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A tremendous number of devices, a limitation of wiring, and
very low power dissipation density are design constraints of fu-
ture nanoelectronic circuits composed of quantum-effect devices.
Furthermore, functional integration, which is the possibility of
exploiting quantum effects to obtain a function specific behav-
ior, becomes a core design principle. This paper analyzes the
effect of this technological progress on the design of nanoelec-
tronic circuits and describes computational paradigms revealing
novel features such as distributed storage, fault tolerance, self-
organization, and local processing. In particular, linear threshold
networks, the associative matrix, self-organizing feature maps,
and cellular arrays are investigated from the viewpoint of their
potential significance for nanoelectronics. Although these concepts
have already been implemented using present technologies, the

intention of this paper is to give an impression of their usefulness
to system implementations with quantum-effect devices.

Keywords—Artificial neural networks, nanoelectronics, quantum-
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I. INTRODUCTION

Today, commercially manufactured nanoelectronic sys-

tems seem to be far away, because the research has just

reached the level of single logic gates and memory cells

[36]. To outline the development of microelectronics until

the time when quantum-effect devices will gain industrial

relevance, the Semiconductor Industries Association (SIA)

has published a study containing a road map from now

until the year 2010. During this period, the silicon-based

CMOS circuitry will be the dominating technology for

microelectronics [4], [89]. The study predicts that in 2010,

the integration level for example will reach about 40

billion devices for memories and a clock frequency of

about 1 GHz for logic. The minimum feature size of this

advanced CMOS technology will be in the range of 50

nm, so that quantum effects are not yet dominant. The

prediction of this study seems reasonable considering the
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present development of technology. Fig. 1 illustrates SIA

data and displays the degree of performance as product

of device number and clock frequency. Concerning the

location of nanoelectronics in this prediction, it is assumed

that a change in technology will only occur if the overall

performance improves by at least about two orders of

magnitude. In this case, the total number of devices should

be at least 1 billion for a nanoelectronic system. To limit

the power dissipation, the clock frequency may be in the

range of only several 100 MHz.

Analyzing the recent work on the field of quantum

effects, today there are intensive efforts to realize fine

structures and to develop sophisticated devices as functional

blocks. There are only few activities, however, to endeavor

novel circuit architectures that meet the demands of nano-

electronics. Similar to the progress in microelectronics in

the past 30 years, the commercial success of nanoelectron-

ics strongly depends on the availability of adequate system

concepts. Therefore, the main intention of this paper is to

emphasize that nanoelectronic circuits should be developed

from both sides, that is, from the technological and the

system point of view (Fig. 2).

In detail, we combine several computational systems

that stay beyond classical microprocessor solutions with

quantum-effect devices. Although some of these systems

have been intensively studied and implemented in CMOS-

VLSI, it is obvious that, at the moment, this paper can

convey only a rough overview on this evolving area since

the adaptation of these systems to the requirements of

nanoelectronics is nearly at the same level as the devices

themselves.

This paper is structured as follows. In Section II we

concentrate on some general principles of device properties

and system design. The subsequent section contains a short

review of important quantum-effect devices and first circuit

applications. Section IV comprises linear threshold net-

works for arithmetic computations, the associative matrix,

self-organizing feature maps, and other nonclassical, partly

biologically inspired systems. The last section describes the

relationship between solid-state nanoelectronics and other
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Fig. 1. The SIA roadmap as performance over time and the location where nanoelectronics will
be placed at the time of its expected appearance. The performance indicated is the product of
integration level and clock frequency.

Fig. 2. A possible strategy for developing nanoelectronics: start-
ing from both the device and system level.

future technologies for information processing, such as

superconductivity and molecular electronics.

II. CHALLENGE OF NANOELECTRONIC SYSTEMS:

FROM DEVICE TO FUNCTION

Since mid-1980’s, semiconductor technology has pro-

vided us with structures on the order of atomic length

scales. This technological progress results in novel

quantum-effect devices with nonlinear current–voltage

characteristics. Before discussing the key question in which

way the system design based on these devices differs from

our present technology, we review some important steps in

the development of microelectronics systems in the past to

derive some general guiding rules which might be relevant

for nanoelectronics, too. A look back at the development of

electronics reveals that every key invention in technology

has initiated a milestone in systems. For example, the

integration of transistors on one chip was followed by

the logic families such as TTL and ECL. Later, the very

large scale integration (VLSI) technique led to the idea of

the microprocessor. In a similar way, the appearance of

nanoelectronics with an integration level in the order of

billions of quantum-effect devices will be accompanied by

innovative systems.

Fig. 3. Hierarchical structure of microelectronic systems. The two
interfaces are located first between the technology and circuit level
and second between software and hardware.

During the development of microelectronics, the separa-

tion of technology and systems by means of an invariant

interface to simplify the design was substantial progress

(Fig. 3). Mead and Conway introduced this important

concept in the late 1970’s [50]. Until now, this has been

an essential and outstanding step in the development of

microelectronics to cope with the complexity of the design.

It is almost certain that this principle of hierarchical design,

or a related one, will also be valid for nanoelectronics in

the future.

A further interface in the hierarchical structured design

has already been introduced in 1973 by Hoff when devel-

oping the first microprocessor. This interface has solved the

problem of the narrow application window of most of the

complex VLSI circuits. The idea of a microprocessor is to

integrate basic components of a von Neumann computer
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Fig. 4. Classification of different implementations of computation with regard to wiring, degree
of parallelism, and data transfer.

on one chip. Together with memories and a few other

standard VLSI chips, this has yielded to the development of

flexible systems by application-specific software on a high

level. At this point, only a quick look on the growth rates

of the semiconductor industry is necessary to understand

the economic meaning of microprocessors and memories.

The connection between the universal hardware platform

and the application-specific software is done by translating

the program to the machine language with help of a

compiler.

Classifying different popular computational paradigms,

some characteristic features that become relevant in na-

noelectronics are the amount of wiring, the degree of

parallelism, and the range of data transfer (Fig. 4). The

difference between wiring and data transfer is that the

first uses physical interconnections, that is, metallic wires,

whereas data transfer may be realized without direct phys-

ical wiring. In this case, long-range data transfer is done

by sending a signal from module to module, analogous to

systolic structures. It is obvious that today parallel operation

and locally interconnected modules are of less significance

in the traditional microprocessor-memory architecture. In

contrast, the basic elements of cellular automata and ar-

tificial neural networks process the given input data fully

parallel. Additionally, Fig. 4 specifies the region of highly

parallel operating and locally interconnected nanoelectronic

systems.

The serious interconnection problem is commonly ac-

cepted and will soon become relevant in advanced CMOS

technology. According to Keyes, the wiring density of

a chip increases nearly exponentially with the number

of devices [35]. Furthermore, the decreasing supply volt-

ages will affect the driving capabilities and a reliable

signal transfer becomes questionable. Apart from these

technological barriers, the costs for the wiring of the

devices become much more expensive than the devices

themselves. Thus, avoiding long-range interconnections has

an economic motivation, too. The ways in which cellular

neural networks or cellular automata are possible solutions

is one topic of Section IV. Obviously, the tremendous

amount of wiring in fully interconnected neural networks,

that is, the large number of synaptic interconnections, has

to be reduced.

Apart from the specific structure of a quantum-effect

device, there are some general rules that are still valid in the

future, since a device should possess the following features:

the input has to be well separated from the output and the

devices should have a sufficient driving capability. It should

consume only low power in a nonactive state and switch

sufficiently fast [34]. These are indispensable requirements

for all thinkable kinds of classical and quantum-effect

devices whether implemented within solid-state nanoelec-

tronics, molecular electronics, or optoelectronics.

Concerning the nonlinear behavior of quantum-effect

devices, on the one hand this enables the design of very

compact gates and memory cells [5]. On the other hand,

dealing with distinctive nonlinearities is not in the usual

way to design a circuit. The expectation is that taking

benefit directly from quantum effects will reduce the num-

ber of interconnections and devices in a basic building

block. Due to the importance of this principle for nanoelec-

tronics, quantum-effect devices are often named quantum

functional devices [62]. The term “functional integration”

characterizes this novel strategy of circuit design.

Finally, we like to argue that the question “What is a good

computer device?” [33] also strongly depends on the way of

interconnecting the devices to perform a basic computation.

Let us suppose a simplified worst case scenario to illustrate

these ideas. Assume that the first generation of quantum-

effect devices would increase the power dissipating of a

single device by a certain amount. Now on the first view,

there is no reasonable advantage, except if an effective

use of functional integration increases the area efficiency

at the same time. With this second assumption, the imple-

mentation is justified under the precondition that the area

efficiency compensates the power dissipation of a single

device. Furthermore, it may be worthwhile to study in

which way quantum-effect devices and system architecture

with an increased degree of parallelism act together. In

the best case, the number of clock cycles to calculate

the given operation declines and less energy might be

consumed when computing an arithmetic function or a
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Fig. 5. Possible scenario for nanoelectronic systems implemented
with functional devices.

complete algorithm. Thus, functional integration relates

parallelism and area efficiency. To emphasize this argument,

implementing a circuit with an ineffective architecture that

does not satisfy the demands of the technology leads

inevitably to a reduced performance compared to existing

technologies. During further generations of quantum-effect

devices technological improvements also should reduce the

power dissipation of single devices. The worst case scenario

described here underlines that technological problems might

be compensated by the novel design principle of functional

integration.

When introducing the principle of functional integration,

an obvious question is what happens with the hierarchy

of the design, mentioned at the beginning of this section.

Do we have the same interfaces as in microelectronics?

Giving up the technology invariant design of Mead and

Conway, one would clearly loose some advantages. Fig.

5 depicts a possible scenario for nanoelectronics. Building

more compact circuits with less devices moves technol-

ogy, devices and basic circuits more closely together.

Thus, the bottom level of design is shifted to a higher

level. The second interface in Fig. 5 appears between

the external world and the system level, especially for

autonomous systems, since they reveal a certain degree of

self-organization, as we will see later. Consequently, the

strong dominance of software concerning specific applica-

tions declines. This may be a substantial advantage of this

kind of nanoelectronic systems in application areas such as

visual perception and information preprocessing. However,

such a nonclassical information processing implemented in

nanoelectronics does not mean the end of our conventional

computers, because they are still needed for the numerical

simulation of new devices, technology processes, and to

carry out system studies on a higher level. Generally, a

kind of coexistence of both computing paradigms is to be

expected.

Nanoelectronics in combination with these novel com-

putational paradigms will take on a significance in those

application areas where traditional technology has reached

its limits [26]. Considering economic aspects, this effect is

possibly strengthened if nanoelectronics offers a more cost-

efficient way to produce complex chips. Another motivation

to search for new devices results from the prospect to take

up powerful circuit concepts from the past, e.g., threshold

logic and multiple-valued logic. In most cases their former

rejection resulted from missing an area-efficient imple-

mentation with existing technologies. With the opportunity

to realize these ideas within nanoelectronics, they could

reach a practical relevance, as will be outlined in Section

IV. Although we always have to keep in mind that the

overall performance of such systems has to be superior to

the brute force solution consisting of a traditional proces-

sor, a large random-access memory, and a sophisticated

algorithm. Thus, one should continuously deliberate the

advantages and the costs of a new technology. In that

context, Landauer claims a critical assessment for new

technologies to avoid false estimations, such as happened

in the case of optical computing [42].

III. CHARACTERISTIC FEATURES OF

NANOELECTRONIC DEVICES AND CIRCUITS

Today, there are several promising ideas to implement

nanoelectronic devices. The most current ones are reso-

nant tunneling devices and single-electron transistors. The

fundamental physical principle of single-electron devices

is the Coulomb-blockade resulting from the quantization

of the elementary charge in isolated node of a double-

junction structure [43], [41], [54]. Resonant tunneling de-

vices are based on electron transport via discrete en-

ergy levels in quantum-well structures. Since 1974, when

Esaki and Chang first observed resonant tunneling [10], the

progress in heterostructure epitaxy has lead to quantum-

effect devices operating at room temperature with tunable

peak current densities and peak voltages. Fig. 6 describes

several three-terminal devices and their electrical char-

acteristics. Resonant tunneling is applied in the bipolar

quantum resonant tunneling transistor and relatives as well

as in the gated resonant tunneling diodes [66], [61]. The

single-electron transistor (SET) is an application example

of the Coulomb-blockade [Fig. 6(c)] [23]. Since at least

three terminals are a precondition to isolate the input from

the output, the original two-terminal resonant tunneling

diode has been placed into the base-emitter region of a

bipolar transistor [9]. Another approach in that direction is

extending the diode by a gate contact to change the area

or to control the potential inside the quantum well [61].

Regarding a low-power operation, low-valley currents are

significant because the valley current in resonant tunneling

circuits is related to the off state of the device. Here, CMOS

logic gates, dissipating only low power in the nonactive

state due to subthreshold leakage, are the guiding example.

Thus, the reduction of the valley currents is a challenge

to heterostructure epitaxy and might be solved by higher

barrier structures of metal–insulator quantum wells [77]

or P-N double-well resonant interband tunneling structures

[82].

Due to the principle of functional integration, originating

from a negative differential conductance or resistance,

respectively, the computational capabilities of a single
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(a) (b) (c)

Fig. 6. Examples of three-terminal devices based on (a), (b) the effects of resonant tunneling
and (c) single charge effects.

quantum-effect device are increased in comparison to field

effect (FET) and bipolar transistors [55]. Discussing the

application of these functional devices with respect to a

functional integration, there are two different strategies.

The first one is to extend conventional digital AND-OR-

NOT gates to implement more complex Boolean functions

such as the XNOR-function with a smaller number of

devices. Based on this new logic family, full adder circuits

consisting of resonant hot electron transistors or resonant

tunneling bipolar transistors have been demonstrated [78].

While this approach primarily aims at reducing the total

number of transistors compared to CMOS full adder cir-

cuits, the functional integration furthermore enables it to

extend the digital logic in the direction of multiple-valued

logic (MVL) and neural-like VLSI. Compared to purely

digital logic, MVL has some advantages when design-

ing high-speed arithmetic components by avoiding time-

consuming carry propagation being inherently in Boolean

gates [55]. However, there are several disadvantages, since

MVL-circuits often have to be embedded into a conven-

tional digital system and therefore additional circuitry is

needed to transform MVL in digital signals and vice versa.

Thus, the global system performance plays an important

role, too. Furthermore, when reducing the supply voltages,

the noise margin for the logic levels in MVL-RTD (resis-

tance temperature detector) circuits decreases and affects

the reliability.

On the other hand, multiple-valued logic for storing

synaptic weights in neural circuitry preserves a certain

robust information processing and reduces the number

of circuit components per artificial synaptic circuit [46].

Especially for monolithically integrated neural systems,

multistate RTD-memory cells [70] are a promising way

to implement area efficient multiple-valued logic circuits.

Here, the hope is that the fault tolerance of neural circuits

will compensate the errors caused by smaller noise margins.

Recently, in the field of single-electron transistors there

have been approaches to build neural-like circuits with an

adaptive behavior [24]. The main argument in favor of a

neural-like architecture is that randomly fluctuating offset

charges on the isolated node of a SET-double junction

structure might be compensated by self-adaptation of the

circuit. Apart from that, inherent parameter variation when

fabricating ultrasmall structures should be considered. This

underlines that exploiting the potential of quantum-effect

devices is strongly related to the creativity of system

designers who decide if a device is suitable for a useful

computation or not.

Other physical effects which have not been discussed so

far, for example ballistic transport and the electrons wave-

like behavior, will become dominant if the fundamental

device length is less than the scattering length [18]. This

principle leads to electron waveguide devices where the

switching between different logic levels is achieved by

destroying or conserving the phase coherence of Y-shaped

quantum wires [60]. To detect quantum interference effects

and exploit them for switching, the operation temperature

of these devices is restricted to cryogenic temperatures,

that is they operate near the thermal equilibrium [6]. Low-

temperature operation avoids the broadening of the reso-

nance effects in the case of temperature-dependent electron

phonon scattering. Additionally, temperature-independent

scattering processes, that is for example electron-electron

interactions, are a disadvantage in that cannot be solved

by low temperatures. Thus, it is questionable if quantum

interference will satisfy the demands to gain a practical

relevance in future integrated circuits.

During the beginning of nanoelectronics, the hybrid in-

tegration of quantum-effect devices and conventional field

effect transistors is a further approach [56]. Monostable-

bistable transition logic elements (MOBILE) incorporate

nonlinear effects directly and are aimed to develop linear

threshold gates (LTG) [2], [12]. Basically such a hybrid

gate consists of two resonant tunneling diodes in series

whose peak current is modulated by a gate or by means

of a parallel connected field-effect transistor (FET) (Fig.

7). Applying a bias voltage oscillating between the peak

voltage and the double peak voltage 2 ], the output
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(a) (b)

Fig. 7. Application of a MOBILE as a threshold element and schematic illustration of the
modulation of the current by hybrid integration of resonant tunneling diode and field effect transistor.

Fig. 8. Current–voltage characteristics and system energy during the transition of a MOBILE
from monostability to bistability [52].

node is either monostable or bistable (Fig. 8). The switching

of these devices is equivalent to a bifurcation in the

theory of dynamical systems. Bifurcation means that the

global qualitative behavior, that is whether the output

is monostable or bistable, can be changed by varying a

control parameter. Here, the control parameter is given

by an oscillating bias voltage causing a bifurcation at

twice the peak voltage. In the metastable transition state,

the MOBILE reacts sensitively to small differences in the

peak currents of the upper and lower resonant tunneling

diode. This forces the output node voltage either into

the logic high or low level. If the peak current of the

diode is modulated with multiple gates or multiple FET’s,

the resulting modulation current is summed up and the

MOBILE performs a threshold function with digital output.

It must be emphasized that a circuit family based on

threshold logic is able to compute every Boolean function in

a network with several layers. The logic function of a single

MOBILE depends on the threshold value. By adjusting

the control voltage at the gate of the lower resonant

tunneling diode, the threshold value can be modified after

manufacturing. This enables a flexible design of circuits

being programmable at the device level. To obtain a reliable

switching during the transition, a sufficient difference in

the peak currents of the upper and lower branch and a

peak-to-valley ratio is necessary. Classifying the signal

(a) (b)

Fig. 9. (a) Neuron-MOS-element and (b) neuron-CMOS inverter,
which uses simple capacitive coupling.

codification of MOBILE circuits, these threshold gates

might be regarded as a mixed analog–digital gate, because

they include the analog computation of the weighted sum

as well as reliable digital signal coding of the input and

output states. Moreover, a MOBILE behaves as a reset-

set-flip-flop with a single parallel FET for each RTD when

using a fixed bias voltage [11]. In that case, the set signal

is applied to the upper FET and forces the flip-flop in the

high state, whereas the reset signal is applied to the lower

FET. The prospect to integrate logic functions together with

an area efficient static memory is a promising indication to

establish nanoelectronic circuits.

A second way to implement a threshold gate on the

device level is the Neuron MOS transistor [72].
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Fig. 10. Programmable universal gates, linear threshold networks, and multiple-valued logic gates
as extensions to conventional digital gates.

The transistor consists of a floating-gate-MOSFET

which is capacitively coupled to multiple input gates (Fig.

9). Unlike a MOBILE threshold gate with a signal weight-

ing due to different widths of the input FET’s, here each in-

put is weighted by the corresponding coupling capacitor. If

the potential of the floating gate exceeds the threshold volt-

age the MOS-transistor will be switched on. The advantage

of the transistor is the ease of its implementation

in CMOS-technology. These functional integrated devices

could play an important role in the transition phase between

-CMOS and nanoelectronics to build innovative

systems and architectures in the next 10–15 years [87].

Summarizing the activities on the level of basic circuit

components one hopeful approach is to search for building

blocks with an increased functionality. Fig. 10 illustrates

the extension of conventional Boolean gates for digital

logic by means of soft programmable gates, linear threshold

networks, and multiple-valued logic. In connection with

universal gates one should also take into consideration

Fredkin’s idea of reversible digital gates. Reversible logic

gates are a special logic family that avoids an energy

dissipation caused by the loss of information during a logic

transition [21]. The universal behavior of a Fredkin gate

results from adding a third input to a two-terminal gate.

This third terminal has a certain similarity to the control

input of a threshold gate. Apart from their implementation,

programmable gates require some memory to store the

control signal. Therefore, area-efficient information stor-

age is a precondition for programmable logic circuits. In

a certain way, such a soft-programmable hardware may

be understood as a kind of downscaling of today’s free

programmable gate arrays (FPGA’s) to the level of post

VLSI circuits.

IV. SYSTEM ARCHITECTURES

For the design of ultra-large-scale nanoelectronic circuits,

fault tolerance, distributed storage, self-organization, mod-

ular architecture, and local processing become significant

features. They are necessary to overcome the input–output

limitations, to solve the testability of the systems, to get a

handsome design and integration technology, and may help

to eliminate the bottleneck at the interconnection level.

In the following we discuss linear threshold networks,

cellular networks, the associative memory, self-organizing

feature maps, and biological-orientated networks as new

computational paradigms. They may serve as a kind of

prototypes for nanoelectronic systems, but at the first sight

there seems to be no relationship between them. A deeper

analysis of the underlying phenomena shows that all these

systems reveal a complex and nonlinear behavior resulting

from the fact that they consist of a huge number of

interacting subsystems. Furthermore, these phenomena are

of great importance when striving for an understanding of

macroscopic pattern formation in physics, chemistry, and

biology. Here, well-known examples are phase transitions

in spin glasses due to interacting magnetic ions [76] and

chemical oscillations [19].

Concerning nanoelectronic systems, one strategy is to

incorporate certain phenomena appearing in nature, such as

self-organization, fault tolerance, parallelism, and adaptive

behavior. As mentioned in Section I, these features are

recommended to guarantee a reliable computation with na-

noelectronic circuits being composed of unreliable switch-

ing elements. This opinion may be justified by the fact

that the evolution of microelectronics to nanoelectronics

will bring us close to physical and technological limits of

information processing. An important point is to transfer

only some basic principles into an algorithm and not

to design a mimicry of a specific part of nature. The

prospect is then to implement these algorithms within

nanoelectronic circuits. To be more concrete, the analogy

between the cellular automata, the well-known Hopfield

model of artificial neural networks, and spin glasses re-

sults from arranging the basic constituents, e.g., automata,

neural cells or ions on a rectangular grid. In addition the

interaction of this basic constituents are expressed by a

set of similar mathematical equations which can be treated

with methods derived in statistical physics [58], [31]. Only

this mathematical abstraction allows to later search for

a possible implementation, which is then restricted by

physical, technological, and economic boundary conditions.

Similar ideas have been discussed in the past by Wolfram in

connection with “complexity engineering” [92], in the field

of synergetics by Haken [28], and in bio-inspired VLSI by

Vittoz and Mead [85], [51]. Asking for a short and pregnant

characterization of these strategy, the art of nanoelectronic

engineering is strongly related to our capability to cope

with large interacting systems. Designing these systems,

which are inspired by phenomena emerging in nature, is a
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(a) (b)

Fig. 11. Hierarchical block-save addition for multi-operand addition with linear threshold networks.
The output bits are periodic functions of the weighted sum. (a) Multiplication algorithm. (b) Output
bits of a single 4 � 2 block.

great challenge for scientists and engineers, especially when

we consider there is no existing computational paradigm

today, including all the famous features in one we have

stated in short. The recent work done in the field of neural

VLSI, threshold logic, and cellular networks gives the first

impression of how to encounter this challenge [25], [27],

[13], [14].

A. Computation of Arithmetic Functions with

Linear Threshold Networks

Before we focus on neural circuits, we outline the appli-

cation of linear threshold gates (LTG’s) for digital compu-

tation. Although LTG’s are equivalent to McCulloch–Pits

neural cells, they are also capable of computing arith-

metic function. Usually, the idea behind neural VLSI is

an approximation of a given input–output relationship after

the network has finished a learning algorithm. In contrast

to that, the following section describes how to exactly

calculate Boolean functions in a linear threshold network

(LTN) with fixed weights. In a previous section, we have

seen that LTG’s might be implemented with a few number

of devices as MOBILE or The advantages of

LTG’s are the higher computational capabilities compared

to Boolean gates commonly used in purely digital logic

[75]. Although LTG’s are capable of emulating AND, OR

and NOT gates, a purely replacement of those gates would

be a very trivial method. Normally, this procedure leads to

large feed-forward networks with a depth of many layers

and long delay time. In this case, there is only a less

increased overall performance. A more adequate and less

resource consumptive approach are networks of small depth

being optimal adapted to a prescribed arithmetic function.

Here, block save addition and other algorithms serve as an

example to increase the speed of digital multiplication by

an efficient reduction of a multi-operand matrix [17], [83],

[84].

The reduction of a multi-operand sum consisting of

bit operands toward a two operand sum is a key component

for fast multiplication. The multi-operand sum results from

a bitwise multiplication of the binary multiplicands and the

shifting of the partial products afterwards. Summarizing the

steps of the algorithm, the operands are arranged in a matrix

and used as inputs for a linear threshold network. Each

square in Fig. 11(a) represents a bit of the partial product

matrix. The idea is now to partition the matrix into blocks

of at the most (4 2) bits. Each block-sum is a parallel

counter with eight inputs and calculates an output of 4-bit

word length. The intention to perform a matrix partition

is to avoid a carry propagation, the main time-consuming

operation during the addition. Arranging the sum bits in a

nonoverlapping way allows an efficient reduction of the

partial product matrix. After two successive block save

operations, the former partial product matrix is reduced to

two operands which could be added with a fast carry look

ahead adder. Fig. 11(b) shows that the output bits are a

periodical symmetric function of the weighted input sum

Thus, an intrinsic relationship between the weighted input

sum and the desired output simplifies the evaluation of the

block-sum to depth-2 networks (Fig. 12). The network’s

task is now to detect all those intervals where the output

equals the logic high level. Nevertheless, there is no doubt

that LTG’s will only become an alternative to traditional

Boolean logic, if the costs of a single threshold gate

are comparable to those of Boolean gates. This example

conveys an impression about the mutual dependence of an

advanced technology (MOBILE and circuits) on the

one hand and advanced systems (LTN’s) on the other hand.

In the past, the area inefficiency of single LTG was the

main reason that similar algorithms for fast multiplication

had no relevance in practice.

B. Cellular Array-Based Computation

By arranging linear threshold gates on a rectangular grid

and restricting the interconnections to the local neighbor-

hood, one obtains a regular two-dimensional processing

array. Today there exist several variations, such as cellular

automata (CA) and the cellular neural networks (CNN)

[15], [29], [57], [58] (Fig. 13). In principle, one has

to distinguish between a discrete and a continuous time

behavior, as well as between the discrete and continuos
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Fig. 12. Depth-2 linear threshold network for the computation of the digital block sums. The
connection array consists of bipolar weight connections.

Fig. 13. Topology of a cellular neural network and block scheme of a cell.

states of the locally coupled processing units. However,

the temporal evolution of the processing units is given

either by a system of differential (difference) equations

for cellular neural networks or by a special code that has

to be stored in a look up table in the case of cellular

automata. As a consequence of this regular arrangement,

spatial homogeneous cellular arrays find an application as

the preferred method for parallel image processing. The

cellular arrays that are of interest for nanoelectronics are

those revealing a specific structure defining the directed

information flow inside the network. This means automata

networks with an arbitrary function and a special topology

have to be mapped onto a cellular array of quantum-effect

devices. To simplify the manufacturing of those arrays,

they should be as homogeneous as possible, thus being

in a certain contradiction to function specific structures.

With respect to self-organizing phenomena the fourth class

of cellular automata reveals some aspects of the desired

behavior [91]. Starting from an initial state, they create

localized and propagating structures, which might be used

for information processing [88]. A disadvantage is the

missing of a simple programming method via the edges

of an array. Neuromorphic architectures are a possible

solution for low-level perceptual tasks. They consist of

coupled quantum dot arrays and are the ultimate level

of solid-state electronics [5]. Apart from the underlying

quantum mechanical treatment of the electrons, the main

difference between these quantum dot arrays and our solid

state circuits today is the fact that there will be no wires

between the devices. The data between two devices could

be transferred by electrostatic coupling or by tunneling

processes. Nevertheless, the key question will be, how to

implement the modifiable connections to change the inter-

action rules between the quantum dot cells. Consequently,

one has to tackle the problems arising from a missing long-

range data transfer in a specific direction and from a lack

of an easy programming method.

A well-known system architecture that has been devel-

oped for special-purpose computers and reveals a great

topological similarity to the cellular arrays is the sys-

tolic array [40]. The dataflow in this two-dimensional

array is inspired by the blood circulation and leads to

a pipelining of the data [Fig. 14(b)]. The boundaries of

the array serve as an external connection for data input.
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(a) (b) (c)

Fig. 14. Cellular array-based computation with several locally in-
terconnected architectures. (a) Cellular neural network/cellular au-
tomata. (b) Systolic array. (c) Sparsely interconnected feed-forward
network.

Here, the main differences compared to CNN and CA are

a defined, directed signal path connecting the processing

units that calculate simple arithmetic functions. The main

application of systolic arrays is digital signal processing.

Like in cellular neural networks for image processing,

the application determines the interconnections and the

function of a single cell. Thus, the searching for an optimal

interconnection in a systolic array chip is comparable to

the adaptation of the weight connection (templates) in a

CNN. If there are suitable methods to design a systolic

algorithm for a given application, an implementation with

quantum-effect devices would allow to increase the density

of the processing units for high-performance digital signal

processing circuits.

In addition, sparsely interconnected feed-forward net-

works [Fig. 14(c)] consisting of an input layer, several

hidden layers, and an output layer are a further possibility

for realizing a directed signal path [1]. Although these

architecture is inspired by feed-forward neural networks,

their applications are not necessarily restricted to the field

of neural algorithms and depends on the capabilities of

the cells. When extending cellular arrays, the connections

among the cells may be composed of nonmonotonous

functions similar to fuzzy-membership functions [64]. That

is to say, each cell becomes a kind of primitive fuzzy pro-

cessor. In connection with a multiple-layer architecture, this

approach aims at hybrid information processing systems,

where some preprocessing tasks take place in a cellular

fuzzy system, whereas subsequent layers contain adaptive

components.

C. Distributed and Fault-Tolerant Storage

Principles in the Associative Matrix

Two-layer linear threshold networks with modifiable

weight connections are a simple method to implement a

memory with distributed storage and associative behavior.

This kind of memory is commonly known as associative

matrix [59] and consists of an matrix with binary

connection weights that correspond to the synapses of an

artificial neural net (Fig. 15). Due to a shallow network

topology without feedback-loops and hidden layers, the

basic operation is very simple. Using digital inputs and

outputs,

an associative matrix maps, a finite set of input patterns

onto a corresponding set of output patterns .

In the phase of an associative recall the matrix computes

a response to an input by parallel evaluation of the

Fig. 15. Functional diagram of the associative matrix. During
programming, the learning rule sets the binary weights to one if
both the input and output are high.

Fig. 16. Function of the associative matrix, demonstrated for an
simplified 6 � 5 matrix.

activation of the neurons. During learning, the synaptic

weights are set by a “one-shot” learning method. For every

pair of training patterns the weight (element

of matrix is set to one, if both and equal one.

Otherwise, the weight remains unchanged. The learning

thereby obeys to the simple Hebbian rule, that is, the weight

of a synapse is changed in order to support the correlation

of activations of the neurons it connects.

Since an output is computed from the weighted sum

of all inputs to column the information is stored in a

distributed way (Fig. 16). From the learning procedure it is

obvious that the matrix can only store a certain number of

pattern-pairs. The information amount stored in the matrix

will reach zero again if all weights are set to one. Palm has

shown that the asymptotic storage capacity of an associative

matrix is 0.69 bit [59]. Both input and output patterns

should be sparsely coded, i.e., out of bits in and
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Fig. 17. Fault tolerance of the associative matrix for the example
shown in Fig. 16.

out of bits in are set to one while and are

small compared to and respectively. The number of

patterns that can be stored in an associative matrix then

is approximately 0.69 and hence much larger

than the number of neurons. The error rate of an associative

recall depends on the amount of stored information and is a

drawback of this kind of memory architecture. Restricting

the number of weights storing a one reduces the number of

errors as well as the whole storage capacity.

The threshold value applied in the neurons corresponds

to the number of ones of the input patterns. If the

computation should compensate faults in the inputs and/or

in the matrix itself, the threshold value has to be lowered.

Naturally, this will decrease the storage capacity further.

Besides hetero-association, a fault-tolerant auto-association

can be implemented if a mapping of to is stored in

a symmetrical matrix.

The associative memory has been designed in different

VLSI architectures using digital, digital/analog, and analog

circuit techniques [65]. A preliminary step are compact

memories that store the weights of the synapses and include

the learning algorithm. The cell can easily be implemented

since it only consists of a bistable element and some

additional switches. The modular circuit design and the

associative operation make this concept attractive to nano-

electronics. If the number of memory cells becomes very

large, the fault-tolerance against hardware failures and data

errors compensates the disadvantage of the limited storage

capacity (Fig. 17).

D. Self-Organizing Feature Maps

The challenge of modeling the function of the brain has

lead to the concept of self-organization in artificial neural

networks. Self-organizing feature maps, invented by Koho-

nen [37], are very powerful neural networks that can project

a set of -dimensional vectors onto a two-dimensional array

of processing units. Each processor unit stores a

-dimensional vector of real values, which is determined by

a learning algorithm during the training phase of the map.

The algorithm arranges similar vectors closely together and

preserves the topological relations of the data structures.

The self-organizing feature map determines independently

the location of the stored vectors in a useful and ordered

manner (self-optimization). During the learning phase the

input vectors are fed into the array of processing units via

input lines in parallel and in random sequence. Each

processor unit computes the information distance of the

input vector and the stored vector. After searching for the

winning neuron with the most similar vector, the vectors

of the winning neuron and its neighborhood change to

resemble the input vector.

This change occurs according to an adaptation function

that increases and contracts slowly during the training of

the map. Fig. 18(b) shows the adaptation strength of the

winning neuron and its neighbors in one adaptation step.

The adaptation algorithm of a self-organizing feature map

reveals a similarity to partial differential equations. With

certain modifications, basically the introduction of a system

energy measuring the distance of a given input to the

weight vectors, this similarity leads to a local adaptation

equation. Concerning the type of the differential equations,

Schrödinger-like equations as well as the diffusive Haken

model have been studied [81], [69].

The topological preserving and dimensionality reducing

mapping of a self-organizing feature map can be used

for unsupervised feature extraction (Fig. 19). In a hybrid

system, i.e., a system that combines different computational

paradigms to solve a given task of cognition, a self-

organizing feature map might be a successful system for

the preprocessing of data. Important properties of the self-

organizing feature map for its functional integration in

VLSI or ULSI hardware are adaptiveness, modularity, and

fault tolerance of the structure [67].

Apart from the denotation of self-organization to charac-

terize an unsupervised learning algorithm, in nanoelectron-

ics, the term self-organization often stands for creating fine

structures without external influence, for example atoms

that organize themselves in a way to form pyramids on a

substrate [90]. It follows that self-organization is relevant

both for manufacturing ultrasmall structures and in the

development of adaptive algorithms.

E. Perception in Highly Dynamical, Neural-Like Systems

The performance of the biological system “brain” has

grown in an evolutionary process to meet the requirements

of the environment in an excellent way. Today, we are able

to explain only basic phenomena and are still far away of

comprehending the total complexity of brains. However,

the VLSI designers can take benefit from some funda-

mental principles of information processing and storage.

These are actually understood and comply with the re-

quirements of nanoelectronic systems like self-organization,

fault-tolerance, and high-performance computation due to

massive parallelism. In addition, aspects like local learning

algorithms and dynamic processing will probably play an

important role for the future design of adaptive systems,

too.

In nanoelectronics, problems of long-path data transfer as

mentioned above make global learning methods unsuitable

for the systems. Biological-oriented artificial neurons use

local strategies where only signals in the neighborhood of

the neuron are needed, for example a modified Hebbian

learning rule combined with a nonlinear adaptation [30],

[49]. Time-continuous signals achieve the task of local
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(a) (b)

Fig. 18. (a) Self-organizing feature map and (b) adaptation of the weights in the neighborhood
of the best matching cell.

(a) (b)

Fig. 19. (a) Application of a self-organizing feature map for clustering and (b) dimensionality
reduced mapping of the data clusters from a three-dimensional space onto the map.

(a) (b)

Fig. 20. Comparison of (a) a conventional perceptron and (b) a
neural cell including a local weight adaptation without the necessity
of global information.

learning as well as local input–output processing at the same

time on a cell level (Fig. 20). On the way toward adaptive

nanoelectronic systems, these approaches may play an

important role. Connecting such cells we can perform

complex autonomous systems for controlling purposes with

a small number of neurons [8]. The important feature of

dynamic processing and adaptation in the approach of Fig.

21 is based on a continuous flow of signals through the

whole system. In this case, the characteristic properties

are dynamical processes on two different time scales;

short-term dynamic is introduced to process the actual

data. The introduction of the nonlinear characteristic of

the cells is suitable for causal detection purposes and for

storing time-dependent dynamic information. With a view

to hardware implementation, the correlation of signals can

be detected by applying nonlinear low-pass filtering. Long-

term dynamic exploits this effect in the low-dynamic part

of the neuron to adapt the coupling between different

cells. The analysis of actual information in the short-

term memory leads to an increase or decrease of the

low-dynamic weights in the long-term memory. These

have a direct impact on the actual information processing.

The introduction of fixed weights realizes a “hard-wired”

behavior of the system. Beside the ideas mentioned above,

other approaches deal with the implementation of biological

concepts for low-level perception such as the silicon retina

[51] or the modeling of biological neural elements and their

implementation into electrical systems [48], [45]. In devel-

oping even larger neural-like systems, complex nonlinear

dynamics might play a decisive role. The investigation of

biological systems, especially parts of the brain, indicate

computation based on nonlinear dynamics and deterministic

chaos. A detailed investigation of the olfactory system and

its dynamics had been conducted by Freeman et al. [93],

[22]. Conclusions drawn from EEG-diagrams point out that

deterministic chaos is the property that makes perception

possible. The macroscopic measurements by the EEG have

been simulated and investigated on the microscopic level by

systems of coupled neurons. The attractors of the dynamical

systems refer to different stimuli that have been trained,
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Fig. 21. Realization of an associative memory which operates locally and continuously similar to
brains. The correlation between short- and long-term memory is due to the learning algorithm.

both in the biological and in the artificial system. It has to

be noted that the attractors actually measured do not refer to

fixed points (static attractors) but to patterns of oscillation.

Furthermore, the examination of the whole olfactory sys-

tem shows a structure of different layers. Each layer refers

to different functions, namely sensoring, preprocessing,

evaluation, and, through connections of the olfactory cortex

and other parts of the brain, correlation with knowledge.

Some similarity can be discovered between these func-

tional layers and the models described above. The close

locality of sensor receptors that respond to similar stimuli

indicate a similar formation like in the self-organizing

feature map. The massively correlated action of the neurons

in the olfactory bulb indicates a training of the synapses

by the Hebbian rule. On the lowest dynamical level, the

bulbwide activity hint at a distributed and highly fault-

tolerant memory storage found in a large associative matrix.

But real understanding of the perception is expected only

from the study of high order dynamical systems. Today,

research in connectionist models, i.e., artificial neural net-

works, are dominated by the investigation of geometrical

models instead of dynamical ones [71]. This is justified if

the asymptotic states are represented by static attractors. A

serious drawback of dynamical connectionist models lies

in their limited explanation capabilities. A problem con-

nected with this is that explicit knowledge cannot be easily

integrated in the system. But investigations of models that

combine knowledge and connectionism in hybrid systems

are in the line of current research [71].

High dynamic systems can also be studied in a cellular

automaton (CA). It is important to note that unlike in the

brain, the cells in a CA are only locally connected. In 1986,

Wolfram proposed methods for complexity engineering [92]

using his model of CA. This and other paths are followed

by a working group on “computational mechanics” of

the Santa Fe Institute [68]. The research is driven by

the question “How is information processing embedded

in dynamical behavior?” Approaches elsewhere include

quantum mechanical systems [63], fractals, and many more

[86].

Even if connectionist models will be restricted to ap-

plications in the lowest level of perception, i.e., analysis

and recognition of signals, there are plenty of tasks in this

area that have not yet been solved successfully. Models

of human perception become more and more important in

information transmission [32], as transfer rates approach a

technical limit. This might soon be the case for information

processing, too. In this connection, a very interesting obser-

vation is the significance of nonlinear dynamics in quantum-

effect devices and in biological information processing.

As we have seen, certain nonlinear phenomena, such as

relaxation into equilibrium points and bifurcations appear

in the MOBILE circuits (Section III) as well as in temporal

patterns, e.g., limit cycles and chaotic behavior of biological

neural networks. The link between this two different levels

is the common mathematical formulation.

V. POTENTIAL OF FUTURE TECHNOLOGIES

At the moment, CMOS technology on silicon is the domi-

nating technology for microelectronic systems as mentioned

in Section I. Fig. 22 shows a technology landscape until

the year 2015 to give an overview about the whole area

of potential technologies for information processing. Apart

from solid-state nanoelectronics other technologies such as

optoelectronics, superconductive and molecular electronics

are depicted.

By means of lateral nanostructuring, it is expected that

today’s quantum-well devices are extended in the directions

of quantum wires and quantum dots. Thus, two- and three-

dimensional quantized structures currently being a intensive

topic of fundamental research might find an application.

An important question with economical consequences is

whether the quantum-effect devices can be monolithic

integrated on silicon or not. In the worst case, when

nanoelectronics is limited only to III-V semiconductors,

it is doubtful if the semiconductor industry will leave the

established field of silicon material and invest into cost-

intensive III-V semiconductor fabrication lines. In spite

of this, from the technological point of view it seems

to be useful to develop quantum-effect devices in a first

phase within III-V semiconductors and to transfer some

device principles to nanoelectronics based on silicon after-

wards.

An interesting solution to overcome the interconnection

problem is the monolithic integration of optoelectronic de-

vices for data transfer together with quantum-effect devices

for computation. These hybrid technologies with optical

interconnection networks are discussed for the interchip and
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Fig. 22. Landscape of different technologies for future informa-
tion processing.

interboard communication of high-performance computing

systems [47]. Furthermore, artificial neural networks with

high-density optical interconnections between the several

neural chips have been demonstrated [39], [80]. Combining

light-emitting devices with nanoelectronic processing units

is not as speculative as it seems when considering that both

are based on III-V semiconductor heterostructures.

Superconductivity originating from a pair of interacting

electrons (Cooper pair) had only limited success in circuit

design. The main advantages of superconductive electronics

is the high-speed operation of the devices and the simple

design of static memories, where a signal is stored within a

superconducting current loop. In spite of the advantages on

the field of high-temperature superconductors, the problem

of cooling has not been solved under consideration of

compatible technologies. The combination of superconduc-

tivity for memory function and single-electron transistors

as switching devices may be a solution which should also

be considered on a long-term range.

Computing at the molecular scale is a further vision for

the future [16], [74]. The signals in molecular computing

are represented by the concentration of a special kind

of molecules in the chemical reactor (watery solution).

Information transfer inside this chemical reactor takes place

by means of Brownian motion. This solves the urgent

problem of wiring in an elegant way by the thermal

motion of molecular information packets, but this data

transfer being free of costs is very slow compared with

electrons in semiconductors or metals. A further drawback

is that chemical reactions of a specific sort of molecules,

here being equivalent to the processing of signals, occur

only with a certain probability. Consequently, computing

on a molecular scale incorporates statistical phenomena,

and fault-tolerant computing paradigms are a condition to

solve the problem of a reliable computation with unreliable

components. The simulation of computation with unreliable

elements is simplified by the analogy to evolutionary pro-

cesses in bit-string. In computer science the term “emergent

computation” is used for this new paradigm [3].

At the horizon the quantum computer appears as final

goal of human-made information processing [20], but it is

still an open question whether quantum mechanical compu-

tation is an outstanding solution or is just a fata morgana. In

this field, applications such as quantum cryptography and

quantum teleportation have been demonstrated [7]. Today,

these ideas today are far away from an implementation.

VI. CONCLUSION AND OUTLOOK

Scientists and engineers engaged in the design of na-

noelectronic systems and devices have to demonstrate the

capability to realize complete powerful integrated circuits

including memory functions and logic on one chip as it is

possible with silicon CMOS technology. The main intention

of this paper is to emphasize the requirement of adequate

system architectures. Furthermore, the presented systems

have been related to the intrinsic properties of future de-

vices, since the total performance of nanoelectronic systems

strongly depends on the usefulness of functional integration

as design principle. With respect to the prediction of the

SIA roadmap and an average time-to-market of about

15 years for a new technology, monolithically integrated

circuit components based on quantum-effect devices should

be developed until the year 2000. In this case, solid-state

nanoelectronics might reach a level to compete with a post

CMOS silicon technology in the year 2015. Within the next

five years, the development of a silicon-based nanoelec-

tronics should become a main goal of the technology to

combine quantum-effect devices with present electronics

based on CMOS.
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