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In this work, we show that a class of metric-affine gravities can be reduced to a Riemann-Cartan one. The
reduction is based on the cancelation of the nonmetricity against the symmetric components of the spin connec-
tion. A heuristic proof, in the Einstein-Cartan formalism, is performed in the special case of diagonal unitary
tangent metric tensor. The result is that the nonmetric degrees of freedom decouple from the geometry. Thus,
from the point of view of isometries on the tangent manifold, the equivalence might be viewed as an isome-
try transition from the affine group to the Lorentz group, A(d,R) — SO(d). Furthermore, in this transition,
depending on the form of the starting action, the nonmetricity degrees might present a dynamical matter field
character, with no geometric interpretation in the Riemann-Cartan geometry.
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1. INTRODUCTION

The renowned article by T. W. B. Kibble [1] describ-
ing gravity in a gauge theoretical approach, with ISO(d) =
SO(d) x R local symmetry group (with global translations),
has inspired many consequent works on the field. In par-
ticular, the generalization of the theory to the affine group
A(d,R) = GL(d,R) x R, with global translations, has led
to a new class of theories, the Metric-Affine gravities [2, 3].
The former [1] puts gravity in a Riemann-Cartan geometry
(RCG), where torsion, T, is allowed and spinorial matter
can couple to gravity. The gauge fields of the theory are
the vielbein!, ¢, associated with global translations, and the
spin connection, ®*,! associated with the SO(d) group® and
is directly related to the affine connection, I'. The second
case [2, 3], describes a metric-affine geometry (MAG) where
not only torsion, but also nonmetricity, %, is allowed. In
this case, the relation between the spin and affine connec-
tions entails also the deviation tensor, M®?. As it will become
evident in this work, the deviation tensor is directly related
to the nonmetricity.

Basically, the difference between RCG and MAG is the
nonmetricity tensor, which appears as a non-vanishing quan-
tity in the MAG. However, the nonmetricity cannot be de-
rived from the algebra of the covariant derivatives, and thus,
from the gauge procedure standpoint, it seems unnatural to
consider it as a field strength. On the other hand, the non-
metricity is commonly used as a field strength or even as a
propagating spin-3 physical field; see for instance [2—4]. In
that context, the nonmetricity appears explicitly in the action
of a gravity theory.

Therefore, to highlight the issue of the physical role of
the nonmetricity, we discuss in this work if the nonmetric-
ity may or may not be eliminated from the geometry. To

! The vielbein is identified to global translations. In fact, the gauge field
of translations can be associated to a part of the vielbein. See [3] and
references therein.

2 For mathematical purposes, always that is possible, we avoid noncompact
groups in this work. Also, we call the SO(d) group by Lorentz group
since we are considering Euclidean tangent spaces.

do so, we consider the full covariant derivative of the viel-
bein, De = M, where M is the deviation tensor. This equa-
tion is taken here as the fundamental equation of the MAG.
When M = 0, we are dealing with the RCG [1]. Further, we
consider only Euclidean metrics on the tangent space. This
restriction enforces a particular case of the MAG. We then
show that the nonmetricity eliminates, in a natural way, the
symmetric degrees of freedom of the spin connection in the
full covariant derivative of the vielbein. To be more specific,
the symmetric part of the deviation tensor and the symmetric
part of the spin connection cancel, eliminating all the sym-
metric degrees of freedom of the referred equation. Thus,
we have on this equation just Lorentz algebra valued quan-
tities. The antisymm! etric part of the deviation tensor is
then absorbed into the antisymmetric part of the spin connec-
tion, resulting in the usual constraint for the RCG, De = 0,
where D, carries just the Lorentz affine and spin connec-
tions, I and ®. Thus, as a consequence one identify a kind
of geometric reduction in the form A(d,R) — SO(d), on
the tangent manifold. Obviously, the restriction to Euclidean
tangent metrics plays a fundamental hole on the cancelation
of the symmetric degrees of freedom. A more general and
formal proof is left for a future work [5].

We also discuss the consequences of this geometric tran-
sition from the curvature and torsion points of view, as well
as a from a general gravity action, not explicitly depending
on the nonmetricity. It is shown that the nonmetricity is not
completely eliminated, but it appears as a matter field de-
coupled from the geometry. The same result is obtained by
considering as starting point an action with an explicit de-
pendence on the nonmetricity.

This work is organized as follows: In Sect.Il, we provide
a brief review of the properties, notation and conventions of
the MAG, used in this work. In Sect.III, we establish a few
statements in order to show the reduction of MAG to RCG.
After that, the physical consequences of the reduction are
discussed. Finally, in Sect.IV, we display our Conclusions.
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2. GENERALITIES OF METRIC-AFFINE GEOMETRY

To describe the MAG, we can think of a d-dimensional
manifold M which is characterized by a metric tensor, g,
and an affine connection, I', independent from each other.
This is the so called metric-affine formalism. The geometry
is associated with a A(d,R) diffeomorphism invariance. We
define the covariant derivative, V, by its action on a tensor
field v according to

AY A% V. o
Vo' = v+ v,

Vuvy = 0wy — Tﬂvuva , €))

where Greek indices stand for the coordinates in the mani-
fold M. The curvature and torsion can be identified from

[V,m Vy|va = — pvocBVB — T BVBV(X ) 2

where R is the Riemann-Christoffel curvature and T the tor-
sion tensor

B

R,UVGB (F) = a[llrv]aﬁ - F[/uocyrv]y ’

o o
Ty~ = l"[yv] . 3)
The effect of the independence between g and I is a non-
metric geometry characterized by a non-trivial nonmetricity,

Q?
vacx = V,ugvoc . 4

One may also study the MAG through the isometries of
the affine group in the tangent space, 7, the well-known
Einstein-Cartan formalism. The gauge fields associated with
translations on 7 and GL(d,R) rotations are, respectively,
the vielbein, e, and spin connection, ®. The vielbein maps
M quantities in ‘T quantities, v¢ = e;V. The gauge covariant
derivative D acts on the tangent space according to

a a a b
D" = 0oyv T,

Dyvy = Oyva— C‘)vab . 5)
In (5) the vielbein does not appear as a connection due to
fact that, strictly speaking, it is not a connection. The viel-
bein is associated to the connection of translations modulo
a compensating part that ensures the vector behavior of the
vielbein. In fact, as discussed in [3] and references therein,
the equivalence between translational connections and viel-
bein occurs when one assumes a breaking on the local trans-
lational invariance to a global one.
(From (5) we can write

Dy, DYV = Q" (6)
where Q is the spin curvature
‘vaab(w> = a[,umv]ab o Co[,uacmv]cb : )
Further,

[Da, Dp) V¢ = Qv — K, Dv* (®)
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where K is the spin torsion
K, = eZD[an] . %)
Also, nonmetricity appears as given by
0, =D, (10)

where 1 is the flat metric tensor of 7. In general, N =1 (x).
However, we restrict ourselves to the case that ) is strictly
Euclidean. This restriction enforces a particular case of the
MAG. As said before, the results on this work are restricted
to this particular class of the MAG and, therefore, is taken as
a heuristic proof of the geometric reduction from the MAG
to the RCG.

In order to characterize the MAG by a single geometric
equation, we adopt to work with the full covariant derivative,
D, acting on a M-T mixed object. Here, for the sake of
convenience, we take the vielbein itself,

a a o a a o a a b
Duey = Dyey — Ty ey = uey =Ty e+ 0, ey . (11)

Notice that, with this definition, 0, = D,n% = DM,
Now, by defining the deviation tensor M as

M’ = Del (12)

we rewrite expression (11) as a constraint characterizing the
MAG

o b
duey — Ty eq + 0, ey =M,y (13)

from which we can easily write the relation between the
affine and spin connections

o o a o b o
Ly =e ﬂeﬁ—i-oo# pealy — My v . (14)

This constraint fixes I" as a function of ®, e and M. Thus, I
is completely determined from the properties of the tangent
manifold 7" and M. We remark that the RCG is obtained
from M = 0. As a consequence we can interpret the deviation
tensor as a measure of how the MAG differs from the RCG.

Let us develop some useful algebraic properties of the
symmetry of the tangent manifold. The group decomposi-
tion of the affine group is

A(d,R) = GL(d,R) x R? = §(d) @ 1SO(d) . (15)
The space S(d) is formally defined as the coset space,
§(d) = GL(d,R)/SO(d) , (16)

where S(d), which is not a group, can be represented by the
collection of all symmetric matrices [6-8]. This space pos-
sesses d(d + 1)/2 dimensions. The Poncaré group, also with
d(d+1)/2 dimensions, is decomposed according to

1SO(d) = SO(d) x R? | (17)

where SO(d) is the group of pseudo-orthogonal matrices,
the Lorentz group, with rank d(d — 1)/2 and the semi-direct
product with RY characterizes the extra global translational
symmetry.
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The affine group decomposition might be used to decom-
pose the algebra-valued spin connection. For that, we expand
it on the generators of the GL(d,R) group, 7%,

Oy = O T . (18)

also, 7% may be decomposed into the generators of the sym-
metric sector A%’ = AP and the Lorentz group X% = —xbe,
Thus,

l a a
0. =3 (my(a,,)/\ P 4 @y E b) . (19)

(From (10) and (12), we deduce that the nonmetricity is re-
ferred to

Q,uab = w,u(ab) = My(ah) . (20)

It is important to emphasize again that we are considering
Euclidean tangent metric tensors. This condition is funda-
mental to obtain the first relation in (20). Thus,

W, = % (Q,uabAab +(Dp[ab]):'ab) ) (21)
Where ¢, associated to the nonmetricity through (20), is the
symmetric part of the spin connection. The fact that we are
restricted to Euclidean tangent metrics, implies that the viel-
bein transforms always through O(d) group transformations.
Thus, to preserve (20) one has to restrict the GL(d,R) trans-
formations to its Lorentz sector also for the symmetric part
of the spin connection. Thus, a kind of symmetry breaking
is enforced by the Euclidean condition on the tangent metric
at the same level of the case of the vielbein and translations.
This property is of remarkable importance in what follows.

3. REDUCTION OF MAG TO RCG
3.1. Heuristic proof

We now provide simple arguments concerning the rela-
tionship between the MAG and RCG. The final conclusion
being that MAG and RCG are essentially equivalent to each
other modulo a vector space. We start with the most general
MAG based on the local affine gauge group, including local
translations. Thus, we demand two ad hoc requirements:

e The vielbein transforms as a vector under the Affine
group transformations. As discussed at the Introduc-
tion, see [3], this requirement implies that the local
translations breaks in favor of global ones.

e The metric tensor on the tangent space are restricted
to Euclidean ones, 1 = [. This second requirement is
consistent with the topological nature of the GL(d,R)
group, which is noncompact. The compact sector is
the SO(d) subgroup. Thus, the coset space S(d) is
trivial and carries only trivial topological information
[6-8]. Moreover, this requirement ensures the validity
of (20) in any gauge.
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Those requirements suggests that the general MAG is auto-
matically driven to a subclass of it in which the gauge con-
nection is the Lorentz spin connection while the vielbein and
the symmetric spin connection are tensors. In fact, that is
what occurs and the proof is straightforward:

o Statement 1: There is no tangent manifold geometry
without SO(d) group.
Proof: From the decomposition (15) into a trivial part
and a compact one, we see that the connection charac-
ter of the spin connection lives at the Lorentz sector.
Also, the Lorentz group is the stability group of the
affine group. This property establishes that the Lorentz
group is the essential ingredient to define a geometry
on the tangent manifold. Physically, it means that the
Lorentz group is the sector which establishes a gauge
theory for gravity. Thus, the vielbein and the sym-
metric part of the GL(d,R) spin connection are taken
as tensors under SO(d) gauge transformations. This
statement is very supportive for the two requirements
above stated.

e Statement 2: In the full covariant derivative of the
vielbein, the nonmetricity and the symmetric part of
the spin connection mutually cancel.

Proof: Substituting (20) in (13) we find

1 —
o = a b
el Tates i L (@, -H1,) =0, @)
where ®/2 is the antisymmetric part of the spin con-
nection and M /2 is the antisymmetric part of the devi-
ation tensor.

e Statement 3: The MAG can be reduced to the RCG.
Proof: The previous statement establishes that the
nonmetricity and the symmetric part of the spin con-
nection decouples from the MAG constraint (13). This
means that, in (22), we have just Lorentz algebra val-
ued quantities, i.e., ® and M. The quantity ® = (® —
M) /2 behaves exactly as a RC spin connection, since
M is a tensor. Thus, defining the RC spin connection,
®, according to

~ 1/ — a
6, =5(@%—M,"). 23)
we have, from (22) and (23),
5,,85 = 0yef — Fyvaef; + (T)H”bee =0, (24)

which is the well-known constraint of the RCG. Thus,
expression (13), characterizing the MAG, is reduced
to the expression (24), characterizing the RCG. The
cancelation of the nonmetric degrees of freedom with
the symmetric sector of the spin connection and the
redefinition of the spin connection according to (23)
provides then a kind of natural geometric reduction of
the tangent manifold

A(d,R) — SO(d) . (25)

We can then interpret the cancelation between the
symmetric spin connection and the symmetric devi-
ation tensor as an evidence of the decoupling of the
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nonmetric degrees of freedom from the MAG. Also,
the redefinition (23) seems to be compatible with back-
ground field methods [9], since M is Lorentz algebra
valued. In expression (22), the relevant quantity of
the geometry is the spin connection, which is algebra-
valued on the Lorentz group. The tensor field M is
irrelevant for the geometry, since it can be absorbed
into the spin connection. Thus, to carry M or not is
just a matter of convenience. Absorbing it, we are just
changing the tetrad, e, in other to fit it into geodesic
curves. Further, in (22), since there are no nonmetric
degrees of freedom, one can infer that Q=0, indepen-
dently of M.

A more deep analysis of this section makes possible the
following logic chain, more suitable for the heuristic proof:
Statement 1 says that, one can reduce the affine gauge
group to its compact and nontrivial sector by continu-
ously deforming the trivial components, namely R¢ and
S(d), see [6-8]. Thus, such reduction implies on the two
requirements first proposed: The braking of local trans-
lations to global ones by assuming a vector behavior of
the vielbein and its association with the gauge field of
translations [3] and also the imposition of n = I, which
is just the continuous deformation of the general linear
group to the orthogonal subgroup. Therefore, Statements
2 and 3 follows naturally.

3.2. Physical discussion

Let us now exploit the physical consequences of the ge-
ometric transition (25) and the spin connection redefinition
(23). We start with the simplest case, where the action has
no explicit dependence on the nonmetricity. For that we first
consider the metric-affine formalism. In this case, from (14),
we see that, the effect of the nonmetric degrees of freedom
cancelation, together with (23), on the affine connection re-
sults on the relation,

Oy =Tn". (26)

Thus, applying (26) on the curvature and torsion, given in
(3), we find

R,uvocB(F) = vaocﬁ(f)v
Ty ") = Tu,*I). 27)

Those relations show that, if we start with a gravity theory
with action S(R,T), then the action is invariant under (23).
Thus, one can equally work in a MAG or RCG. From the
metric-affine formalism point of view, both geometries are
totally equivalent (when no explicit terms on nonmetricity
are considered).

We can also analyze the previous effect from the Einstein-
Cartan formalism. In this case, the relations (21) and (23)
provide

m:%(q—kﬁ):M-i—fb (28)
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Thus
Q,uvub(('o) = Q,uvab(CI/z—i_a/z) )
Kn'(0) = Kn'(9/2+®/2). (29)

In this case, things are not so easy as in the metric-affine for-
malism. From the tangent manifold isometries, the transition
(25) costs the explicit appearance of the symmetric degrees
of freedom of the GL(d,R) spin connection. However, the
interpretation of this effect is not difficult: There are two
equivalent possibilities to work with. The first is to work
in the MAG and deal with nonmetric properties of the ge-
ometry. The second is to work in a metric geometry, the
RCG, with the dynamical field g, which has no geomet-
ric interpretation after the transition (25). In this case, ¢
behaves as a matter field living in a RCG.

It remains to discuss what happens if a gravity action de-
pends explicitly on the nonmetricity. In this case, a general
gauge invariant dependence on the nonmetricity will not be
eliminated by the reduction (25). In general, nonmetricity
terms survive the transition (25). However, as in the previ-
ous case, no geometrical interpretation is assembled to g. In
fact, ¢, again, is just a matter field embedded in a RCG.

4. CONCLUSIONS

In this article we have discussed the possibility of reduc-
ing the metric-affine geometry to a Riemann-Cartan one.
This relation follows from the cancelation of the symmet-
ric GL(d,R) spin connection against the symmetric part of
the deviation tensor, in the full covariant derivative of the
vielbein. The effect is the transition described in (25).

On physical grounds, the transition (25) does not affect
neither the affine nor Lorentz symmetries; it simply shows
that the non-SO degrees of freedom decouple from the the-
ory, resulting on a pure Lorentz gauge theory a ld Kibble [1].
In terms of a gravity action with explicit nonmetricity depen-
dence, to maintain the validity of our results, the nonmetric-
ity should always appear in the combination ® — ¢/2. Oth-
erwise ¢ manifests itself as a dynamical matter field coupled
to a RCG. Thus, there would be, essentially, two possibilities
for constructing a gravity theory: a.) Accept (25) and con-
struct theories with no Q dependence at the Riemann-Cartan
sector. In that case, the theory would be totally equivalent in
both geometrical descriptions. b.) Start with a general non-
metric geometry and deal with a dynamical matter field after
the reduction (25).

We emphasize that the main result of this work, described
by the geometric reduction (25) is based on the heuristic ap-
proach of Sect. 3.1. A formal analysis of the reduction (25)
and a rigorous proof, and also their physical consequences,
will be discussed in a future work [5].
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