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ASPECTS OF THE CATEGORY SKB OF SKEW BRACES

DOMINIQUE BOURN, ALBERTO FACCHINI, AND MARA POMPILI

Abstract. We examine the pointed protomodular category SKB of left skew
braces. We study the notion of commutator of ideals in a left skew brace.
Notice that in the literature, “product” of ideals of skew braces is often con-
sidered. We show that Huq=Smith for left skew braces. Finally, we give a set
of generators for the commutator of two ideals, and prove that every ideal of
a left skew brace has a centralizer.

Introduction

Braces appear in connections to the study of set-theoretic solutions of the Yang-
Baxter equation. A set-theoretic solution of the Yang-Baxter equation is a pair
(X, r), whereX is a set, r : X×X → X×X is a bijection, and (r×id)(id×r)(r×id) =
(id × r)(r × id)(id × r) [13]. Set-theoretic solutions of the Yang-Baxter equation
appear, for instance, in the study of representations of braid groups, and form a
category SYBE, whose objects are these pairs (X, r), and morphisms f : (X, r) →
(X ′, r′) are the mappings f : X → X ′ that make the diagram

X ×X
f×f //

r

��

X ′ ×X ′

r

��
X ×X

f×f
// X ′ ×X ′

commute.
One way to produce set-theoretic solutions of the Yang-Baxter equation is using

left skew braces.

Definition [15] A (left) skew brace is a triple (A, ∗, ◦), where (A, ∗) and (A, ◦) are
groups (not necessarily abelian) such that

(B) a ◦ (b ∗ c) = (a ◦ b) ∗ a−∗ ∗ (a ◦ c)

for every a, b, c ∈ A. Here a−∗ denotes the inverse of a in the group (A, ∗). The
inverse of a in the group (A, ◦) will be denoted by a−◦.

Key words and phrases. Brace; Skew brace; Yang-Baxter equation; Mal’tsev category; Proto-
modular category.
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A brace is sometimes seen as an algebraic structure similar to that of a ring, with
distributivity warped in some sense. But a better description of a brace is probably
that of an algebraic structure with two group structures out of phase with each
other.

For every left skew brace (A, ∗, ◦), the mapping

r : A×A→ A×A, r(x, y) = (x−∗ ∗ (x ◦ y), (x−∗ ∗ (x ◦ y))−◦ ◦ x ◦ y),

is a non-degenerate set-theoretic solution of the Yang-Baxter equation ([15, The-
orem 3.1] and [19, p. 96]). Here “non-degenerate” means that the mappings
π1r(x0,−) : A → A and π2r(−, y0) : A → A are bijections for every x0 ∈ A and
every y0 ∈ A.

The simplest examples of left skew braces are:
(1) For any associative ring (R,+, ·), the Jacobson radical (J(R),+, ◦), where ◦

is the operation on J(R) defined by x ◦ y = xy + x+ y for every x, y ∈ J(R).
(2) For any group (G, ∗), the left skew braces (G, ∗, ∗) and (G, ∗, ∗op).
Several non-trivial examples of skew braces can be found in [23]. A complete

classification of braces of low cardinality has been obtained via computer [19].
A homomorphism of skew braces is a mapping which is a group homomorphism

for both the operations. This defines the category SKB of skew braces.
From [15], we know that in a skew brace the units of the two groups coincide.

So, SKB appears as a fully faithful subcategory SKB →֒ DiGp of the category DiGp

of digroups, where a digroup is a triple (G, ∗, ◦) of a set G endowed with two group
structures with same unit. This notion was introduced in [8] and devised during
discussions between the first author and G. Janelidze.

There are two forgetful functors Ui : DiGp → Gp, i ∈ {0, 1}, associating respec-
tively the first and the second group structures. They both reflect isomorphisms.
Since U0 is left exact and reflects isomorphisms, it naturally allows the lifting of
the protomodular aspects of the category Gp of groups to the category DiGp. In
turn, the left exact fully faithful embedding SKB →֒ DiGp makes SKB a pointed
protomodular category. The protomodular axiom was introduced in [5] in order to
extract the essence of the homological constructions and in particular to induce an
intrinsic notion of exact sequence.

In this paper, after recalling the basic facts about protomodular categories, we
study the “protomodular aspects” of left skew braces, in particular in relation to
the category of digroups. We study the notion of commutator of ideals in a left skew
brace (in the literature, “product” of ideals of skew braces is often considered). We
show that Huq=Smith for left skew braces. Notice that Huq 6= Smith for digroups
and near-rings [18]. We give a set of generators for the commutator of two ideals,
and prove that every ideal of a left skew brace has a centralizer.

1. Basic recalls on protomodular categories

In this work, any category E will be supposed finitely complete, which implies
that it has a terminal object 1. The terminal map from X is denoted τX : X → 1.
Given any map f : X → Y , the equivalence relation R[f ] on X is produced by the
pullback of f along itself. The map f is said to be a regular epimorphism in E when
f is the quotient of R[f ]. When it is the case, we denote it by a double head arrow
X ։ Y .
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1.1. Pointed protomodular categories. The category E is said to be pointed
when the terminal object 1 is initial as well. Let us recall that a pointed category
A is additive if and only if, given any split epimorphism f : X ⇄ Y, fs = 1Y , the
following downward pullback:

Kerf // kf //

��

X

f
��

1 //
0Y

//
OO 0K
OO

Y

OO s
OO

is an upward pushout, namely if and only if X is the direct sum (= coproduct) of
Y and Kerf . Let us recall the following:

Definition 1.1. [5] A pointed category E is said to be protomodular when, given
any split epimorphism as above, the pair (kf , s) of monomorphisms is jointly
strongly epic.

This means that the only subobject u : U ֌ X containing the pair (kf , s) of
subobjects is, up to isomorphism, 1X . It implies that, given any pair (f, g) : X ⇒ Z
of arrows which are equalized by kf and s, they are necessarily equal (take the
equalizer of this pair). Pulling back the split epimorphisms along the initial map
0Y : 1 ֌ Y being a left exact process, the previous definition is equivalent to saying
that this process reflects isomorphisms.

The category Gp of groups is clearly pointed protomodular. This is the case of
the category Rng of rings as well, and more generally, given a commutative ring R,
of any category R-Alg of any given kind of R-algebras without unit, possibly non-
associative. This is in particular the case of the category R-Lie of Lie R-algebras.
Even for R a non-commutative ring, in which case R-algebras have a more complex
behaviour (they are usually called R-rings, see [2, p. 36] or [14, p. 52]), one has
that the category R-Rng of R-rings is pointed protomodular, as can be seen from
the fact that the forgetul functor R-Rng → Ab reflects isomorphisms and Ab is
protomodular.

The pointed protomodular axiom implies that the category E shares with the
category Gp of groups the following well-known Five Principles:
(1) a morphism f is a monomorphism if and only if its kernel Kerf is trivial [5];
(2) any regular epimorphism is the cokernel of its kernel, in other words any regular
epimorphism produces an exact sequence, which determines an intrinsic notion of
exact sequences in E [5];
(3) there a specific class of monomorphisms u : U ֌ X , the normal monomor-
phisms [7], see next section ;
(4) there is an intrinsic notion of abelian object [7], see section 3.1.1;
(5) any reflexive relation in E is an equivalence relation, i.e. the category E is a
Mal’tsev one [6].

So, according to Principle (1), a pointed protomodular category is characterized
by the validity of the split short five lemma. Generally, Principle (5) is not directly
exploited in Gp; we shall show in Section 3.4.2 how importantly it works out inside
a pointed protomodular category E. Pointed protomodular varieties of universal
algebras are characterized in [12].

1.2. Normal monomorphisms.
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Definition 1.2. [7] In any category E, given a pair (u,R) of a monomorphism
u : U ֌ X and an equivalence relation R on X , the monomorphism u is said to
be normal to R when the equivalence relation u−1(R) is the indiscrete equivalence
relation ∇X = R[τX ] on X and, moreover, any commutative square in the following
induced diagram is a pullback:

U × U

dU0
��

// ǔ //

dU1
��

R

dR0
��

dR1
��

U //
u

//

sU0

OO

X

sR0

OO

In the category Set, provided that U 6= ∅, these two properties characterize the
equivalence classes of R. By the Yoneda embedding, this implies the following:

Proposition 1.3. Given any equivalence relation R on an object X in a category
E, for any map x, the following upper monomorphism x̌ = dR1 .x̄ is normal to R:

IxR;

��

// x̄ // R

dR0
��

dR1 // X

1 //
x

// X

In a pointed category E, taking the initial map 0X : 1 ֌ X gives rise to a
monomorhism ιR : IR ֌ X which is normal to R. This construction produces
a preorder mapping ιX : EquXE → MonXE from the preorder of the equivalence
relations on X to the preorder of subobjects of X which preserves intersections.
Starting with any map f : X → Y , we get IR[f ] = Kerf which says that any kernel
map kf is normal to R[f ]. Principle (3) above is a consequence of the fact [7] that
in a protomodular category a monomorphism is normal to at most one equivalence
relation (up to isomorphism). So that being normal, for a monomorphism u, be-
comes a property in this kind of categories. This is equivalent to saying that the
preorder homomorphism ιX : EquXE → MonXE reflects inclusions; so, the preorder
NormX of normal subobjects of X is just the image ιX(EquX) ⊂ MonX .

1.3. Regular context. Let us recall from [1] the following:

Definition 1.4. A category E is regular when it satisfies the two first conditions,
and exact when it satisfies all the three conditions:
(1) regular epimorphisms are stable under pullbacks;
(2) any kernel equivalence relation R[f ] has a quotient qf ;
(3) any equivalence relation R is a kernel equivalence relation.

Then, in the regular context, given any map f : X → Y , the following canonical
factorization m is necessarily a monomorphism:

Imf
!!
m

!!
X

qf
== ==④④④④④④④

f
// Y

This produces a canonical decomposition of the map f in a monomorphism and
a regular epimorphism which is stable under pullbacks. Now, given any regular
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epimorhism f : X ։ Y and any subobject u : U ֌ X , the direct image f(u) :
f(U) ֌ Y of u along the regular epimorphism f is given by f(U) = Imf.u ֌ Y .

Any variety in the sense of Universal Algebra is exact and regular epimorphisms
coincide with surjective homomorphisms.

1.4. Homological categories. The significance of pointed protomodular cate-
gories grows up in the regular context since, in this context, the split short five
lemma can be extended to any exact sequence. Furthermore, the 3 × 3 lemma,
Noether isomorphisms and snake lemma hold; they are all collected in [3]. This is
the reason why a regular pointed protomodular category E is called homological.

2. Protomodular aspects of skew braces

2.1. Digroups. From [8], we get the characterization of normal monomorphisms
in DiGp:

Proposition 2.1. A suboject i : (G, ∗, ◦) ֌ (K, ∗, ◦) is normal in the category
DiGp if and only if the three following conditions hold:
(1) i : (G, ∗) ֌ (K, ∗) is normal in Gp,
(2) i : (G, ◦) ֌ (K, ◦) is normal in Gp,
(3) for all (x, y) ∈ K ×K, x−∗ ∗ y ∈ G if and only if x−◦ ◦ y ∈ G.

2.2. Skew braces. The following observation is very important:

Proposition 2.2. Let (G, ∗, ◦) be any skew brace. Consider the mapping λ : G ×
G→ G defined by λ(a, u) = a−∗ ∗ (a ◦ u). Then:
(1) λa = λ(a,−) is underlying a group homomorphism (G, ◦) → Aut(G, ∗), and this
condition is equivalent to (B);
(2) we have

(1) λ(a−◦, u) = (a−◦)−∗ ∗ (a−◦ ◦ u) = a−◦ ◦ (a ∗ u).

Proof. For (1), see [15]. For (2), we have (a−◦ ◦ a) ∗ (a−◦)−∗ ∗ (a−◦ ◦u) = (a−◦)−∗ ∗
(a−◦ ∗ u) = λ(a−◦, u). �

2.3. First properties of skew braces. The following observation is straightfor-
ward:

Proposition 2.3. SKB is a Birkhoff subcategory of DiGp.

This means that any subobject of a skew brace in DiGp is a skew brace and that,
given any surjective homomorphism f : X ։ Y in DiGp, the digroup Y is a skew
brace as soon as so is X . In this way, any equivalence relation R in DiGp on a skew
brace X actually lies in SKB since it determines a subobject R ⊂ X ×X in DiGp

and, moreover, its quotient in SKB is its quotient in DiGp. The first part of this
last sentence implies that any normal subobject u : U ֌ X in DiGp with X ∈ SKB

is normal in SKB.
We are now going to show that the normal subobjects in SKB coincide with the

ideals of [15].

Proposition 2.4. A subobject i : (G, ∗, ◦) ֌ (K, ∗, ◦) is normal in the category
SKB if and only if the three following conditions hold:
(1) i : (G, ∗) ֌ (K, ∗) is normal in Gp,
(2) i : (G, ◦) ֌ (K, ◦) is normal in Gp,
(3′) λx(G) = G for all x ∈ K.
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Proof. Suppose (1) and (2). We are going to show (3) ⇐⇒ (3′), with (3) given in
Proposition 2.1.
(i) x−◦ ◦ y ∈ G⇒ x−∗ ∗ y ∈ G if and only if λx(G) ⊂ G, setting y = x ◦ u, u ∈ G.
(ii) from (1): x−∗ ∗ y ∈ G ⇒ x−◦ ◦ y ∈ G if and only if λx−◦(G) ⊂ G, setting
y = x ∗ u, u ∈ G.
Finally λx(G) ⊂ G for all x is equivalent to λx(G) = G. �

Corollary 2.5. A subobject i : (G, ∗, ◦) ֌ (K, ∗, ◦) is normal in the category SKB

if and only if it is an ideal in the sense of [15], namely is such that:
1) i : (G, ◦) ֌ (K, ◦) is normal, 2) G ∗ a = a ∗G for all a ∈ K, 3) λa(G) ⊂ G for
all a ∈ K.

Proof. Straightforward. �

Being a variety in the sense of Universal Algebra, SKB is finitely cocomplete;
accordingly it has binary sums (called coproducts as well). So, SKB is a semi-
abelian category according to the definition introduced in [17]:

Definition 2.6. A pointed category E is said to be semi-abelian when it is proto-
modular, exact and has finite sums.

From the same [17], let us recall the following observation which explains the
choice of the terminology: a pointed category E is abelian if and only if both E and
Eop are semi-abelian.

2.4. Internal skew braces. Given any category E, the notion of internal group,
digroup and skew brace is straightforward, determining the categories GpE, DiGpE
and SKBE. Since GpE is protomodular, so are the two others. An important case
is produced with E = Top the category of topological spaces. Although Top is not
a regular category, so is the category GpTop, the regular epimorphisms being the
open surjective homomorphisms. So GpTop is homological but not semi-abelian.

Now let f : X → Y be any map in DiGpTop. Let us show that R[f ] has a
quotient in DiGpTop. Take its quotient qR[f ] : X ։ Qf in DiGp, then endow
Qf with the quotient topology with respect to R[f ]; then qR[f ] is an open surjec-
tive homomorphism since so is U0(qR[f ]). Accordingly, a regular epimorphism in
DiGpTop is again an open surjective homomorphism. Moreover this same functor
U0 : DiGpTop → GpTop being left exact and reflecting the homeomorphic iso-
morphisms, it reflects the regular epimorphisms; so, these regular epimorphisms in
DiGpTop are stable under pullbacks. Accordingly the category DiGpTop is regular.
Similarly the category SKBTop is homological as well, without being semi-abelian.
As any category of topological semi-abelian algebras, both DiGpTop and SKBTop
are finitely cocomplete, see [4].

3. Skew braces and their commutators

3.1. Protomodular aspects.
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3.1.1. Commutative pairs of subobjects, abelian objects. Given any pointed category
E, the protomodular axiom applies to the following specific downward pullback:

X // rX //

��

X × Y

pY
��

1 //
0Y

//
OO 0K

OO

Y

OO lY

OO

where the monomorphisms are the canonical inclusions. This is the definition of a
unital category [6]. In this kind of categories there is an intrisic notion of commu-
tative pair of subobjects :

Definition 3.1. Let E be a unital category. Given a pair (u, v) of subobjects of
X , we say that the subobjects u and v cooperate (or commute) when there is a
(necessarily unique) map ϕ, called the cooperator of the pair (u, v), making the
following diagram commute:

U{{
lU

{{✇✇✇
✇✇
✇✇

  
u

  ❅
❅❅

❅❅
❅

U × V
ϕ

// X

V
ccrV

cc●●●●●●● >> v

>>⑦⑦⑦⑦⑦⑦

We denote this situation by [u, v] = 0. A subobject u : U ֌ Y is central when
[u, 1X ] = 0. An object X is commutative when [1X , 1X ] = 0.

Clearly [1X , 1X ] = 0 gives X a structure of internal unitary magma, which, E
being unital, is necessarily underlying an internal commutative monoid structure.
When E is protomodular, this is actually an internal abelian group structure, so
that we call X an abelian object [7]. This gives rise to a fully faithful subcategory
Ab(E) →֒ E, which is additive and stable under finite limits in E. From that we
can derive:

Proposition 3.2. [7] A pointed protomodular category E is additive if and only if
any monomorphism is normal.

3.1.2. Connected pairs (R,S) of equivalence relations. Since a protomodular cat-
egory is necessarily a Mal’tsev one, we can transfer the following notions. Given
any pair (R,S) of equivalence relations on the object X in E, take the following
rightward and downward pullback:

R
−→
×XS

pS //

pR

��

S

dS0

��

oo
rS

oo

R
dR1 //

OO
lR

OO

Xoo
sR0

oo

OO
sS0

OO

where lR and rS are the sections induced by the maps sR0 and sS0 . Let us recall the
following definition from [10]:
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Definition 3.3. In a Mal’tsev category E, the pair (R,S) is said to be connected
when there is a (necessarily unique) morphism

p : R
−→
×XS → X, xRySz 7→ p(xRySz)

such that prS = dS1 and plR = dR0 , namely such that the following identities hold:
p(xRySy) = x and p(yRySz) = z. This morphism p is then called the connector
of the pair, and we denote the situation by [R,S] = 0.

From [11], let us recall that:

Lemma 3.4. Let E be a Mal’tsev category, f : X → Y any map, (R,S) any pair of
equivalence relations on X, (R̄, S̄) any pair of equivalence relations on Y such that
R ⊂ f−1(R̄) and S ⊂ f−1(S̄). Suppose moreover that [R,S] = 0 and [R̄, S̄] = 0.
Then the following diagram necessarily commutes:

R
−→
×XS

f̃ //

p(R,S)

��

R̄
−→
×Y S̄

p(R̄,S̄)

��
X

f
// Y

where f̃ is the natural factorization induced by f−1(R̄) and S ⊂ f−1(S̄).

A pointed Mal’tsev category is necessarily unital. From [10], in any pointed
Mal’sev category E, we have necessarily

(2) [R,S] = 0 ⇒ [IR, IS ] = 0

In this way, the “Smith commutation” [22] implies the “Huq commutation” [16].

3.2. Huq=Smith. The converse is not necessarily true, even if E is pointed pro-
tomodular, see Proposition 3.6 below. When this is the case, we say that E satisfies
the (Huq=Smith) condition. Any pointed strongly protomodular category satisfies
(Huq=Smith), see [10]. (Huq=Smith) is true for Gp by the following straighforward:

Proposition 3.5. Let (R,S) be a pair of equivalence relations in Gp on the group
(G, ∗). The following conditions are equivalent:
(1) [IR, IS ] = 0;
(2) p(x, y, z) = x ∗ y−1 ∗ z defines a group homomorphism p : G×G×G→ G;
(3) [R,S] = 0.

Proposition 3.6. The category DiGp of digroups does not satisfy (Huq=Smith).

Proof. We can use the counterexample introduced in [8] for another purpose. Start
with an abelian group (A,+) and an object a such that −a 6= a. Then define
θ : A × A → A × A as the involutive bijection which leaves fixed any object (x, y)
except (a, a) which is exchanged with (−a, a). Then defined the group structure
(A×A, ◦) on A×A as the transformed along θ of (A×A,+). So, we get:

(x, z) ◦ (x′, z′) = θ(θ(x, z) + θ(x′, z′))

Clearly we have (a, a)−◦ = (a,−a). Since the second projection π : A × A →
A is such that πθ = π, we get a digroup homomorphism π : (A × A,+, ◦) →
(A,+,+) whose kernel map is, up to isomorphism, ιA : (A,+,+) ֌ (A × A,+, ◦)
defined by ι(a) = (a, 0). The commutativity of the law + makes [ιA, ιA] = 0 inside
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DiGp. We are going to show that, however we do not have [R[π], R[π]] = 0. If
it was the case, according to the previous proposition and considering the images
by U0 and U1 of the desired ternary operation, we should have, for any triple
(x, y)R[π](x′, y)R[π](x”, y):

(x, y)− (x′, y) + (x”, y) = (x, y) ◦ (x′, y)−◦ ◦ (x”, y)

namely (x, y) ◦ (x′, y)−◦ ◦ (x”, y) = (x − x′ + x”, y). Now take y = a = x′ and
a 6= x 6= −a. Then we get:
(x, a) ◦ (a, a)−◦ ◦ (x”, a) = (x, a) ◦ (a,−a) ◦ (x”, a) = (x+ a, 0) ◦ (x”, a)
= (x+a+x”, a), if moreover a 6= x” 6= −a. Now, clearly we get x+a+x” 6= x−a+x”
since a 6= −a. �

However we have the following very general observation:

Proposition 3.7. Let E be any pointed Mal’tsev satisfying (Huq=Smith). So is
any functor category F(C,E).

Proof. Let (R,S) be a pair of equivalence relation on an object F ∈ F (C,E). We
have [R,S] = 0 if and only if for each object C ∈ C we have [R(C), S(C)] = 0
since, by Lemma 3.4, the naturality follows. In the same way, if (u, v) is a pair
of subfunctors of F , we have [u, v] = 0 if and only if for each object C ∈ C

we have [u(C), v(C)] = 0. Suppose now that E satisfies (Huq=Smith), and that
[IR, IS ] = 0. So, for each object C ∈ C we have [IR(C), IS(C)] = 0, which implies
[R(C), S(C)] = 0. Accordingly [R,S] = 0. �

Let T be any finitary algebraic theory, and denote by T(E) the category of
internal T-algebras in E. Let us recall that, given any variety of algebras V(T),
we have a Yoneda embedding for the internal T-algebras, namely a left exact fully
faithful factorization of the Yoneda embedding for E:

T(E)
ȲT //❴❴❴❴❴❴

UT

��

F(Eop,V(T))

F(Eop,U)

��
E

Y
// F(Eop, Set)

where U : V(T) → Set is the canonical forgetful functor.

Theorem 3.8. Let T be any finitary algebraic theory such that the associated va-
riety of algebras V(T) is pointed protomodular. If V(T) satisfies (Huq=Smith), so
does any category T(E).

Proof. If V(T) satisfies (Huq=Smith), so does F(Eop,V(T)) by the previous propo-
sition. Accordingly, ȲT being left exact and fully faithful, so does T(E). �

3.3. Any category SKBE does satisfy (Huq=Smith).

Proposition 3.9. Given any pair (U, V ) of subobjects of X in SKB, the following
conditions are equivalent:
(1) [U, V ] = 0;
(2) for all (u, v) ∈ U × V , we get u ◦ v = u ∗ v and this restriction is commutative;
(3) for all (u, v) ∈ U × V, λu(v) = v, [U0(U), U0(V )] = 0 and [U1(U), U1(V )] = 0.
Accordingly, an abelian object in SKB is necessarily of the form (A,+,+) with
(A,+) abelian.



10 DOMINIQUE BOURN, ALBERTO FACCHINI, AND MARA POMPILI

Proof. Straightforward, setting ϕ(u, v) = u + v and using an Eckmann-Hilton ar-
gument. �

Proposition 3.10 (SKB does satisfy (Huq=Smith)). Let R and S be two equiva-
lence relations on an object X ∈ SKB. The following conditions are equivalent:
(1) [IR, IS ] = 0;
(2) [U0(U), U0(V )] = 0, [U1(U), U1(V )] = 0 and x ∗ y−∗ ∗ z = x ◦ y−◦ ◦ z for all
xRySz;
(3) [R,S] = 0.

Proof. The identity x ∗ y−∗ ∗ z = x ◦ y−◦ ◦ z is equivalent to

y−◦ ◦ z = x−◦ ◦ (x ∗ y−∗ ∗ z) = (x−◦ ◦ x) ∗ (x−◦)−∗ ∗ (x−◦ ◦ (y−∗ ∗ z)) =

= (x−◦)−∗ ∗ (x−◦ ◦ (y−∗ ∗ z)),

which, in turn, is equivalent to

λx−◦(y−∗ ∗ z) = y−◦ ◦ z.

Suppose xRySy. Setting z = y ∗ v, v ∈ IS , this is equivalent to λx−◦(v) = y−◦ ◦
(y ∗v) = λy−◦(v) by (1). This in turn is equivalent to λy ◦λx−◦(v) = λy◦x−◦(v) = v,
v ∈ IS . Setting y = u ◦ x, u ∈ IR, this is equivalent to λu(v) = v, (u, v) ∈ IR × IS .

Now, by Proposition 3.9, [IR, IS ] = 0 is equivalent to: for all (u, v) ∈ IR× IS , we
get λu(v) = v, [U0(U), U0(V )] = 0 and [U1(U), U1(V )] = 0. So we get [1) ⇐⇒ 2)].

Suppose (2). From [U0(U), U0(V )] = 0, we know by Proposition 3.9 that p(x, y, z) =

x∗y−∗∗z is a group homomorphism (R
−→
×XS, ∗),→ (X, ∗), and from [U1(U), U1(V )] =

0 that q(x, y, z) = x ◦ y−◦ ◦ z is a group homomorphism (R
−→
×XS, ◦) → (X, ◦). If

p = q, this produces the desired R
−→
×XS → X in SKB showing that [R,S] = 0.

Whence [(2) ⇒ (3)]. We have already noticed that the last implication [(3) ⇒ (1)]
holds in any pointed category. �

According to Theorem 3.8, we get the following:

Corollary 3.11. Given any category E, the category SKBE satisfies (Huq= Smith).
This is the case in particular for the category SKBTop of topological skew braces.

3.4. Homological aspects of commutators.

3.4.1. Abstract Huq commutator. Suppose now that E is any finitely cocomplete
regular unital category. In this setting, we gave in [9], for any pair u : U ֌ X ,
v : V ֌ X of subobjects, the construction of a regular epimorphism ψ(u,v) which
universally makes their direct images cooperate. Indeed consider the following
diagram, where Q[u, v] is the limit of the plain arrows:

Uzz
lU

zzttt
tt
tt
tt
t ""

v

""❋
❋❋

❋❋
❋❋

❋❋

U × V
ψ̄(u,v)

// Q[u, v] X
ψ(u,v)

oo

V
dd

rV

dd❏❏❏❏❏❏❏❏❏❏ <<
v

<<①①①①①①①①①

The map ψ(u,v) is necessarily a regular epimorphism and the map ψ̄(u,v) induces
the cooperator of the direct images of the pair (u, v) along ψ(u,v). This regular
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epimorphism ψ(u,v) measures the lack of cooperation of the pair (u, v) in the sense
that the map ψ(u,v) is an isomorphism if and only if [u, v] = 0. We then get a
symmetric tensor product: IR[ψ(−,−)] : MonX ×MonX → MonX of preordered sets.

Since the map ψ(u,v) is a regular epimorphism, its distance from being an iso-
morphism is its distance from being a monomorphism, which is measured by the
kernel equivalence relation R[ψ(u,v)]. Accordingly, in the homological context, it is
meaningful to introduce the following definition, see also [20]:

Definition 3.12. Given any finitely cocomplete homological category E and any
pair (u, v) of subobjects of X, their abstract Huq commutator [u, v] is defined as
IR[ψ(u,v)] or equivalently as the kernel map kψ(u,v)

.

By this universal definition, in the category Gp, this [u, v] coincides with the
usual [U, V ].

3.4.2. Abstract Smith commutator. Suppose E is a regular category. Then, given
any regular epimorphism f : X ։ Y and any equivalence relation R on X , the
direct image f(R) ֌ Y × Y of R ֌ X ×X along the regular epimorphism f × f :
X × X ։ Y × Y is reflexive and symmetric, but generally not transitive. Now,
when E is a regular Malt’sev category, this direct image f(R), being a reflexive
relation, is an equivalence relation.

Suppose moreover that E is finitely cocomplete. Let (R,S) be a pair of equiv-
alence relations on X , and consider the following diagram, where Q[R,S] is the
colimit of the plain arrows:

Ryy
lR

yysss
ss
ss
ss
s

d0,R

##●
●●

●●
●●

●●
●

R×X S
χ̄(R,S)

// Q[R,S] X
χ(R,S)

oo

S
ee

rS

ee❑❑❑❑❑❑❑❑❑❑❑ d1,S

;;✇✇✇✇✇✇✇✇✇✇

Notice that, here, in consideration of the pullback defining R
−→
×XS, the role of the

projections d0 and d1 have been interchanged. This map χ(R,S) measures the lack
of connection between R and S, see [9]:

Theorem 3.13. Let E be a finitely cocomplete regular Mal’tsev category. Then
the map χ(R,S) is a regular epimorphism and is the universal one which makes the
direct images χ(R,S)(R) and χ(R,S)(S) connected. The equivalence relations R and
S are connected (i.e. [R,S] = 0) if and only if χ(R,S) is an isomorphism.

Since the map χ(R,S) is a regular epimorphism, its distance from being an iso-
morphism is its distance from being a monomorphism, which is exactly measured
by its kernel equivalence relation R[χ(R,S)]. Accordingly, we give the following
definition:

Definition 3.14. Let E be any finitely cocomplete regular Mal’tsev category. Given
any pair (R,S) of equivalence relations on X, their abstract Smith commutator
[R,S] is defined as the kernel equivalence relation R[χ(R,S)] of the map χ(R,S).

In this way, we define a symmetric tensor product [−,−] = R[χ(−,−)] : EquX ×
EquX → EquX of preorered sets. It is clear that, with this definition, we get
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[R,S] = 0 in the sense of connected pairs if and only if [R,S] = ∆X (the identity
equivalence relation on X) in the sense of this new definition. This is coherent since
∆X is effectively the 0 of the preorder EquX . Let us recall the following:

Proposition 3.15. Let E be a pointed regular Mal’tsev category. Let f : X ։ Y be
a regular epimorphism and R an equivalence relation on X. Then the direct image
f(IR) of the normal subjobject IR along f is If(R).

From that, we can assert the following:

Proposition 3.16. Let E be a finitely cocomplete homological category. Given any
pair (R,S) of equivalence relations on X, we have [IR, IS ] ⊂ I[R,S].

Proof. From (2), we get

[χ(R,S)(R), χ(R,S)(S)] = 0 ⇒ [Iχ(R,S)(R), Iχ(R,S)(S)] = 0

By the previous proposition we have:

0 = [Iχ(R,S)(R), Iχ(R,S)(S)] = [χ(R,S)(IR), χ(R,S)(IS)].

Accordingly, by the universal property of the regular epimorphism ψ(IR,IS) we get
a factorization:

X
ψ(IR,IS)// //

χ(R,S) '' ''PP
PP

PP
PP

PP
PP Q[IR, IS ]

��
Q[R,S]

which shows that [IR, IS ] ⊂ I[R,S]. �

Theorem 3.17. In a finitely cocomplete homological category E the following con-
ditions are equivalent:
(1) E satisfies (Huq=Smith);
(2) [IR, IS ] = I[R,S] for any pair (R,S) of equivalence relations on X.

Under any of these conditions, the regular epimorphisms χ(R,S) and ψ(IR,IS) do
coincide.

Proof. Suppose (2). Then [IR, IS ] = 0 means that ψ(IR,IS) is an isomorphism, so
that 0 = [IR, IS ] = I[R,S]. In a homological category I[R,S] = 0 is equivalent to
[R,S] = 0. Conversely, suppose (1). We have to find a factorization:

X
ψ(IR,IS) // //

χ(R,S) '' ''PP
PP

PP
PP

PP
PP

PP Q[IR, IS ]

Q[R,S]

OO

namely to show that [ψ(IR,IS)(R), ψ(IR,IS)(S)] = 0. By (1) this is equivalent to 0 =
[Iψ(IR,IS)(R), Iψ(IR,IS)(S)], namely to 0 = [ψ(IR,IS)(IR), ψ(IR,IS)(IS)] by Proposition

3.15. This is true by the universal property of the regular epimorphism ψ(IR,IS). �
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3.5. Skew braces and their commutators. Since the categories SKB and SKBTop
are finitely cocomplete homological categories, all the results of the previous section
concerning commutators do apply and, in particular, thanks to the (Huq=Smith)
condition, the two notions of commutator are equivalent. It remains now to make
explicit the description of the Huq commutator.

We will determine a set of generators for the Huq commutator of two ideals in a
skew brace:

Proposition 3.18. If I and J are two ideals of a left skew brace (A, ∗, ◦), their
Huq commutator [I, J ] is the ideal of A generated by the union of the following three
sets:
(1) the set { i ◦ j ◦ (j ◦ i)−◦ | i ∈ I, j ∈ J }, (which generates the commutator
[I, J ](A,◦) of the normal subgroups I and J of the group (A, ◦));
(2) the set { i ∗ j ∗ (j ∗ i)−∗ | i ∈ I, j ∈ J }, (which generates the commutator
[I, J ](A,∗) of the normal subgroups I and J of the group (A, ∗)); and
(3) the set { (i ◦ j) ∗ (i ∗ j)−∗ | i ∈ I, j ∈ J }.

Proof. Assume that the mapping µ : I × J → A/K, µ(i, j) = i ∗ j ∗ K is a skew
brace morphism for some ideal K of A. Then

(i ◦ j) ◦K = (i ◦K) ◦ (j ◦K) = (i ∗K) ◦ (j ∗K) =
= µ(i, 1) ◦ µ(1, j) = µ((i, 1) ◦ (1, j)) = µ(i, j) = µ((1, j) ◦ (i, 1)) =
= µ((1, j) ◦ µ(i, 1)) = (j ∗K) ◦ (i ∗K) = (j ◦K) ◦ (i ◦K) = (j ◦ i) ◦K.

This proves that the set (1) is contained in K.
Similarly,

(i ∗ j) ∗K = (i ∗K) ∗ (j ∗K) = µ(i, 1) ∗ µ(1, j) = µ((i, 1) ∗ (1, j)) = µ(i, j) =
= µ((1, j) ∗ (i, 1)) = µ((1, j) ∗ µ(i, 1)) = (j ∗K) ∗ (i ∗K) = (j ∗ i) ∗K.

Thus the set (2) is contained in K.
Also,

(i ◦ j) ∗K = (i ◦ j) ◦K = (i ◦K) ◦ (j ◦K) = (i ∗K) ◦ (j ∗K) =
= µ(i, 1)) ◦ µ(1, j) = µ((i, 1) ◦ (1, j)) = µ(i, j) = µ((i, 1) ∗ (1, j)) =
= µ(i, 1) ∗ µ(1, j) = (i ∗K) ∗ (j ∗K) = (i ∗ j) ∗K.

Hence the set (3) is also contained in K.
Conversely, let K be the ideal of A generated by the union of the three sets. It

is then very easy to check that he mapping µ : I × J → A/K, µ(i, j) = i ∗ j ∗K is
a skew brace morphism. �

It the literature, great attention has been posed in the study of product I · J of
two ideals I, J of a (left skew) brace (A, ∗, ◦). This product is with respect to the
product · in the brace A defined, for every x, y ∈ A by x · y = y−∗ ∗ λx(y). Then,
for every i ∈ I and j ∈ J , i · j = j−∗ ∗ λi(j) = j−∗ ∗ i−∗ ∗ (i ◦ j) = (i ∗ j)−∗ ∗ (i ◦ j).
Hence the ideal of A generated by the set I · J of all products i · j coincides with
the ideal of A generated by the set (3) in the statement of Proposition 3.18.

Clearly, for a left skew brace A, the Huq commutator [I, J ] is equal to the
Huq commutator [J, I]. Also, I · J = (J · I)−∗, so that the left annihilator of I
in (A, ·) is equal to the right annihilator of I in (A, ·). Moreover, the condition
“I · J = 0” can be equivalently expressed as “J is contained in the kernel of the
group homomorphism λ|I : (A, ◦) → Aut(I, ∗).
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Proposition 3.19. For an ideal I of a left skew brace A, there is a largest ideal of
A that centralizes I (the centralizer of I).

Proof. The zero ideal centralizes I and the union of a chain of ideals that centralize
I centralizes I. Hence there is a maximal element in the set of all the ideals of A
that centralize I. Now if J1 and J2 are two ideals of A, then J1 ∗J2 = J1 ◦J2 is the
join of {J1, J2} in the lattice of all ideals of A. Now J1 centralizes I if and only if
(1) J1 ⊆ C(A,∗)(I), the centralizer of the normal subgroup I in the group (A, ∗); (2)
J1 ⊆ C(A,◦)(I), the centralizer of the normal subgroup I in the group (A, ◦); and

(3) J1 is contained in the kernel of the group morphism λ|I : (A, ◦) → Aut(I, ∗),
which is a normal subgroup of (A, ◦). Similarly for J2. Hence if both J1 and J2
centralize I, then J1 ∗ J2 ⊆ C(A,∗)(I), and J1 ◦ J2 ⊆ C(A,◦)(I) ∩ kerλ|I . Therefore
J1 ∗ J2 = J1 ◦ J2 centralizes I. It follows that the set of all the ideals of A that
centralize I is a lattice. Hence the maximal element in the set of all the ideals of
A that centralize I is the largest element in that set. �

In particular, the centralizer of the improper ideal of a left skew brace A is the
center of A.

A description of the free left skew brace over a set X is available, in a language
very different from ours, in [21].
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