,m

2
1,m

2
4,m

2
3), (2.30)

are chosen, the conditions (2.12) and (2.15) are satisfied only under the conditions of

supersymmetric parameters,

ω12 6= 0, ω13 = ω14 = 0, (2.31)

where the nonvanishing parameter ω12 has no further restriction. For the constant mass

parameters (2.30), the N = 2 supersymmetry is preserved in this mass-deformed ABJM

theory, as shown in (2.13). Lower supersymmetric mass deformations and their RG flows

to IR limit were also discussed in [35].

Now, we turn on coordinate dependence to the mass parameters mi’s. Then the right-

hand side of (2.13) becomes

r.h.s. = tr
(

im′
1ψ

†1γ1ω12Y
2 + im′

2ψ
†2γ1ω21Y

1

+ im′
3ψ

†3γ1ω34Y
4 + im′

4ψ
†4γ1ω43Y

3
)

+ (c.c.) (2.32)

with a constraintm′
1+m

′
2+m

′
3+m

′
4 = 0. Under the following projection of supersymmetric

parameters:

γ1ω12 = −ω12, γ1ω34 = −ω34, (2.33)

we obtain

r.h.s. = tr
[

m′
1δ(Y

†
2 Y

2) +m′
2δ(Y

†
1 Y

1) +m′
3δ(Y

†
4 Y

4) +m′
4δ(Y

†
3 Y

3)
]

. (2.34)

Insertion of (2.34) into (2.13) results in

δtotLN=1 = 0, (2.35)

where the Lagrangian is given by

LN=1 = LABJM − V̂ferm − V̂flux − V̂mass − V̂J . (2.36)
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The second and third terms are in (2.11), the fourth term is in (2.18), and the last term is

V̂J = tr
[

m′
1(Y

†
2 Y

2 − Y †
3 Y

3) +m′
2(Y

†
1 Y

1 − Y †
3 Y

3) +m′
3(Y

†
4 Y

4 − Y †
3 Y

3)
]

. (2.37)

Due to the projection for the nonvanishing supersymmetric parameters in (2.33), the de-

formed Lagrangian in (2.36) preserves the N = 1 supersymmetry involving three arbitrary

mass-functions.

In the remaining part of this paper, we focus on the N = 3 ImABJM model and

investigate some aspects of it, such as discussion on gravity duals and vacuum solutions

for some specific mass-functions.

3 Primary conditions for vacuum solutions

Recently, gravity duals to the ImABJM theory with spatially modulated mass-functions

have been studied using the AdS/CFT correspondence [28, 29]. This approach allows to

find various physical quantities in the strongly coupled ImABJM theory with the large N

limit. However, the weak-coupling limit is also interesting to understand vacuum structures

of the theory and to compare them with those in the strong coupling limit. Therefore we

try to obtain general vacuum equations and boundary conditions for supersymmetric vacua

in the N = 3 ImABJM model. As a first attempt, we consider supersymmetric configura-

tion without central extension. Assuming there is no central charge, the supersymmetric

configurations satisfy the trivial energy condition, i.e, Evac = 0. In this paper we focus

on this case.1 For asymptotically constant mass-functions, we discuss the boundary con-

dition for vacuum solutions connecting two different vacua denoted by GRVV matrices [3]

in the mABJM theory.2 The periodic configurations will be taken into account in the next

section.

3.1 Deformed operators and energy-momentum tensors

As we explained in the subsection 2.1, the N = 3 ImABJM theory can be obtained by the

following deformation coming from inhomogeneous mass sources:

∆L = m′(x)O1 +m(x)O2 +m(x)2O3 , (3.1)

where

O1 ≡ O∆=1 =MB
A tr

(

Y AY †
B

)

,

O2 ≡ O∆=2 =MB
A tr

(

ψ†AψB +
8π

k
Y CY †

[CY
AY †

B]

)

,

O3 ≡ OK = tr
(

Y AY †
A

)

. (3.2)

1Since more careful study is needed for nontrivial vacua with nonvanishing central charges, which give

rise to negative energy solutions with Evac < 0. We will clarify this issue in our upcoming project [36].
2These matrix solutions were also obtained in [37] to describe the M2-M5 bound state in the

ABJM theory.
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HereMB
A = diag(1, 1,−1,−1) and the first two operators are chiral primary operators. Also

the third operator OK is the Konishi operator, which is not protected by supersymmetry

and large N limit. By this reason, this operator does not play an important role in the

dual gravity solution. But it is still worth considering in the weak coupling limit. Thus

we will provide the classical vevs of these operators using the general vacuum solutions in

the next section. Some of them may be compared to the same quantities in the strong

coupling limit.

Another important quantity in this system is the energy-momentum tensor. Since the

fermionic part does not have the vacuum expectation value, we write down only the bosonic

part of the energy-momentum tensor as follows:

Tµν = tr
(

DµY †
AD

νY A +DνY †
AD

µY A
)

− ηµν
[

tr
(

DρY †
ADρY

A
)

+ V̂bos

]

, (3.3)

where

V̂bos = Vbos + V̂flux + V̂mass + V̂J . (3.4)

The Vbos is defined in (2.1) and the other deformed potentials for the N = 3 case are

given by

V̂flux = −2mMB
A tr

(

Y †
C β

AC
B

)

,

V̂mass = m2tr
(

Y †
AY

A
)

,

V̂J = m′M B
A tr

(

Y †
BY

A
)

. (3.5)

3.2 Vacuum energy

Due to the inhomogeneity, the energy density can be a spatially dependent function. How-

ever, the total energy should vanishes to preserve supersymmetry. In order to construct the

vacuum equations and the corresponding boundary conditions, we read the total energy of

the bosonic sector from the energy-momentum tensor in (3.3),

E =

∫

d2x
[

tr
(

|D0Y
A|2 + |DiY

A|2
)

+ V̂bos

]

, (3.6)

where the potential V̂bos in (3.4) can be rearranged in the following form [38],

V̂bos =
2

3
tr
∣

∣GBC
A

∣

∣

2
+ V̂J (3.7)

with

GBC
A = βBC

A + δ
[B
A β

C]D
D +mM

[B
A Y C]. (3.8)

Here we use the notation |O|2 ≡ O†O for simplicity. For the constant mass parameter

(∂µm = 0), the vacuum configuration in terms of GRVV matrices [3] are given by homo-

geneous nonvanishing scalar fields together with vanishing fermion and gauge fields. Once
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an inhomogeneous mass deformation is turned on along the x-direction, the vacuum con-

figurations with the scalar fields also depend on the x-direction. To reflect this, we rewrite

the energy in (3.6) as

Evac =

∫

d2x
(

tr|Y A′ |2 + V̂bos

)

=

∫

d2x

[

tr

(

|Y A′ |2 + 2

3
|GBC

A |2
)

+ V̂J

]

. (3.9)

Recall that the supersymmetry variation of fermion fields should vanish for a super-

symmetric vacuum, i.e.,

δtotψA = 0. (3.10)

Since we are interested in vacuum configurations, the gauge fields vanish and the scalar

fields depend on the x-coordinate, Y A = Y A(x),

δtotψA = γµωABDµY
B + ωBCG

BC
A

=
(

δ
[B
A Y C]′sBC +GBC

A

)

ωBC . (3.11)

In the above (3.11), a useful notation is employed for describing the projection (2.20)

for the N = 3 ImABJM theory,

γ1ωAB = sAB ωAB, (sab = sij = −1, sai = sia = 1), (3.12)

where a, b = 1, 2 and i, j = 3, 4, and the repeated indices in the right-hand side are not

summed. Manipulating the absolute square of the bosonic part in (3.11), we obtain the

following expression including a total derivative term:

|δ[BA Y C]′sBC +GBC
A |2

=
3

2

[

|Y A′ |2 + V̂bos −
(1

2
βaca Y

†
c +

1

2
βiki Y

†
k −

1

3
βici Y

†
c +mM B

A Y †
BY

A
)′
]

. (3.13)

Detailed derivation of (3.13) is given in appendix A. Together with the relation (3.13), the

energy (3.9) for the vacuum configuration becomes

Evac =

∫

d2x

(

2

3
tr
∣

∣δ
[B
A Y C]′sBC +GBC

A

∣

∣

2
+K′

)

, (3.14)

where the total derivative term is

K ≡ tr

(

1

2
βaca Y

†
c +

1

2
βiki Y

†
k −

1

3
βici Y

†
c +mM B

A Y †
BY

A

)

. (3.15)

3.3 Conditions for supersymmetric vacua

The Hamiltonian H is represented as the anti-commutator of the supercharges in the

supersymmetry algebra without central charges. Correspondingly, the vacuum expectation

value of Hamiltonian should vanish for any supersymmetric vacuum,

Evac = 〈H〉 = 0. (3.16)
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Furthermore, the supersymmetry variation of the fermion fields also vanishes, as discussed

in (3.10). Combining (3.11) and (3.14), the supersymmetric condition (3.10) and (3.16)

leads to the two relations,

(i) δ
[B
A Y C]′ + sBCGBC

A = 0, (3.17)

(ii)

∫ xR

xL

dxK′ = 0, (3.18)

where xL and xR denote the asymptotic boundaries along the x-direction. From now on,

we call the first relation (3.17) the vacuum equation, which will be analyzed in details in

the next section. In addition the second relation (3.18) is regarded as a constraint on the

boundary condition for the x-direction.

There are two types of representative inhomogeneous mass-functions. The first type

consists of periodic mass-functions, whose gravity dual was already studied in [28, 29].

In this type, (3.18) is trivially satisfied since one may take (xR − xL) as an integer times

the period of the mass-functions. So only the vacuum equation (3.17) remains to get the

supesymmetric vacua. On the other hand, the second type we consider is the class of

mass-functions which are asymptotically constant, i.e.,

lim
xL→−∞

m(xL) = mL, lim
xR→∞

m(xR) = mR, (3.19)

where mL and mR are arbitrary constants. As we know, there are many Higgs vacua de-

noted by GRVV matrices [3] in the mABJM theory. This implies the existence of vacuum

solutions, which connect a supersymmetric vacuum [39] parametrized by mL at x → −∞
and another vacuum parametrized by mR at x→∞, if there are no central charges. How-

ever, in the case that the values of K (3.15) for two vacua are different, i.e., Kx=−∞ 6= Kx=∞,

the condition (3.18) is not satisfied and then the corresponding configurations cannot be

vacuum solutions. In order to construct vacuum solutions of the second type, finding

supersymmetric Higgs vacua satisfying the condition (3.18) is an important primary check.

Now, let us find general boundary conditions for the case of asymptotically constant

mass-functions. As we will see the vacuum equations for the N = 3 ImABJM theory

in (4.1)–(4.3) in section 4, the vacuum equations for a constant mass parameter are given by

βcac +mY a = 0,

βkik −mY i = 0,

βjai = βbia = βabi = βija = 0. (3.20)

With the help of (3.20), the quantity K’s defined in (3.15) have the following asymptotic

values in terms of (3.19):

K|x→xi
=
mi

2
tr
(

M B
A Y †

BY
A
)

vac
, (3.21)

where i = L,R with xL = −∞ and xR =∞. To satisfy the condition (3.18), the values of

K’s for both asymptotic regions should be identified as

K|x→−∞ = K|x→∞. (3.22)
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The quantity tr
(

M B
A Y †

BY
A
)

vac
in the right-hand-side of (3.21) was calculated [40, 41] for

all possible supersymmetric vacua for given k and N in the mABJM theory and it was

generalized to the mABJ theory with discrete torsions [42]. To write down the quantity

K|x→xi
, we briefly review the supersymmetric vacua of the mABJM theory.

The general solutions of the vacuum equations in (3.20) were constructed using GRVV

matrices [3]. For given k and N , there are many possible vacuum solutions represented by

direct sums of two types of irreducible n × (n + 1) GRVV matirces M(n)
α (α = 1, 2) and

their Hermitian conjugates, M̄(n)
α ,

M(n)
1 =

















√
n 0√

n− 1 0
. . .

. . .√
2 0

1 0

















, M(n)
2 =

















0 1

0
√
2

. . .
. . .

0
√
n− 1

0
√
n

















, (3.23)

where n = 0, 1, · · · , N − 1. Then the vacuum solutions satisfying (3.20) are given by

Y a|vac =
√

mk

2π























M(n1)
a

. . .

M(ni)
a

0(ni+1+1)×ni+1

. . .

0(nf+1)×nf























,

Y i|vac =
√

mk

2π























0n1×(n1+1)

. . .

0ni×(ni+1)

M̄(ni+1)
a

. . .

M̄(nf )
a























. (3.24)

The solution contains Nn number of the typeM(n)
α and N ′

n number of the type M̄(n)
α , where

Nn andN ′
n are referred as occupation numbers [39, 43]. These numbers, Nn andNn, classify

all possible supersymmetric vacua in the mABJM theory. These vacua have one-to-one

correspondence with the LLM geometry [6] with Zk orbifold in 11-dimensional supergravity.

For a given supersymmetric vacuum with a set of occupation numbers {Nn, N
′
n}, we

have [40–42],

tr
(

M B
A Y †

BY
A
)

vac
=
mk

2π

∞
∑

n=0

[

n(n+ 1)(Nn −N ′
n)
]

. (3.25)

In general, vacuum solutions of the N = 3 ImABJM theory with asymptotically constant

masses,mL andmR, can connect different supersymmetric vacua with occupation numbers,

– 12 –



J
H
E
P
1
2
(
2
0
1
9
)
1
5
3

{N (L)
n , N ′(L)

n } and {N (R)
n , N ′(R)

n }, respectively. In this case, the boundary condition (3.18)

can be rewritten in terms of (3.25) as

m2
L

∞
∑

n=0

[

n(n+ 1)(N (L)
n −N ′(L)

n )
]

= m2
R

∞
∑

n=0

[

n(n+ 1)(N (R)
n −N ′(R)

n )
]

. (3.26)

For Nn = N ′
n cases known as the symmetric vacuum solutions of the N = 6 mABJM

theory, the K’s in asymptotic limits are vanishing. Therefore, if there is no central charge,

vacuum solutions in the N = 3 ImABJM theory, which connect symmetric vacua of the

mABJM theory, trivially satisfy the constraint (3.18). For general Nn and N ′
n, one need

more investigations.

4 Periodic vacuum solutions for N = 3 deformation

In this section, we consider the N = 3 deformation again and investigate the general

vacuum structure for spatially modulated mass-functions. To do that, we try to solve the

vacuum equation (3.17). More explicit form of the equation is as follows:

Y a′ − βcac −mY a = 0, (4.1)

Y i′ − βkik +mY i = 0, (4.2)

βjai = βbia = βabi = βija = 0, for any a, b = 1, 2 and i, j = 3, 4, (4.3)

where m(x) is a periodic function. Due to the periodic behavior, the boundary term (3.18)

vanishes always and hence the energy of the solution satisfying (3.17) is guaranteed to be

zero. So after solving (4.1) and (4.2), there is only one thing to check if the solutions is

regular everywhere.

4.1 m(x) = m1 sin qx case

Since the solution space could depend on the mass-function, we would like to discuss some

representative examples. Let us start with a mass-function,

m(x) = m1 sin qx, (4.4)

where m1 > 0 and q = 2πn/(xR−xL) for some integer n. For simplicity, we find a solution

with Y a = 0. We will show that this example can be regarded as a periodic modulation of

the (massless) ABJM theory. It is useful to define a new variable ξ(x) by

ξ(x) =

∫ x

e−2
∫ x′ m(x′′) dx′′

dx′ = c

∫ x

e
2m1
q

cos qx′

dx′, (4.5)

where c is an integration constant. Then using

Y i = e−
∫

mdx Ỹ i(x), (4.6)

(4.2) reduces to
d

dξ
Ỹ i − β̃kik = 0, (4.7)
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where β̃ijk is given by (2.10) with Ỹ i instead of Y i. This equation is same with the vacuum

equation of the pure ABJM theory without mass deformation except for the newly intro-

duced coordinate ξ. Since Y i is periodic, so is Ỹ i. In the pure ABJM theory, we know

that the only regular periodic solutions satisfying the vacuum equation (4.7) are constant

diagonal matrices, namely,

Ỹ i
D = diag(yi1, y

i
2, . . . , y

i
N ). (4.8)

Therefore, in the case with (4.4), the vacuum structure is essentially the same as that of

the ABJM theory without mass deformation. The only difference is the exponential factor

in (4.6).

4.2 m(x) = m0 + m1 sin qx case

As a next example, we add a constant mass m0 to (4.4),

m(x) = m0 +m1 sin qx (4.9)

with m0 > m1 > 0. This case may be considered as a perturbative modulation with a small

parameter m1 to the mABJM theory with a constant mass m0. From the lesson in the

previous example, it can be expected that the solution structure is not much different from

that of the mABJM theory. In addition we consider Y a = 0 again to make the discussion

simpler. Instead (4.5), we introduce another positive definite function ξ(x) satisfying

dξ

dx
= e2m0ξ−2

∫

mdx. (4.10)

Then by integration, we obtain

e−2m0ξ = −2m0c

∫ x

e
−2

(

m0x′−
m1
q

cos qx′

)

dx′, (4.11)

where we used the relation e−2
∫ x dx′m(x′) = c e

−2
(

m0x−
m1
q

cos qx
)

with an integration con-

stant c. Plugging (4.11) into (4.10) and taking the inverse, we obtain

dx

dξ
= 2m0

∫ ∞

x
e
−2m0(x′−x)+

2m1
q

(cos qx′−cos qx)
dx′. (4.12)

Here we considered the integration range (x,∞) to guarantee ξ = x up to a constant

translation for m1 = 0 case. From (4.12), one can easily show that dξ
dx is a periodic function

of x with period 2π/q by changing the integration variable as x′ → x′ + 2π
q . Thus (4.10)

implies that ξ is nothing but x modulated by a periodic function of O (m1). Like (4.6) in

the previous example, we make use of the following redefinition of the scalar field:

Y i =

(

dξ

dx

)1/2

Ỹ i = em0ξ−
∫

mdx Ỹ i. (4.13)

Then (4.2) becomes
d

dξ
Ỹ i − β̃kik +m0Ỹ

i = 0. (4.14)
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This equation is the same as the vacuum equation in the mABJM theory with a constant

mass m0. Now the argument goes exactly the same as that of the previous example. Since

Y i is periodic, so is Ỹ i. For the constant mass case, we know that the only regular periodic

solutions satisfying the vacuum equation (4.14) are GRVV constant solutions (3.24), i.e.,
d
dξ Ỹ

i = 0. Therefore, we conclude that vacuum solutions for this mass-function are given

by GRVV constant matrices multiplied by the exponential factor in (4.13).

4.3 General structure of periodic vacuum solutions

Now we discuss the general vacuum solutions with nonvanishing Y a and Y i for generic

periodic mass-functions,

m(x) = m0 + m̂(x) , (4.15)

where m0 is a positive constant and m̂(x) is a periodic function with a period τ satisfying
∫ τ
0 m̂(x) = 0. Thus m0 denotes the reference value of the mass-function m(x). In the

previous subsection, we obtained the vacuum solutions for Y i. For the vacuum solution of

Y a satisfying the vacuum equation in (4.1), we simply replace m by −m for Y i in (4.13).

In order to satisfy (4.3) for the nonvanishing Y a and Y i case, one needs to rearrange block-

diagonal matrices as given in (3.24) for the constant mass deformation. Specific details are

described below.

Similarly to (4.6), we introduce Ỹ A as,

Y a = e−m0(η−x)+Λ(x) Ỹ a, Y i = em0(ξ−x)−Λ(x) Ỹ i, (4.16)

where Λ(x) ≡
∫ x

m̂(x′)dx′ and we define monotonically increasing functions, η and ξ,

satisfying the following differential equations:

dη

dx
= e−2m0(η−x)+2Λ(x),

dξ

dx
= e2m0(ξ−x)−2Λ(x). (4.17)

Inserting (4.16) into the vacuum equations in (4.1) and (4.2), we obtain the BPS equations

for Ỹ A as

d

dη
Ỹ a − β̃cac −m0Ỹ

a = 0,
d

dξ
Ỹ i − β̃kik +m0Ỹ

i = 0, (4.18)

where β̃AB
C is given by (2.10) with Ỹ A replacing Y A. From the relations in (4.16), we notice

that since Y A’s are periodic, so are Ỹ A’s if dη
dx and dξ

dx are periodic. In order to show the

periodicity of dη
dx and dξ

dx , we use the same method described in the previous subsection.

From (4.17), one can find e2m0η and e2m0ξ by solving the differential equations. Plugging

the expressions into (4.17) again, then we obtain

dx

dη
= 2m0

∫ x

−∞
e2m0(x′−x)−2

(

Λ(x)−Λ(x′)
)

dx′,

dx

dξ
= 2m0

∫ ∞

x
e−2m0(x′−x)+2

(

Λ(x)−Λ(x′)
)

dx′. (4.19)
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When m̂ = 0, one expect that the BPS equations in (4.18) reduce to those replaced by

Ỹ A → Y A and η, ξ → x. This is guaranteed by the integration range in (4.19). Also one

can easily check that dη
dx and dξ

dx are periodic functions using Λ(x) = Λ(x+ τ) and changing

the integration variable from x′ to x′′ = x′ + τ .

By using the functions η, ξ and the field redefinition, we can find the general solutions

for arbitrary periodic mass-functions. As we argued in the specific example in the previous

section, the only regular periodic solutions satisfying the vacuum equations (4.18) are

GRVV solutions (3.24), which implies d
dη Ỹ

a = 0 and d
dξ Ỹ

i = 0. Therefore, the explicit

vacuum solutions for Ỹ A in (4.18) with constraints (4.3) with Y A replaced by Ỹ A are

exactly same with those in (3.24). From these constant vacuum solutions, Y a and Y i

are read by attaching different exponential factors in (4.16). We write down the general

solutions for the nonvanishing m0 case as follows:

Y a = Σ+(x) Ỹ
a
m0

=

(

dx

dη

)−1/2

Ỹ a
m0
,

Y i = Σ−(x) Ỹ
i
m0

=

(

dx

dξ

)−1/2

Ỹ i
m0
, (4.20)

where dx
dη and dx

dξ are given in (4.19). Here Ȳ a
m0

and Ȳ i
m0

are the GRVV matrices, whose

explicit form is given in (3.24) with replacing m with m0. Also, β
ja
i = βbia = βabi = βija = 0

automatically.

Especially for m0 = 0 case, one has to start from (4.16) and (4.17), i.e.,

Y a = eΛ(x) Ỹ a, Y i = e−Λ(x) Ỹ i. (4.21)

Then we obtain

d

dη
Ỹ a − β̃cac = 0,

d

dξ
Ỹ i − β̃kik = 0, (4.22)

where η and ξ are new coordinates given by

η(x) =

∫ x

e2Λ(x
′)dx′, ξ(x) =

∫ x

e−2Λ(x′)dx′. (4.23)

As we discussed in the subsection 4.1, Ỹ a and Ỹ i are periodic functions and then the

regular solutions should satisfy β̃cac = 0 and β̃kik = 0. Therefore, we can find the general

solutions as

Y a = eΛ(x
′)Ỹ a

D , Y i = e−Λ(x′)Ỹ i
D , (4.24)

where Ỹ a
D and Ỹ i

D are diagonal matrices given in (4.8).

4.4 Classical limit of vevs for general periodic vacuum solutions

The general periodic vacuum solutions (4.24) and (4.16) are induced by periodic mass

deformations, which correspond to a spatial coordinate dependent source to the pure ABJM

theory and mABJM theory, respectively. These sources cause nonvanishing expectation
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values of gauge invariant operators. It would be interesting to evaluate those vevs for the

spatially modulated mass deformations. Holographic approach for the calculations of the

vevs was investigated in [28, 29]. We limit our consideration to classical vacua only in the

N = 3 ImABJM model in this work.

First, we discuss the m0 = 0 case with the corresponding solution (4.24). Plugging

the vacuum solution into (3.2), the classical vevs of gauge invariant operators are obtained

as follows,

〈O∆=1〉0 = e2Λ(x)tr
(

Ỹ a
DỸ

†
aD

)

− e−2Λ(x)tr
(

Ỹ i
DỸ

†
iD

)

,

〈O∆=2〉0 = 0,

〈OK〉0 = e2Λ(x)tr
(

Ỹ a
DỸ

†
aD

)

+ e−2Λ(x)tr
(

Ỹ i
DỸ

†
iD

)

, (4.25)

where 〈O〉0 denotes the classical vev for an operator O. Here we notice that the mass de-

formation with vanishing m0 cannot generate 〈O∆=2〉0, since βABC |Y=Y0
’s with the vacuum

solution (4.24) are always vanishing.

In the next, we discuss the m0 6= 0 case. This case gives us more nontrivial classical

vevs for the gauge invariant operators. Plugging the solution (4.16) into the operator

expressions (3.2), the classical vevs become

〈O∆=1〉0 = (Σ+)
2 tr

(

Ỹ a
m0
Ỹ †
m0 a

)

− (Σ−)
2tr

(

Ỹ i
m0
Ỹ †
m0 i

)

,

〈O∆=2〉0 = −4m0

[

(Σ+)
4tr

(

Ỹ a
m0
Ỹ †
m0 a

)

+ (Σ−)
4tr

(

Ỹ i
m0
Ỹ †
m0 i

)]

, (4.26)

〈OK〉0 = (Σ+)
2tr

(

Ỹ a
m0
Ỹ †
m0 a

)

+ (Σ−)
2tr

(

Ỹ i
m0
Ỹ †
m0 i

)

,

where Σ±(x) is defined in (4.20). In addition, the traces of the scalar vacuum fields are

given by

tr
(

Ỹ a
m0
Ỹ †
m0 a

)

=
m0k

2π

∞
∑

n=0

n(n+ 1)Nn, (4.27)

tr
(

Ỹ i
m0
Ỹ †
m0 i

)

=
m0k

2π

∞
∑

n=0

n(n+ 1)N ′
n. (4.28)

For the classical vevs in (4.26), we are considering a finite N in the field theory side. In

order to compare these vevs with those in the corresponding gravity theory, which are

expected to match the vevs in the strong coupling limit, one has to take into account

the serious quantum corrections. However, for some chiral primary operators, for instance

O∆=1,2 in (3.2), the classical vevs in the mABJM theory match the holographic vevs from

the gravity theory through the large N limit [42]. This is a quite remarkable properties of

vevs of the CPOs between weak and strong coupling limits of the mABJM theory.

Now let us consider classical vevs of regular configuration in the representative exam-

ples. As a first example, we consider m(x) = m1 sin qx analyzed in the subsection 4.1,

where m1 > 0 and q = 2πn/(xR − xL) for some integer n. The solution is given by (4.24).

The explicit form of the solution is written as

Y a = cae
−m1

q
cos qx

Ỹ a
D, Y i = cie

−m1
q

cos qx
Ỹ i
D, (4.29)
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where ca and ci are arbitrary constants. When we take very small value of m1(≪ q) with
∑2

a=1

(

ca trỸ
a
DỸ

†
Da

)

=
∑4

i=3

(

ci trỸ
i
DỸ

†
D i

)

= −c̃, the classical vevs become

〈O∆=1〉0 ∼ c̃ m1 cos qx , 〈O∆=2〉0 = 0 , 〈OK〉0 ∼ −2c̃. (4.30)

Even though we are working with classical configurations, this limit is similar to the gravity

dual of a spatially modulated deformation of the ABJM theory, except for the dimension 2

operator in [28, 29]. On the other hand, such a mismatch is quite natural because one need

to take quantum corrections with the large N limit to compare the operator expectation

values in the both sides. So more complete analysis on the comparison should be considered.

We leave the study as a future work [36].

Also, there is another type of deformation which has a nonvanishing reference value

of the mass-function. One may take the mass-function as m(x) = m0 +m1 sin qx, which

was discussed in the subsection 4.2. For nonvanishing m0, the corresponding solutions are

given by (4.20). We consider the spatial modulation as a perturbation around the GRVV

vacua of the constant mass deformation. To do that, we take a limit as |m1/m0| ≪ 1.

Then we obtain up to leading order of m1 as

Σ+(x) =

(

dx

dη

)−1/2

∼ 1− q cos qx− 2m0 sin qx

4m2
0 + q2

m1,

Σ−(x) =

(

dx

dξ

)−1/2

∼ 1 +
q cos qx+ 2m0 sin qx

4m2
0 + q2

m1. (4.31)

Now we choose a vacuum which satisfies tr
(

Ỹ a
m0
Ỹ †
m0 a

)

= tr
(

Ỹ i
m0
Ỹ †
m0 i

)

= m0c̃
2, then the

classical vevs become

〈O∆=1〉0 ∼ −4m0c̃
2 q cos qx

4m2
0 + q2

m1,

〈O∆=2〉0 ∼ −8m2
0c̃

2

(

1 +
8m0 sin qx

4m2
0 + q2

m1

)

, (4.32)

〈OK〉0 ∼ 2m0c̃
2

(

1 +
4m0 sin qx

4m2
0 + q2

m1

)

.

Unlike the diagonal case, the dimension 2 operator has nontrivial value. We also obtain var-

ious vacuum configurations induced by spatially modulated mass deformations, including

singular mass configurations in appendix B.

5 Conclusion

A dual gravity solution of the N = 3 ImABJM model with a spatially modulated mass-

functions is conjectured as the SUSY Q-lattice solution in 11-dimensional supergravity.

Using the holographic method, some features of strongly coupled limit of the ImABJM

model were analyzed in [28, 29]. On the other hand, weakly coupled limit is another inter-

esting research area. In this paper, we have investigated various aspects of the ImABJM

models, which are useful in analyzing the weakly coupled limit of the models. Our result
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is composed of the construction of the N = 1, 2 supersymmetric ImABJM models and

general vacuum solutions for periodic mass-functions in the N = 3 model.

We found a general supersymmetric condition for mass matrices with one spatial co-

ordinate dependence. As special choices of the mass matrices and the supersymmetric

parameters, we obtained the N = 1 and N = 2 ImABJM models, where one needs three

and two arbitrary mass-functions, respectively. In addition, for the N = 3 model, we dis-

cussed the supersymmetric vacuum energy conditions and constructed the general vacuum

solutions for periodic mass-functions. We showed that there are two types of vacuum solu-

tions. For
∫ τ
0 dxm(x) = 0 case, vacuum solutions for scalar fields become diagonal, while

for
∫ τ
0 dxm(x) 6= 0 case, those are proportional to the GRVV matrices. We constructed

vevs of CPOs with conformal dimensions ∆ = 1, 2 and discussed corresponding gravity

duals. As examples, we showed various vacuum solutions in appendix B.

Since the ImABJM models allow arbitrary mass-functions, one can also try to obtain

vacuum solutions for non-periodic mass-functions. For these cases, it seems that the ener-

gies of the vacuum solutions satisfying (3.17) and (3.18) are non-vanishing. This property

may be understood by analyzing the supersymmetry algebra of the ImABJM models [36].

As another future direction, it would be interesting to study gravity duals of the N = 1, 2

ImABJM models, since those include 3 and 2 arbitrary mass-functions, respectively. We

expect such an arbitrariness is helpful in implementing more realistic applications.
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A Derivation of (3.13)

We consider the quantity in the supersymmetric variation of the fermion field in (3.11).

Except for the supersymmetric parameter ωAB in (3.11), the absolute square of the bosonic

part is written as

|δ[BA Y C]′ + sBCGBC
A |2 = |δ[BA Y C]′ |2 + |GBC

A |2 + sBCGBC
A (δ

[B
A Y C]′)† + (c.c.). (A.1)

Using the relations,

|δ[BA Y C]′ |2 = δ
[B
A Y C]′δA[BY

†′

C] =
3

2
|Y A′ |2,

|GBC
A |2 =

3

2

(

V̂bos − V̂J
)

, (A.2)

we obtain

|Y A′ |2 + Vbos − VJ =
2

3

[

|δ[BA Y C]′ + sBCGBC
A |2 − sBCGBC

A (δ
[B
A Y C]′)† + (c.c.)

]

. (A.3)
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We also get the relation

sBCGBC
A (δ

[B
A Y C]′)† = −s

[

(

Gac
a −Gic

i

)

Y †′

c −
(

Gak
a −Gik

i

)

Y †′

k

]

, (A.4)

where we set the quantity sAB = sAB to encode the projection (2.20) as

sbc = sjk ≡ −1 ≡ −s, sbi = sja ≡ +1 ≡ +s. (A.5)

Here we introduced the letter s for calculational convenience, which will be set as s = 1

later. Using the definition (3.8), we rewrite (A.4) as

sBCGBC
A (δ

[B
A Y C]′)† = −3s

2

[(

βaca −
1

3
βici +mY c

)

Y †′

c −
(

1

3
βaka − βiki +mY k

)

Y †′

k

]

.

(A.6)

From (A.3), (A.6), VJ = m′M B
A , Y †

BY
A, and setting s = 1, we finally obtain

|Y A′ |2 + Vbos =
2

3
|δ[BA Y C]′ + sBCGBC

A |2

+

(

1

2
βaca Y

†
c +

1

2
βiki Y

†
k −

1

3
βici Y

†
c +mM B

A Y †
BY

A

)′

. (A.7)

B Various vacuum configurations with periodic mass-functions

This section provides various examples of the general vacuum solution obtained in section 4.

We take into account singular mass-functions as well as regular ones. From the previous

analysis, we found that there exist two classes of solutions, which are given by (4.20)

and (4.24). In order to reflect such classification, we use following ansatz to describe

explicit examples,

Y a = P (x)Ỹ a
D , Y a = Q(x)Ỹ i

D : Diagonal Type, (B.1)

Y a = P (x)Ỹ a
m̃=1 , Y i = Q(x)Ỹ i

m̃=1 : GRVV Type , (B.2)

where we took the scaled GRVV matrices Ỹ a
m̃=1 and Ỹ i

m̃=1 for convenience. They are

given by (3.24) with taking m̃ ≡
√

mk
2π = 1, so P (x) and Q(x) become dimensionful

functions. Together with this ansatz, the BPS equations (4.1) and (4.2) can be written in

the following form,

P ′(x)−m(x)P (x)= 0, Q′(x)+m(x)Q(x)= 0 :Diagonal Type, (B.3)

P ′(x)+P (x)3−m(x)P (x)= 0, Q′(x)−Q(x)3+m(x)Q(x)= 0 :GRVV Type. (B.4)

As we expected from section 4, the diagonal type equation (B.3) implies
∫ τ
0 m(x′)dx′ =

0 for periodic P (x) and Q(x). Also one can notice that P (x)Q(x) must be constant by

plugging m(x) into the other equation. In addition, (B.3) tells how the regularity of

mass-function is related to the scalar configurations. If P (x) or 1/Q(x) vanishes, the

corresponding mass-function must be a singular function. Therefore, some regular scalar
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(b)

Figure 1. Diagonal Types with m(x) = q sin(qx)

2(C1+sin2( qx

2 ))
.

field configurations can exist even for singular mass configurations. As a first example, if

we choose a mass-function with m(x) = q sin(qx)

2(C1+sin2( qx

2 ))
, then the corresponding P (x) and

Q(x) are given as the following three cases:

Case 1 : P (x) =
(

C1 + sin2
qx

2

)

, Q(x) = 0, (B.5)

Case 2 : P (x) = 0, Q(x) =
(

C1 + sin2
qx

2

)−1
, (B.6)

Case 3 : P (x) = 1/Q(x) =
(

C1 + sin2
qx

2

)

, (B.7)

where C1 is a constant which controls singular behavior of the scalar fields and the mass-

function. When C1 is very large, the mass-function becomes m(x) ∼ q
2C1

sin qx, this limit

is comparable to the case of (4.29). The classical vevs of the dimension 1 operators are

given as follows:

Case 1 : O∆=1 =
(

C1 + sin2
qx

2

)2
tr
(

Ỹ a
DỸ

†
Da

)

, (B.8)

Case 2 : O∆=1 = −
(

C1 + sin2
qx

2

)−2
tr
(

Ỹ i
DỸ

†
D i

)

, (B.9)

Case 3 : O∆=1 =
(

C1 + sin2
qx

2

)2
tr
(

Ỹ a
DỸ

†
Da

)

−
(

C1 + sin2
qx

2

)−2
tr
(

Ỹ i
DỸ

†
D i

)

, (B.10)

while O∆=2 vanishes identically. In general, the mass-function or the scalar fields becomes

singular, when −1 < C1 < 0. Since the case 2 and 3 do not have regular field configurations,

the only allowed case is the case 1 corresponding to vanishing Q(x). We plot the mass-

function and P (x) for this case in figure 1.

Now let us consider examples of the GRVV type. The corresponding BPS equations

are given by (B.4). First we consider a mass-function which is given by

m(x) = q

((

sin2(qx)− C1

)

3 + sin(2qx)
)

sin2(qx)− C1
. (B.11)
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Figure 2. GRVV Types with mass-function m(x) = q
((sin2(qx)−C1)3+sin(2qx))

sin2(qx)−C1
.

Then the P (x) has the following form:

P (x) =
√
q
(

sin2(qx)− C1

)

. (B.12)

One interesting configuration is the above solution with Q(x) = 0. Then the scalar field

configuration are always regular even for a singular mass-function. We plot P (x) and the

mass-function (B.11) in figure 2.

As a second example of GRVV type solutions, we consider a mass-function, which is

positive in the whole region. For such a case, we take the following mass-function with

Y i = 0, i.e, Q(x) = 0:

m(x) =
q
(

log3
(

1
6

(

C1 − sin2 qx
))

− 2 sin(2qx)
2C1+cos(2qx)−1

)

log
(

1
6

(

C1 − sin2(qx)
)) . (B.13)

Then the scalar field has the following form:

P (x) = −√q log
(

1

6

(

C1 − sin2(qx)
)

)

, (B.14)

where C1 is again control parameter of the regularity. For C1 > 1, the vacuum solution

and the mass-function are regular functions. When C1 = 1, the mass-function and the

scalar field diverge at x = π
q

(

n+ 1
2

)

, where n is an integer. These configurations looks like

periodic potentials. We plot various mass-functions and solutions in figure 3.

As a final interesting example, we consider a mass-function as arrays of delta functions.

To find such configurations, we impose a kind of junction condition on field values. This

condition is easily obtained by integration of the BPS equations (B.3) and (B.3) near the

position of a delta function appearing in the mass-function: m(x) =
∑

i qiδ(x − xi). It

turns out that the junction condition is

lim
ǫ→0

P (xi + ǫ)

P (xi − ǫ)
= eqi , lim

ǫ→0

Q(xi + ǫ)

Q(xi − ǫ)
= e−qi . (B.15)
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Figure 3. GRVV Types with mass-function m(x) =
q
(

log3( 1
6 (C1−sin2 qx))− 2 sin(2qx)

2C1+cos(2qx)−1

)

log( 1
6 (C1−sin2(qx)))

.

For the diagonal type solution, one may choose the following mass-function:

m(x) =
∞
∑

n=−∞

q0 {δ (x− nτ)− δ(x− (n+ 1/2)τ)} , (B.16)

where one can notice that the integration of mass-function over one period τ vanishes. The

corresponding solution is the form of Y a = P (x)Ỹ a
D and Y i = Q(x)Ỹ i

D with

P (x) =

{

1

e−q0

nτ < x < τ(n+ 1/2)

τ(n+ 1/2) < x < τ(n+ 1)
,

Q(x) =

{

e−q0

1

nτ < x < τ(n+ 1/2)

τ(n+ 1/2) < x < τ(n+ 1)
. (B.17)

On the other hand, if we take into account the following mass configuration,

m(x) =
∞
∑

n=−∞

q0 δ (x− nτ) , (B.18)

the GRVV type solution is allowed for this mass configuration with

P (x) =
1

√

2τ
e2q0−1

+ 2(x− nτ)
(nτ < x < (n+ 1)τ),

Q(x) =
1

√

2e2q0τ
e2q0−1

− 2(x− nτ)
(nτ < x < (n+ 1)τ), (B.19)

where q0 =
∫ τ/2
−τ/2m(x′)dx′. We plot the solutions in figure 4. It would be interesting to

study physical meaning of these solutions.
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Figure 4. Various vacuum configurations of delta function arrays: (a) is a cartoon for the mass-

function (B.16) and (b) and (c) are the corresponding warping factors to the diagonal matrices

in (B.17). (d) depicts the mass-function (B.18). In addition (e) and (f) show the warping factors

given by (B.19).
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