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Overview

This dissertation is divided into three main parts. Part I puts message passing parallel
programming into context, and provides a brief overview of the Message Passing Interface
(MPI) standard, emphasizing the elements of the standard that have been in focus in the work
presented as the technical contributions of the dissertation. Part II summarizes and discusses
the individual contributions, and in a few cases provides additional and/or supplementary
material. Finally, Part III contains (pointers to) the 26 technical contributions (as they have
appeared) in the respective conferences and journals.
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Part I

Message Passing with MPI
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Chapter 1

Introduction

Message passing is a way of structuring and reasoning about parallel processes and programs,
which is well suited to the way actual parallel machines have been and still are constructed.
The message passing abstraction consists of a (finite) set of independent processes with
local state that can exchange information only by explicit communication facilitated by a
communication medium. A collection of processors with local memory and no common clock
connected through a communication network and routing system which permits any two
processors to communicate fits this description. This model and type of parallel computer
is an almost exact opposite of models where a set of synchronized processors communicate
directly via a common, shared memory.

The message passing model, which crystallized in the 1970ties and was practically de-
veloped throughout the 1980ties, has both theoretical and practical roots, theoretically in
formalisms like CSP (Communicating Sequential Processes [Hoa78, Hoa85]), and various
process calculi like CCS (Calculus of Communicating Systems [Mil80, Mil85]), practically
in a number of language extensions and libraries for programming some of the parallel ma-
chines that were developed and marketed in the 1980ties: Intel Hypercube, IBM SP, Meiko
Computing Surface, Thinking Machine Connection Machine CM-5, various Transputer based
systems [Hoa91], and many others.

Despite many other, possibly more convenient parallel processing abstractions, especially
for the design and analysis of parallel algorithms, typically presupposing a shared memory
of certain power, with the Parallel Random Access Machine (PRAM) [FW78, JáJ92] being
the most prominent representative, the message passing abstraction has prevailed as a model
and practical framework for performance efficient programming of actually existing parallel
machines. The Message Passing Interface [SOHL+98, GHLL+98], MPI for short, is a par-
ticular, practical incarnation of the message passing abstraction, which since its definition
in the early to mid-nineties has assumed the status of de facto standard for message passing
programming, especially in the area of “high-performance computing”: scientific applications
on dedicated, distributed memory systems with a significant number of processing nodes.

The work collected in this dissertation deals concretely with various aspects of the efficient
implementation of the Message Passing Interface, mostly for a specific, hybrid, distributed-
shared memory architecture. Although in this sense specialized, the specific algorithms
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and the lessons learned are believed to be of more general interest and relevance, and the
following overview chapters aim to show this. This summary is neither an overview of or a
tutorial on message passing or MPI, nor a textbook on design and implementation of parallel
communication algorithms, but has the more modest aim of putting a certain body of specific
work into a somewhat broader context.

1.1 Background on parallel programming and perfor-

mance models

Standard background in parallel processing and architectures is presupposed [GKKG03,
PH04]. This section summarizes parallel machine and model classifications, and performance
and design models for message passing systems as used in the following, both Part II and
the technical papers collected in Part III.

Programming model: Depending on context, p usually denotes the number of proces-
sors, that are numbered (or ranked) from 0 to p − 1. Each processor runs its own private
program. The processors may run different programs, or it may be required that they all run
the same program. The processors are not assumed to be synchronized, and therefore no as-
sumptions about them executing “the same instruction at the same time” can be made. The
processors operate on data stored in local memory. Following what could be called the ex-
tended Flynn taxonomy either an MPMD/MIMD (Multiple Program Multiple Data/Multiple
Instruction Multiple Data) or an SPMD (Same Program Multiple Data) programming model
is assumed. The Flynn taxonomy originated in [Fly72], and the SPMD assumptions were in-
troduced in [DGNP88] (see also [Dar01]). By the SPMD assumptions data and code objects
(like for example procedures) existing on one processor can also be referenced on any other
processor, which is normally a prerequisite for programming models with remote procedure
calls, for Active Messages [vECGS92], sometimes for the BSP model (see below), as well as
for Partitioned Global Address Space (PGAS) languages. Anticipating the next chapter, MPI
does not rely on this assumption, and it strictly supports an unrestricted MPMD/MIMD
programming model.

Message passing abstraction: The message passing abstraction assumes as above a
(finite), independent (non-synchronized) set of processors, each with only local memory,
each executing a locally stored program, and that can communicate with each other by
sending and receiving messages through a communication medium. The communication
medium facilitates reliable communication between any pair of processors. This abstraction
is supported by the underlying communication network .

Data parallel paradigm: The data parallel paradigm assumes that data are distributed
in some pattern across a finite set of processors, each of which in a similar fashion process
their individual part of the data. The processors may be tightly or loosely synchronized.
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Network model: For the design and analysis of communication algorithms it is conve-
nient to assume that the underlying communication network supporting the message passing
abstraction is fully connected (that is, any two processes can communicate directly) and ho-
mogeneous , meaning that the cost of communication between any two processors is the same
for all processor pairs.

Physically, this is true only for some (expensive) networks (like for instance full cross-
bars), and must otherwise be supported by routing in the underlying physical communica-
tion network [DYN03, DT04]. Many communication networks used in practice are physically
non-homogeneous, e.g. meshes, tori, trees.

Important properties of a communication network is the communication latency or start-
up, the communication bandwidth of a single communication link, the total or bisection
bandwidth (defined as the minimum of the total bandwidth over all possible partitions of the
processors into two roughly equal sized subsets when all processors of the two subsets are
communicating), the diameter of the network, and many others which will be hidden under
simplifying assumptions in the following.

One exception for which non-homogeneous communication structure will not be ignored
are simple, hierarchical communications systems as found in SMP systems that have come
into widespread usage since the late 1990ties. An SMP system consists of a number of
nodes N , each with a (maximum) number of processors n, such that the total number of
processors is p = nN . The nodes are interconnected by a physical communication network,
and the processors on a node are connected to a shared memory that can be used for intra-
node communication. It is assumed that communication between processors on a node is
fully connected, has full bisection bandwidth (meaning here that all pairs of processors can
communicate simultaneously at their full bandwidth regardless of how the processors are
paired), and is homogeneous. Actual memory systems for SMP nodes with many processors
are rarely that powerful. Communication between processors on the same node is typically
(much) less costly than communication between processors on different nodes.

Communication capabilities: Each processor is connected to the network through one or
more communication ports through which data are sent and received. If there is only one port
communication is called single-ported , if there are k ports (that can be used simultaneously),
obviously, k-ported .

The capability of each port, and of the network can be so as to allow communication in one
direction only at a time. This is called half-duplex . If both sending and receiving is possible
at the same time communication capabilities are bidirectional or full-duplex . Bidirectional
communication may be restricted such that a processor can send and receive only from
one other processor at a time, which is called the telephone model of communication. The
most general model of bidirectional communication is to allow simultaneous sending to some
processor and receiving from another, possibly different, processor. This model is sometimes
referred to as the (simultaneous) send-receive model [BNK94a, BNKS00], and is supported
by many current interconnects.

In SMP systems, the processors on an SMP node (typically) share the communication
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capabilities, and it is the processor nodes that have the capabilities described above. These
capabilities, as well as the communication bandwidth of the network are shared among the
processors, which can obviously be a severe limitation for SMP systems with large nodes.
For a formal model of (heterogeneous) SMP clusters, see for instance [CFMR05].

Complexity model: For analyzing the complexity of algorithms, in particular of collective
communication operations in which all processors take part, it is a convenient abstraction to
assume that communication takes place in synchronized rounds. The time for such a round
is then bounded by the communication time of the slowest processor. This is an abstraction
to ease the analysis, rarely actual (explicit) synchronization has to take place.

Performance model: There is a number of commonly used proposals for modeling the
time spent in communication between two processors in a distributed system.

The simplest and most straightforward abstraction is the linear cost model. The time for
transferring a message of size m (bytes or other unit) through the communication network
is linear in m and modeled as α + βm, where α is the start-up latency and β the transfer
time per unit1. Because many communication systems, including MPI, for performance
reasons use different protocols for different data sizes, the simple linear model is often not
warranted. A piecewise linear model, with different α and β values for disjoint intervals of
m, can sometimes be used for greater accuracy. Another problem with the linear model is
that it models only transfer time and assumes that both sender and receiver are active for
the whole duration of the transfer. This does not help in designing and analyzing algorithms
with overlap between communication and other activities.

These deficiencies are addressed in the arguably more accurate (parametrized) LogP
model [CKP+96], and its extension for long messages LogGP [AISS97]. The parameters in
this model are latency L, overhead o in which a processor is involved in either sending or
receiving a message, gap g which is the minimum time between consecutive message transfers,
and the number of processors P . Because the LogP model was originally intended for small
messages, parameters o and g were constants. For use with longer messages a gap per byte
G was introduced in the extended LogGP model. These models are both subsumed in the
parametrized LogP model of [KBV00]. In this model the time to send a message of size m is
g(m), and the message has been completed at the receiver at time L + g(m) assuming that
sender and receiver starts operation simultaneously, and that g(m) > o(m).

Methods and benchmarks for measuring the LogP parameters for MPI implementa-
tions that are necessary for tuning of algorithms developed under this model were given
in [BBC+03, KBV00, HMLR07].

A different way of modeling communication delays is the postal model [BNK94b, BNBH+95,
BCD+96, BNK97], in which a message sent in round k arrives at its destination λ rounds

1For mysterious reasons the linear model is in the MPI community often called the “Hockney
model” [Hoc94]. The model has been around for much longer as a first approximation to network per-
formance.
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later, in round k + λ. This model has sometimes been used for the design and analysis of
collective communication algorithms.

Combined design, complexity and performance models: The bulk synchronous pro-
cessing model [Val88, Val89, Val90b, Val90a] (BSP) combines aspects of design, complexity
and performance models, and was intended as a bridging model between physically existing,
practical parallel computers and more theoretical design and complexity models like the
Parallel Random Access Machine (PRAM).

In the BSP model a computation is organized into a sequence of supersteps. In a compu-
tational superstep the processors perform computations on local data independently of each
other. A computational superstep is followed by a communication superstep, in which data
are exchanged among the processors, (logically) followed by a barrier synchronization. In a
communication superstep each processor is assumed to receive at most h units of data and
send at most h units of data, and the problem of scheduling and routing this communication
is called an h-relation. The complexity of a BSP computation is the sum of the times for
the supersteps. To model cost, the BSP model assumes two parameters, L which is the
minimum time between two supersteps, and g (not to be confused with the g of the LogP
model) which is the computation to communication ratio, in addition to the problem size
and the number of processors.

The coarse-grained multicomputer (CGM) [DFC+02] is a simplified BSP model. Another,
recent model in this vein is the parallel resource optimal model (PRO) [GEL+06], which
furthermore requires optimality relative to a sequential algorithm.

A number of libraries for BSP programming have been proposed and implemented [JW96,
HMS+98, GLR+99, BJvOR03, Bis04], but they have not found widespread usage. The
book [Bis04] discusses BSP application programming with BSPlib, and contrasts this to a
BSP style implemented directly in MPI.

The paper [BHP+99] explores the relative (predictive) power of the BSP and LogP
models, and shows that they are substantially equivalent in that a LogP computation can
be simulated in the BSP model with constant slowdown, and a BSP computation can be
simulated in the LogP model with at most logarithmic slowdown (and constant for a wide
range of model parameters).

The PRAM [FW78, JáJ92] is a different, abstract model for algorithm design and parallel
complexity analysis. It assumes an unbounded set of processors operating in lock step with
unit time access to a common, shared memory. The model has been theoretically enormously
influential for investigating the inherent complexity of various problems and for the design
of massively parallel algorithms [Rei93]. Many of the results, techniques and paradigms
are relevant to algorithm design in other, weaker models, or for understanding inherent
potentials and limitations of computational problems. Despite attempts of constructing
various approximations and emulations of the PRAM [KKT01], the model in itself has been
practically largely irrelevant.
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Chapter 2

Towards a Message Passing Interface

The mid-80ties of the last century experienced a first upsurge in and enthusiasm about
parallel computing, which was due both to enormous advances in microprocessor technology,
and to certain climatic conditions of the time like the demand for performance implied by the
socalled “Star Wars” program in the US, as well as by large scale scientific and environmental
socalled “Grand Challenge” problems1. At the time a number of architecturally different
systems were built, with both variants of shared memory (Denelcor HEP, 1982, Encore
Multimax, 1985, Sequent Symmetry, 1987, Thinking Machines CM-2, 1987, MasPar MP-1
and MP-2, 1990 and 1992, Kendall Square Research KSR, 1991, and others) and distributed
memory (Cray T3D, 1993, IBM SP, INMOS Transputer, 1984, Intel iPSC2 and iPSC/860,
1987 and 1990, Meiko CS and CS-2, 1986 and 1993, nCube, 1985, 1989 and 1995, Thinking
Machines CM-5, 1991, and many others) [McB94]. Performance and scaling difficulties with
shared memory systems gradually shifted the emphasis towards distributed memory systems
with some form of message passing as the programming paradigm. This led to a growing
consensus about a the need for a portable message passing interface.

Influential in the process were both large and small hardware and system vendors like
Intel (with the iPSC hypercube), IBM (with the SP system), Meiko, nCUBE, and univer-
sities and research institutions like Argonne National Labs, University of Tennessee, GMD
(“Gesellschaft für Mathematik und Datenverarbeitung” in Germany, no longer existing but
taken over by the Fraunhofer Gesellschaft), and many others. Some of the individuals in-
volved eventually got together in 1992 to define a message passing interface based on common
ideas from some of the more successful interfaces in use at the time, and also with the aim
of ensuring that developments in the US and in Europe would not diverge. This gather-
ing developed into the MPI Forum that eventually took responsibility for defining the MPI
standard. A first proposal for a Message Passing Interface was made available already in
October 1992, and the first, final version of the MPI-1 standard was officially released in
May 1994. Corrections to this standard were published in June 1995, at which point also
work towards MPI-2 was started, resulting in the MPI-2 additions to MPI-1 being published

1A current, second and possibly much more desperate upsurge in parallel computing is driven by a relative
decline in single-processor performance and the resulting transition towards multi-core processors.
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in July 1997. The process leading to the MPI-1 and MPI-2 standard documents, including
voting procedures, is vividly and carefully described by two of the founding members of the
MPI Forum [Wal94, DOSW96, HW99].

MPI-1 defined a pure, although broadly scoped message passing model. It included
point-to-point communication, communicators and process groups needed for building safe
parallel libraries, collective communication, datatypes for describing complex layouts of data
in memory, and the not strictly message passing process topology feature. MPI-1 defined
bindings for C and Fortran 77, with bindings for C++ and Fortran 90 added with the first
set of corrections in 1995. With MPI-2 additions that are not strictly message passing, but
which fit into and significantly extend the message passing framework of MPI-1, were added.
These include one-sided communication, parallel I/O, and dynamic process management.

Some influential precursors to MPI in use in the late 1980ties and early 1990ties, and
some of the key concepts that they contributed to the standard should be mentioned. Some
of these were non-portable vendor interfaces, others open, portable interfaces intended for a
wider range of systems.

• PVM (Parallel Virtual Machine) [Sun90, SGDM94, GBD+94] is a message passing
interface for programming in dynamic, heterogeneous environments, that was quite
widely used in the early 1990ties. The dynamic process management features of PVM
influenced MPI-2.

• The P4 macros [BBG+87, BL94] is a low level interface for both shared and distributed
memory programming with a message passing abstraction. Since efficiency was a major
goal of P4 it was later used as a low-level implementation interface for MPI.

• The portable, parallel macros PARMACS [CHHW94], partly evolved from P4, was
a message passing interface which included a mechanism for defining virtual process
topologies. The mechanism was adopted almost unchanged by MPI-12.

• The Zipcode interface [SSD+94] emphasized support for building safe, interference
free parallel libraries. It introduced a communicator concept much like in MPI, and
developed implementation mechanisms which were subsequently used in MPI imple-
mentations. Zipcode also had a virtual topology concept.

• The Express system [FK94] also stressed the importance of building high-level parallel
libraries, completely hiding concrete message passing from the user. It had communi-
cator and virtual topology concepts.

• Although not a message passing system Linda [CG89, CGMS94] is sometimes cited as
an influence in the definition of MPI, maybe because its fundamental abstraction of
an associatively addressed tuple space was so different.

2Apparently some versions of PARMACS allowed weighted edges in the graph topology (Hubert Ritzdorf,
personal communication), but this unfortunately did not become part of the MPI specification.
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• The XDR (external data representation) datatypes, also used in PVM for heteroge-
neous communication, influenced the definition of derived datatypes in MPI, and were
also used in early implementations.

• IBM’s External User Interface (EUI) [BBB+94] and Collective Communications Li-
brary (CCL) [BBC+95], were full-fledged message passing interfaces which substan-
tially influenced MPI by their communicator concept (called task groups) and rich
set of collective operations. Also the EUI introduced non-blocking send and receive
operations with request handles and separate completion calls.

• Intel’s NX was mainly a point-to-point communication library. It had tagged messages
and selective receive operations. The library in its first version had no concept of
process groups and collective communication.

• While all of the above mentioned systems were libraries or macros for existing lan-
guages, occam [INM88] was a genuine message passing language (for the INMOS
Transputer), based strictly on the CSP formalism. Message passing communication
was synchronous with a construct for non-deterministic choice. The language had
no concept of process groups, no collective operations, and little support for parallel
libraries.

These and other approaches to message passing that were current at the time and all
played a role in the process that led to MPI are described in a special issue of Parallel
Computing which appeared in 1994 [HHMW94].

The goals of the MPI Forum was to develop an interface close to the then current practice
to make a take-up by the various groups, vendors, and users likely. The interface should be
portable over a wide range of platforms, but also efficiently implementable and fair in not fa-
voring any particular machines’ capabilities. Other main design goals were to support library
building, and to allow the interface to be implementable in heterogeneous environments. The
outcome was MPI-1.

MPI-1 met the design goals by centering on a small number of key concepts. Most impor-
tant is the idea of safe communication domains in the form of the communicator construct,
supported by process groups with local operations and collective operations for managing
communicators. Another key concept was the flexible and compact derived datatype con-
struct for representing application data structures. A point-to-point communication model
whose “normal” send operation would not require intermediate buffering, and a compre-
hensive set of collective operations were the methods for communication. Despite the small
number of key concepts MPI-1 ended up with a large number of functions, partly mandated
by concerns for library building (attribute caching mechanisms), partly because the stan-
dard was also a compromise between many existing approaches with sometimes conflicting
conceptions. The extensions introduced later with MPI-2 could build on the key concepts of
MPI-1. The one-sided extension was a new communication model, the parallel I/O model
could be seen as an extension towards external communication, and builds fundamentally
on the derived datatype concept, while the dynamic process management facilities took up
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on ideas that had been found valuable in for instance PVM. Interestingly, the MPI-2 process
required more meetings than the MPI-1 process, sixteen instead of only seven.

2.1 Sociology and dynamics of MPI

MPI gained acceptance from its intended community quickly, and has over the past 15 years
successfully developed into the de facto standard for message passing programming. It is
interesting and worth pointing out that MPI is not a standard in the sense of being approved
and administered by a standardization body like IEEE, ANSI or ISO. Instead, the standard
is maintained by the MPI Forum, in which a number of (about 20) institutions has a vote
for deciding about ballots of suggested corrections and minor improvements. The standard
is the documents that can be found at www.mpi-forum.org. This consists of the MPI-1
documents, the corrections from 1995 called MPI-1.2, the MPI-2 document, and a list of
accepted corrections to mostly parts of MPI-2. The first tree documents are more or less
reprinted in two books [SOHL+98, GHLL+98], but there are some changes and additional
explanations, and these books are not the MPI standard.

Currently the MPI Forum is in a bit of a stalemate situation. There are a number of open
discussion points at the MPI mailing lists (which can be found mirrored at www.mpi-forum.
org), many of which can be viewed as simple and relative uncontroversial corrections, and a
list of Forum members entitled to vote on these, but votes are not cast. The list of MPI Forum
members dates back to the MPI-2 meetings, following the then established procedures for
entitlement (see [HW99]), and does not reflect the current forces in community. Furthermore,
there is from various sides pressure for reviving the MPI process, although it is on the other
hand not entirely clear what the issues of discussion should be. There is at the same time
a genuine concern that the MPI standard may be weakened by accepting proposals and
extensions in directions beyond efficient, dedicated message passing, that furthermore may
not fit together.

Parallel with the definition of the MPI-1 standard, a first, paradigmatic implementation
was developed, the so called MPICH [GLDS96] implementation from Argonne National
Laboratories. It is generally recognized that this played a major and perhaps decisive role
in making the standard a success. The prototype implementation could provide immediate
feedback to the standardization process, and subsequently the MPICH implementation was
used as a starting point for several vendor implementations, including NEC’s MPI/SX. This
meant that a reasonably well performing implementation of MPI-1 was available for use more
or less in parallel with the standard itself. That this was not done for the MPI-2 extensions
is probably one of the reason that the acceptance of this part of the standard has met with
much more reluctance from both users and vendors. While complete implementations of
the MPI-1 standard were available from many groups and vendors during the mid to late
1990ties, still only few really complete MPI-2 implementations are available, the first being
announced in 2000, three years after the MPI-2 standard was made public.

During the standardization process ideas that were discussed and formalized to the point
where they could have been included in the standard but voted out have been collected in
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the socalled Journal of Development.
Aspects of message passing models and programming, the MPI standard itself, and, most

significantly, the efficient implementation of aspects of MPI on classes of systems and specific
machines has since many years occupied a central position in main stream parallel processing,
and these themes are represented at all influential practical (and even theoretical) parallel
processing conferences, e.g. ACM/IEEE Supercomputing, IEEE IPDPS (International Par-
allel and Distributed Processing Symposium), ICPP (International Conference on Parallel
Processing), ACM PPoPP (Principles and Practice of Parallel Programming), Euro-Par (Eu-
ropean conference on Parallel Computing), and occasionally even ACM SPAA (Symposium
on Parallel Algorithms and Architectures). Since 1994 all aspects concerning the use, devel-
opment and implementation of MPI (and PVM) have been the sole topic for EuroPVM/MPI,
an annual conference dedicated to these message passing models. EuroPVM/MPI started
out as the European Users Group Meeting on PVM, and shortly took up on MPI, which
nowadays almost entirely dominates the conference.

The literature on all these aspects of MPI is enormous. There is no pretension of a
systematic or exhaustive covering here. Pointers to literature are given where relevant for
the discussion, where possible to more complete, extensive journal versions, that is with little
intention of establishing precedence, and with indications of new or alternative developments
of the discussed ideas. Care, especially in the papers in Part III, has been taken to give credit
where credit is due.

2.2 Beyond MPI

MPI and the message passing abstraction are often criticized as too low level for productive
(manageable, correct, scalable) development of parallel applications. There has been a large
number of other proposals, still intended for actual, distributed memory systems with a com-
munication network, that in various ways try to support higher level parallel programming
abstractions. Some of these have been partly successful, mostly in smaller communities or
for special, limited classes of applications. An early example is the above mentioned Linda
abstraction [CG89, CGMS94]. For efficiency reasons, or for lack of generality, or both, none
of these proposals so far have been able to supersede MPI as a common basis for portable,
parallel programming of distributed memory systems.

Another early attempt at a more convenient programming abstraction was the data paral-
lel High Performance Fortran (HPF) [Hig93, Sch97] definition. In the data parallel paradigm
the distribution of data over the individual processors implicitly determines exchange of data
which thus need not burden the application programmer, and High Performance Fortran
would ideally allow programming at a higher level of abstraction (various kinds of parallel
loops). Another idea was not to make changes to the host Fortran language but to express
the division of data and computations by pragmas to be exploited by the compiler. Thus, a
High Performance Fortran program would also be executable as a sequential program on a
single processor. This presumably worked reasonably well for limited, highly structured ap-
plications with regular data distributions, but failed for more irregular computations. Since
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the beginning of the century the influence of High Performance Fortran has been very limited.
It is worth mentioning that the organization of the HPF Forum did inspire the rules of the
MPI process: formation of subcommittees, regular meetings, rules of voting by commitment.

More general mostly data parallel language additions by means of pragmas and some li-
brary support are found in OpenMP [DM98, CDK+01] for shared memory systems. OpenMP
has been more successful than High Performance Fortran because of the shared memory re-
striction, but do run into some of the same problems for irregular computations. Efficiency
suffers, and the initially elegant idea of annotations to the normal language constructs by
means of simple and clean pragmas begin to look very untenable. Pragmas becomes highly
complex with obfuscated semantics, and examples with more pragmas than program lines
are common. There has been extension of OpenMP (implementations) to distributed shared
memory, but so far with unsatisfactory performance, and such extensions are not widely in
use.

More recently, socalled Partitioned Global Address Space (PGAS) languages have gained
attention. These are more flexible than the strict data parallel paradigm, and are at
the same time claimed to be more efficient, partly because they are languages which can
profit from many genuine advances in compiler technology. The best known examples are
UPC [EGCSY05], Titanium [YSP+98, YHG+07], and Co-Array Fortran [RN07, CDMC+05].
An earlier, library based framework in the same vein was Global Arrays [NHL94, NH97].

Two other, but even more wide ranging languages are currently coming out of the US
Government (DARPA) sponsored High Productivity Computing Systems (HPCS) initiative,
which aims at both productivity and performance [LY07]. The two currently funded de-
velopments in the initiative are X10 [SSvP07] from IBM, and Chapel [CCZ07] from Cray.
It is not to be expected that these languages will be in any way successful in the sense of
being taken up by a large community of application developers, simply because they are
not portable beyond their narrow range of target machines, and because by being (quite
ambitious) languages the effort required to make them so is large. Their impact if any will
at most be indirect.

All of the above mentioned languages and libraries assume an SPMD model.
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Chapter 3

An Overview of MPI

In the following we give an overview of MPI as background for the technical contribu-
tions of Part III. This overview is not intended as a tutorial of MPI. To use but also to
gain a deeper understanding of MPI the two books which essentially contain the standard
document [SOHL+98, GHLL+98], with plenty of Rationale, Advice to users and Advice to
implementers are the place to start. A number of tutorials [GLS94, GLT99] and several more
general textbooks on parallel programming with message passing using MPI [Pac97, Qui03,
KK03] (to mention but a few) are available. The ongoing discussion on corrections (and
possible extensions) to the standard (both MPI-1 and MPI-2) can be found in the resources
provided by the MPI Forum at

www.mpi-forum.org

From now on the term MPI means the full standard. Only rarely a distinction between MPI-
1 and the MPI-2 extensions will be made. On September 4th 2008 the MPI Forum released
the consolidated MPI 2.1 standard document [MPI08] which merges these two disparate
parts of the standard into a (more) unified whole. This is the current version of the MPI
standard, and all further versions (MPI 2.2 to be expected by the end of 2009, possibly later
an MPI 3.0) of the MPI standard will build on this document.

MPI is a library with interfaces for the programming languages C, C++ and Fortran.
This division of work means that no modifications to those languages or their compilers are
necessary, and ensures a high level of portability. A program which has been implemented for
one system with a standard conforming MPI implementation should be portable to any other
system with MPI and requires recompilation at most. The drawback of a library approach is
that some duplication of work between application and library may be introduced, and that
local, dynamic state of the computation may have to be explicitly (and repeatedly) passed
back and forth between application and library. This is sometimes tedious and unnatural,
and is the case for some aspects of MPI, for instance with respect to structured data (see
Section 3.2). Other drawbacks of the library approach compared to a parallel programming
language are loss of efficiency and lack of elegance, as pointed out in the curious and one-sided
critique in [Han98] from the standpoint of CSP-like, synchronous communication semantics.
This critique severely underestimates the express need for portability and a more flexible
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semantics in line with the approaches, languages, and libraries for message passing around
at the time when MPI was defined, and that could most readily be met with the library
approach taken by MPI.

MPI is primarily concerned with communication, which is expressed by explicit library
calls. MPI is carefully designed to allow implementation of higher level, safe, parallel, appli-
cation specific libraries. To this end some amount of additional “bookkeeping” functionality
is built into the interface for handling and annotation of the various distributed objects de-
fined by MPI. Mostly such functionality, e.g. attribute caching on objects, will not be further
described here.

MPI is designed to support the most general MPMD/MIMD programming model in which
the processors may run different programs. Typically, this can happen when additional MPI
processes are spawned dynamically, although also static applications (in which the number
of MPI processes is fixed from the outset) can make use of this freedom. However, many
applications are programmed in the SPMD model, and each process executes the same
program (of course without any implied synchrony). MPI is also, primarily by its datatype
mechanism, designed to support heterogeneous systems where the representation of objects
may be different among the processors of the system.

MPI is a process oriented interface (although thread based implementations have ex-
isted [Dem97, TSY00, TY01]). Processes are normally statically bound to a static set of
processors, and communication between MPI processes takes place solely by the communi-
cation operations of MPI. Processors may run more than one MPI process.

Three major communication models or paradigms are defined by MPI.

• In the point-to-point model a sending process sends data to an explicitly specified
receiving process which is also explicitly involved in the communication (Section 3.3).

• In the one-sided model an origin process initiates get or put (or accumulate) com-
munication with a target process that is not explicitly involved in the communication
(Section 3.4).

• In the collective communication model all processes take part in a joint data exchange
or computation operation (Section 3.5).

MPI defines two additional models or paradigms, that are not strictly for communication.

• A parallel I/O model allows MPI processes to read and write data to and from external
files, either individually or collectively (Section 3.7).

• A dynamic process management model makes it possible for MPI processes to dynami-
cally create (spawn) new processes, and for independently started processes to establish
MPI communication with other MPI processes (Section 3.8).

All communication in the MPI communication models is between memory segments or
buffers that have been allocated by the application in the user memory space of the MPI
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processes. Communication buffers are managed by the application. Communication buffers
are untyped addresses passed to MPI in the communication calls, and stores either contiguous
sequences of primitive data elements, corresponding to the primitive datatypes of C, C++
or Fortran, or more generally non-contiguous sequences of structured data. MPI provides a
concise and very powerful mechanism to describe arbitrary layouts of data in communication
buffers. This mechanism is called derived or user-defined datatypes (Section 3.2).

MPI realizes and supports the message passing abstraction of a fully connected, dis-
tributed system, in which all processes can communicate by the same mechanisms without
exceptions. In order to be implementable on as wide a variety of actual, physical systems as
possible, MPI does not incorporate a performance or cost model in any form, and does not
provide any performance guarantees whatsoever. As witnessed by the large number of sys-
tems on which MPI has actually been implemented, from networks of workstations with very
weak communication systems to dedicated, high-performance systems with custom commu-
nication networks, this has been a wise design decision. The only way to determine how an
MPI implementation performs on a given system is by benchmarking. In Chapter 11 some
possible drawbacks of the lack of performance model or guarantees are discussed.

By abstracting away from the underlying system the capabilities of the communication
system are not in any way reflected in MPI, and it is not possible for an MPI application
directly to control the allocation of processes to processors so as to improve communication
performance. MPI makes one concession to this. By the means of virtual process topologies
the communication pattern of (a part of) an application can be described in the form of an
unweighted communication graph and passed to MPI which has the possibility of suggesting a
reordering of the processes which may improve performance for the specified communication
pattern.

The three communication models of MPI (as well as the parallel I/O) model specifies
progress rules which state under what conditions communication must be guaranteed to
progress and eventually terminate. These rules have been carefully formulated with a degree
of interpretational freedom but to generally allow correct implementations of MPI without a
dedicated progress thread (per process) and without special hardware support for handling
communication (apart from the communication network, of course). Despite the defensive
and careful formulation of the progress rules, the issue of progress is regularly a matter of
controversy. MPI does not guarantee fairness in communication.

Although care was taken to specify MPI to allow implementations without intermediate
buffering (in particular the “normal” send function that is not required to buffer, and there-
fore may lead to deadlock if crossed by another send from the destination process, but also
the collectives were defined with that in mind), MPI is still a memory demanding interface.
This is due to powerful constructs for representing sets of processes, and in particular to the
fact that messages may arrive at a process unexpectedly, before a corresponding operation
to receive the message was posted. For efficiency reasons this mandates some amount of
hidden, intermediate, unbounded buffering.

Although MPI defines error classes and codes which can be returned to the user, it is
quite explicit in stating that errors may, but not that they will, be handled by an implemen-
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tation. On the other hand the standard is (mostly) very precise in stating for each of the
MPI functions the conditions for a call to be correct. Error handling was left optional for
efficiency reasons. When/if an error is detected, an error handler is called, and MPI provides
mechanisms for the user to define handlers.

A major design goal of MPI was to allow the implementation of safe parallel libraries.
By this is meant that it must be possible to guarantee that communication relating to the
library does not interfere with communication of the application performed outside of the
library. Furthermore it must be possible for the library to query and decode MPI objects
created by the application that are passed to the library. The basic construct for separating
communication domains is the communicator abstraction, but also a very elaborate attribute
caching mechanism was introduced for this purpose. Attributes can be attached to all the
main types of (distributed) objects like communicators, windows, file handles, and datatypes.
It is also possible to decode derived datatypes to determine the sequence of constructors used
to create the type.

MPI is, in principle but not formally so self-simulating [KRS90]. This means that it
is possible to implement MPI in MPI, but only if a lot of coding of MPI objects is done
manually. The self-simulation property is relevant, because MPI is intended for library
building, and also because MPI is sometimes used to implement new collective communica-
tion algorithms, or to test improved implementations of collectives already defined in MPI,
or to repair deficient implementations of MPI collectives. Some of the main impediments to
self-simulation, that are also of practical concern, are the following.

• derived datatypes are not first-class citizens, that is they cannot be sent and received
in communication operations, and they were, until the introduction of decoding func-
tionality with MPI-2, completely opaque.

• the address type MPI Aint is not a first-class citizen, that is there is no MPI type (like
MPI INT) describing MPI Aint, so objects of type MPI Aint cannot formally be used in
communication and other operations.

• The operator MPI Op and other similar objects are not first class citizens.

• The pack and unpack functionality (MPI Pack and MPI Unpack) is restricted and does
not allow arbitrary breaking of buffers of structured data into blocks. This makes
the implementation of blocked and pipelined algorithms working on structured data
difficult for the user.

Finally, MPI is designed to allow coexistence with other parallel programming paradigms,
and is used routinely on SMP systems together with OpenMP [CDK+01] and other shared
memory paradigms. It is also designed to coexist with threads, which is a more compli-
cated issue. The standard allows for implementations of MPI that are thread-safe at vari-
ous levels. An implementation may allow only a single thread (MPI THREAD SINGLE), may
allow a master thread to call MPI functions (MPI THREAD FUNNELED), may allow an arbi-
trary thread to perform MPI calls but only as long as no other thread performs an MPI
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call at the same time (MPI THREAD SERIALIZED), or may support unrestricted thread safety
(MPI THREAD MULTIPLE). A recent analysis of the MPI standard in [GT07a] elaborates on
what is required and what is guaranteed from an MPI implementation to support threads.

3.1 Processes and communicators

A basic concept in MPI is a distributed data structure (or distributed object) for representing
ordered sets of processes, called a communicator. Only processes belonging to the same com-
municator can communicate. A communicator actually consists of a unique communication
context and an ordered set of processes called a group.

Communicators in MPI come in two flavors with different capabilities, namely intra-
communicators and inter-communicators. Here, mainly intra-communicators are of concern
(for inter-communicators, see Section 3.8). Distributed data structures (other examples are
windows , see Section 3.4, and file handles , see Section 3.7) can only be manipulated by
special, collective operations (see Section 3.5).

The communicator concept is one of the basic means of MPI for creating safe, interfer-
ence free parallel libraries. To ensure safety, a parallel library duplicates the communicator
used in the initialization of the library and/or in individual library calls, and by using this
new, distinct communicator, communication inside the library is guaranteed not to interfere
with communication between the same processes taking place outside of the library (in the
application or in other libraries).

The number of processes in a group/communicator is called the size of the group/com-
municator, and each process in the group/communicator is identified by a unique integer
rank. Process ranks within a group/communicator are always consecutive, starting from 0.

When an application is started the MPI library must be initialized by calling the MPI Init
function, before which no MPI functions (with exception of the query function MPI Initialized)
can be called. Among many other things the MPI Init call creates a communicator called
MPI COMM WORLD containing all processes specified (externally) in the launch of the paral-
lel application. From MPI COMM WORLD new (sub)communicators can be created by various
collective operations. The process group associated with a communicator can be extracted
locally by the MPI function MPI Comm group.

Process groups that represent ordered sets of processes are MPI objects that can be
manipulated locally, that is independently by each MPI process, and for instance used in
the (collective) creation of new communicators. Operations on groups include forming new
groups by unions and intersections, finding a process’ local rank in a group, and translating
ranks among groups.

A process group represents a (usually static) process to processor mapping. To facilitate
fast (constant time) translation from group local ranks to processor identities, this mapping
is often implemented by an array of size p indexed by rank. This is expensive in memory,
theoretically not scalable, and can be problematic in practice for systems with a large number
of processors and comparatively scarce memory resources – as is the case for the IBM Blue
Gene/L system [MSA+07, FCLA06] (Gheorge Almasi, personal communication).
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3.2 Datatypes and memory layout

MPI allows communication not only of data which occupy consecutive locations in memory
(simple buffers), but also of non-consecutive data scattered over a larger segment of the
memory of a process. Non-consecutive data arise in applications by the use of the various
structuring concepts offered by the implementation language of the application. Being a
library, the application specific layout of data must be explicitly conveyed to the MPI library.
This is done through the (recursive) use of constructors which make it possible to describe
arbitrarily complex layouts of data. This mechanism of MPI is called derived or user-defined
datatypes .

Communication (and file) buffers in MPI are described by three parameters:

1. the start address of the buffer,

2. a count of the number of consecutive elements in the buffer, and

3. a datatype describing the layout or structure of each element

Such an MPI communication buffer will be denoted by a triple [buffer,count,data-

type].
The element data layout is described by an MPI datatype which can be either a basic

(simple) datatype or a derived type as mentioned above.
The basic datatypes correspond to the simple datatypes found in the host languages C,

C++ or Fortran, e.g. MPI INT for (C int) integer types, MPI FLOAT and MPI DOUBLE for single
and double precision floating point numbers of different precision, MPI CHAR and MPI BYTE

for byte sized types, etc. Each of these types occupies a small, consecutive unit of memory,
e.g. a byte, a word, a double precision word, etc.

In general, a data layout is a sequence of basic datatypes, called a type signature, and
a corresponding sequence of displacements or offsets, describing where each basic datatype
is to be placed relative to the beginning of a buffer. The type signature together with the
sequence of displacements is called a type map, thus the terms derived datatype, data layout
and type map can be used more or less synonymously.

The size of a datatype is the total size of the basic datatypes in the type signature in
some unit (typically bytes). The extent of a datatype is the difference between the smallest
displacement and the largest displacement plus the size of the corresponding basic datatype
in the type map. For an MPI type mpitype, extent(mpitype) will be used to denote the
extent of the type, and is used for explanatory purposes in Section 3.5.

Derived types are recursively built up by the use of constructors, MPI functions that
must be explicitly called, and generate type maps according to rules associated with each
constructor. Let Ti be already defined datatypes and ci ≥ 0 repetition counts for i = 0, . . ..

• MPI Type contiguous creates a contiguous type of c0 instances of the component type
T0, each instance starting at the offset where the previous instance ended.
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Figure 3.1: A data layout in memory and type map of a structured type built over two vector
types. Also shown is the conceptually existing type signature.

• MPI Type vector, MPI Type create hvector create a vector type consisting of c1 strided
blocks, each consisting of a contiguous sequence of c0 instances of the component type
T0.

• MPI Type indexed, MPI Type create hindexed, MPI Type create indexed block create an
indexed type consisting of a number of contiguous blocks of ci instances of the compo-
nent type T0, each block starting at a specified index.

• MPI Type create struct creates a structured type consisting of a number of contiguous
blocks of ci instances of potentially different component types Ti, each block starting
at a specified displacement.

MPI in addition has constructors for distributed array types and subarrays, but these can
(easily) be defined in terms of the constructors explained above.

An example of a structure consisting of two vector types is shown in Figure 3.2.
Using the description of the type constructors, an explicit type map can easily be

constructed, and some MPI implementations or parts thereof, like the ROMIO [TGL98,
TGL99b, TGL99a, TGL02] implementation of parallel I/O, do represent datatypes by their
type map. This is a space consuming representation proportional to the number of basic
datatypes in the type map, which depends directly on the actual size of the repetition counts
used to build the type.

A much more compact representation is as a DAG (directed acyclic graph) consisting
of nodes for the constituent basic types and one (or two) node(s) for each constructor call
used when creating the type with the corresponding repetition counts and displacements
on the edges from constructor node to component type node. For example a contiguous
type has one child, representing the component type, a vector child one child representing
the contiguous block making up the vector (which again has one child), an indexed type
multiple edges to the same component type, each with different repetition count and index,
and, finally, a structured type several children for each component type.

This representation is clearly a DAG and not a tree since the same component type can
occur many times at different positions. By a leaf of such a DAG is meant a node with no
children. Leaves are clearly basic types. The root is the single node with no incoming edges.
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The number of leaves L of such a DAG is the number of different traversals from root to a
leaf. During the traversal to the leaves a tree T representing the DAG can be built.

The DAG representation leads naturally to a recursive formulation of the routines needed
to traverse and process the basic datatypes of a derived datatype, for instance for packing and
unpacking into and from consecutive buffers. In such a straightforward recursive formulation,
the internal repetition counts can make the number of recursive calls very large, and in
particular unbounded in the number of leaves L.

MPI provides functionality to pack and unpack structured data into or from consecutive
buffers. The MPI Pack and MPI Unpack functions however only allow packing or unpacking
into or from full MPI buffers [buffer,count,datatype]. There is no functionality to navi-
gate inside a non-consecutive buffer, and no functionality to pack or unpack only parts of a
structured buffer. This makes it difficult to implement advanced pipelined algorithms (oper-
ating on non-consecutive data) in MPI. To assist in library building where datatypes might
be given as black box arguments, MPI provides a set of decoding functions, which can be
used to (recursively) extract the component types of a derived datatype. This functionality
is awkward and clumsy.

For the application programmer it can be a tedious exercise to describe once again (the
layout of) the application datatypes to the MPI implementation, and a better integration of
the MPI datatypes with the target languages would be desirable. Tools have been proposed
and developed to aid with the setting up of the MPI datatype constructor calls directly from
the application code [GMPD98, MSD99, HI00, RP06], but seem limited and sometimes make
rather arbitrary assumptions. Such tools have not found widespread usage.

It is worth pointing out that the MPI datatype mechanism can only describe a known
layout of basic datatypes in memory. To use the mechanism with high-level programming
language, data-dependent data structures (lists, trees, . . . ) it is the responsibility of the ap-
plication programmer to traverse such structures and determine the whereabouts in memory
of the various components. MPI provides no help with that.

3.3 Point-to-point communication

The point-to-point communication model defines the operations for explicit communication
between two MPI processes, one of which sends data and one of which receives data. For
communication between two processes to take place the send and receive operations must
match, which is captured in a point-to-point matching rule. The processes must belong to the
same communicator. The communication is named in that the sending process specifies the
rank of the receiving process, and the receiving process the rank of the corresponding sending
process – or a wildcard allowing reception from an arbitrary process in the communicator
(MPI ANY SOURCE). Furthermore, a message is sent and received with a tag, which must be
identical for the communication to match – again a wildcard allows reception of a message
with an arbitrary tag (MPI ANY TAG). Messages are non-overtaking . If two messages are sent
with the same tag to another process, they are received in the order in which they were
sent. Data to be sent and received are specified by triples [sendbuf,sendcount,sendtype]
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and [recvbuf,recvcount,recvtype], respectively, as explained in Section 3.2. Finally,
the type signature of the data sent must be a prefix of the signature of the data to be
received. This means that the types of the basic elements sent must be the same as the
initial sequence of types of basic elements specified by the receiver. Note, however, that
it is not required that the number of basic types sent and received is the same. In MPI
point-to-point communication it is allowed to send less data than expected by the receiver.
The number of actually received basic and typed elements can be queried by the receiver
with the MPI Get count and MPI Get elements functions.

MPI send and receive functions are either blocking or non-blocking . A call to a blocking
send function returns when the data to be sent have been copied out of the send buffer
(triple). There is no implication neither on whether the data have actually been sent by
the communication network nor on whether the receiving process has started to process
the data. A call to a non-blocking send operation only prepares the MPI library for the
communication, and will return immediately. Likewise, a non-blocking receive only prepares
the MPI library for the communication. In MPI terminology, non-blocking operations are
therefore called immediate.

MPI specifies four different blocking send modes with differing semantics and correspond-
ing send functions:

• MPI Send(sendbuf,...,rank,tag,comm). The normal send initiates the sending op-
eration and returns when the send buffer can be used again. There is no implication
that a matching receive has been posted, and the normal send may or may not complete
depending on the action at the receiving side.

• MPI Ssend(sendbuf,...,rank,tag,comm). The synchronous send operation initiates
a send operation, waits for the matching receive to start, and returns when the send
buffer can be reused. This notion of a synchronous send is less strict than the notion
found in for example CSP. In MPI the send call may return before the receiver has
completed. The only semantic guarantee is the start of the receive operation.

• MPI Bsend(sendbuf,...,rank,tag,comm). The buffered send operation must com-
plete irrespective of the action at the receiving side. If necessary, data are copied into
a temporary buffer, that must have been preallocated by the user. This type of send
corresponds to the send operation of previous message passing libraries, for example
Intels NX, and was for that reason included in MPI.

• MPI Rsend(sendbuf,...,rank,tag,comm). The ready send operation initiates a send
under the assumption that a matching receive has already been posted, and returns
when the send buffer can be reused. This operation was introduced because the as-
sumption of an already posted matching receive in some cases allow saving of acknowl-
edgment messages. Also no unexpected messages will be generated.

All four modes can also be non-blocking, in which case the mode name is prefixed with
an I: MPI Isend, MPI Issend, MPI Ibsend and MPI Irsend.

The blocking receive operation – there is only one! – looks similar:
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• MPI Recv(recvbuf,...,{rank|MPI ANY SOURCE},{tag|MPI ANY TAG},comm,status)
receives matching data into the specified buffer, and returns with information on the
status of the operation in the status argument when reception is complete.

The receive operation can also be non-blocking. After completion of the receive operation
the number of elements actually received can be read from the status object (with either
MPI Get count or MPI Get elements).

The non-blocking send and receive operations return immediately with a request object
which can be used to query the state of the communication operation and eventually to
enforce completion (in the same sense as for the corresponding blocking operations). For
this a number of test (MPI Test, . . . ) and completion (MPI Wait, . . . ) operations are defined.
Blocking and non-blocking send and receive operations can be mixed. A message sent by
MPI Issend can be received by MPI Recv, and so on and so forth. MPI also provides facilities
to probe for arrival of specific messages (MPI Probe), setting a status argument which among
other things contains the size of the arrived message. MPI also incorporates a (semantically
hazy) possibility of canceling point-to-point communication operations.

Send and receive operations between two fixed processes is deterministic (messages are
non-overtaking), but the wildcards MPI ANY SOURCE and MPI ANY TAG introduces non-de-
terminism. The non-blocking calls also introduce non-determinism. For example several
posted non-blocking receives from different processes may complete in any order, dependent
on when the corresponding sends take place. To eliminate a nasty sort of indeterminate
results, receive datatypes must be non-overlapping . This means that the elements of the
type map must all have distinct displacements, and no displacement must be within the
space taken by the basic element stored at some other displacement. Send types do not have
this restriction.

Although MPI defined the normal send operation so as not to require buffering, the point-
to-point communication model can still be expensive in terms of memory requirements. In
most MPI implementations each process allocates a small, fixed number of slots for message
headers and short messages (so for instance MPI/SX, see Chapter 6), which in principle does
not scale with the number of processes. Since a message can arrive “unexpectedly” before a
matching receive has been posted, space will be required to store at least information on the
message, and this can grow unboundedly. In the paper [CK96] a protocol with only constant
space and a constant amount of communication per message is developed for message passing
allowing only selective receive (that is, no wildcards). It is then shown that to implement the
MPI-like model with non-selective receive (that is, allowing MPI ANY SOURCE) takes either
non-constant space or requires a non-constant amount of communication per message.

To ensure that communication eventually takes place, without committing to a specific
implementation or posing unreasonable hardware requirements MPI formulates progress rules
for point-to-point communication. In particular, MPI is (presumably) defined so as to allow
implementations that do not have a separate progress engine taking care of communication
in the background. For blocking communication the progress rule says that “if a pair of
matching send and receives have been initiated on two processes, then at least one of these
two operations will complete, independently of other actions in the system” [SOHL+98, Page
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55]. For non-blocking communication the progress rule says that “a call to MPI Wait that
completes a receive will eventually return if a matching send has been started, unless the
send is satisfied by another receive. In particular, if the matching send is non-blocking, then
the receive completes even if no complete-send call is made on the sender side. Similarly,
a call to MPI Wait that completes a send eventually returns if a matching receive has been
started, unless the receive is satisfied by another send, and even if no complete-receive call
is made on the receiving side” [SOHL+98, Page 82] (authors’ emphasis).

This seems to enforce some kind of independent progress mechanism, contradicting the
intention of the standard to be implementable without any such. It would have been pos-
sible to formulate a completely sensible, slightly less demanding progress rule, but this is a
contentious issue, often causing discussion, and is deliberately left somewhat vague in the
MPI standard.

3.4 One-sided communication

The one-sided communication model makes it possible for processes to access regions of
memory of other processes without the explicit involvement of the processes whose memory
is being accessed. The memory regions which are being exposed to other processes for one-
sided access are represented in MPI by a distributed object called a window . A window is
created and destroyed by collective operations MPI Win create and MPI Win free. A window
object includes for each process a start address in user memory of the process, the size of
the memory region and a displacement unit for computing offsets.

In one-sided communication operations the process accessing the memory of another pro-
cess is called the origin and is responsible for providing all arguments of the communication.
The accessed process is called the target. Communication arguments consist in an MPI com-
munication buffer of the origin process [origin buf,origin count,origin type], whereas
the communication buffer at the target is described by an offset relative to the local address
of the exposed memory region, [target offset,target count,target type].

One-sided communication can take place only within a socalled communication epoch.
A process wanting to access memory of other processes must be in an access epoch and a
process being accessed must expose its memory by being in an exposure epoch. Epochs are
opened an closed by the one-sided synchronization operations.

The one-sided communication model provides three communication operations.

• MPI Put transfers data from the user buffer at the origin to the buffer in the window
at the target.

• MPI Get transfers data from the user buffer in the window at the target to the user
buffer at the origin.

• MPI Accumulate performs a binary operation on data from origin and data from target
with the result stored in the target buffer. The operation is atomic on the level of basic
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datatypes. The operation can be any of the MPI predefined operators for reduction
collectives (see Section 3.5).

It is not defined when an individual one-sided communication operation takes effect.
When an access epoch is closed, all one-sided communication operations performed within
the epoch must have been completed at the origin. When an exposure epoch is closed, all
one-sided communication operations for which the process was a target must have been com-
pleted. The MPI standard gives the implementer a lot of freedom as to when communication
is actually performed. In particular, it is possible to postpone and group several accesses
to the same target within an epoch. The precise semantics are quite intricate in order to
allow implementation of the model on different systems [GHLL+98, Page 136], and subject
of some debate.

The progress rule for one-sided communication is as the rule for non-blocking point-to-
point communication, in particular any communication that has been enabled must eventu-
ally be completed upon termination of the epoch.

To preserve some degree of determinacy it is in general not allowed to update the same
memory location in a target window more than once within the same epoch. For derived
datatypes this has the consequence that target types used in MPI Put operations must have
non-overlapping type maps.

The one-sided model defines three synchronization methods. Target processes can be
either active or passive. In active synchronization both origin and target are involved in
the opening and closing of the corresponding epochs. In passive synchronization (locks)
the origin alone is responsible for all synchronization. The synchronization operations are
summarized in Table 3.1.

For active targets two synchronization methods are defined. In scalable synchronization,
termed so here because the method is collective and permits an efficient implementation, all
processes in the communication window calls the MPI Win fence operation. The call closes
a previous epoch and starts a new epoch that can be used both for access and exposure by
all the processes. In the dedicated method each origin requests access to a set of targets
specified in the call (MPI Win start), and each target grants exposure to a set of processes
likewise specified in the call (MPI Win post).

The one-sided model is suited to implementation of BSP applications. For small h-
relations the dedicated synchronization method should be used, for large or very irregular
h-relations scalable synchronization is presumably preferable.

It should be noted that the MPI defined locks are not locks in the traditional sense of
providing access to a critical section. The mechanism is too weak to readily permit atomic
read and update of data on the target. This is an often criticized omission in the one-sided
communication model. This is discussed in more detail in [GLT99]. Partly a consequence of
this, partly a consequence of strong semantic restrictions on concurrent updates to windows
(simultaneous local and remote updates are generally disallowed), the one-sided model of
MPI is not suited as a compilation target for PGAS languages, as analyzed in [BD04].

It is possible to provide hints on the nature of communication and synchronization to
the synchronization operations in the form of socalled assertions. These assertions allow for
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Type Name Origin Target
Active Scalable MPI Win fence MPI Win fence

Dedicated MPI Win start MPI Win post
MPI Win complete MPI Win wait

Passive “Lock” MPI Win lock
MPI Win unlock

Table 3.1: The three one-sided synchronization operations.

optimizations in some cases. For instance assertions MPI NO PRECEDE and MPI NO SUCCEED

state that no epoch precedes the epoch being opened or that no epoch succeeds the epoch
being closed by a MPI Win fence call. The MPI NO CHECK assertion in MPI Win start and
MPI Win post, and in MPI Win lock, likewise make it possible to save acknowledgment mes-
sages in these mechanisms. Likewise, on creating a window it is possible to give hints to the
MPI implementation, for instance that no locking will be performed on a process. For some
implementations this can save the spawning of a separate progress thread.

3.5 Collective communication

Collective operations in MPI are operations in which all processes in a communicator are
involved, and jointly perform an operation. The collective communication operations, or col-
lectives for short, are the 16 functions for synchronization (MPI Barrier), data exchange
(MPI Gather, MPI Scatter, MPI Alltoall, . . . ), and reduction (MPI Reduce, MPI Allreduce,
MPI Scan), but also a number of bookkeeping operations for creating and destroying com-
municators, either explicitly or implicitly, as well as file and dynamic process management
operations are semantically collective. A definition of the meaning of collective operation in
MPI terms is given below. We let i and j denote process ranks in an intra-communicator
comm of size p, so that 0 ≤ i < p and 0 ≤ j < p.

Definition 1 (Collective MPI operation) If process i in communicator comm is calling
collective operation MPI A, then all other processes in comm must eventually call MPI A, and
no other collective operations on comm may be called before MPI A. Collective operations
in MPI are blocking. When process i returns from the call MPI A the operation has been
completed from the point of view of process i. For data exchange or reduction collectives all
data in the send buffer have been sent, and data or results from other processes have been
received in the receive buffer.

According to Definition 1 collective operations are not synchronizing – with of course one
notable exception, namely the explicit MPI Barrier synchronization operation. Completion
of a collective by process i does not imply anything about what has happened for the other
processes j in the set of processes performing the collective operation. It may even be possible
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for process i to complete a collective operation before any of the other processes have even
performed the call!

Note also that by Definition 1 collective operations are blocking. Process i returns from
the collective call when the operation has been completed from this process’ point of view. A
collective progress rule would state that a collective call would eventually complete for process
i, provided that all other processes in the communicator eventually call the corresponding
collective. Progress for collectives can obviously be implemented by polling, and do not
require a dedicated progress thread.

The data exchange collectives come in regular and irregular variants. In the regular
collectives the amount (and structure) of data sent to each of the other processes is the
same, and equal to the amount (and structure) of data received from each of the other
processes. In the irregular collectives, each process may send and receive a different amount
of data from each of the other processes, although (with the exception of MPI Alltoallw) the
structure of the sent data, and the structure of the received data is the same for all processes
j. For all data exchange collectives process i also exchanges data with itself (unless prevented
by the special send buffer argument MPI IN PLACE).

The matching rule for the collectives is stricter than for point-to-point communication.
If data are to be communicated from processes i to j, the type signature of the send buffer
of process i must be identical to the type signature of the receive buffer on process j.
In particular the same number of basic elements must be specified by the two processes.
However, the type maps (layout or structure of the data) need not be identical on the
involved processes.

The collectives are either rooted or non-rooted (or symmetric). In the rooted collectives
a designated root process root plays the role of either source or destination of data or result,
while in the non-rooted collectives all processes play symmetric roles.

The 16 MPI collectives are described below. As usual buffer arguments, buffer, sendbuf,
and recvbuf are triples of the form [buffer,count,datatype].

• MPI Barrier(comm) synchronizes the processes in comm. The call by process i will not
return before all other processes in comm have performed the corresponding
MPI Barrier call.

• MPI Bcast(buffer,...,root,comm) broadcasts data placed in
[buffer,count,datatype] on process root to [buffer,count,datatype] on all
other processes in comm.

• MPI Gather(sendbuf,...,recvbuf,...,root,comm) gathers data from all processes
into sendbuf on the root process. The data in [sendbuf,sendcount,sendtype]

from process i are placed at displacement i · recvcount · extent(recvtype) in
recvbuf at the root process. The collective is regular, and each
[sendbuf,sendcount,sendtype] must match
[recvbuf + i · recvcount · extent(recvtype), recvcount, recvtype] at the root
process.
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• MPI Gatherv(sendbuf,...,recvbuf,recvdisp,recvcounts,...,root,comm)
gathers data from all processes into sendbuf on the root process. The data in
[sendbuf,sendcount,sendtype] from process i is placed at displacement
recvdisp[i] · extent(recvtype) in recvbuf at the root process. This is the irregular
version of MPI Gather, and [sendbuf,sendcount,sendtype] at process i must
match [recvbuf + recvdisp[i] · extent(recvtype), recvcounts[i], recvtype] at the
root process.

• MPI Scatter(sendbuf,...,recvbuf,...,root,comm) is the opposite of MPI Gather,
with similar matching requirements.

• MPI Scatterv(sendbuf,senddisp,...,recvbuf,...,root,comm) is the opposite of
MPI Gatherv, with similar matching requirements.

• MPI Allgather(sendbuf,...,recvbuf,...,comm) gathers data
[sendbuf,sendcount,sendtype] from all processes and stores them in
[recvbuf,p · recvcount, recvtype] at all processes. The data contributed from
process i are placed at displacement i · recvcount · extent(recvtype) in the recvbuf

at each process. The collective is regular, and is also known as all-to-all broadcast ,
broadcast-to-all , catenation or gossipping . The result is as if p operations
MPI Gather(sendbuf, . . . , recvbuf, . . . ,i, comm) had been performed for 0 ≤ i < p.

• MPI Allgatherv(sendbuf,...,recvbuf,recvdisp,recvcounts,...,comm) is the
irregular version of MPI Allgather. Data are placed at displacement
recvdisp[i] · extent(recvtype) in the recvbuf at each process, and
[sendbuf,sendcount,sendtype] of process i and
[recvbuf + recvdisp[i] · extent(recvtype),recvcounts[i], recvtype] must match.

• MPI Alltoall(sendbuf,...,recvbuf,...,comm) is a personalized exchange between
all p processes in comm. Process i sends data
[sendbuf + j · sendcount · extent(sendtype), sendcount, sendtype] to process j, and
receives data [recvbuf + j · recvcount · extent(recvtype), recvcount, recvtype]
from process j. Type signatures must match.

• MPI Alltoallv(sendbuf,senddisp,sendcounts,...,recvbuf,recvdisp,-
recvcounts,...,comm) is an irregular version of MPI Alltoall. The data sent from
process i to j are
[sendbuf + senddisp[j] · extent(sendtype), sendcounts[j], sendtype] and data
received from process j are
[recvbuf + recvdisp[j] · extent(recvtype), recvcounts[j], recvtype].

• MPI Alltoallw(sendbuf,senddisp,sendcounts,sendtypes,recvbuf,recvdisp,-
recvcounts,recvtypes,comm) is another irregular version of MPI Alltoall in which
also the types of data sent to or received from processes j and k can be different. The
data sent from process i to j are
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[sendbuf + senddisp[j], sendcounts[j], sendtypes[j]] and data received from process
j are [recvbuf + recvdisp[j], recvcounts[j]recvtypes[j]].

• MPI Reduce(sendbuf,recvbuf,count,datatype,op,root,comm) performs a
reduction on the data in [sendbuf,count,datatype] from all p processes using the
binary operator op. The result is stored in [recvbuf,recvcount,datatype] at the
root process. Operators and semantics are explained below.

• MPI Allreduce(sendbuf,recvbuf,...,op,comm) performs a reduction on data from
all p processes and stores the result in [recvbuf,count,datatype] on all processes.

• MPI Reduce scatter(sendbuf,recvbuf,recvcounts,datatype,op,comm) performs a
reduction on data [sendbuf,count,datatype] from all p processes with
count =

∑p−1
i=0 recvcounts[i], and stores the part of the result starting at

displacement (
∑i−1

j=0 recvcounts[j]) · extent(datatype) in
[recvbuf, recvcounts[i], datatype] of process i.

• MPI Scan(sendbuf,recvbuf,...,op,comm) performs an inclusive scan of the data
in [sendbuf,count,datatype] and stores the result for each process i in
[recvbuf,count,datatype].

• MPI Exscan(sendbuf,recvbuf,...,op,comm) performs an exclusive scan of the data
in [sendbuf,count,datatype] and stores the result for each process i in
[recvbuf,count,datatype].

The collectives are also defined for inter-communicators in a more or less natural way: a
collective operation is performed on both subcommunicators, and the results are exchanged
between the two. This extension will be of no further concern here.

For the reduction collectives, MPI defines a set of binary operators for computation of
global sums (MPI SUM), products (MPI PROD), minimum and maximum (MPI MIN, MPI MAX,
MPI MINLOC, MPI MAXLOC), and logical and bitwise values (MPI BAND, MPI BOR, MPI BXOR,
MPI LAND, MPI LOR, MPI LXOR). These built-in operators are mathematically associative and
commutative. It is also possible for the user to define own binary operators, that must be
associative but not necessarily commutative. All operators operate elementwise on their
input vectors. Reductions are performed in rank (canonical) order.

MPI recommends that reduction collectives are implemented such that the same result
is obtained whenever the collective is called with the same arguments in the same order. It
is also recommended that the elements of the input vectors are reduced the same way. This
constrains the possible implementations of the reduction collectives.

Let xi be the input vector stored in [sendbuf,count,datatype] of process i, and let ⊗
be either a pre- or user-defined associative, binary operator. The result of a global reduction
is y = ⊗p−1

j=0xj . The result for process i of the inclusive scan is yi = ⊗i
j=0xj and of the

exclusive scan yi = ⊗i−1
j=0xj for i > 0. The problem of computing all (inclusive or exclusive)

scans for i = 0, . . . , p− 1 is often called the parallel prefix problem. Note that the inclusive
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scan can trivially be computed from the exclusive scan by adding xi locally, but the other
way round is possible only if the operator ⊗ has an inverse. MPI originally defined only an
inclusive scan operation. The MPI Exscan collective was an MPI-2 addition.

Because of some skepticism about their efficiency, but also simply because of lack of user
awareness about their existence, the collectives have not always been exploited as much as
they should in MPI applications. This is changing, also because of the enormous amount of
work on optimizations and much improved implementations of the MPI collectives in recent
years (see Chapter 9 for some references). An early plea for efficient collective communication
was pronounced in [MPSvdG95]. A not very convincing argument for using the collective
communication model as the sole MPI programming model can be found in [Gor04], but for
application that fit a BSP like style the collectives are convenient (MPI Alltoall, MPI Alltoallv,
and MPI Alltoallw immediately implement h-relations) and provides a lot of additional flex-
ibility. An early survey of the use of collectives (as well as all other MPI functions) by
frequency counting of actual applications was done in [Rab99b, Rab99a], and shows for in-
stance that reduction collectives were already then much in demand. More recent studies of
the use of collectives in scientific applications can be found in [VM03, KSOS05], and show
that in particular the symmetric MPI Allreduce is in demand, often only with small input
sizes.

3.5.1 Other collective operations

Other operations in MPI are collective in the sense of Definition 1 in that all processes in
the communicator argument must partake in the call. Important to mention here are the
operations for explicitly creating and destroying communicators, namely MPI Comm dup,
MPI Comm create, MPI Comm split, and MPI Comm free.

Also operations that implicitly create new communicators are collective. Among these
are the process topology functions MPI Graph create and MPI Cart create (see Section 3.6),
and the dynamic process creating functions (see Section 3.8). Other collective operations are
the functions for creating one-sided communication windows (see Section 3.4) and a number
of operations on files (see Section 3.7).

The MPI operations with collective semantics are summarized in Table 3.2.

3.6 Process topologies

MPI is functionally a homogeneous model in that any process can communicate with any
other process in either of the three communication models and in any communicator. MPI
makes no assumptions about the capabilities of the underlying hardware and communication
network architecture, apart from the requirement that reliable point-to-point communica-
tion must be provided. The underlying network communication capabilities and topology
are thus not reflected at the MPI level, and also essentially cannot be queried from the appli-
cation (apart from weak environmental functions like MPI Get Processor name). Within the
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Initialization
MPI Init

MPI Finalize
Synchronization

MPI Barrier
Rooted data exchange

MPI Bcast
MPI Gather
MPI Gatherv
MPI Scatter
MPI Scatterv

Symmetric data exchange
MPI Allgather
MPI Allgatherv
MPI Alltoall
MPI Alltoallv
MPI Alltoallw

Rooted reduction
MPI Reduce

(Pseudo)Symmetric reduction
MPI Allreduce

MPI Reduce scatter
MPI Scan

MPI Exscan
Communicator manipulation

MPI Comm dup
MPI Comm create
MPI Comm split

MPI Intercomm merge
MPI Intercomm create

Topology manipulation
MPI Cart create

MPI Graph create

One sided communication
MPI Win create
MPI Win free
MPI Win fence
Parallel I/O

MPI File open
MPI File close
MPI File sync

MPI File set view
MPI File set size

MPI File preallocate
MPI File set atomicity
MPI File seek shared
MPI File read shared
MPI File write shared
MPI File read ordered
MPI File write ordered

MPI File read ordered begin
MPI File write ordered begin
MPI File read ordered end
MPI File write ordered end

MPI File write all
MPI File read all

MPI File write at all
MPI File read at all

MPI File write all begin
MPI File read all begin

MPI File write at all begin
MPI File read at all begin

MPI File write all end
MPI File read all end

MPI File write at all end
MPI File read at all end
Process management

MPI Comm spawn
MPI Comm spawn multiple

MPI Comm accept
MPI Comm connect

MPI Comm disconnect

Table 3.2: MPI functions with collective semantics.
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three communication models of MPI it is therefore not possible to adapt the communication
pattern of an application to the capabilities and limitations of the underlying system.

To address this limitation, the MPI standard provides a virtual process topology mech-
anism. This mechanism allows the application to describe its communication pattern or
virtual topology to the MPI implementation, which can in turn use this information to re-
order the MPI processes to make communication following this pattern more efficient. In
concrete terms, this follows by creation of a new communicator in which processes of the
calling communicator that have been designated as communicating with each other can have
been mapped to processors that are close to each other on the physical machine.

The MPI mechanism allows description of communication patterns either as an (un)-
directed communication graph, or as a Cartesian grid (torus) of arbitrary dimension, the
latter virtual topology including mesh, torus and hypercubic communication patterns as
special cases. Two collective MPI calls, MPI Graph create and MPI Cart create, respectively,
create a new communicator in which processes (in the calling communicator) which are
neighbors in the virtual topology may have been placed physically close to each other. Since
the remapping is done by the creation of a new MPI communicator, communication in the
new communicator is in no way restricted, say, to processes which are neighbors in the
virtual topology – any pair of processes can communicate and collectives can be used – but
communication between neighbors is favored, and communication between non-neighbors
may be less efficient than between neighbors. In case a reordering has taken place, data
from processes in the old communicator may have to be transmitted to wherever these
processes have been mapped to in the new communicator. More precisely, if the rank of
some process i of the new communicator is i′ in the old communicator in which the virtual
topology was specified, the old rank i will have to send data to process i′ using the old
communicator for this communication. MPI has the required functions for translating ranks
between communicators, but this can be tedious.

MPI does not guarantee that communication between neighbors in the virtual topology
is actually faster in the new communicator than in the old, and an MPI implementation
is actually free not to do any reordering at all. A valid implementation of the topology
mechanism may thus be restricted to returning an arbitrary (sub)communicator consisting
of those processes mentioned in the virtual topology. In many cases this could be simply a
duplicate of the calling communicator.

For both graph and Cartesian virtual topologies all processes provide the full description
of the virtual topology to the MPI Graph create and MPI Cart create calls. For graph topolo-
gies this is unfortunate, leading to an inconvenient, non-scalable mechanism. First, processes
may not know the intended communication of other processes, and thus additional collective
calls may be required to construct the full communication graph on each process. Second,
for communicationally dense applications this description will be Θ(p2) per process, for a
total (distributed) space consumption of Θ(p3). This, as well as many other shortcomings
of the MPI process topology mechanism, is discussed in more detail in Chapter 10.
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3.7 Parallel I/O

Although not decidedly message passing, MPI includes a model for parallel I/O to facili-
tate what could be called external communication with files. This model provides support
for partitioning of files among processes, collective operations for transferring global data
structures between process local memory and files, asynchronous transfers, strided accesses,
and control over physical layout. By incorporating these features into MPI this is achieved
in a portable manner. The basic feature of the MPI parallel I/O model is that all data
partitioning, file accessing and data structuring is expressed via derived datatypes. Mainly
for this reason the parallel I/O model is of concern here. A prerequisite for efficient im-
plementation of this part of the standard is flexible and efficient functionality for handling
derived datatypes and accessing structured data.

The unit of access to and positioning within a file is called the elementary type (etype),
and can be either a basic or a user-defined, derived datatype. The unit of partitioning of
the file is called the filetype which must be constructed from the elementary type. The type
maps of both elementary types and filetypes must be monotonically non-decreasing (with
some further constraints on filetypes).

The MPI model defines local, blocking and non-blocking and collective operations on
files. The opening of a file is a collective operation, which returns a distributed object called
a file handle which is used for all subsequent file operations. Collective operations are thus
collective over the file handle, more precisely over a hidden duplicate of the communicator
used in the open call, in the sense of Definition 1.

A new feature not found elsewhere in MPI is a restricted type of non-blocking collective
file operation, called split collectives . Split collectives consist of a collective MPI File A begin
call, which initiates the operation, and a collective MPI File A end call, which completes the
operation. They were introduced to provide means to overlap the high latency of access to file
storage with useful computations and communications. The split collective feature is limited
in that only one split collective operation can be in progress on at file handle at the same time,
in that no other collective file operation can be called as long as a split collective is in progress,
and in that a split collective operation called on one process does not match a semantically
equivalent, normal collective operation called on another process of the file handle. With the
same motivation of providing for overlap between collective operations and computation,
it was considered to include also non-blocking, split collectives for synchronization, data
exchange and reduction into the MPI standard. This was eventually rejected, see the MPI
Journal of Development, www.mpi-forum.org. A different, more natural proposal for non-
blocking collectives that is analogous to the non-blocking point-to-point operations (using a
request object for ensuring completion) is likely to become included in MPI 3.0 [HKG+07].

3.8 Dynamic process management

The dynamic process management facility makes it possible for a set of MPI processes to
collectively spawn a new batch of programs in parallel. This new set of programs can again
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initialize MPI (that is, must call MPI Init), which will give them their own MPI COMM WORLD

communicator. Since communicators in MPI are static objects, there will (and can) be no
change in the already running set of MPI processes. To facilitate communication between
the set of spawning and the set of spawned processes, a new inter-communicator is created
having the spawning communicator and the MPI COMM WORLD of the spawned processes as
sub-communicators. This inter-communicator is returned by the spawn call at the spawning
processes. At the spawned processes it is an implicitly existing parent communicator, that
can be accessed through the MPI function MPI Comm get parent.

The spawning facility makes it possible to spawn processes in the SPMD paradigm (copies
of the same program), as well as to start different programs (MPMD paradigm).

The process management facility in addition provides means for different, already running
MPI processes to establish communication. This is perhaps one of the less well thought out
parts of the MPI-2 additions to MPI.

The dynamic process management facilities are of relevance here only in so far as many
of the operations are collective, and thus of concern for the verification interface described
in Chapter 11

3.9 Assessment of the standard

A famous quote says that MPI was designed “not to make easy things easy, but to make diffi-
cult things possible” (William D. Gropp, EuroPVM/MPI 2004, “MPI and High Productivity
Programming”). This is surely part of the reason why MPI has, since it was introduced in
1994, been such an overwhelmingly successful standard. More concrete reasons for the accep-
tance of MPI among both application scientists and parallel processing researchers include
the following.

• MPI was the right interface at the right time. It adopted the right ideas from the
various message passing frameworks around in the early 1990ties, and therefore gained
acceptance fast. It helped tremendously that MPI was closely followed by a template
implementation that was already in its first versions of good quality [GLDS96].

• MPI was quickly adopted by the parallel processing and computer science community,
and it was possible to publish findings and results related to MPI. A dedicated message
passing user group conference, EuroPVM/MPI, was initiated already in 1994.

• Economy of concepts. Despite being a large standard, MPI is centered around a small
number of key concepts, and it is not too difficult to start using the standard. Mastering
the standard, as with all good things, takes time and experience.

• MPI is a well thought out and well engineered standard. The key concepts fit and
complement each other, and the number of conceptual mistakes is small.

• MPI is universal, and indeed makes easy things more or less easy, and difficult things
possible.
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• MPI supports building of higher level, application specific libraries, which can hide
much of the more tedious, MPI low level communication.

• MPI has allowed (efficient) implementations on a wide variety of systems.

• MPI can live together with many other parallel interfaces, for examples OpenMP for
explicit, hybrid, shared-distributed memory programming (it is not discussed here if
and when this approach is advantageous, but there has been a number of studies on the
pro and cons of explicit hybrid programming, see for instance [CE00, Hen00, Rab02,
SS01, SSOB02, SSOB03]).

• MPI has turned out to be scalable, both as a programming model and as an imple-
mentation to thousands (Earth Simulator and other systems) and even hundred of
thousands processors (Blue Gene/L).

• The standard has few optionals and exceptions, and though informal, is quite precise
(except where deliberately left open to different interpretations). There is in principle
no question about what MPI is. There are only few query functions in the standard
for an application to determine the level of functionality supported.

• MPI has supported the construction of necessary performance analysis tools.

• MPI has been and continues to be an interesting and worthwhile topic to work on.
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Part II

Towards efficient Implementations of
MPI
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Chapter 4

Technical motivation and framework

This part summarizes the technical contributions of the dissertation, documented by the 26
technical papers collected in Part III. The driving motivation has in all cases been concrete
problems arising in the work with NEC’s proprietary MPI/SX and MPI/ES implementations
for the NEC SX vector computers and the Earth Simulator, or in the translation of results
and experiences from MPI/SX into the MPI/EX and MPI/PC implementations for various
scalar NEC systems. The papers were all written hand in hand with development and imple-
mentation of proprietary, commercial software, which has a few noteworthy consequences.

• The described algorithms have all been implemented and tested. As with all software
that is used in production and beyond the control of the implementer bugs have been
and continue to be found and fixed. There is often a significant amount of experimen-
tation and tuning which has not found mention in the papers, partly for reasons of
propriety.

• Commercial grade software, especially fundamental libraries like MPI, require imple-
mentations that are correct without exceptions. This is ascertained by extensive and
continued testing, as well as by feedback from users.

• Although performance (especially for the collective communication routines) is (most)
often measured by synthetic benchmarks, eventually performance in the context of
actual user applications is what matters for a commercial, application support library,
and sometimes tunings that may be detrimental in some isolated benchmark have been
performed based on user feedback and application codes.

• Since the implementations belong to NEC proprietary software, source code is not
available for public inspection or use. In some cases specific implementation details,
that could have been of interest, are not revealed in the papers.

• Both algorithms and concrete implementations as described in the papers constitute a
snapshot of a continuous and ongoing development history. Many further refinements
are not described in a publicly accessible form (but are sometimes touched upon in the
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following). Often, but not always, this kind of engineering work is not interesting to a
wider audience.

The technical work can be broadly characterized as parallel algorithm engineering , span-
ning aspects of algorithm development, analysis and implementation, algorithm refinement
and experimentation, software engineering, and library and interface design.

Experiments have been performed on the rather limited range of parallel computer sys-
tems that has been available. Basic development has been done on NEC SX systems, rarely
with more than 4 processing nodes (see Chapter 5). Scalability studies, experiments and
benchmarking have mostly been done on a 32 node, dual-processor AMD based PC-cluster
with Myrinet interconnect, and on a 16 node, four processor Itanium system with Infiniband
interconnect. In todays landscape of parallel processing where systems programmed with
MPI routinely have hundreds or thousands (and sometimes more) of processing nodes this is
of course hardly defensible. During some hectic weeks of installation and testing of MPI/ES
for the 640 node Earth Simulator in February 2002 basic debugging and benchmarking on a
larger system was possible, but unfortunately with little further opportunity for systematic
experimentation and benchmarking.

The technical contributions cover most aspects of the MPI standard, excluding point-to-
point communication and process management, with particular emphasis on efficient data-
type handling and parallel I/O (Chapter 7), one-sided (Chapter 8) and collective (Chapter 9)
communication, process topologies (Chapter 10), and means for ascertaining correctness and
performance (Chapter 11).
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Chapter 5

Target architectures

MPI/SX is NEC’s proprietary MPI implementation for the SX series of parallel vector super-
computers, and this is the primary target architecture for the algorithms and implementations
described in the following chapters. The NEC SX vector supercomputers are all, starting
from the SX-4, multi-node architectures, consisting of a number of SMP nodes which are
interconnected by a powerful, NEC proprietary switch, called the IXS (internode crossbar
switch). The processors on the nodes are vector processors.

A vector processor is characterized by the ability to perform arithmetic and logical oper-
ations on vectors of elements, and by the corresponding high memory bandwidth, see [PH96,
Appendix B] and [HSN81, Ble90]. Despite the extreme increase in peak processor per-
formance by scalar processors in the last decades (which is now flattening out), vector
processors can still be an order of magnitude faster, and also the sustained performance
achievable with vector processors tends to be very high, provided a significant fraction of
the code lends itself to vectorization. This is often the case for “scientific codes”, see for in-
stance [OCS+03, OCC+04, OCC+05]. Vector processors are expensive because of the heavily
banked memory required to sustain the memory bandwidth required to keep the vector pipes
busy. Currently only NEC is left as a vendor of high-performance vector systems. Convex
and other American vendors have left the market long ago, Fujitsu and Hitachi are no longer
producing vector (or vector-like) systems, and it seems to be generally agreed that the Cray
X1 somehow did not meet the expectations, although Cray claims to remain committed to
vector systems (see www.cray.com).

The SX processor is a traditional, but very mature vector processor. It supports vec-
torized arithmetic and logical operations on consecutive and strided vectors of many types,
very efficient gather-scatter operations, and horizontal operations like sum, prefix, min-max,
pop-count, and search. All vector operations operate directly on main memory and there is
no vector cache. The relatively slow scalar processor is cache-based.

In the current SX-6 and SX-8 systems (up to) 8 vector processors are connected to a
shared memory, and treated as an SMP node. For performance reasons the system is not
cache-coherent, and various techniques must be used to deal with this. Importantly, vector
instructions operate directly on memory and circumvent the cache, and the architecture
provide a number of memory fence and atomic operations. The memory model is a relaxed
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consistency model [PH96, CSG99]. The nodes and processors run under an NEC proprietary
UNIX variant called SUPER-UX. In addition to MPI, the SMP nodes can be programmed in
OpenMP and other shared memory paradigms. Under SUPER-UX processes cannot directly
access the process local memory of other processes, which makes direct communication via
shared memory impossible. Instead, the operating system provides a facility for allocating
special, non-swappable global memory outside of process local memory space, and that can be
accessed by other processes both on the same an on other nodes. This feature is extensively
used in MPI/SX for intra- and inter-node communication.

Multiple SX nodes can be coupled by a powerful, single-stage crossbar, called the IXS.
Data can be transferred in consecutive (and with limitations, strided) blocks by asynchronous
transfer operations between global memory segments of the involved nodes, that are mapped
into a global address space. The IXS also supports a limited number of atomic operations,
and since the SX-6 a small set of special counter registers that can be used for implementing
a constant time barrier operation (independent of the number of nodes). The IXS supports
bidirectional, send-receive communication, which means that a node can send data to a node
and at the same time receive data from another, possibly different node.

SX systems typically have from 4 to 24 nodes. The currently largest SX system in
Europe is the 72-node SX-8 system at the Hochleistungsrechenzemtrum (HLRS) in Stuttgart,
Germany (see www.hlrs.de).

The SX architecture was the basis for the Earth Simulator , a 640 node parallel vector
system based on the SX-6 system with a more powerful memory and switch (called the IN
switch). The Earth Simulator was designed especially for large scale climate research and
Earth system modeling, is installed at the Earth Simulator Center in Yokohama, Japan, by
the national Japan Agency for Marine-Earth Science and Technology (JAMSTEC), and was
inaugurated in April 2002. At that time the machine caused a tremendous uproar by being
significantly faster and more capable than the till then dominating US based systems by
IBM, Cray and other American vendors. Even in the popular conception of things, the US
establishment was challenged, as witnessed by almost hysterical articles also in serious media
like the New York Times that spoke of a “Computenik” (in analogy to the uproar caused by
“Sputnik” in 1957) [Mar02]. What actually drove these outbreaks of emotion is obscure, but
in any event the emergence of the Earth Simulator was used to inject money and new energy
into – invigorate – the US high-performance computing community and industry. In that
sense the Earth Simulator had a positive and lasting effect. The Earth Simulator immediately
entered the No. 1 position of the Top 500 list (see www.top500.org), the dubious, much hype-
generating ranking of high-performance systems based on the Linpack benchmark, and stayed
there for an unusually long period of two and a half years. It was eventually superseded in
2005 by the IBM Blue Gene/L.

Technical overviews of hardware and system software for the Earth Simulator can be
found in a Special Issue of Parallel Computing from 2004 [ZS04] and elsewhere [YHK+99].
That the Earth Simulator was also a success for its intended application areas is perhaps
witnessed by the several Gordon Bell awards1 it won in the years after it became opera-

1Awarded annually at the ACM/IEEE Supercomputing conference for highest application performance.
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Model Year Peak/Proc Mem BW/proc Mem/node n N p IXS BW/node
SX-4 1995 2GFLOPS 16GByte/s 16GByte 32 16 512 8Gbyte/s
SX-5 1997 8GFLOPS 64GByte/s 128GByte 16 32 512 8GByte/s
SX-6 2001 8GFLOPS 32GByte/s 64GByte 8 128 1024 8GByte/s
ES 2002 8GFLOPS 32GByte/s 16GByte 8 640 5120 12.3GByte/s

SX-8 2005 16GFLOPS 64GByte/s 128GByte 8 512 4096 16Gbyte/s

Table 5.1: System capabilities of the NEC SX series and the Earth Simulator. The maximum
number of processors per node is denoted by n, the maximum number of nodes by N , and
the maximum number of processors by p = nN . The Earth Simulator is a once-in-a-lifetime
system with exactly the configuration given by n, N, p.

tional [SMSY02, YIU+02, STF+02, KTJT03], and the very large number of papers in the
wake on actual scientific results obtained with the aid of the system. An assessment and
comparison to other systems from a high-performance computer science perspective can be
found in [OCS+03, OCC+04].

Table 5.1 gives the basic performance characteristics of the SX series from SX-4 to SX-82.
For data sheets concerning the SX series and the Earth simulator, see www.hpce.nec.com

and www.es.jamstec.go.jp.
High level design concerns for an MPI library for the SX computers include efficient

vectorization, especially of all bulk transfers of data, short critical paths of scalar instructions
before vector instructions, efficient use of the asynchronous communication facilities of the
IXS, use of the atomic registers of the IXS, and awareness of the SMP structure of the
system.

Other target systems are the NEC TX-7 (AsAma) with 32-processor SMP-nodes with
Intel IA64 processors, coupled with Infiniband, as well as smaller Intel IA64 or IA32, or AMD
Athlon or Opteron based systems, also with either Infiniband or Myrinet as interconnect. A
port of MPI/SX to a Quadrics [BAH+05] based system has also been developed.

2The next generation SX-9 was announced for ACM/IEEE Supercomputing 2007. It is substantially more
powerful than the SX-8, and has a substantially different interconnect.
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Chapter 6

Overview of MPI/SX

MPI/SX is the MPI implementation for NEC’s SX series of parallel vector computers, and
the basis for other developments like MPI/ES for the Earth Simulator, MPI/PC for Myrinet-
based PC-architectures, and MPI/EX for the IA64-based NEC TX7 (AsAmA) with Infini-
band interconnect.

The development of MPI/SX was started in 1997, and was originally based on the original
mpich implementation from Argonne National Laboratories [GLDS96]. An overview of the
first MPI/SX implementation can be found in [HRZ98]. MPI/SX has since then deviated
significantly from the mpich framework, especially through the requirements posed by the
MPI-2 standard (parallel I/O, one-sided communication, and process management). In Octo-
ber 2000 MPI/SX was arguably the first implementation to support the full MPI-2 standard
without any restrictions. The only contender at that time, the Fujitsu implementation from
1999, described in [AKL99, BHS+02], was lacking in process management (particularly the
MPI Comm Accept/MPI Comm Connect functionality), and that implementation has since
then apparently not been developed further. MPI/SX was also the basis for MPI/ES for the
Earth Simulator, and all development was done by the NEC C&C Research Laboratories
(by Hubert Ritzdorf and the author).

A general overview of the design and performance of MPI/SX on first the NEC SX-5,
later the SX-6 and most recently the SX-8 of MPI/SX is given in the two papers:

1. Maciej Go lebiewski, Hubert Ritzdorf, Jesper Larsson Träff, and Falk Zimmermann.
The MPI/SX implementation of MPI for NEC’s SX-6 and other NEC platforms. NEC
Research & Development, 44(1):69–74, 2003.

2. Hubert Ritzdorf and Jesper Larsson Träff. Collective operations in NEC’s high-
performance MPI libraries. In International Parallel and Distributed Processing Sym-
posium (IPDPS 2006), page 100, 2006.

Other full MPI-2 implementations have followed, notably mpich2 and OpenMPI [GFB+04,
SL04], and several other vendor implementations which implement at least significant parts
of the MPI-2 extensions.
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A main feature of the MPI/SX implementations is its highly tuned point-to-point commu-
nication. The implementation uses many standard techniques but highly tuned and adopted
to the SX vector architecture. Obviously, all copying of user data is done by vectorized copy
operations.

The point-to-point communication implementation (by Hubert Ritzdorf) uses a sophis-
ticated implementation of the socalled lock-free technique, in which each MPI process has a
small, constant number of slots for each other MPI process, into which header information
and small data loads (up to about 1KBytes) can be written. Bookkeeping and acknowl-
edgments for keeping track of free slots is done by piggybacking on other messages as far
as possible to save traffic. To achieve best performance, as is common, three protocols are
used, socalled short, in which a message is written directly into a slot, eager in which an
intermediate, global memory buffer is allocated and later read and freed by the receiving
process, and long or rendezvous, in which pipelining with several blocks is employed. If user
data has been placed in global memory, communication can in many cases be done by a
direct memory copy or transfer operation. In this case a modified eager protocol is used.
Unexpected eager messages give rise to allocation of an intermediate buffer by the receiving
process. The MPI/SX implementation is therefore relatively memory consuming and could
run into scalability problems for very large systems. For current SX systems and also for the
Earth Simulator with their huge memories this has so far not been problematic.

Tuning of the point-to-point communication is done with application and not benchmark
performance in mind. Nevertheless, MPI/SX achieves more than 90% of the peak bandwidth
both for intra-node communication (MPI processes on same SMP node) and inter-node com-
munication (MPI processes on different SMP nodes) on point-to-point benchmarks. Recent
point-to-point performance is given in Table 6.1, taken from [2].

MPI provides the special memory allocator function MPI Alloc mem. In MPI/SX this
allocates a buffer in non-swappable, global memory. A corresponding memory allocator
has been implemented to support this. For user buffers allocated with MPI Alloc mem all
intra-node communication can be done by a direct memory copy operation, irrespective of
whether the user data are consecutive or not. Inter-node communication by a direct transfer
operation is possible if data are consecutive and aligned. If these conditions are not met, the
communication is done by the protocols described above, using intermediate global memory
buffers. As seen from Table 6.1, provided that the amount of data transferred is large enough,
a very high fraction of peak bandwidth is also achieved for buffers that are not allocated
in global memory. This is due to pipelining, by which the time spent in copying into and
out of the intermediate pipelining buffers is effectively hidden. This is an advantage of the
point-to-point communication model: both sending and receiving process are involved in the
communication.

MPI/SX is a non-threaded implementation of MPI. Slots are checked at each MPI com-
munication operation, and progress is thus only guaranteed if the application regularly per-
forms MPI communication. MPI/SX has a highly efficient, vectorized implementation of
this progress machinery.

Being a high-performance implementation, only error checking that can be done locally
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MPI/SX on SX-8
Communication Buffer Latency Bandwidth Peak
Intra local memory 1.6µs 28.1 GBytes/s 32 GBytes/s

global memory 1.6µs 30.7 GBytes/s 32 GBytes/s
Inter local memory 4.7µs 11.7 GBytes/s 16 GBytes/s

global memory 4.7µs 15.0 GBytes/s 16 GBytes/s
MPI/ES on the Earth Simulator

Communication Buffer Latency Bandwidth Peak
Intra local memory 2.0µs 14.4 GBytes/s 16 GBytes/s

global memory 2.0µs 15.8 GBytes/s 16 GBytes/s
Inter local memory 5.2µs 9.3 GBytes/s 12.3 GBytes/s

global memory 5.2µs 12.2 GBytes/s 12.3 GBytes/s

Table 6.1: Communication bandwidth and latency for intra- and inter-node communication
with MPI/SX and MPI/ES on the SX-8 and the Earth Simulator. Communication buffers
are placed either in MPI process local memory or in special, non-swappable global memory
by the MPI Alloc mem call.

is performed in MPI/SX (with a few exceptions for parallel I/O).
Point-to-point communication operations are made available internally in more efficient

versions (no error checking, no lookup or dereferencing for MPI handles) for use in collec-
tive algorithms, parallel I/O and one-sided implementations. These internal ADI (Abstract
Device Interface) functions mostly have the same functionality as the corresponding MPI
functions, but are extended with special send and receive functions with completion counting
(see Chapter 8) and overlapping of function execution and communication (see Chapter 9).

A number of features and special optimizations are not documented in technical papers.
Among these is a linear time, vectorized implementation of the MPI group management
functionality.
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Chapter 7

Efficient handling of derived datatypes

Early MPI implementations like MPICH [GLDS96] employed a straightforward handling of
non-consecutive user data described by derived datatypes. Sending non-consecutive data
typically entailed packing of the complete communication buffer into a consecutive, interme-
diate buffer before communication. Reception of structured data likewise entailed an extra
unpacking step from a consecutive, intermediate communication buffer.

Packing and unpacking were done by simple, recursive algorithms, following closely the
structure of the data as set up by the MPI type constructors. In particular, each repe-
tition count in the datatype gave rise to a corresponding number of recursive calls. The
number of recursive calls in this straightforward implementation was therefore unbounded
in the sense of standing in no relationship to the size of the DAG describing the derived
datatype. Furthermore, the pack and unpack functionality was only designed to handle full
user buffers [buffer,count,datatype], and therefore not suited to neither point-to-point
nor to collective algorithms employing pipelining.

All this contributed to a significant overhead in the use of non-consecutive, derived
datatypes, which from early on caused users to be reluctant in using MPI datatypes, even
when they would be natural from a descriptive, application point of view. Similarly, these
inefficiencies hampered the efficiency of the parts of MPI that intimately depend on derived
datatypes, namely parallel I/O.

These problems were addressed from early on in MPI/SX. Four papers describe the
improved handling of derived datatypes by a technique which was termed flattening on the
fly , and the use of the developed mechanisms in the parallel I/O part of MPI/SX.

1. Jesper Larsson Träff, Rolf Hempel, Hubert Ritzdorf, and Falk Zimmermann. Flat-
tening on the fly: efficient handling of MPI derived datatypes. In Recent Advances
in Parallel Virtual Machine and Message Passing Interface. 6th European PVM/MPI
Users’ Group Meeting, volume 1697 of Lecture Notes in Computer Science, pages 109–
116, 1999.

2. Ralf Reussner, Jesper Larsson Träff, and Gunnar Hunzelmann. A benchmark for
MPI derived datatypes. In Recent Advances in Parallel Virtual Machine and Message
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Passing Interface. 7th European PVM/MPI Users’ Group Meeting, volume 1908 of
Lecture Notes in Computer Science, pages 10–17, 2000.

3. Joachim Worringen, Jesper Larsson Träff, and Hubert Ritzdorf. Fast parallel non-
contiguous file access. In Supercomputing, 2003. http://www.sc-conference.org/

sc2003/tech_papers.php.

4. Joachim Worringen, Jesper Larsson Träff, and Hubert Ritzdorf. Improving generic
non-contiguous file access for MPI-IO. In Recent Advances in Parallel Virtual Machine
and Message Passing Interface. 10th European PVM/MPI Users’ Group Meeting,
volume 2840 of Lecture Notes in Computer Science, pages 309–318, 2003.

For MPI/SX the simple, recursive packing and unpacking implementation was a major
problem. The simple, recursive algorithms visit the leaves of the type DAG many times
(as determined by the repetition counts in the type DAG), and for each visit, only a small
unit of consecutive data can be copied. This caused a large scalar overhead, and effectively
blocked efficient vectorization, which works well only on larger units – which, on the other
hand, do not have to be consecutive, but can be either regularly spaced by some fixed stride,
or irregularly spaced as determined by an index vector.

A solution, which exploits the regularities inherent in MPI derived datatypes (assuming
that at least some internal repetition counts in the type DAG are large) to provide much
larger units of data for copying in a vectorized operation was developed in [1]. The type DAG
is still traversed recursively, but each leaf is visited only once. This is achieved by building a
stack of repetition counts, sizes and extents of the types encountered during the DAG descent
towards each leaf. When the leaf is reached, all information required to copy all instances of
the leaf are present on the stack, and can be processed by counting through the stack. To
efficiently exploit vectorization, the largest repetition count c present on the stack is found,
and c copies of the leaf (which forms a consecutive sequence of some b units) spaced by the
extent associated with c are copied to/from the consecutive pack/unpack buffer spaced by
the size associated with c. This is called the largest count optimization, and is important for
the vector system. For MPI/SX this copy function has furthermore been written in assembly
language. This is the idea termed flattening on the fly, a term which shall indicate that the
type DAG is only implicitly flattened and the type map not constructed at all. Therefore,
the technique can also be described as listless handling of MPI derived datatypes.

Flattening on the fly has the following property.

Property 1 Let L be the number of leaves in the type DAG (the number of different ways
a DAG leaf can be reached from the root following the MPI datatype rules, as defined in
Section 3.2), and T the tree constructed as the leaves are visited. The total time for traversal
of the DAG needed for packing or unpacking a buffer of m basic datatypes is O(|T |).

Compared to the simple, recursive packing and unpacking algorithms this is an improve-
ment from something that is not bounded by the DAG size but is O(m) down to O(|T |).
Since MPI types are very compact descriptions of data layouts, typically |T | ≪ m.
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The other problem associated with the simple, recursive datatype handling algorithms
was lack of or very inefficient functionality for partial packing and unpacking. This made
it impossible to implement efficient pipelined point-to-point and collective communication
algorithms for non-consecutive data.

MPI/SX implements partial packing and unpacking ADI functions MPIR Pack long and
MPI Unpack long, which packs and unpacks a certain number of units (bytes) of a triple
[buffer,count,datatype] starting after a given number of units in the type map have been
skipped. An important feature of the MPI/SX functionality is that the time to pack/unpack
m units is independent of the number of units skipped.

Property 2 Let L be the number of leaves in the type DAG, T the tree constructed as the L
leaves are visited, m the number of units to be packed/unpacked, and s the number of units
of the type map to be skipped. The time for the pack/unpack operation is O(|T | + m), and
independent of s.

The actual constants hidden in the O(|T | + m) run time depend on the amount of
regularity in the datatype. If a sufficiently large repetition count is present somewhere
in type DAG, and if the number of different subtypes in substructures is not too large,
the packing and unpacking functions are comparable to straight memory copy operations
(in the SX vectors machine). For cache-based systems, the largest count optimization can
sometimes lead to bad cache behavior, and further optimizations for this case are needed.
Some work in this direction is described in [BGST03, RMG03, BSTG06]. Flattening on the
fly or similar techniques are used or developed further in e.g. [WWP04, SWP04]. Whether
these implementations also support partial packing and unpacking efficiently is not known.

Since the publication of [1] flattening on the fly has been extended to also handle MPI
indexed data types with fixed blocklengths as can be constructed with the MPI Type create -
indexed block constructor. Also, all implementations have been considerably refined and
tuned over the years.

In [1] a batch of parametrized derived datatypes was defined as a benchmark to evaluate
the flattening on the fly technique. The achieved bandwidth for each [buffer,count,data-

type] consisting of m units was compared to the bandwidth of sending m units as a con-
secutive buffer, which serves as a best case baseline. For datatypes with regularities, that is
MPI vector types and indexed and structured types with few component subtypes, a very
high fraction of best possible performance is achieved by the flattening on the fly technique.
The batch of parametrized datatypes was improved and extended in [2], and incorporated
into the general MPI benchmark framework SKaMPI [RSPM98, RST02].

The initial MPI/SX implementation of parallel I/O was based on the ROMIO implemen-
tation from Argonne National Laboratories, see [TGL98, TGL99b, TGL99a, TGL02]. This
implementation uses an explicit representation of datatypes as offset-length lists, that are
both inefficient for accessing data described by the type (as described above) and costly in
memory space. The deficits of this representation, especially in the context of ROMIO, are
analyzed carefully in the two papers [3] and [4], which develop a listless I/O implemen-
tation. To replace the list-based datatype handling in ROMIO with the flattening on the
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MPIR Get type dataextent

Figure 7.1: The type navigation functions for listless I/O.

fly technique, more functionality is needed for navigation within typed MPI buffers. For
this purpose two new, loosely orthogonal functions were introduced to the MPI/SX ADI, as
illustrated in Figure 7.1:

• MPIR Get size for extent(datatype,offset,extent) computes the total size (of basic
elements) occupied by the datatype in a given extent in memory after skipping a
certain number of offset bytes.

• MPIR Get type dataextent(datatype,size,offset) computes the extent in memory
if size bytes of the datatype are unpacked (after skipping offset bytes) from a
consecutive buffer.

For types with L leaves with traversal trees T both of these functions take O(|T |) steps
with a small constant. The functions depend on the MPI restriction of elementary and
filetypes to have monotonically non-decreasing type maps. For handling moderately long,
intermediate buffers, the datatype handling functionality of MPI/SX therefore comes with
very low overhead.
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Chapter 8

One-sided communication

The one-sided communication model is one of the important additions to MPI introduced
with the MPI-2 extensions [GHLL+98]. Two early papers describe the NEC implementations
for MPI/SX and MPI/PC.

1. Jesper Larsson Träff, Hubert Ritzdorf, and Rolf Hempel. The implementation of MPI-
2 one-sided communication for the NEC SX-5. In Supercomputing, 2000. http://www.
sc2000.org/proceedings/techpapr/index.htm#01.

2. Maciej Go lebiewski and Jesper Larsson Träff. MPI-2 one-sided communications on a
Giganet SMP cluster. In Recent Advances in Parallel Virtual Machine and Message
Passing Interface. 8th European PVM/MPI Users’ Group Meeting, volume 2131 of
Lecture Notes in Computer Science, pages 16–23, 2001.

From the beginning the MPI/SX implementation supported fully the MPI-2 one-sided
model, including the passive, lock synchronization mechanism, and exploited many of the
possibilities given with the MPI-2 standard for optimizations for the NEC SX vector systems,
in particular the assertions MPI NO PRECEDE and MPI NO SUCCEED that can be given to the
MPI Win fence call. Other early, less mature implementations were described in [BM00] for
SUN MPI, in [MS99, BPS01] for a Windows based MPI called WMPI [MS98, PS00], and for
SCI clusters in [WGR02].

The one-sided communication operations between user memory of the origin process and
the communication window at the target are performed either by direct memory copy or
IXS transfer, or by hidden point-to-point communication. For the former to be possible the
accessed memory in the window of the target must be allocated in global, non-swappable
memory, and if origin and target reside at different SX nodes, also the memory of the origin
must be in global memory. Furthermore, for a direct IXS transfer to be possible, both origin
and target data must be contiguous, and the buffers must be aligned (on 8-Byte boundaries).
If the conditions for direct copy or IXS transfer are not fulfilled, the communication is done
by the MPI/SX internal point-to-point mechanism. Allocation in global memory can be done
by the user with the MPI Alloc mem call, which is implemented as explained in Chapter 6.
The MPI Accumulate operation in MPI/SX always maps to point-to-point communication.
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For MPI/ES the capability of the IXS to transfer data asynchronously with later com-
pletion has been exploited in the one-sided model to permit overlap between communication
and computation at the user-level.

Communication operations that are mapped to point-to-point communication send a
header to the target process, possibly including (short) data. Since MPI/SX is non-threaded,
progress of communication depends on the target process eventually performing an MPI call,
upon which the request from the origin is processed. For an MPI Put operation the data are
copied either into user space (for short and eager messages), or an ADI receive request is
posted to later receive the data. For an MPI Get operation an ADI send operation is posted
to facilitate the transfer to the origin process. For the implicit sending and receiving of
data two new functions MPIR Isend count and MPIR Irecv count which signal completion by
incrementing a counter argument were introduced into the ADI of MPI/SX. The one-sided
synchronization operations can ensure completion on origin and target processes by waiting
for these completion counters to reach the number of one-sided communication operations
that were mapped onto point-to-point communication in the epoch being completed.

A further complication of the one-sided model is that the datatype of the data being ac-
cessed at the target is supplied by the origin, and may not be known at all at the target (here,
stricter SPMD requirements to MPI programs might have helped). Datatype descriptions
may therefore have to be transferred to the target from the origin along with the one-sided
communication operation. For all committed datatypes, MPI/SX computes a compact, lin-
ear array representation that, if necessary, is sent as part of the header (if small enough to
fit, otherwise as an eager message) to the target. Upon processing the request, the target
can reconstruct the derived datatype, and use the MPI/SX datatype handling routines to
further process the structured data. Such datatypes are kept at the target, and the origin
marks datatypes that have been sent, so that the overhead of sending and reconstructing
a derived datatype is only paid once. The ADI of MPI/SX contains functionality for type
reconstruction that is also used in parallel I/O.

The dedicated MPI Win start-MPI Win complete, MPI Win post-MPI Win wait synchro-
nization mechanism is implemented by messages as described in [GHLL+98]. Also the passive
MPI Win lock-MPI Win unlock mechanism is, for the multi-node case, implemented by lock
and unlock control messages. This, in connection with the absence of a progress thread,
could lead to performance problems with passive, one-sided communication, but if also the
target process is regularly involved in (other) MPI communication, this will not be the case.
For the single-node case, where all processes in the window reside on the same SX node, and
if the exposed memory is in global memory for all processes, atomic operations are used to
implement the lock mechanism. Only locks that cannot be granted cause the locking process
to wait for an acknowledgment message. Since atomic operations are also supported over
the IXS, this mechanism will in future MPI/SX versions be extended also to the multi-node
case. Other implementation alternatives for the lock mechanism are discussed in [JLJ+04].

The scalable MPI Win fence synchronization mechanism uses a special-purpose, regular
reduce-scatter function MPI Reduce scatter block, implemented as described in Section 9.4 to
count the number of point-to-point mapped, one-sided communication requests that have to
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be completed before the next epoch. If it can somehow be known that all one-sided communi-
cation was performed by memory copy operations or IXS transfers, a barrier synchronization
suffices for an even more efficient MPI Win fence operation. MPI/SX has introduced a spe-
cial assertion NEC MPI GETPUT ALIGNED allowing the user to state to the library that this
condition is fulfilled.

The one-sided synchronization mechanisms are also surveyed in [1], but the explanation
of MPI Win fence is too strong: after completion all one-sided operations of which a process
was origin have completed (completion on target is not necessarily guaranteed). In both
papers completion counting is described as done by MPI Allreduce. This has subsequently
been improved by using the less expensive MPI Reduce scatter block.

In both papers [1] and [2] the implementation is benchmarked with a simple, parametriz-
able neighbor exchange program. Since the resulting communication pattern can be im-
plemented equally well by point-to-point communication with MPI Sendrecv, this gives an
opportunity to compare the two models on fair grounds. In the one-sided model, the ex-
change pattern is implemented using all three synchronization mechanisms, and also the
synchronization overhead of these are measured in isolation. For small messages and few
neighbors or blocks, the explicit synchronization overhead for one-sided communication is,
as could be expected, significant, but for long data and/or many neighbors or blocks, this
can be amortized, so that with this benchmark there is no very significant difference between
the point-to-point and the one-sided model. The recommendation, which seems warranted,
is that the MPI/SX user can choose the model which fits best with the application. There
will be no significant performance penalty by the choice. Similar benchmarks were developed
and used in [ASW05, GFD03, GT07b].

Implementation alternatives for the one-sided synchronization mechanisms were more
systematically explored in [TGT04, GT05]. Some of the alternatives discussed there save on
synchronization messages by postponing communication to the end of the epoch. This is an
interesting option. In general, the one-sided model gives the implementer full freedom as to
when communication should happen, thus the opportunity to group small messages for better
exploitation of bandwidth is given. It could even be possible to schedule transfers. Such
options have so far not been explored in the MPI/SX implementation, and likely also not
in any other one-sided implementations. Such optimizations may – for long, communication
intensive epochs – also have drawbacks by leading to more network contention at the end
of the epoch. It would be interesting to explore these alternatives by more systematic
benchmarking. This has so far not been done.
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Chapter 9

Collective communication

From the outset MPI/SX has emphasized efficient, scalable implementations of the MPI
collectives. This implies both efficient implementations targeted to the SX vector archi-
tecture, and the IXS interconnect of the multi-node SX systems, as well as asymptotically
efficient algorithms under communication and computation models that reasonably abstract
the capabilities of the SX hardware (for example homogeneous, bidirectional, send-receive
communication between nodes). For the SX-4 only the single-node case was important, and
early shared-memory algorithms were described in [HRZ98]. Shared-memory algorithms and
implementations have since then been significantly refined and improved, mostly using stan-
dard techniques [MCS91, SvdVL99], and this work is not further described here. From the
SX-5 and onwards collectives for the multi-node case have gained in importance, culminat-
ing in the 640 nodes of the Earth Simulator, although single-node performance continues
to be important. The papers of this chapter deal primarily with collective algorithms and
optimization for the multi-node case.

1. Jesper Larsson Träff. A simple work-optimal broadcast algorithm for message passing
parallel systems. In Recent Advances in Parallel Virtual Machine and Message Passing
Interface. 11th European PVM/MPI Users’ Group Meeting, volume 3241 of Lecture
Notes in Computer Science, pages 173–180, 2004.

2. Jesper Larsson Träff and Andreas Ripke. Optimal broadcast for fully connected net-
works. In High Performance Computing and Communications (HPCC’05), volume
3726 of Lecture Notes in Computer Science, pages 45–56, 2005.

3. Jesper Larsson Träff and Andreas Ripke. An optimal broadcast algorithm adapted to
SMP-clusters. In Recent Advances in Parallel Virtual Machine and Message Passing
Interface. 12th European PVM/MPI Users’ Group Meeting, volume 3666 of Lecture
Notes in Computer Science, pages 48–56, 2005.

4. Rolf Rabenseifner and Jesper Larsson Träff. More efficient reduction algorithms for
message-passing parallel systems. In Recent Advances in Parallel Virtual Machine and
Message Passing Interface. 11th European PVM/MPI Users’ Group Meeting, volume
3241 of Lecture Notes in Computer Science, pages 36–46, 2004.
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5. Jesper Larsson Träff. An improved algorithm for (non-commutative) reduce-scatter
with an application. In Recent Advances in Parallel Virtual Machine and Message
Passing Interface. 12th European PVM/MPI Users’ Group Meeting, volume 3666 of
Lecture Notes in Computer Science, pages 130–138, 2005.

6. Peter Sanders, Jochen Speck, and Jesper Larsson Träff. Full bandwidth broadcast,
reduction and scan with only two trees. In Recent Advances in Parallel Virtual Machine
and Message Passing Interface. 14th European PVM/MPI Users’ Group Meeting,
volume 4757 of Lecture Notes in Computer Science, pages 17–26. Springer, 2007.

7. Peter Sanders and Jesper Larsson Träff. Parallel prefix (scan) algorithms for MPI.
In Recent Advances in Parallel Virtual Machine and Message Passing Interface. 13th
European PVM/MPI Users’ Group Meeting, volume 4192 of Lecture Notes in Computer
Science, pages 49–75. Springer, 2006.

8. Jesper Larsson Träff. Hierarchical gather/scatter algorithms with graceful degrada-
tion. In International Parallel and Distributed Processing Symposium (IPDPS 2004),
page 80, 2004.

9. Jesper Larsson Träff. Efficient allgather for regular SMP-clusters. In Recent Advances
in Parallel Virtual Machine and Message Passing Interface. 13th European PVM/MPI
Users’ Group Meeting, volume 4192 of Lecture Notes in Computer Science, pages 58–
65. Springer, 2006.

10. Jesper Larsson Träff. Improved MPI all-to-all communication on a Giganet SMP clus-
ter. In Recent Advances in Parallel Virtual Machine and Message Passing Interface.
9th European PVM/MPI Users’ Group Meeting, volume 2474 of Lecture Notes in Com-
puter Science, pages 392–400, 2002.

11. Peter Sanders and Jesper Larsson Träff. The hierarchical factor algorithm for all-to-all
communication. In Euro-Par 2002 Parallel Processing, volume 2400 of Lecture Notes
in Computer Science, pages 799–803, 2002.

The general framework for implementation of the collectives in MPI/SX is described in
the overview paper [2] of Chapter 6. The MPI/SX collectives are in general fully aware of the
SMP structure of the SX system, and in most cases efficiently adopted to the communication
restrictions of such systems. The algorithms developed are hierarchical in various ways and
exploit special point-to-point functions of the MPI/SX ADI for communication between
nodes, and mostly direct shared-memory communication between processes on the same
SMP node. In the software architecture a distinction is made at communicator creation
time between three cases: single-node, one process per node, and general multi-node case.
The case where a communicator includes only one MPI process per SMP node is called
the flat case, and is considered important because of applications programmed in a hybrid
OpenMP+MPI paradigm that typically have only a single, active MPI process on the SMP
nodes. For each of the three cases a separate function table is created which allow collectives
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to immediately call the relevant implementation. Also, data structures in the communicator
are set up to permit constant time computation of the number of processes per node, and
node relative, local (consecutive) ranks of processes. In addition to saving latency at run-
time, this case analysis has the software engineering advantage of separating the code for
cases that are largely orthogonal. Some code duplication, of course, is inevitable. Both
intra- and inter-node communication is done via non-swappable global memory segments.
To save latency, small global memory buffers have been preallocated for each process. To
save memory, larger global memory buffers are allocated on demand and freed again after
use. There is a maximum, parametrizable size of such buffers, and all collective algorithms
employ either blocking or pipelining to stay within this maximum buffer size. If allocation
fails at a process, this process falls back to an implementation using only local memory
buffers. This is not too difficult since the communication functions of the ADI works on
both global and local memory buffers. Thus, no explicit synchronization and agreement on
intermediate buffer size or algorithm/implementation is necessary for the collectives.

In addition to the ADI send and receive functions described in Chapter 8 yet another
MPI/SX ADI function MPIR Recv func (and MPIR Send func for MPI/EX) for overlapping
node internal buffer copying with inter-node communication was introduced. This receive
function takes a function and parameter pointer as additional arguments, and schedules
the function call for evaluation after the asynchronous IXS transfer has been set up. IXS
data transfer and function evaluation can, for longer transfers to a global memory segment,
proceed concurrently.

The reservoir of collective algorithms available in MPI/SX is quite large, and the different
algorithms sometimes have merits under different circumstances, e.g. depending on the exact
communication capabilities of the system (SX IXS and Infiniband/Myrinet switches), on the
application load, and so on. To some extent MPI/SX chooses among alternatives based
on environmental conditions, but there has been no attempt at incorporating a general
framework for automatic selection among a large number of essentially black box algorithms,
as suggested and advocated in for instance [FVD00, PGFA+07]. One obvious reason is
of course that the algorithms available for MPI/SX are not in a black box, but have (in
principle) well understood, parametrizable properties. Therefore much more deliberate, and
earlier (e.g. at communicator creation time) choices can be made.

On the other hand, the collective MPI/SX algorithms are often parametrizable and de-
signed with the goal of covering a large spectrum of data and communicator sizes with just
one single algorithm. To get best performance a lot of situation dependent parameter tuning
is necessary, and it would be a challenging task to automate some of this.

The papers are commented on below, and contain references to the relevant literature.
There has been a very large amount of work on algorithms and optimizations for collectives in
recent years, and no systematic literature survey shall be attempted here. A few immediately
relevant papers, also in taking up some of the work documented here are [TNP03, TGR04,
BGP+94, CHPvdG07, PGAB+07].

The conference contributions [2], [3] and [6] have meanwhile (in 2008) appeared or been
accepted to appear (in 2009) in journal form. These papers should thus be considered
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superseded by:

• Jesper Larsson Träff and Andreas Ripke. Optimal broadcast for fully connected
processor-node networks. Journal of Parallel and Distributed Computing, 68(7):887–
901, 2008. Supersedes [2] and [3].

• Peter Sanders, Jochen Speck, and Jesper Larsson Träff. Two-Tree Algorithms for
Full Bandwidth Broadcast, Reduction and Scan. Parallel Computing, to appear 2009.
Supersedes [6].

9.1 Algorithmic improvements

The algorithmic improvements achieved for the MPI collectives are summarized in Table 9.1.
These are explained in some detail in the following sections and in the actual papers in
Part III. As usual p denotes the number of processes in the calling communicator, and
logarithms are always to base two. The problem size is denoted by m. The precise meaning
should be clear from context.

The collective algorithms are mostly designed for systems with single-ported, bidirectional
(send-receive) communication. Communication between SMP nodes is assumed to be fully
connected and homogeneous. The design and analysis of the collective algorithms is almost
exclusively done in the linear communication cost model. For design and evaluation of some
of the collectives in the LogP model, see for instance [BIC05, Ian97, San02]. It is likely that k-
ported collectives will become more important in the coming years. Small, first steps towards
developing k-ported MPI collectives has been taken in [CvdGGT06, QA06, QA07a, QA07b].

9.2 Barrier synchronization

Barrier synchronization in MPI/SX for communicators spanning multiple nodes first and
foremost has to exploit the dedicated IXS hardware barrier counters. The SX hardware
barrier counter feature consists of two registers, one of which can be preset and decremented
atomically, the other one being a toggle register which alternates between zero and one as
the counter register reaches zero. This functionality obviously makes implementation of
MPI Barrier for any multi-node communicator straightforward. For performance reasons,
MPI Barrier is implemented hierarchically, with a node internal barrier implemented using
atomic (test-and-set) operations on node local communication registers.

The problem is of course that hardware barrier counters are a scarce resource, and that
only a few can be allocated per MPI/SX job. The scarce resource is managed within MPI/SX,
which maintains the following, simple resource invariant: each barrier counter is either as-
signed to a communicator, or kept by exactly one MPI process. When a new communicator
is created, the barrier counter of the process with the smallest rank that has a counter
is, if any such process exists, assigned to the communicator. When the communicator is
freed, the barrier counter is (arbitrarily) kept by the process with rank zero. This simple
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MPI Bcast Optimal number of rounds N − 1 + ⌈log p⌉ for N blocks.

Optimal running time (
√

(⌈log p⌉ − 1)α +
√

βm)2 in linear
cost model.
Two tree algorithm.

MPI Reduce, MPI Allreduce Improved butterfly algorithm for non-power-of-two case.
Two tree algorithm.

MPI Reduce scatter Improved butterfly algorithm for non-power-of-two case.
Butterfly algorithm for non-commutative, associative opera-
tors.
Adaptive gathering for irregular problems.

MPI Scan Doubly pipelined scan.
Two tree algorithm.

MPI Gather, MPI Scatter Binomial tree with graceful degradation to linear algorithm.
MPI Gatherv, MPI Scatterv Adaptive tree construction

Graceful degradation from adaptive tree to linear algorithm.
MPI Allgather Simultaneous binomial trees with graceful degradation to lin-

ear ring.
MPI Alltoall Hierarchical factor algorithm for irregular SMP nodes.

Table 9.1: Summary of algorithmic improvements for MPI collectives.

scheme requires no extra communication, but it can easily happen that a new communicator
does not get a barrier counter even if other (albeit unrelated) processes had barrier counters.
Some limited balancing of resources is done. When a new communication domain is spawned
dynamically, or when communicators are merged, available barrier counters are exchanged
between the root processors is the operation.

For communicators not getting a barrier counter, a software barrier implementation
is used as fallback. Since this is decided at communicator creation time, a function ta-
ble entry can be set accordingly, causing no decision overhead in the actual MPI Barrier
calls. Software barriers are implemented hierarchically with a simultaneous binomial tree
scheme [BHK+97] for the barrier across nodes, and shared memory synchronization trees
inside the SMP nodes [MCS91].

9.3 Broadcast

Broadcast is one of most deeply studied collective communication problems, and there is
a wealth of theoretical results in various communication models, from which also practi-
cal implementations for MPI can profit. Some older, classical overviews are can be found
in [FL94, HHL88, DSU04]. Broadcast algorithms can often, but not always, be used for
the design of reduction and allgather algorithms. The MPI Bcast collective is a broadcast
operation for fixed sets of processes with known root and flexible rules for the structure of
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the data to be broadcast.
MPI implementations typically use either (or a combination) of the binomial trees, skewed

or Fibonacci trees, (pipelined) binary trees, scatter/allgather, and/or linear pipeline algo-
rithms for the implementation. Apart from skewed trees, which can give theoretically better
performance for some values of LogP parameters, all these algorithms have been imple-
mented within MPI/SX and benchmarked against each other.

The scatter/allgather broadcast algorithm which may be less well-known than some of
the other algorithms mentioned probably goes back to the ideas in [BGP+94] and is used
as basis for MPI Bcast in for instance mpich2 [TGR04]. To broadcast m data the data are
divided into m/(p− 1) roughly even sized blocks that are scattered over the p− 1 non-root
processes. An allgather operation over the p−1 non-root processes completes the broadcast.

The first paper [1] gives an algorithm and implementation of MPI Bcast reminiscent of
the scatter/allgather idea, although it is not a direct, naive implementation. The algorithm
is primarily intended for the flat, homogeneous case with only one MPI process per SMP
node. The m data are scattered along a binomial tree. In each communication round each
process halves the amount of data that it sends further down the binomial tree. The binomial
tree can be sliced into levels, level k for k ≥ 0 consisting of the processes that receives data in
round k. The amount of data received is m/2k, and in subsequent rounds each such process
sends m/2k data further down the tree. At each level, all m data are present, so instead
of a global allgather operation, log p level-wise, independent allgather operations are done
concurrently to complete the broadcast. The allgather step is done by a butterfly algorithm
(see Section 9.4) and takes k steps. The advantage of this algorithm is that it is possible to
stop the halving process after any round k and continue as in a straightforward binomial tree
algorithm for all following rounds. This can prevent the m/2k sized blocks from becoming
too small. The algorithm [1] thus has the binomial tree algorithm as a genuine special case,
and can therefore be used for the whole spectrum of problem sizes m. The halving threshold
at which the switch to binomial tree algorithm takes place is a tunable, system dependent
parameter. Another, nice property of the algorithm is that each block of data is received
exactly once by each of the non-root processes. As will be explained, the algorithm is less
well-suited for generalization to the multi-node SMP case with more than one process per
node.

The algorithm can be formulated very nicely when the number of processes p is a power
of two. When this is not the case, the solution is less elegant. Let p = 2k0 + 2k1 + 2k2 + . . .,
where all ki are distinct (in which case the decomposition is unique). The processes are
grouped into subsets of size 2ki. The scatter step of the broadcast algorithm is executed
as described for the largest subset (which must contain the root process) of 2k0 processes.
Before the level-wise allgather step at level ki starts, the processes at this level send their
data of size m/2ki to the processes in the group of size 2ki. After this, all levels can allgather
concurrently as described above.

In the best implementation, as for instance achieved in [1], the number of communi-
cation rounds is ⌈log p⌉ for both scatter and allgather step, and each takes time propor-
tional α⌈log p⌉ + βm in the linear communication cost model. The total time is therefore
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2(α⌈log p⌉ + βm), and comparable to the time taken by a pipelined binary tree algorithm.
This is theoretically about a factor two from optimal, and was the main motivation behind
the further work on broadcast algorithms.

It is well-known that in the homogeneous, single-ported, linear cost model, the lower
bound for broadcasting m data to p − 1 processors is max{α⌈log p⌉, βm}. The first term
is due to the fact that by the single-ported restriction the number of processors that have
received data can at most double in each communication round. The second term simply
states that the m data eventually have to leave the root process. With the same arguments it
can also be shown that if the m data are divided into N blocks, N−1+⌈log p⌉ communication
rounds are required to broadcast the N blocks.

It was an open problem for a long time during the 1990ties to achieve this lower bound for
arbitrary number of processes (the influential paper [JH89] showed the result for hypercubes).
Not known to the author before completion of the work in the papers [2] and [3], this was
achieved for the single-ported, bidirectional, send-receive model in [BNKS00, KC95]. Both
of these papers, however, only sketch a theoretical solution, and none of them present any
implementation results.

A different, original solution to the theoretical problem of reaching the lower bound on
broadcast in the single-ported, send-receive model was first presented in [2]. The solution
uses an approximate binomial tree for distribution of the first ⌈log p⌉ blocks of data, and the
same communication pattern is reused in the remaining N − 1 rounds. Thus, the algorithm
has the advantage of having a(n approximately) binomial tree as a special case, and can
therefore be used also for small data. In other words, the same algorithm can span the
whole range of problem sizes m, and works for arbitrary number of processes p. For MPI
implementations such properties mean that only one and the same algorithm has to be
implemented, debugged, tuned and maintained. The solution to the broadcast problem
in [2] relies on the construction of a schedule which determines for each process and each
round, which block of data is to be received, and which (already received) block is to be
passed further on. The schedule repeats after ⌈log p⌉ rounds, thus only O(log p) space is
required per process for storing the schedule. A drawback, and an unsolved problem of the
approach is that the schedule construction is costly. An off-line algorithm taking O(p log p)
steps is given in [2]. This is, however, good enough to be useful for MPI libraries, since
the schedule can be constructed at communicator creation time and the construction time
amortized over a number of subsequent broadcast operations. Still, it is an interesting
question, whether it is possible to give a solution where the schedule for each process can be
computed in O(log p) steps only. This was recently answered in the affirmative in [Jia07] by
using a different communication pattern.

Dividing the problem into N roughly equal-size blocks of size m/N the broadcast time
in the linear cost model is (N − 1 + ⌈log p⌉)(α + β(m/N)). An optimal block size can be
found by simple calculus (or by simply balancing the terms αN and (⌈log p⌉ − 1)β(m/N))
to find the optimal broadcast time. See Table 9.1.

Because of its communication pattern the optimal broadcast algorithm [2] is termed the
circulant graph algorithm in a more the more comprehensive journal version of the papers [2]
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and [3]. In the paper [2] the description of the algorithm is divided into two cases, depending
on whether N − 1 is a multiple of ⌈log p⌉. The solution when this is not the case is quite
clumsily described, and the case can in fact be handled very elegantly and easily. All that
has to be done is to add a number x of dummy communication rounds before the broadcast
proper starts, so that x + N − 1 is indeed a multiplum of ⌈log p⌉. In the dummy rounds,
no data are sent and no data received. This is described more clearly and in detail in the
version journal of the papers.

Pipelined algorithms are in general well-suited to implementation on SMP systems (there
is no claim made that this is in a theoretical sense optimal). The idea is simple. The al-
gorithm is run over a set of representative processes, one (local root) for each SMP node.
When a new block is received it can be distributed (or otherwise processed) among the
remaining processes on the SMP node, simultaneously with the algorithmic actions of the
representative process. For the optimal broadcast algorithm this is described in the paper [3]
(with some repetition of the algorithm description of [2]). In both papers [2] and [3] perfor-
mance results on a small AMD Athlon cluster with Myrinet interconnect and comparisons
to some of the other, above mentioned broadcast algorithms are given. An improvement of
a factor 1.5 over pipelined binary trees and even more for scatter/allgather is achieved. The
algorithm is also implemented in MPI/SX and give similarly good results on more than 30
SX-nodes, both in the flat and in the general multi-node case. In the paper [6] the algorithm
is benchmarked against other algorithms on 150 nodes of a dual-core Intel Xeon cluster with
Infiniband interconnect. Improvements consistent with the other systems are achieved. In
particular, the algorithm is even for extremely large problems on par with the simple, linear
pipeline (which is also bandwidth optimal for m≫ p) that is completely unusable for small
problems.

In the paper [6] a completely new approach to broadcast, reduction and parallel prefix
was proposed, which sets out to analyze and alleviate the drawbacks of the binary tree
algorithm. The drawbacks of the binary tree are that interior nodes receive a new block only
in every second communication round, and thus only exploit the bidirectional communication
capabilities half of the time, and that leaves (of which there are p/2) only receive blocks,
and thus never exploit the bidirectional communication capabilities.

The solution is to use two binary trees. These are constructed such that the leaves of
the one tree are interior nodes of the other and vice versa. Thus, in any two successive
communication rounds, each process is receiving a block in its role as leaf and another block
in its role as interior node, and is in each round sending a block to one of its children. To
ensure that the nodes are in each round assigned either the role of interior or leaf node,
but not both, and thus to ensure that each process is receiving and sending a block in each
round, an ordering of the incoming and outgoing edges of the nodes is required. A simple
construction shows that this can be achieved by edge two-coloring of a bipartite graph with
maximum degree two. The communication schedule for the two tree algorithm can thus be
computed in “only” O(p) steps, slightly better than the schedule for the circulant graph
algorithm. The idea of using two binary trees was also proposed in [HV05], but the need for
scheduling between the two trees not realized.

59



Figure 9.1: The construction of the two trees by mirroring for (p− 1) ∈ {6, 8, 10, 12}. The
lower tree T2 is the mirror image along an imaginary diagonal of the upper tree T1. The root
process is external to the two trees and connected to each by an edge.
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function inEdgeColor(p, i, h)
if i is the root of T1 then return 1
while (i ⊓ 2h) ≡ 0 do h← h + 1 // compute height

i′ ←
{

i− 2h if (2h+1 ⊓ i) ≡ 1 ∨ i + 2h > p
i + 2h otherwise

// compute parent of i

return inEdgeColor(p, i′, h)⊕ [(p/2 mod 2) = 1]⊕ [i′ > i]

Figure 9.2: Pseudocode for coloring the incoming edge in T1 of an even numbered rank i
(assuming here that processes are ranked 1..p). The parameter h is a lower bound on the
height of node i in T1. [P ] converts the predicate P to a value 0 or 1. ⊓ denotes bitwise and,
and ⊕ logical exclusive or.

In the paper [6] it is indicated how the edge coloring can be computed locally by each
process in only O(log p) steps, thus eliminating the need for an off-line construction at com-
municator creation time. To achieve this, a different construction of the two trees than used
in the paper is needed. The construction is called mirroring, and is completely symmetric
as is needed for the proof. The mirror construction is shown in Figure 9.1 for values of
p = 6, 8, 10, 12. With this construction of the two trees, the color of the incoming edge of
the upper tree can be computed by the algorithm in Figure 9.2, and the colors of the other
incoming edge as well as the two outgoing child edges follow easily from this. The proof of
correctness of the construction is not given in [6], but can be found in the full journal version
of the paper.

To use the two tree algorithm, half of the m data are broadcast over the first tree, and the
other half of the data over the second tree. Since the two broadcasts take place concurrently,
the total time is the same as the time for a simple, pipelined binary tree broadcast of m/2
data. In the linear time communication cost model the best that can be achieved is

2(⌈log p⌉ − 1)α + 4
√

(⌈log p⌉ − 1)α
√

βm/2 + βm

This is comparable to the best possible time for the circulant graph algorithm, with a factor
of two worse latency (the paper [6] makes a mistake in the statement of the time, multiplying
the latency with two).

The two tree algorithm can also be used for reduction and parallel prefix, see Section 9.4.

9.4 Reduction and Parallel Prefix

Standard algorithms for the implementation of the MPI reduction collectives (MPI Reduce,
MPI Allreduce, MPI Reduce scatter, MPI Scan, MPI Exscan) are based on binomial trees,
skewed or Fibonacci trees, (pipelined) binary trees, butterflies, and linear pipelines. Vari-
ants of all of these algorithms, except for skewed trees (again, typically occuring in designs
withing the LogP or postal model), have been implemented and benchmarked against each
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other within the framework of MPI/SX. Some findings and new developments are described
in the papers discussed below.

The tree based algorithms are similar to the corresponding algorithms for broadcast with
the direction of the communication edges reversed, and it is often possible to convert a
broadcast algorithm into an algorithm for rooted reduction in this way.

Due to the special requirements of MPI that reductions be performed in canonical (rank)
order (and that binary reduction operators are not always commutative), and that the same
reduction order and bracketing (evaluation order of subexpressions) be used for all elements
of the input vectors, this is, however, not always possible. The optimal send-receive model
broadcast, for instance, cannot be used for non-commutative operators, and it would also not
be possible to guarantee the same bracketing. Also broadcast based on the scatter/allgather
idea can only with care be used for reduction. The variant in [1] could, however, quite easily
be transformed into a rooted reduction algorithm, since the allgather step is implemented
by a butterfly algorithm.

Butterfly algorithms are well-suited for implementation of the MPI reduction collectives
MPI Reduce, MPI Allreduce and MPI Reduce scatter, and are also theoretically attractive.

As in Section 3.5 let xi denote the input vector for process i, 0 ≤ i < p, and first assume
that p is a power of two. In a butterfly algorithm process i exchanges a partial result with
process i ⊕ 2k, where ⊕ denotes bitwise exclusive or in round k for k = 0, log p − 1, and
computes a new partial result. It is easy to maintain that processor i has computed a partial

result of the form
⊗i∨(2k+1

−1)

j=i∧(2k+1−1)
xj where ∧ denotes bitwise and, ∨ bitwise or, and x bitwise,

binary complement of x. For long vectors |xi| = m an algorithm that is linear in m can be
obtained by halving the size of the partial result vectors in each round, and collecting the
result in another log p round gathering phase. This is well-known, see for instance [vdG94].
For reduction-to-all (MPI Allreduce) the second phase is an allgather operation.

The butterfly algorithm is strictly only for power of two number of processes. Let p′ be
the largest power of two smaller than p. To exploit the butterfly algorithm for non-powers
of two, a trivial solution is to first pair up the first 2(p − p′) processes in (i, i + 1) pairs,
let the smaller numbered process in each pair receive data from the larger and perform
a reduction step, and then run the butterfly algorithm on the p′ processes formed by the
smallest processor in each pair and the remaining non-paired processes.

The trivial solution increases the time by one communication round of m data. This is
improved for large m for MPI Reduce, MPI Allreduce (and implicitly for MPI Reduce scatter)
in the paper [4]. Instead of process i + 1 of the pair (i, i + 1) sending its input to process i
this first step is combined with the first round of the butterfly algorithm, in which a triple
exchange step is done instead of the simple exchange step described above. In the triple
step processes i and i + 1 first exchange half their data, and perform a reduction. In the
next step process i receives from i⊕ 2k and the partner receives not from i but instead from
i + 1. This reduces the extra communication volume when p is not a power of two to m/2,
still adding only one extra communication round. This idea can be taken further, much as
explained for the scatter/allgather broadcast algorithm [1]. Let p = 2k0 + 2k1 + 2k2 + . . . with
different ki. Then the processes can be organized such that the butterfly algorithm can be
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used in each group of size 2ki with triple steps with data of size m/2ki+1 performed after
ki + 1 communication rounds. This further reduces communication volume, depending on
the decomposition of p into smaller powers of two. Two variations of this idea, also for the
MPI Allreduce collective are given in [4]. This paper gives no implementation results, but
the improved butterfly algorithm is used as the basis for MPI Reduce, MPI Allreduce, and
MPI Reduce scatter implementations in MPI/SX. As for the broadcast algorithm [1] halving
can be stopped when m/2k+1 becomes too small. This saves the same number of allgather
steps in the second phase of the algorithms. For the built-in commutative MPI operators,
these algorithms are adopted to the SMP case with more than one process per node by
preceeding the butterfly algorithm with a node local reduction.

The improved butterfly algorithm is exploited for the implementation of MPI Reduce -
scatter in the paper [5]. In this collective the result vector of size m =

∑p−1
i=0 mi will be

scattered in blocks of size mi over all processes, and it might therefore be possible to
save the allgather phase of the butterfly algorithm. This was claimed not to be possible
in [Ian97, BIL02, TG03], the latter therefore using the butterfly algorithm only for commu-
tative operators.

The problem with the butterfly algorithm is only that the result blocks end up in per-
muted order at the processes. Block mi will end at process σ(i) for a permutation σ de-
termined by the butterfly communication pattern. The simple solution given in [5] is to
permute the input blocks locally on each process before the butterfly algorithm, that is to
put block mσ(i) in position i.

A final problem is caused by the fact that MPI Reduce scatter collective is irregular .
Supplying blocks of different sizes mi would compromise the complexity of the algorithm by
a logarithmic factor (for the extreme case where one block has size m and all others size
0). This problem is also solved in the paper [5]. The butterfly part of the algorithm is done
on regular, roughly equally sized blocks, and an adaptive reordering step of at most ⌈log p⌉
rounds is added.

The MPI standard has regular and irregular variants for the data exchange collectives.
Having only an irregular MPI Reduce scatter operation is not consistent with the spirit of the
MPI standard. There are situations where a regular variant of MPI Reduce scatter is all that
is needed, for instance in the implementation of MPI Win fence as described in Chapter 8,
but see also [GRM04]. Finally, an implementation of a regular variant can be faster by not
having to cater for the adaptive reordering. A regular variant is proposed by the author to
the MPI Forum with the name MPI Reduce scatter block suggested by William Gropp. This
collective is likely to be included in the MPI 2.2 version of the MPI standard.

Like for the other reduction collectives there are a number of folklore algorithms that can
be used for implementation of the scan or parallel prefix collectives. Examples are (pipelined)
binary trees, binomial trees, simultaneous binomial trees, and linear pipelines. Many of these
algorithms have been implemented in the framework of MPI/PC and comparison results and
some minor improvements were presented in the paper [7].

The pipelined binary tree algorithm, described for instance in [MP93], consists of an up-
phase very similar to reduction and a down-phase very similar to a broadcast. An elaborate
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implementation of this algorithm in which the two phases are overlapped is given in the
paper [7], and compared to some of the other algorithms mentioned above. A worthwhile
(but expected) confirmation is that the linear pipeline for large vectors performs substantially
better than any of the other algorithms. It might therefore be recommendable to implement
MPI Scan by a hybrid algorithm with a (simultaneous) binomial tree algorithm for small,
and a linear pipeline for large problems. This is followed in MPI/SX.

The two tree idea of the paper [6] described for broadcast can be used for both reduction
and parallel prefix. For both they give, presumably, the theoretically currently best known
results of the form O(log p + m). The idea can only be used for a restricted reduction
problem in which the root is either process 0 or process p−1. A somewhat serious limitation
of the two tree idea for MPI reduction operations is that since the two trees are structurally
different the two halves of the input data will not be reduced with the same bracketing.

9.5 Gather and scatter

The regular gather-scatter operations of MPI are usually implemented by either (or a combi-
nation of) a straightforward, linear algorithm in which all non-root processes send data to or
receive data from the root process, or by simple binomial (or skewed) trees. In case a combi-
nation of these algorithm are used, finding the best switch point which gives the smoothest
performance might be difficult. A pure tree-based algorithm which require intermediate
buffering for the non-root processes can be too space consuming for large systems.

The paper [8] proposes a binomial tree with graceful degradation towards a simple linear
algorithm as problem size increase. Degradation will start from subtrees as intermediate
buffer size reach a predefined threshold. This gives a smooth transition from the fast binomial
tree algorithm for small problems towards the space and bandwidth efficient, linear algorithm
for large problems. It is also shown how this algorithm can be used for SMP systems, simply
by using a consecutive, virtual ranking of the processes for the construction of the tree. The
processes are semi-sorted according to the index of the SMP node to which they belong,
and the processes are ranked in that sorted order. This information is exactly what is
computed at communicator creation time and stored with the communicator, so there is no
extra cost implied by the virtual reranking step. The resulting tree will have the property
that only few tree edges cross SMP nodes, and that communication on such edges tend to
take place in different rounds. There is no proof of optimality of the construction in the
paper [8], and optimality, if at all obtained, would depend on the relative intra- and inter-
node communication performance. For random communicators, the construction is clearly
better than constructing the binomial tree in communicator rank order.

The algorithms for the irregular MPI Gatherv and MPI Scatterv collectives use a simple
weight-doubling algorithm to construct trees dependent on the data sizes to be gathered
from or scattered to the non-root processes. All data sizes smaller than an intermediate
buffer threshold are sorted in decreasing order. The ith subtree Ti is constructed recursively
from the smallest segment of processes in this sequence such that the sum of the sizes of
nodes in Ti is larger than or equal to the sum of all sizes before the start of segment Ti. This
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results in binomial like trees with small idle times. Again, no optimality result is proved.
For MPI and the practical implementation, a further difficulty is that only the root pro-

cess has the full information to construct the tree. No other process can find its position
(parent and children) in the tree without guidance from the root or from other processes.
An algorithm which allows a partly distributed construction of the tree by sending segments
of the sorted size list to roots of subtrees is developed in the paper [8]. This is the first such
algorithm for an MPI library. The resulting MPI Gatherv and MPI Scatterv implementations
performs considerably better than the simple, linear algorithm for small problems, and de-
grades gracefully to the performance of the linear algorithm as problem size increases. The
overhead of the distributed tree construction seems small enough to make such a construction
worthwhile.

9.6 Broadcast-to-all

For the flat, one process per SMP node case an often used algorithm for implementation
of MPI Allgather is the simultaneous binomial tree algorithm given in [BHK+97] (under the
name catenation). This algorithm is not suitable for SMP systems, as shown both in the
paper [3] of Chapter 10 and in the paper [9]. In some of the ⌈log p⌉ communication rounds
it will inevitably happen that more than one process per SMP node will have to send or
receive data from another node, leading to serialization and performance degradation in
single-ported systems. For regular SMP nodes with the same number of processes per node
the algorithm can be extended by a simple hierarchical approach. First gather locally on each
SMP node, then run the algorithm on the set of nodes, and complete the allgather operation
by a local broadcast. This in general implies allocation of an intermediate buffer proportional
to the total size of the allgather problem, which is untenable for large problems. For SMP
systems a linear ring, with a virtual ranking defining the predecessor and the successor easily
achieves that in each of the p−1 communication rounds exactly one process per node receives
data from another node and exactly one process per node sends data to another node. To
implement MPI Allgather these two algorithms have to be combined, which typically leads
to large performance jumps at the switch point.

An idea for more graceful degradation from the catenation algorithm to the linear algo-
rithm is given in the paper [9]. The idea is simply to run the catenation algorithm until
the intermediate buffer is exhausted, at that point switching to the linear ring algorithm.
When this happens several, disjoint rings will be active concurrently. In the MPI/SX imple-
mentation, the local gathering and broadcasting of data is furthermore done in a pipelined
fashion, simultaneously with the sending and receiving of data. For this the MPI/SX ADI
MPIR Recv func function is useful. The benchmark results show a much smoother transi-
tion between the two algorithms, an effect that will be amplified with increasing number of
processes.
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9.7 Personalized all-to-all

A trivial algorithm for solving the regular, personalized all-to-all communication problem
MPI Alltoall in MPI in the bidirectional send-receive model performs p send-receive rounds.
In round k for k = 0, . . . , p− 1 process i sends a block to process (i + k) mod p and receives
a block from process (i − k) mod p. Another well-known algorithm, which relies on only
simple, telephone like bidirectional communication, is based on factoring or decomposing
the complete communication graph into a sequence of p 1-factors (matchings; graphs in
which each node has degree one). For each communication round each process exchanges
a data block with its partner process. Both of these algorithms are of course not suited
to SMP clusters, since in that case it can easily happen that several processes will at the
same time be involved in communication with a process on another node, and thus cause
serialization at the node communication port. The factor algorithm can be adapted to SMP
systems by factoring over the nodes, though. The 1-factor algorithm is used in MPI/SX for
the flat communicator case for longer messages. For small messages the logarithmic round,
combining algorithm of [BHK+97] is used. A trivial algorithm for MPI simply posts p non-
blocking receives and p non-blocking sends and wait for these communication operations
to complete. This algorithm completely gives up on scheduling the communication and
scenarios with both severe congestion and severe starvation can be constructed.

The papers [10] and [11] extend the factoring idea to SMP systems, in particular for the
case where the communicator may contain a different number of processes on each node.
The challenge is to decompose the exchange steps to avoid load imbalance by partner nodes
with many processes starving partner nodes with few processes. The new algorithm runs in
a number of phases, in each one going through a sequence of 1-factors, and getting rid of
the nodes with the minimum number of processes among the nodes of the phase. This leads
to an algorithm, called the hierarchical factor algorithm that is optimal up to an additive
term if the number of nodes is large relative to the number of processes per node. For the
case where each of the N SMP nodes has the same number of processes n, the hierarchical
factor algorithm is identical to a factoring algorithm over the nodes, and takes one phase of
N exchange rounds.

In [11] the hierarchical factor algorithm is implemented and benchmarked on a small
Giganet cluster, and compared to other algorithms for MPI Alltoall. Small but worthwhile
improvements are shown on this (small) system. It is shown that the individual commu-
nication steps can be scheduled such that at most one process at a time will be using the
communication port. The practical effect, investigated on the Giganet cluster, turned out
not to be significant for this system.

The hierarchical factor algorithm is also used in MPI/ES, but benchmark results are not
available. The benefits of factoring are huge compared to the trivial MPI algorithm with
unscheduled, non-blocking send and receive operations. For small MPI Alltoall problems
messages are grouped in the exchange step to save on latency.
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9.8 Irregular data exchange collectives

The papers [8] and [5] present (slightly) nontrivial, improved algorithms for the irregular MPI
collectives MPI Gatherv, MPI Scatterv, and MPI Reduce scatter, but the irregular collectives
remain a major challenge – both theoretically and for practical implementations. For the
latter, the fact that the information about the optimization problem to be solved is only
available in a distributed fashion, so that information first has to be gathered if a centralized
algorithm is to be used, already implies overhead that may easily render a theoretically good
solution uninteresting for small problems. For practical implementations means to hide the
gathering overhead therefore have to be found, as was sketched for the MPI Gatherv and
MPI Scatterv collectives in the paper [8]. Theoretically defining the optimization problem
and relevant machine model is a first step, and in many cases the optimization problem
will turn out to be NP-complete. The best that can be hoped for are thus fast, possibly
distributed heuristics with good practical performance. For the important MPI Alltoallv
operation frameworks and some heuristic solutions have been considered in [RWK95, AG06,
LWP02].
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Chapter 10

Process topologies

As one of few MPI implementations MPI/SX has a non-trivial implementation of the MPI
process topology functionality for systems with a hierarchical, SMP-like communication
structure. For both the MPI graph and Cartesian topologies the MPI/SX implementation
approximately solves a graph partitioning problem, which is a suitable and useful formulation
of the remapping problem for such systems. A description of the MPI/SX implementation
as well as a critical analysis of the MPI process topology functionality itself is contained in
the following four publications.

1. Jesper Larsson Träff. Implementing the MPI process topology mechanism. In Super-
computing, 2002. http://www.sc-2002.org/paperpdfs/pap.pap122.pdf.

2. Jesper Larsson Träff. Direct graph k-partitioning with a Kernighan-Lin like heuristic.
Operations Research Letters, 34(6):621–629, 2006.

3. Jesper Larsson Träff. SMP-aware message passing programming. In Eigth Interna-
tional Workshop on High-level Parallel Programming Models and Supportive Environ-
ments (HIPS03), International Parallel and Distributed Processing Symposium (IPDPS
2003), pages 56–65, 2003.

4. Guntram Berti and Jesper Larsson Träff. What MPI could (and cannot) do for mesh-
partitioning on non-homogeneous networks. In Recent Advances in Parallel Virtual
Machine and Message Passing Interface. 13th European PVM/MPI Users’ Group
Meeting, volume 4192 of Lecture Notes in Computer Science, pages 293–302. Springer,
2006.

The first paper [1] shows that the topology mapping problem for SMP systems can be
solved by graph partitioning. The input to both MPI Graph create and MPI Cart create is,
explicitly and implicitly, an unweighted communication graph. Assume that k SMP-nodes
are spanned by the calling communicator. The number of MPI processes on each of the
spanned nodes determines the sizes of k subsets of the p processes, and it is (perhaps)
reasonable to assume that communication costs are minimized by minimizing the value of a
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cut. In [1] various cuts are discussed, minimizing for example either the total number of cut
edges, or the maximum number of cut edges between any two node subsets. Which is the
best choice might depend on the application, but the MPI functionality does not provide
means to convey such information to the implementation. It is pointed out in [1] that the
restriction to unweighted graphs is a severe limitation. Weights could have been a means
of transmitting information on the amount of communication between processes to the MPI
library. Nevertheless, the MPI topology functionality can help in localizing communication
and lead to application improvements. This is demonstrated by the benchmarks developed
in [1]. In extreme cases, where a reordering exists that causes all communication to take
place inside SMP nodes, very significant improvements can be achieved. Experiments were
carried out on a 6-node SX-6 system.

A forerunner of the MPI/SX implementation was an implementation in the context of
HP MPI in [Hat98], which was also based on graph partitioning. Apparently also IBM MPI
has, or at some point had a non-trivial implementation of the process topology functional-
ity [YCM06].

The relevant graph partitioning problem to be solved is partitioning into k subsets with
prescribed sizes. This can be done by recursive bi-partitioning, which is a well-known NP-
complete optimization problem [GJ79]. Heuristics are known that give very acceptable
results in practice, fast, for instance the Kernighan-Lin heuristic [KL70].

However, bi-partitioning is more costly, by a logarithmic factor in the worst case, can give
arbitrarily worse results [ST97], and makes it difficult to control the overall cut value. In
the context of the MPI topology functionality it is therefore a relevant question whether it is
possible to do better. The second paper [2] describes a generalization of the socalled Fiduccia-
Mattheyses linear time variant [FM82] of the Kernighan-Lin heuristic to k partitioning with
the same time bounds, that is, independent of k. This heuristic is used in MPI/SX, but the
result is also of independent interest.

A critique of the MPI standard for process topologies is given in the third paper [3]. As
mentioned above, the interface does not provide the possibility to influence the optimization
criterion used for the reordering. Other points are

• vagueness and imprecision in the interface definition,

• lack of expressivity in the mechanism itself by relying on simple, unweighted graphs
only, and

• lack of scalability/difficulty of use

The latter point relates specifically to the graph topologies, where each process has to
provide the full communication graph. This consumes O(n + e) space per process, n and e
being the number of nodes and edges in the topology, respectively (with n ≤ p and e ≤ p2),
and O(p(n + e)) space in total, and can become problematic for large systems. At least as
important is that each process must supply the complete communication information for all
the processes, even for applications where each process is expected to communicate with only
a few neighbors. This is tedious for the user, and should better have been left to the MPI
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library. Consider as analogy the irregular MPI Alltoallv collective. Here each process only
has to specify the amount of data to be sent and received from each of the other processes,
and not what the other processes exchange among themselves. Even this can be bad enough
in applications (in the sense that this information may not be readily available, and other
collective operations may have to be invoked to collect it). In applications using one-sided
communication, where the communication pattern may be particularly irregular and the
user intention is not to bother about the exact pattern (otherwise, the point-to-point model
could have been used), the requirement that each process must specify the full graph to
MPI Graph create could be particularly burdensome, and prevent the use of the mechanism
altogether. This problem is being addressed for MPI 2.2 which may well contain new graph
constructors along the lines suggested in [3].

The critique in [3] is coupled with some proposals for MPI support functionality for more
flexible translation of ranks and redistribution of data among calling and reordered communi-
cators. There is also a proposal for more comparison result values for the MPI Comm compare
operation.

The problem of allowing only unweighted graphs is addressed further in the last paper [4].
It is shown that for systems with a hierarchical communication system, like SMP clusters, the
MPI topology mechanism is not sufficient for solving the load balancing problem arising in
mesh partitioning applications. Here a large mesh/graph has to be partitioned into p subsets
to minimize the communication between the p processes. Examples show that mapping this
in a second step onto the actual SMP system with the existing MPI topology mechanism
with unweighted communication graphs may give arbitrary bad results. And even if edge
weights were allowed, the result could still be suboptimal. The fundamental problem is
that the actual optimization problem to be solved consists in partitioning and mapping
at the same time, which is a quadratic assignment problem, and not a graph partitioning
problem. For a more accurate solution of the mesh partitioning problem on SMP systems,
knowledge of the host communication system is needed. The paper discusses how to provide
such knowledge to the application mesh partitioner in an abstract, portable way by adding
topology inspection functions to MPI.
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Chapter 11

Collective correctness and consistent
performance

MPI operations with collective semantics have strict and sometimes intricate consistency
requirements. It is easy for the user to make mistakes, and such may not have an immediate
(bad) effect but cause behavior that is difficult to understand at a much later time. As an
aid towards finding such mistakes in the use of collective functions a verification library has
been developed for MPI/SX.

The lack of performance guarantees for MPI can sometimes tempt users to make opti-
mizations that are valid only for a specific system with a specific MPI implementation, thus
wasting time and hampering the performance portability of the application. This problem
is addressed by discussing various self-consistent performance requirements that might be
posed to MPI implementations.

These issues are dealt with in three conference contributions.

1. Jesper Larsson Träff and Joachim Worringen. Verifying collective MPI calls. In Recent
Advances in Parallel Virtual Machine and Message Passing Interface. 11th European
PVM/MPI Users’ Group Meeting, volume 3241 of Lecture Notes in Computer Science,
pages 18–27, 2004.

2. Jesper Larsson Träff and Joachim Worringen. The MPI/SX collectives verification
library. In Parallel Computing: Current & Future Issues of High-End Computing
(ParCo 2005), volume 33 of NIC Series, pages 909–916. John von Neuman Institute
for Computing, Central Institute for Applied Mathematics, Forschungszentrum Jülich,
2006.

3. Jesper Larsson Träff, William Gropp, and Rajeev Thakur. Self-consistent MPI per-
formance requirements. Recent Advances in Parallel Virtual Machine and Message
Passing Interface. 14th European PVM/MPI Users’ Group Meeting, volume 4757 of
Lecture Notes in Computer Science, pages 36–45. Springer, 2007.

The conference contribution [3] has meanwhile (in 2009) been accepted to appear in
journal form. The paper should thus be considered superseded by:
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• Jesper Larsson Träff, William D. Gropp, and Rajeev Thakur. Self-consistent MPI
Performance Guidelines. IEEE Transactions on Parallel and Distributed Systems, to
appear 2009/2010.

As explained in Chapter 3, the MPI standard does not prescribe a particular behavior
for erroneous (collective) MPI calls, and the behavior of different MPI implementations for
the same erroneous call may differ. Even the same implementation may behave differently
under different circumstances – or be entirely non-deterministic. A particular problem with
erroneous (collective) calls is that the effects of an error may first show up long time after
the call. At that point the reasons may be totally obscured.

The MPI collective operations have strict requirements on argument consistency, and
not fulfilling these is a typical mistake in applications using collective operations. On the
other hand, by these very requirements, and because all processes in the communicator will
call the collective, collective operations are highly structured. This can be exploited in a
natural way to use collective operations to check fulfillment of consistency requirements of
other collective operations!

As required by Definition 1 (see Page 26), for each particular collective operation all pro-
cesses in a communicator will eventually call the collective before calling any other collective.
This condition will be termed call consistency . If not fulfilled, that is if in an application
some processes are calling one collective and other processes another collective, the appli-
cation will typically (but not always) hang. Call consistency can easily be validated by
preceding (the implementation of) each collective operation by a broadcast from a selected
process of information about which collective is being called by that process. Each other
process can, upon entering its collective operation (where the broadcast is also performed),
verify that it is indeed about to call the same collective as the selected process.

This idea can be used to verify all other consistency requirements. The MPI/SX verifica-
tion library verifies that the same root argument is used in rooted collectives, that the same
binary operator is used in reduction collectives (unless a user defined operator is used), that
the MPI IN PLACE argument is used consistently (where allowed), that the same group is used
in communicator creation collectives, that the same topology is specified, that information
objects are used consistently, that size and flag arguments are identical for file operations,
and so on.

A further, most important requirement is that datatype signatures between processes
exchanging data in a collective operations must be identical. This is not strictly checked
in the MPI/SX verification library. Being for the time being for systems with the same
representation of basic datatypes, a necessary condition for the requirement to hold is that
the lengths of the type signatures match. This is thoroughly checked. An exact check of type
signatures would be possible by sending the compact representation of the type signature
(already computed for one-sided communication) before the actual data communication.
This would perhaps be defensible (in terms of incurred overhead) because T ≪ m for type
DAGs with T nodes and type signatures of size m. Another approach is to compute a
signature for the type (in another sense of the term) by hashing. An approach was first
proposed in [Gro00] and later improved considerably in [LBFD05]. The hashing approach
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to type signature checking is used in the MPI/SX inspired verification interface described
in [FCLG05].

The error handling in the MPI/SX verification library is implemented to be symmetric.
If a violation of a consistency requirement is detected at some processes, the error code
is passed to all processes. All processes can then call the same error handler, which will
normally lead to an abort (but could be set otherwise by the user).

A full summary of the checks performed by the MPI/SX verification library is given in
Tables 11.1 and 11.2.

The original idea was to use the profiling interface facility of MPI [SOHL+98, Chapter
8] to implement the verification library. This would have made for a portable interface, but
would have required duplicating a lot of work already done inside MPI/SX, and would have
made certain checks more complicated. The approach for MPI/SX was to write a separate,
thin library, with which the application must be linked if collective verification is to be
performed. This has the advantage of keeping the MPI profiling interface vacant for other
purposes together with the verification facility. The verification interface idea was quickly
taken up by the Argonne National Laboratories, who used the MPI profiling interface for
their implementation [FCLG05].

The first paper [1] introduces the idea of using collective operations to verify other collec-
tive functions, and presents the MPI/SX verification library. The second paper [2] measures
the overhead entailed by collective verification, both with isolated benchmarks for collectives,
and with an application which significantly uses collectives. For the latter a surprisingly small
impact was found. The collectives benchmark shows the expected, significant overhead for
small problems, sometimes up to a factor of 10. As problem size increases, the overhead
caused by the additional, hidden collective calls can be amortized and tend not to be signif-
icant. Nevertheless, it is strongly recommended to use the verification library only during
program development.

Dynamic verification of MPI applications has been addressed in other work both be-
fore and after the introduction of the MPI/SX verification library. The currently most
active project is MARMOT [KBMR04, KMR04a, KMR04b, KMR06, KR06]. MARMOT
is a larger project and checks both more and less than the MPI/SX verification library, in-
cluding deadlock (other than call inconsistency), management of MPI objects, many locally
checkable error conditions, and so on. Being implemented as a portable profiling interface
it has to duplicate a lot of bookkeeping already done inside of the MPI library. Somewhat
similar, but incomplete approaches were MPI Check (very incomplete, and only for For-
tran) [LCC+03], and Umpire [VdS00]. The Intel Message Checker is partly more ambitious
than the MPI/SX verification library by also checking aspects of point-to-point communica-
tion, but is much less complete and systematic on collectives, and, based on the published
information, immature [DKdS05, SKK+06].

The self-consistent MPI performance requirements formulated in the third paper [3] for-
malizes natural expectations on the performance of various parts of MPI in relation to other
parts. This is possible without an explicit performance model, which MPI does not have,
and without making any absolute guarantees on performance. A weakness of course is that
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MPI function Non-local semantic checks

MPI Finalize

MPI Barrier Call consistency
MPI Bcast Call consistency, datasize match
MPI Gather Call, root consistency, datasize match
MPI Gatherv Call, root consistency, datasize match
MPI Scatter Call, root consistency, datasize match
MPI Scatterv Call, root consistency, datasize match
MPI Allgather Call, MPI IN PLACE consistency, datasize match
MPI Allgatherv Call, MPI IN PLACE consistency, datasize match
MPI Alltoall Call consistency, datasize match
MPI Alltoallv Call consistency, datasize match
MPI Alltoallw Call consistency, datasize match
MPI Reduce Call, root, op consistency, datasize match
MPI Allreduce Call, MPI IN PLACE, op consistency, datasize match
MPI Reduce scatter Call, MPI IN PLACE, op consistency, datasize match
MPI Scan Call, op consistency, datasize match
MPI Exscan Call, op consistency, datasize match

MPI Comm dup Call consistency
MPI Comm create Call consistency, group consistency
MPI Comm split Call consistency
MPI Intercomm merge Call, high/low consistency
MPI Intercomm create Call, local leader, tag consistency

MPI Cart create Call consistency, dims consistency
MPI Graph create Call consistency, graph consistency

MPI Win create Call, info consistency
MPI Win free Call consistency
MPI Win fence Assertion consistency

(MPI MODE NOPRECEDE, MPI MODE NOSUCCEED)

Table 11.1: Summary of verification performed for collective MPI operations, communication
models.
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MPI function Non-local semantic checks

MPI File open Call, info consistency
MPI File close Call consistency
MPI File set info Call, info consistency
MPI File set view Call, info consistency, pending operations,

type correctness
MPI File set size Call consistency, size match, pending operations
MPI File preallocate Call consistency, size match, pending operations
MPI File set atomicity Call, flag consistency

MPI File seek shared Call consistency, offset & mode match
MPI File {write|read} shared Fileview consistency
MPI File {write|read} ordered Call consistency, fileview consistency
MPI File {write|read} ordered begin Call consistency, pending operations, fileview consistency
MPI File {write|read} ordered end Call consistency, operation match

MPI File {write|read}{ at} all Call consistency
MPI File {write|read}{ at} all begin Call consistency, pending operations
MPI File {write|read}{ at} all end Call consistency, operation match

MPI Comm spawn{ multiple} Call, root consistency
MPI Comm accept Call, root consistency
MPI Comm connect Call, root consistency
MPI Comm disconnect Call consistency

Table 11.2: Summary of verification performed for collective MPI operations, parallel I/O
and process management.

75



it may be easier for a bad MPI implementation to fulfill the requirements than for a highly
tuned one. A natural (but extreme) expectation, for instance, is that anything a user can do
to improve functions of the library should already have been done! For example, there should
not be an easy way of improving, say, MPI Allreduce by putting MPI Reduce and MPI Bcast
together. Because the various parts and communication models of MPI are semantically
strongly interrelated, a lot of such rules suggest themselves naturally. For instance, more
specialized collectives are not only an expressive convenience, but there is also an expecta-
tion that they might be implemented by specialized and more efficient algorithms. Most of
the collectives have been formulated in such a way that this is indeed the case. By prevent-
ing a number of unnatural optimizations, it is suggested that such rules can also be an aid
toward achieving some degree of performance portability (without a model). Coupled with
a flexible, expressive and reliable benchmark, of which there is unfortunately no generally
accepted instance in the MPI community, it would be possible to automate the search for
gross violations of the rules in any given MPI implementation on any given system.

76



Chapter 12

Conclusion

It is time to summarize the contributions presented in the dissertation, the impact in the
community, and to comment on future developments of MPI/SX and the related NEC MPI
implementations as well as of the MPI standard itself.

12.1 Summary

The main contributions of (the author of) the work collected here are:

• Full implementation of the MPI-2 standard, in particular of the one-sided communica-
tion model with performance equivalent to that of point-to-point communication.

• The technique for more efficient handling of derived datatypes called flattening on the
fly , and its application to for instance parallel I/O.

• A number of new and improved algorithms for collective communication and reduction
operations based on point-to-point communication. New algorithms for some of the
irregular collectives. Efficient implementations of these algorithms, and adaption to
SMP systems with a non-homogeneous communication system.

• A non-trivial implementation of process topologies for SMP systems based on graph
partitioning.

• The idea of a verification interface for verification of correct use of collective MPI
functions in application programs.

• The idea of posing self-consistent performance requirements as an aid towards achieving
performance portability and as performance guideline for MPI implementers.

The papers comprising the technical contribution of this dissertation are, with the excep-
tion of two, all conference contributions. Comprehensive journal versions of some of them
have been submitted and/or are in preparation, but more could have deserved the time re-
quired to make them ready for journal publication. That this has not happened is due to
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exactly that: limited time available. On the other hand, as is common in computer science,
most parallel processing and message passing conferences have proceedings that are readily
available from good natural science libraries and extensive enough to serve archival purposes
for results that may after all be of more passing interest. The conferences at which (most of)
the contributions were presented are considered of high to good standing, peer reviewed with
good to at least reasonable scientific standards, and are relevant both general and specialist
fora for presentation of MPI and message passing related work.

• EuroPVM/MPI (European PVM/MPI Users’ Group Meeting): the “specialist confer-
ence” dedicated to MPI, PVM and occasionally other message passing based program-
ming paradigms, now in its fifteenths year, taking place each September in Europe. All
developers of the major MPI implementations, and influential groups and individuals
attend on a regular basis. The conference is peer reviewed by experts in the field,
and in recent years contributions never received less than three independent reviews.
Acceptance rate is typically around or above 50%, so if a contribution is reasonable
and in scope, acceptance is normally “easy”. The attendance is on the order of 100 to
150.

• ACM/IEEE Supercomputing: the most prominent high-performance computing con-
ference, held annually in the US. Supercomputing consists of an exhibition, where
all major vendors, labs and research institutions in high-performance computing are
present, and a broad technical conference on all aspects of high-performance comput-
ing. Competition for the technical program is high, and MPI contributions are only
accepted if they are considered important by reviewers (three or more) and program
committee. Supercomputing attracts several thousand attendees for the exhibit and
several hundred for the technical program.

• IPDPS (International Parallel and Distributed Processing Symposium): a broad, IEEE
hosted parallel processing conference with a long tradition (in 2002 a merger between
IPPS, International Parallel Processing Symposium, and SPDP, Symposium on Parallel
and Distributed Processing), with both theory and practice tracks. IPDPS is organized
into a main conference of three days, and a number of one day workshops, taking place
before and after the main conference. Acceptance to the main conference program
is hard (in 2006 the acceptance rate was about 20%), but easier to the workshops,
where programs can be of mixed quality. IPDPS usually attracts several hundred
participants.

• Euro-Par: European based, broad parallel processing conference, with a peculiar or-
ganization into smaller topics with independent committees organizing reviewing and
selection. An important venue for the European parallel processing community, but,
partly due to its organization, quality can be wavering. Attendance is similar to IPDPS,
perhaps slightly less. A recent addition to Euro-Par are thematic workshops, similar
to the IPDPS format.

78



12.2 Impact

The most satisfying but scientifically invisible impact is that MPI/SX is production code
which is used in all SX installations since 1998 (SX-4). This puts high demands on software
quality, which must be bug-free and deliver the performance expected by the users. Bugs
and performance problems must be resolved quickly.

The version of MPI/SX released in October 2000 was arguably the first full MPI-2 im-
plementation. The earlier 1999 implementation for Fujitsu systems [AKL99] was lacking
some dynamic process management functionality. All subsequent MPI/SX implementations
(and the derivatives MPI/PC and MPI/EX for scalar systems) including the first MPI/ES
implementation for the Earth Simulator of April 2002 are thus full MPI-2 implementations.
For comparison mpich2 was complete in 2004 (see for instance [TGR04] for a semi-official
statement), and OpenMPI apparently first in 2006. Other vendor MPI implementations
in the meantime support most of the MPI-2 standard, but often with restrictions. Which
actually support the full standard is not completely clear from the available material.

Full MPI-2 support was important for the Earth Simulator, which deservedly won a num-
ber of Gordon Bell awards from November 2002 and onwards [SMSY02, YIU+02, STF+02,
KTJT03]. In [YIU+02] the performance of MPI one-sided communication was mentioned as
crucial.

A Master’s Thesis at the University of Karlsruhe [Str04] conducts an independent, ex-
tensive evaluation of the implementation of the one-sided communication model in MPI/SX
using the SKaMPI benchmark. On an SX-6 system it shows that high performance when
compared to both peak and MPI point-to-point performance is achieved, and confirms that
the hints that can be provided through assertions are exploited to improve performance.

The efficient handling of MPI derived datatypes by the flattening on the fly technique
was pioneered by MPI/SX and was a first, necessary, important step towards making derived
datatypes more generally usable by removing some of the performance penalties associated
with this mechanism. The idea has been taken up by many other researchers and groups, and
is in some form part of many other MPI libraries, see [WGR02, RMG03, SWP04, WWP04] to
mention but a few. The incorporation of efficient datatype handling functionality into parallel
I/O was also premiered by MPI/SX, and may still be a unique feature. The performance of
the MPI/SX datatype handling mechanism is independently benchmarked and appreciated
as highly efficient for common user datatypes in [GRR01].

The round optimal circulant graph broadcast algorithm was presumably the first algo-
rithm with this property that was actually implemented for an MPI library. Recently, a
different optimal algorithm, clearly inspired by this result was presented by a researcher
from IBM [Jia07]. Many of the other results on collective operations are regularly cited in
the relevant MPI literature.

The idea of run-time verification of correct use of collective MPI operations was well-
received by the community and immediately taken up by for instance the Argonne National
Laboratory group [FCLG05]. A presentation was invited to a mini-symposium at the ParCo
conference in 2005.

The recently presented idea of self-consistent MPI performance requirements stimulated
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much discussion at a Dagstuhl seminar on “Code Instrumentation and Modeling for Parallel
Performance Analysis” and at the EuroPVM/MPI 2007 conference where it was presented
at the “Outstanding Papers” session.

12.3 Future work on MPI/SX

From the implementer and algorithm developers point of view, the MPI standard has been
surprisingly rich in interesting problems, and is, perhaps also surprising, far from exhausted.
In addition, an MPI library belong to the basic software of a parallel system, and appli-
cation developers depend on a correct, reliable, and performant implementation. So also
with the users of MPI/SX and the other NEC MPI implementations. Therefore, all work
presented here is ongoing and in-progress. A significant amount of time is and will be spent
on elementary maintenance and tuning.

Some issues that naturally arise out of the work presented here are the development of
frameworks for automatic adaptation of collective algorithms to specific system character-
istics, in particular automatic dimensioning of pipeline buffer sizes, better algorithms for
irregular collectives, of which there is still a general lack, investigation of data accumulation
in one-sided communication, functions for copying between differently typed MPI buffers
without intermediate copies (socalled transpacking , work-in-progress), collective algorithms
for multi-ported systems which will become more relevant in the coming years (for instance
for the NEC SX-9 announced at ACM/IEEE Supercomputing 2007), and support for het-
erogeneous systems, which will also become an important issue in the coming years.

Compared to many other MPI libraries MPI/SX is a very mature implementation.
In [TG07] several areas in which MPI libraries in general are in need of improvement are
discussed. These include scalability (to tens or hundred thousands of processes), point-
to-point latency, collective performance, datatype performance, one-sided communication
performance, multi-thread support and performance, fault tolerance and debugging and per-
formance tool support. As discussed and demonstrated by the research collected in this
dissertation, these areas all have been and continue to be actively addressed by the MPI/SX
implementation.

12.4 Lessons learned

MPI/SX is a large piece of system software of several 100,000 lines of code, and the demands
on correctness, performance, and completeness are extremely high. However, due to MPI’s
economy of concepts, the same machinery (e.g. basic point-to-point functionality, datatype
handling functions, communicators and group management functions, low-level synchroniza-
tion mechanisms for shared-memory programming) is used again and again for various parts
of the standard, and thus needs to be tested only once. Or the other way round, since the
same machinery is used in many different contexts, it is tested under many different condi-
tions, sometimes in some for which it was not originally developed. This strong consistency
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aids strongly in securing correctness, and is a further witness to the strong design of MPI.
Also because of the economy of concepts, and because MPI/SX was originally built on the
MPICH design [GLDS96], it has been possible to develop MPI/SX software in a small team
(3-5 person strong).

Testing of the software is essential and indispensable, and done mostly by means of
external, small MPI test programs by the developer (and sometimes with reluctance). To
ensure completeness, that is that all parts of the implementation have been exercised, is
difficult by this method, and requires much care. External testing that the requirements of
the standard are fulfilled for the individual MPI functions in isolation is easier, but no small
task (also in pure running time, since the library has to be tested for varying system sizes
and configurations) and could have been (and for MPI/SX and MPI/EX is to some extent)
done by another team than the development team. It would be of extreme value for the MPI
community to have an agreed upon, extensive, external test suite for the whole standard.
This could also help clarifying some of the points in the standard which are open to debate.
There is unfortunately no such test suite in the community.

Performance is mostly ascertained by fixed benchmark programs, and in a product with a
long history like MPI/SX, monotonically non-decreasing improvements for each new version
are important and expected by users. This is coupled with feedback from applications, which
could (and should) be much more systematic. As was the case for a community test suite,
there is unfortunately no agreed upon, common, exhaustive, sound, flexible benchmark for
measuring the performance of MPI functions. This is a deep lack.

12.5 Outlook on the MPI standard

Despite MPI often being criticized as being too explicit, low-level, large, complicated, tedious
and so on, MPI has been extremely successful. By establishing itself as a de facto standard
from early on, MPI has been a major, driving force behind the advancement of high- and
(with the advent of affordable SMP clusters in the late 1990ties) medium-performance par-
allel processing. An important feature has been the fact that MPI was designed to build
libraries, and through this, and the relatively few key concepts of MPI that has to be learned
to use the interface, many of the arguments above against MPI loose force.

Despite many attempts and proposals for replacing MPI, there is consensus that MPI
will survive – healthily – as a main programming model in the years to come, even for the
PetaFlop systems with 100,000 of processors that are currently being planned in the US and
in Japan and that will become operational perhaps already by the end of this decade. The
designed alternatives, for instance the languages in the HPCS initiative [LY07] will not be
ready or accepted enough to seriously challenge MPI (for better or for worse).

This naturally raises the question of new developments for and additions to MPI, in short
the question of whether there is a need for/will be an MPI-3.

Over the years and since the MPI-2 additions have become implemented and are being
used in more and more applications, a number of inaccuracies and other problems in the
standard have been detected. There is a clear need for these to be addressed and fixed, and
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the MPI Forum is currently active in doing this. Minor corrections have already been adopted
in the consolidated MPI 2.1 standard [MPI08], and issues of more consequence are being
considered for MPI 2.2. Some issues were raised by the author in the preceding chapters, some
of them being corrections and clarifications in the process topology functionality, possibly
with new, orthogonal functionality to give information from the MPI library back to a mesh
partitioner, a regular MPI Reduce scatter block collective, built-in reduction operators for
segmented scans, and other such things. An important issue to address is the typing of
count arguments as integers (int) which is already problematic in applications dealing with
amounts of data larger than 2GBytes. Here, it is a problem with an accepted standard that
function interfaces cannot simply be changed, and the sometimes adopted MPI method of
deprecating functions will hardly work (too many functions to deprecate).

A more far-ranging issue is whether it is desirable (or necessary) to introduce collectives
that are non-blocking, in order to permit more overlap between computation and commu-
nication in applications relying heavily on collectives. The MPI Journal of Development
already has a limited proposal for split collectives (as they now exist for parallel I/O), but
this is rightly criticized in [HGLR07, HKG+07] as limited, and a proposal for more genuinely
asynchronous, non-blocking collectives is given.

For very large, possibly heterogeneous systems it is questionable whether the illusion of
a flat system is sustainable, so better, more flexible resource and mapping control may be
needed. The existing process topology functionality could be the starting point for more
radical extensions in this direction, but it could also be that such issues are better handled
outside of MPI.

A fraction of users, system administrators and developers who find MPI too powerful,
too large, and therefore too inefficient (in terms of being able to exploit hardware resources)
often ask for a “light-weight” MPI. There are different schools in this way of thinking, few
concrete proposals, and it is not likely that MPI will change much in this direction. A counter
argument is that some of the allegedly expensive features of MPI like derived datatypes and
communicators do not cause much overhead (in a good implementation) if they are not used.

Finally, the largest, most frequently and loudly discussed issue is that of fault-tolerance.
With the jump from thousands of processors to the 256K processors of the IBM Blue Gene/L
machine it was widely believed that the mean time between hardware (or software) failures
would be so small that it would be impossible to run large applications (requiring several
hours of computing time even on this scale of system) without some support for software
fault-tolerance. The experience with the Earth Simulator, and later with the Blue Gene
showed, surprisingly, that these concerns were exaggerated. However, the issue remains and
there is a substantial drive for extending MPI in some aspects to provide for fault-tolerance.
It is not clear how well-founded the concerns or the current proposals are. Regardless of which
model is chosen, there will be consequences for the user, either in the form of (substantial)
performance penalties or in the form of having to program applications with fault-tolerance
in mind. Also, ways of providing fault-recovery by e.g. checkpointing are well incorporated
in current practice and do not require (much) MPI support. In [GL04] it is showed what
is already possible in terms of fault-tolerance within MPI as it is. Some further pointers to
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the ongoing discussion and proposals are [BBC+02, BCH+03, BLKC03, HLH+06, BDSB04,
FD00, FBD01, FAB+05].
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[DYN03] José Duato, Sudhakar Yalamanchili, and Lionel Ni. Interconnection Networks.
Morgan Kaufmann Publishers, revised printing edition, 2003.

[EGCSY05] Tarek El-Ghazawi, William Carlson, Thomas Sterling, and Katherine Yelick.
UPC: Distributed Shared Memory Programming. Wiley, 2005.

[FAB+05] Graham E. Fagg, Thara Angskun, George Bosilca, Jelena Pješivac-Grbović,
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21. Jesper Larsson Träff. Direct graph k-partitioning with a Kernighan-Lin like heuristic.
Operations Research Letters, 34(6):621–629, 2006.
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23. Guntram Berti and Jesper Larsson Träff. What MPI could (and cannot) do for mesh-
partitioning on non-homogeneous networks. In Recent Advances in Parallel Virtual
Machine and Message Passing Interface. 13th European PVM/MPI Users’ Group
Meeting, volume 4192 of Lecture Notes in Computer Science, pages 293–302. Springer,
2006.
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