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ASPECTS OF THE P-NORM MODEL OF INFORMATION RETRIEVAL:
SYNTACTIC QUERY GENERATION, EFFICIENCY, AND THEORETICAL
PROPERTIES

Maria Elena Smith, Ph.D.

Cornell University 1990

A practical information retrieval system must be easy to use by untrained users,
and it must provide prompt responses to a user’s search requests. In this thesis,
these practical aspects of the p-norm model of information retrieval are explored.
In addition, a study of theoretical properties of the p-norm model is presented.
A syntactic method for generating p-norm queries from parse trees generated
by the PLNLP syntactic analyzer is presented. The effectiveness of the syntacti-
cally generated queries is shown to be comparable to the effectiveness of manually
constructed queries, and much better than that of statistically generated queries.
The efficiency of a p-norm retrieval is significantly irﬁproved with a new p-
norm retrieval algorithm which evaluates the entire document col_legtion in one
recursive traversal of the query tree. This algorithm is comparéd faLgainst the
straightforward algorithm, which requires a traversal of the query tree for each
document that is evaluated. The new algorithm is shown to be better both

asymptotically and experimentally.



The infinity-one model is introduced as a means of approximating the p-norm
model without requiring exponentiation. Experimental results show that infinity-
one retrieval is essentially as effective as p-norm retrieval, but much faster. List
prun.ing!E m¥thods for further efficiency improvements are also introduced and are
shown to reduce retrieval time significantly without affecting the precision of top-
ranked documents. The retrieval time of the infinity-one model with list pruning
is shown to be comparable to that of pure Boolean retrieval.

A theoretical study is also presented in which certain Boolean algebra proper-
ties, such as associativity, are shown to be unsatisfiable by any extended Boolean
system with weak operators. The p-norm model is shown to satisfy all those
properties that can be satisfied. In addition, the p-norm model is evaluated with

respect to the Waller-Kraft wish list for extended Boolean systems.
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Chzllpjtler 1
Introduction

The area of information retrieval is concerned with developing techniques that
facilitate the search for information. Clearly, a large collection of data is all
but useless without some reasonable means of finding items of interest. Hence,
the ability to store ever larger collections of data in computer systems demands
better and better information retrieval techniques.

If the data in a collection is very structured, the retrieval problem is made
easier. For example, if the collection consists of a set of records having various
fields (such as name, address, and social security number), then most queries can
be handled effectively merely by providing indices that allow one to efficiently
locate all records having a given value in a certain field. This situation is typical
of database systems.

In an information retrieval system, in contrast, the data is unstructured, gen-
erally conmsisting of natural language text. A collection is a set of documents,
which can be books, articles, chapters, abstracts, electronic messages, or other
units of text. A query is some description of the content of desired documents.
The goal of an information retrieval system is to identify the documents in the
collection whose content match the query.

Throughout history, large collections of text have been stored in libraries, and



it is not surprising that this is where the first tools of information retrieval, such
as the Dewey decimal system, and the card catalog were developed. With the
advent of computers more sophisticated retrieval methods have become possible.

An ideal information retrieval system would actually understand the entire
content of each document and query. As this is infeasible, actual systems use some
structured means of approximating the content of documents and of queries.

Documents are often represented by sets of content identifiers known as index
terms or keywords. Each of these terms is assumed to describe to some degree
the content of the document. The process of assigning these keywords to the
individual documents is known as indezing.

Queries may also be represented by sets of index terms. However, most com-
mercial retrieval systems are based on the Boolean model, in which queries are
represented as Boolean expressions, i.e. as formulas consisting of index terms
joined by the logical operators AND, OR, and NOT. The Boolean operators
are typically used as follows:

e The AND is often used to combine terms into phrases. For example,
INFORMATION AND RETRIEVAL. This operator indicates that only

documents indexed by both terms are to be retrieved.

o The OR is often used to join synonyms, or any set of terms for which

the presence of only one is sufficient for a document to be retrieved. For

example, KEYWORD OR INDEX-TERM.

o The NOT operator is normally used together with an ‘AND for term-
narrowing purposes. For example, INDEXING AND NQT; MANUAL.
The set of documents retrieved is restricted to those which deal with in-

dexing but not manual indexing.

The retrieval model that is studied in this thesis is the p-norm model, also
sometimes referred to as the extended Boolean model [Wu81,SFW83,Fox83]. Like



the Boolean model, it makes use of the logical operators AND, OR, and NOT,
but in a weakened form. The p-norm model overcomes many of the drawbacks
of the Boolean model as shall be seen. However, it has some drawbacks of its
own. The goal of this thesis is to address these problems in an effort to make the

p-norm model practical.

1.1 The Boolean Model
1.1.1 Description

The Boolean model represents documents as sets of index terms. These terms
may come from the text of the document itself or from some controlled vocabu-
lary, and they may be assigned automatically or by a trained expert. The index
terms used to represent a document are all treated as being equally descriptive
of the document’s content.

Most commercial systems use an inverted index for accessing the document
collection. The inverted indez [HH70] contains for each index term the list of
document identifiers of all the documents indexed by the term. This accessing
method makes the retrieval process very simple and efficient. |

Boolean formulas are used to represent the queries. The Boolean operators
AND, OR, and NOT are implemented as set intersection, set union, and set

difference as follows [SM83]:

1. AND is used to ensure that all retrieved documents are indexed by all
the terms in the AND clause. Therefore, given query A AND B, the
documents retrieved are those in the intersection of the inverted list of

term A and the inverted list of term B.

2. An OR operator requires that all retrieved documents be indexed by at
least one term from the OR clause. Therefore, given query A OR B, the

documents retrieved are those in the union of the inverted list of term A



and the inverted list of term B.

3. NOT is used to ensure that a certain term does not appear in a retrieved
document. Therefore, given query A AND NOT B, the documents re-
trieved are those in the inverted list of term A, but not in the inverted list

of term B.

The retrieval of a more complex query is done by repeating the above process

recursively. For example, given query
(MANUAL OR AUTOMATIC) AND (DOCUMENT AND INDEXING)
the following procedure is used:

o Let S; = list for MANUAL | list for AUTOMATIC
e Let S2 = list for DOCUMENT [ list for INDEXING

¢ Return S1N 52

Through these simple set manipulation procedures, the conventional Boolean

retrieval systems can provide quick responses to user queries.

1.1.2 Limitations

Conventional Boolean logic exhibits many limitations which generally lead to
poor effectiveness in a retrieval environment. These limitations are well known

[SV85,Lee88]:

e The Boolean AND is very strict. For example, coﬁsider.the query

ti AND ¢t AND --- AND ¢,. .

The Boolean model considers a document indexed by t; througﬁ tp—1 but
not term t,, to be as bad as a document that is not indexed by any of these
terms. This leads to an excessively narrow interpretation of the AND

clause.



e The Boolean OR has a similar problem. Given query
t1 ORt; OR --- OR t,,

the Boolean model considers a document indexed by all of these terms to

be as good as a document indexed by only one.

e The output produced is not ranked. Any given document is considered to
either satisfy or not to satisfy a query, i.e. there is no notion of partial
satisfaction, so all documents retrieved are treated as being equally useful
to the user. If the amount of output is large, the searcher would be unable

to first consider those documents which are most likely to be relevant.

e There is no notion of relative importance among the terms assigned to
documents and queries. This is a very serious limitation, and it is overcome
in many other retrieval models by associating a value (or weight) with each
term, typically in the interval [0,1], representing the importance of the term

as a content representative.

1.2 The Pnorm Model
1.2.1 Definition

The p-norm model was first introduced in [Wu81). It overcomes the drawbacks
of the Boolean model by representing documents as points in an n-dimensional
space, where n is the number of index terms in the collection, and by introducing

the notion of p-norm distances! to evaluate AND and OR operators. A similarity

1The p-norm of a vector X =(z1,...,2,) is defined as:
IXllp = {1271+ -+ |2h]

The p-norm distance between vectors X and Y is defined as:

IX - Pllp



value between the query and the individual documentsis computed using p-norms
and used to rank the output in decreasing order of similarity. Furthermore, query
terms and clauses can be weighted to specify their relative importance.

Document term weights are restricted to the interval [0,1]. Each document is
mapped to a point in [0,1]*, where each axis of the [0,1)"-space corresponds to
an index term. A document D is represented by point (w;,ws,---,wys) where w;
is a measure of the importance of term ¢; in describing the content of document
D. If ¢; is not used to index D, then w; = 0.

To simplify the initial description of AND and OR evaluations in this model,
all query terms and clauses are assumed to have weight 1.

Let us first see how the conventional Boolean AND and OR are interpreted
when documents are visualized as points in an n-dimensional space. Since in the
Boolean model all weights are binary, all documents are represented by the set
of points corresponding to the corners of the n-dimensional cube. For example,
when n = 2, the only points representing documents are (0,0),(0,1),(1,0), and
(1,1). The Boolean query A OR B is satisfied by all points except (0,0), and
the query A AND B is satisfied only by point (1,1).

In the p-norm model, the documents are represented by points within the
n-dimensional cube, and the evaluation of the AND and OR operators is based
on the distances from the points (1,1,---,1) and (0,0, - - -, 0), respectively. Since
only the absence of all terms, i.e. point (0,0, - - -,0), fails to satisfy a Boolean OR
clause, the p-norm model OR ranks the documents in order of decreasing distance
from (0,0,---,0). Since the Boolean AND is satisfied only by:(1,1,---,1), the
p-norm AND ranks the documents in order of increasing distance ‘frqm the point
(1,1,---,1). |

The evaluation of the AND clause:

t1 AND t; AND ... AND ¢,

consists of:



1. projecting the document collection from the n-dimensional space to the

m-dimensional space

2. computing the distance from each document point in this m-dimensional

sp;a.c:a to the point (1,1,---,1)
3. ranking the dpcuments in order of increasing distance.
The evaluation of the OR clause:
tij ORt; OR ... OR
consists of:

1. projecting the document collection from the n-dimensional space to the

m-dimensional space

2. computing the distance from each document point in this m-dimensional

space to the point (0,0,---,0).
3. ranking the documents in order of decreasing distance.

The distance measures used by this model come from the L, family of norms
for p =1 to co. The Boolean operators are assigned a special parameter, called
the p-value, which indicates which L, norm is to be used. The different p-values
lead to varying degrees of conjunctivity and disjunctivity, where conjunctivity
refers to the notion that a retrieved document needs to satisfy all of the operands
of the operator, while disjunctivity refers to the notion that a retrieved document
may only satisfy one.

All distances are normalized to ensure that all similarity values lie in the
interval [0,1]. The normalization factor is Lydist((0,0,---,0),(1,1,---,1)), the
maximum L, distance between any two points in the n-dimensional cube.

The formulas for the similarity computations where the query weights are all

1, can be summarized as follows:



OR Given query
Q = [t1 OR? t; OR? ... OR? t,]
and document
D = (dy,ds,...,ds) where di=weight of ¢; in D,

the similarity is defined as:

L,dist((0,0,...,0),(d1,dz,...,ds))
Lydist((0,0,...,0),(1,1,...,1))

Sim(D, Q)

c/d‘l’+d‘2’+---+d5’.

n

AND Given query
Q = [t1 ANDP? t; AND? ... AND? t¢,]
and document
D = (dy,ds,...,d,) where d;=weight of ¢; in D,

the similarity is defined as:

1_ Lydist((1,1,...,1),(d1,d2,...,ds))
Lydist((0,0,...,0),(1,1,...,1))

Sim(D,Q) =

1_d(l—dl)u(l—dzzvf---+(1—d,.)r’

NOT Given query @ = NOT ¢ and document D = (dt), where d; = weight of ¢

in D, the similarity is defined as:

Sim(D, Q) = 1 — d,

These rules can be applied recursively to evaluate more complex queries. For

example, given query



Q =t AND?! (t2 OR?? t3)]
and document
D= (dlad2ad3)

the similarity is calculated as follows:

P2 gp2
: il (1 — dy )Pl + (1 — A% th ym
simD,g) =1 LAY 7

The behavior of the AND? and OR? functions with unweighted query terms
is demonstrated by the level curves in Figure 1.1 and Figure 1.2 [Fox83,SFW83].
Any two points lie on the same level curve if and only if they have the same
similarity value. In the OR case, the farther the level curve is from (0,0,...,0),
the higher its corresponding similarity value. Analogously in the AND case,
the closer the level curve is to the point (1,1,...,1), the higher its corresponding
similarity value. It can be seen that when p = 1, no curvature is present in the
level curves,and as p increases, the curvature also increases. At p = 2, the level
curves are circular, and at p = 5, they have become somewhat rectangular. The
level curves of p = 8 or higher are not very different from those at p = oo, where
the level curves are rectangular.

The effect of query weights on the similarity computation can be most easily

visualized as a reshaping of the document space. Given query
Q = (t1,91) OR (%2, q2), where gi=weight of term ¢;,

the document space [0,1] x [0,1] is compressed to the space [0,4g1] % [0, g2], by
mapping point (dj,ds) to the point (q1d1, g2d2) (See Figure 1.3). All distances
that were measured in the binary case from the point (1,1) are now measured

from the point (q1,¢2). So, the generalized formulas become:

OR Given query

Q = [(t1,q1) ORP (t3,92) OR? --- ORP? (tn,qn)]
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Figure 1.3: Compressing the Document Space
and document
D = (d1,ds,...,dn) where d; = weight of ¢; in D.
Point D gets mapped into (q1d1, g2d2, . . . , gndn ), and the similarity is defined

as:

L,dist((0,0,...,0),(d1g1,d2q2, . .. ,dnqn))

Sim(D, Q) Lydist((0,0,...,0),(q1,92,---,4n))

_ A+ qdit+ - +qndn
a+a+o+a

AND Given query
Q = [(t1,q1) ANDP (t3,92) AND? ... AND? (t5,qn)]
and document
D = (dy,ds,...,d,) where dij=weight of ¢; in D;

Point D gets mapped into (q1dy, q2d2, - . . , gndn ), and the similé,rity‘ is defined

as:

. LPdiSt((ql’ q2,--. aqn)v (QIdla Q2d2a <o ,qndn))
L,dist((0,0,...,0),(q1,92,---,qn))

Sim(D,Q) = 1
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Figure 1.4: Level Curves for (A,1.0) AND?? (B,0.5) in Compressed Space

_ (1 — qd1)? + (g2 — q2d2)? + - - - + (qn — qndn)?
\ Frd+ 1 d

A1 —d1)?+q5(1 —da)? +--- + qh(1 — dn)?

- 1_§ qi’+q§+...+qg

The level curves in the compressed space are as before, but in the AND?
case they are centered around (q1,q2,...,qn) instead of (1,1,...,1). See example
in Figure 1.4. Another way of interpreting the effect of query weights was demon-
strated in [Fox83] as non-symmetrical level curves. Figure 1.5 shows what the
level curves for the same query as in Figure 1.4 look like under this interpretation.
In summary, Figure 1.4 views the effect of query weights as a reshaping of the

document space, while Figure 1.5 views it as a reshaping of the level curves.

1.2.2 Properties

The level curves in Figure 1.1 and Figure 1.2 demonstrate the effect of the various
p-values on the similarity computation. At one extreme, p = 1, there is a very
softened interpretation of the operator (no conjunctivity or disjunctivity), and

at the other extreme p = oo, there is a very strict interpretation of the operator.
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Figure 1.5: Level Curves for (A,1.0) AND?? (B,0.5) in Uncompressed Space

These properties were observed in [SFW83]:

1. Sim(t, AND® t, AND® ... AND® t,,D) = min(dy,ds,...,d,) and
Sim(¢; OR® t; OR*® ... OR®™ t,,D) = max(dy,ds,...,ds)
where D = (dy,ds,...,d,) and all query weights are 1.0

2. AND! = OR!

Property 1 states that the p-norm model is an extension of the fuzzy-set model
to be discussed in Section 1.3.1. Furthermore, the p-norm model restricted to
binary weights and p = oo is equivalent to the pure Boolean model.

Property 2 states that when p =1 , there is no difference between AND and
OR. The evaluation of a clause with p = 1 is simply the weighted average of the
document term weights, and this can be viewed as a form of vector processing.
See Section 1.4 for a discussion of the vector model.

Another observation that was made in [SFW83] is that many properties of
Boolean Algebras are not satisfied by the p-norm model. The notion tflat logically
equivalent queries should yield identical results for any given document is known
as Boolean self-consistency, and it is listed as one of the desirable properties of

any generalized Boolean information system in the well-known Waller-Kraft wish
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list [WK79]. A study of the pnorm model with respect to this list is found in
Chapter 6.

In summary, the p-norm model exhibits the following properties:

o Allows weighting of terms in documents and queries.
o Allows various levels of conjunctivity and disjunctivity.

e Produces ranked output.

Includes the Boolean and vector models as special cases.

e Does not satisfy the Boolean self-consistency criteria.

1.3 Other Generalized Boolean Systems
1.3.1 Fuzzy Set Model

A fuzzy set [Zad65] is a class of objects characterized by a membership function
which expresses the degree to which an object is a member of the set. This
function maps an object to 1 to indicate that it is a full member of the set,
it maps an object to 0 to indicate that it is not a member, and it maps aﬁ
object to intermediate values to indicate its partial degree of membership. This
generalized notion of sets can be useful when dealing with imprecisely defined
classes of objects and its applicability has been studied for areas such as pattern
recognition, information retrieval, and database systems [Tah77,Usz86].
Numerous papers have dealt with the use of fuzzy set theory in information re-
trieval such as [Tah76, WK79,Rad79,BK81b], where various information retrieval
models based on fuzzy sets have been introduced and studied. Fuzzy sets are
typically used to represent the set of documents indexed by a given term. The
weight of a term ¢ in a document is used as an indicator of the document’s degree
of membership in the set of documents indexed by ¢. The standard interpretation

of the Boolean connectives in the fuzzy set model is:
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Sim( A OR B, D) = max(d4,dp)

Sim( A AND B, D) = min(d4,dp)

Sim( NOT A,D) =1-dy4
These similarity computations are directly based on the definitions of union, in-
tersection and complementation in fuzzy set theory[Zad65]. The appropriateness
of this interpretation of Boolean operators in an information retrieval setting has
been strongly questioned[{Rob78].

The first two limitations of the Boolean model listed in Section 1.1.2 are still

present in the fuzzy set model. For example, given query
t1 AND t; AND --- AND ¢,.
and documents

D, =(1,...,1,0)
D, =(0,0,...,0),

the similarities are

Sim(Q,Dl) = m.in(l,. ‘e ,1,0) =0
Sim(Q,D3) = min(0,0,...,0) = 0

So, it can be seen that a document indexed by all but one of the terms is not con-
sidered any better than a document not indexed by any of the terms. Similarly,

given query
ty ORt; OR --- OR t,.
and documents .

D; =(1,0,...,0)
D:=(1,1,...,1),

the similarities are
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Sim(Q,D;) = max(1,0,...,0) =1
Sim(Q,D;) = max(1,1,...,1) =1

Thus, -a document indexed by all the terms is considered to be as good as a
documeflt indexed by only one.

Extensiox}s that allow query terms and clauses to be weighted has also been
considered [Réd79,B0080]. However, the introduction of query weights has led
to additional undesirable properties [BK81b,Bue81,Boo78].

1.3.2 Waller & Kraft’s Model

In an attempt to satisfy as many of the properties in the Waller-Kraft wish list
as possible, the following function was suggested in [WK79] for evaluating both
ANDs and ORs:

Sim(A op B, D) = z min(da,dg) + (1 — z)max(da,dB)

where z is a value in [0,1] and is specified by the user as part of the query. If
the user wants to restrict the set of records retrieved to those which evaluate
reasonably high for both A and B, then he would use a high z value to obtain the
effect of an AND. On the other hand, if the user feels that a document which
evaluates reasonably high on only one of these subexpressions is still very likely
to be useful, he would use a small z.

It should be noted that a drawback of this model is that when more than two
expressions are joined by a Boolean operator, only those expressions evaluating

to the min and max have an effect on the similarity. For example, given query

Q=tioptaop---opty
and documents

D, = (.8,.1,0,...,0)
Dy = (.8 .1,.7,...,.7)
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it can be seen that
Sim(Q,D;) = Sim(Q,D3).

Therefore, D; and D, are treated as being equally good in this model. However,

intuitively, one would consider Dy more likely to be relevant than D;.

1.3.3 Paice’s Model

The following variation of the Waller & Kraft’s model was proposed in [Pai84].
ANDs and ORs are evaluated with the following function:

Z ri_ld,'

Sim(t; optz op --- opty, D) = =L ——

Z ri—l

1=1
where r is in [0,1] and the d;’s are in ascending order if op = AND, or in
descending order if op = OR. When r = 0, this model reduces to the classical
fuzzy set model, and when r = 1, it reduces to a vector processing system.

This model is not aesthetically appealing since it is not based on any theoret-

ical foundation. For instance, there is no justification for giving each subsequent
term weight a weighting factor which is a fixed ratio r of the preceding weighting

factor.

1.3.4 TIRS

TIRS (Topological Information Retrieval System) is presented in [CK87] as a
model satisfying the requirements of the Waller-Kraft wish lis't. In this system,
queries are represented as finite sets of points in the document“ space and each
of these points; is considered to represent a “perfect” document.* AL document
description is a point with a finite number of non-zero entries in the document

space
0o
DS = H[O, 1].
i=1

A query is processed as follows:
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. To obtain the set of “perfect” document descriptions, the Boolean query is
transformed into DNF (disjunctive normal form) where there is one disjunct
for each combination of atoms that makes the Boolean expression evaluate

to gtn;1e. For example, given query
(A,a) OR (B,b)

where a and b are the weights of A and B respectively, TIRS transforms it

into:

((A,a) AND (B,b)) OR ((A,a) AND NOT(B,b))
OR
(NOT(A,a) AND (B,b))

. All atoms of the form NOT (A,wt) are replaced by (A,1 - wt). So in the

above example, one gets:
((A,a) AND (B,b)) OR ((A,a) AND (B,1-b)) OR ((A,1-a) AND (B,b))

. Each conjunct is mapped into a point in DS. Thus, in this example the
query is represented by the three “perfect” documents (a,b), (a,1-b), and
(1-a,b).

. These “perfect” points are located in the projection of DS onto [0,1]" where

n is the number of terms in the query.

. Using a metric, the documents closest to the query points are located. A
weight w; is associated with each query point representing the maximum
allowable distance between this point and a retrieved document. In other
words, given a query represented by the points Q1,Q2,...,Qn, the set of

documents retrieved is given by
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{D|3i(i € 1,...,m) s.t. dist(Q;,D) < w;}

6. The documents are ranked in order of decreasing distance from the query

points.

Among the drawbacks associated with this model is the fact that its compu-
tational requirements are too high for this model to be useful in practice. In the
experiments presented in [Lee88], it was found that performing a retrieval with
TIRS was often infeasible due to the large number of minterms (i.e. conjunctive
clauses) generated in the transformation of the Boolean query into its disjunctive
normal form. For example, in the CISI collection (35 queries), two queries had
over 3000 minterms, and 30% had over 100 minterms. In the CACM collection

(64 queries), one query generated 24,171 minterms.

1.4 Vector Model

The vector space model represents both documents and queries as vectors in an
n-dimensional space, where n is the number of index terms in the collection. Each
element of the vector is assigned a value in [0,1] to represent the importance of
the associated term. Thus, given a collection with n index terms, a document D

is represented in the form:
D = (d1,da,...,ds)

where d; indicates how good term i is in describing the content of document D.
Queries are similarly represented. .

Various methods for computing the similarity between two véactors have been
described in the literature. Among the most commonly used meaSures is the

cosine coefficient defined as follows:
n

> gid;

Sim(D,Q) = —==L

n n

DI DINA

i=1 i=1
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where

D = (di,ds,...,ds) and

Q = »(q13q2" .. ,Qn)-

The isin"lplicity of this model, and its ability to handle document term weights
and query term weights in a natural way make this model very attractive. How-
ever, the model has been criticized for assuming that the term vectors are orthog-
onal (i.e. terms are assumed to be independent) [WZW85], and for the absence
of a theoretical justification for the vector similarity measures [Sal89].

This model produces much better retrieval output than the Boolean model,
and has been used in the literature as the standard for comparison with newly
proposed retrieval processes. All of the experimental data, will therefore, be

compared with the vector model’s retrieval output.

1.5 Retrieval Environment

The experiments were performed using the SMART information retrieval sys-
tem [Buc85] extended by programs implementing the various p-norm retrieval

algorithms presented in this thesis.

1.5.1 Experimental Collections

Three document collections were utilized in this study. Each collection includes
the text-form of document titles and abstracts, a set of natural language queries,
a set of Boolean queries manually constructed from the natural language state-
ments, and a set of relevance judgements describing which documents are relevant

to the various queries.

e The CACM collection contains the articles in issues of Communications of

the ACM from 1958 to 1979. There are a total of 3204 documents and 52
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natural language queries. Two graduate students at Cornell created the

associated Boolean queries.

The Medlars collection consists of 1033 documents selected from a medical
collection at the National Library of Medicine. The 30 natural language
queries associated with this collection were provided by the National Li-
brary of Medicine, and the corresponding Boolean queries are based on the
Boolean expressions used by actual searchers but adapted to the informa-

tion in document representations by expanding the queries through the use

of the MESH thesaurus[Fox83].

The INSPEC collections consists of 12,684 articles focusing mostly on elec-
trical engineering and computer science. It contains 84 natural language
queries submitted by Syracuse University students and faculty. The asso-
ciated Boolean queries were built up from Diatom? searches. Since in a
Diatom search various sets are retrieved until eventually the result of one is
selected for printing, the Boolean query associated with a search combines
the Boolean expressions representing each retrieval set into one Boolean
expression. As a result, the Boolean queries in this collection tend to be

very deep and long.

1.5.2 Evaluation

Retrieval effectiveness is typically measured in terms of recall and precision. Re-

call measures the proportion of relevant documents that are retrieved, and preci-

sion measures the proportion of retrieved documents that are relevant. In other

words, recall is defined as:

. )
! !

R— number of relevant retrieved

number relevant

2Djatom is a Syracuse system simulating DIALOG (trademark of LMSC, Inc.)
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and precision is defined as:

number of relevant retrieved

P =

number retrieved

In retrigval systems in which ranking is produced, the precision obtained at var-
jous recall levels is often used. For example, the precision at a recall level of .5
measures thé precision obtained when 50% of the relevant documents have been

retrieved. In this study, the following two measurements will be used:

1. Average precision at recall levels of .25, .50, and .75

2. Precision obtained in the 10 top documents retrieved

1.6 Thesis Synopsis

The goal of this thesis is to make the p-norm model practical. The issues that

are considered are:

1. automatic generation of p-norm queries from natural language search re-

quests, and
2. efficiency of p-norm retrieval.

Chapter 2 presents a syntactic p-norm query generation algorithm using the
PLNLP natural language processing system developed at IBM, and reviews past
work in the area of automatic p-norm query generation.

Chapter 3 studies the effect of various parameter settings on the effectiveness
of p-norm retrieval, and compares the automatically generated p-norm queries
against manually constructed p-norm queries and automatically constructed vec-
tor queries.

Chapters 4 and 5 deal with the efficiency aspects of p-norm retrieval. A new
p-norm retrieval algorithm is presented in Chapter 4, and approximations to the

p-norm model are presented in Chapter 5.
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Chapter 6 analyzes the Boolean Algebra properties with respect to any system
containing softened boolean operators, and shows that the p-norm model satisfies

all the properties that any such system can satisfy.



Chaill.):t‘er 2

Automatic Generation of P-norm

Queries

Studies have shown that it is very difficult for untrained users to express their
search requests in terms of Boolean logic [BVW72]. Even though the p-norm
model is more forgiving than the pure Boolean model, it is useful to have a
method of generating p-norm queries automatically from natural language search
requests. Previous work in this area [SBF83] takes into consideration only the
frequency characteristics of the terms in the user’s request. In this study, a
syntactic approach to the query generation problem is instead considered.

The objective of this chapter is:
1. to review the statistical query generation process presented in [SBF83], and

2. to introduce a syntactic query generation process.

These two methods will be compared in Chapter 3, where the output of

retrieval runs using the queries generated by these methods is evaluated.

25
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2.1 Statistical Query Generation

The method proposed in [SBF83] relies solely on the terms of the natural language
search request and their related frequencies, without any regard for sentence
structure. Co-occurrence information about the terms is the key factor used in
this method to decide on how to combine the terms into a p-norm formula.

The first step of the statistical query generation algorithm is to construct a
Boolean formula such that the estimated number of documents retrieved by the
formula in a pure Boolean system is some specified number of desired documents.
This Boolean formula is then transformed into a p-norm query by weighting each
query term with an idf weight!, weighting each query clause with the average
weight of its operands, and assigning a common p-value to the Boolean operators.
Low p-values of p = 1 or p = 2 were found to be best. Chapter 3 discusses these
parameter settings more thoroughly. |

The constructed Boolean formulas are in disjunctive normal form where the
disjuncts can be single terms, pairs (i.e. two terms anded together) or triples (i.e.

three terms anded together). A typical query looks as follows:
t; OR t; OR (t3 AND t4) OR (t5s AND t¢ AND t7) OR ---

The NOT is not used in the generated queries. The estimated number of
documents retrieved by such a query is taken to be the sum of the document
frequencies? of the single terms, and the estimated document frequencies of the
pairs and triples in the query®. By assuming that terms occur independently of
each other, the document frequency for a pair (t; AND ¢;) is 'eétimated by:
ni-nj .

N

1idf, inverse document frequency, weights vary inversely with the number of documents in-
dexed by the term, thereby giving preference to terms concentrated in only a few documents. See
Chapter 3 for a more detailed discussion.

2The document frequency of a term is the number of documents indexed by the term.

3This is a very rough estimate since it assumes that there is no overlap among documents
retrieved by the individual clauses.

nij =
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and for a triple (¢; AND t; AND t;) by:

ng-nj-ng
Mijk = "Nz

where N ig the number of documents in the collection, and n;, n;, and n; are the

document frequencies of the terms ¢;, t;, and ¢, respectively.

The process for constructing the Boolean formula can be summarized as fol-

lows:

. Take the terms from the natural language search request, use a stop list

to remove common function words, and remove common suffixes from the

remaining terms.

Eliminate terms with excessive document frequencies.

. Let the initial query be the OR of a few single terms with highest idf

weight, and all pairs which do not include any of these single terms.

If the estimated number of retrieved documents by the query is smaller than
the desired number, the query formulation is broadened by adding single
terms in idf weight order and removing the pairs subsumed by the added
singles. For example, if term ¢; is added as a single term to the query, then
all pairs of the form (¢; AND t;) become unnecessary, and are therefore

removed.

If the estimated number of retrieved documents by the query is larger than
the desired number, a narrower query formulation is constructed by elim-
inating single terms in increasing idf weight order and adding the missing
term pairs. If, after all singles have been deleted, the expected number of
retrieved documents is still too large, then term pairs are deleted in increas-

ing idf weight order and triples consisting of terms from the deleted pairs

are added.
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Table 2.1: Term Frequencies and Weights

Term Document Frequency | Idf Weight®
effect 248 .7602
excres (ex) 52 .9497
hormon (ho) 81 9217
kidney (ki) 78 .9246
parathyr (pa) 27 9739
phosp (ph) 43 .9584
urin (ur) 78 .9246

%The idf weight used here is: 1 - n/(N+1).

6. Steps 4 and 5 are repeated until the estimated number of retrieved docu-

ments is the desired number.

The following example from [SBF83] illustrates this query generation process.
Example: Statistical Generation Process for the search request:

Ezcretion of phosphate or pyrophosphate in the urine or the effect of

parathyroid hormone in the kidney.
given a desired number of retrieved documents of 20.

After the initial step of removing terms from the stop list, and performing a suffix
removal, the list of terms in Table 2.1 is obtained. The term effect is eliminated
because of its excessive document frequency, and only the remaining terms are
used in the query generation. These terms will be referred to by the abbreviations
appearing in parentheses in Table 2.1. The estimated fretiuencies and weights of
pairs are given in Table 2.2, where these abbreviations are used. A similar table
is constructed for triples. "

The initial query is obtained by taking the OR of the two single terms with

lowest frequency and all the pairs not involving these two terms. Thus, the initial

query becomes:
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Table 2.2: Pair Frequencies and Weights

Pair | Estimated Frequency | Weight
ho-ex 4.1 .9961
o ki-ex 3.9 .9962
T ki-ho 6.1 9941
pa-ex 1.4 9987
pa-ho 2.1 .9980
pa-hi 2.0 .9980
ph-ex 2.2 .9979
ph-ho 3.4 9967
ph-ki 3.2 .9969
ph-pa 1.1 .9989
ur-ex 3.9 .9962
ur-ho 6.1 .9941
ur-ki 5.9 .9943
ur-pa 2.0 .9980
ur-ph 3.2 .9969

Pa OR Ph OR (Ki AND Ex) OR (Ur AND Ex) OR
(Ho AND Ex) OR (Ur AND Ki) OR (Ur AND Ho) OR
(Ki AND Ho).

The estimated number of documents retrieved by this query is 100. There-

fore, the highest frequency single is replaced by all pairs with this term, giving:

Pa OR [(Ph AND Ex) OR (Ph AND Ho) OR (Ph AND Ki)
OR (Ph AND Ur)] OR (Ki AND Ex) OR (Ur AND Ex)
OR (Ho AND Ex) OR (Ur AND Ki) OR (Ur AND Ho) OR
(Ki AND Ho).

The estimated frequency of the query is now 69. Since this is still considered too

high, the next single has to be replaced by all pairs that involve it, giving:

[(Pa AND Ex) OR (Pa AND Ho) OR (Pa AND Ki) OR
(Pa AND Ph) OR (Pa AND Ur)] OR (Ph AND Ex) OR
(Ph AND Ho) OR (Ph AND Ki) OR (Ph AND Ur) OR
(Ki AND Ex) OR (Ur AND Ex) OR (Ho AND Ex) OR
(Ur AND Ki) OR (Ur AND Ho) OR (Ki AND Ho).
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The estimated number of documents retrieved by this query is 50.6. There-
fore, it needs to be made more narrow still. Since there are no single terms re-
maining, the highest frequency pair has to be removed. So, the pair (Ki AND Ho)
is removed. With this done, the estimated frequency is 44.5. Since this is still
too high, the next highest frequency pair, namely (Ur AND Ho), is removed.
The estimated frequency of the query is now 38.4. When the next highest pair
is removed, (Ur AND Ki), the nonredundant triple (Ur AND Ki AND Ho) is

inserted into the query, giving us:

(Pa AND Ex) OR (Pa AND Ho) OR (Pa AND Ki) OR
(Pa AND Ph) OR (Pa AND Ur) OR (Ph AND Ex) OR
(Ph AND Ho) OR (Ph AND Ki) OR (Ph AND Ur) OR
(Ki AND Ex) OR (Ur AND Ex) OR (Ho AND Ex) OR
(Ur AND Ki AND Ho).

At this point, the estimated frequency is 33, and the process continues by
removing pairs (Ho AND Ex) and (Ki AND Ex), and adding triple (Ki AND
Ex AND Ho), and producing the final query with estimated frequency of 22,
which is considered to be close enough to the desired number of documents.

The query produced in the above example does not reflect the meaning of
the original search request in any obvious way. In the next section an approach
that generates the p-norm query based on the syntactic structure of the search

request is described.

2.2 Syntactic Query Generation -

The goal of the syntactic query generation algorithm is to better represent the
content of the search request by grouping the terms in a meaniﬁgﬁ,ll. way. For
example, a more appropriate p-norm query for the search request given in the

previous section would be
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(ezcretion AND (phosphate OR pyrophosphate) AND urine) OR
(effect AND (parathyroid AND hormone) AND kidney)

The structure given to the p-norm query is determined by the syntactic structure
of the search request. For example, the proposed algorithm groups the terms
making Iup a noun phrase or prepositional phrase into one AND clause, and it
joins sets of énumex_‘ated concepts into an OR clause.

The method that is proposed makes use of the PLNLP natural language pro-
cessing system developed at the IBM Research Laboratory in Yorktown Heights.

The system provides:

1. a syntactic analyzer.

2. facilities for manipulating the output of the analyzer.

Given an English sentence, a parse tree is produced by the syntactic analyzer
through the use of a general purpose English dictionary and a set of grammar
rules for the English language included in the system. The query generation
method builds a p-norm query from the parse trees obtained for each of the

sentences in the natural language search request provided by the user.

2.2.1 Overview of the PLNLP System

PLNLP, Programming Language for Natural Language Processing, was used in
the implementation of the syntactic analyzer and it is the programming language
required by the parse tree manipulating facilities of the system. Since the query
construction process depends on these system facilities, it was implemented in
PLNLP.

A program in PLNLP is simply a set of augmented phrase structure rules?

where the left-hand side of the rule identifies the type of object that the rule can

4See [Hei72,HIM*82,Win83] for more information on augmented phrase structure grammars.
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DECL NP NP NOUN* “memory”
NP NOUN* “management”
NOUN*  ‘“units”
VERB*  “regulate”

NP NOUN* “access”
PP PREP “to”
AJP ADIJ* “dedicated”
NP NOUN* “storage”

NOUN* “segments”
PUNC «”

Figure 2.1: Example of a Parse Tree Produced by PLNLP

be applied to, and the right-hand side specifies the objects that the left-hand side
of the rule gets replaced by. Each rule can be augmented by:

1. a set of conditions that must hold in order for the rule to be applied, and

2. a set of actions that are to be performed when the rule is applied.

A detailed description of the syntax and capabilities of this language can be found
in [Hei72]. Due to the complexity and typical unreadability of the syntax of this
language, the p-norm query generation method will be presented in higher level
terms.

The parse tree produced by the analyzer for a sample sentence is found in
Figure 2.1. This can be viewed as a tree placed on its side, where the root is in
the first column, the children of the root are in the second column, and so forth.
By turning the example in Figure 2.1 right-side up, Figure 2.2 is obtained.

In the.example from Figure 2.1, the root is labeled by DECL, meaning that
this is a declarative sentence. It is then subdivided into NP" (noun phrase),
VERB, and NP The noun phrases are further subdivided and so bn,

Each non-lexical construction, such as NP and PP (prepositionél phrase), has
a head. The head is identified by an asterisk in the parse tree. In the example
from Figure 2.1, the first NP represents the noun phrase memory management

units, and its head is units. The constituents preceding the head are known as
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NP | [ NP | NOoUNY [reg | NouNqd [ PP | [ - ]

NOUNY NOUNA [ units | [access| [PREP| | AJP | [ NP | NOUNA

| mem. | |manag| |_to | [ADJ*| NOUNA | seg. |

| ded. ] [ stor. ]

Figure 2.2: Output of Parser Viewed as a Tree
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NP NP NOUN* “code”
NOUN* “optimization”
PP PREP “for”
NP NOUN* “space”

NOUN* “efficiency”
PUNC «.”

Figure 2.3: Example of a Sentence Fragment Analysis

premodifiers and those following the head are referred to as postmodifiers. In the
first NP, the head noun units has premodifiers memory and management, and it
has no postmodifiers. In the second NP, the head noun is access and it only has
one postmodifier, namely the prepositional phrase to dedicated storage segments.

The PLNLP system is very flexible with regard to the type of input that it is
able to analyze.

1. PLNLP is not restricted to a particular subject domain.

2. PLNLP is able to analyze sentence fragments, as well as complete sentences.
For example, the phrase code optimization for space efficiency is analyzed

as a noun phrase as shown in Figure 2.3.

3. PLNLP can handle ambiguous sentences by producing multiple parses and
applying a parse metric to rank them in decreasing order of assumed cor-

rectness.

4. When parsing fails, PLNLP produces a fitted parse, which identifies the
lower level structures that were successfully parsed.l PLNLP first attempts
to parse the text as a sentence. If that fails, it tries to pérse it as a verb
phrase, and if that fails, it then tries to parse it as a noun ﬁhl;rase. If this
also fails, PLNLP parses smaller portions of the text in whatever way it can.
Figure 2.4 shows an example of a fitted parse produced by PLNLP. The root
is labelled by XXXX to indicate that this is a fitted parse. PLNLP {failed

in its attempt to parse shape descriptions, shape recognition by computer,
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XXXX  NpP* NP NOUN* “shape”
NOUN*  “descriptions”
PUNC “r
NP NP NOUN* “shape”
O NOUN*  “recognition”
5 PP PREP “by” .
NOUN* “computer”
PUNC «.”

Figure 2.4: Example of a Fitted Parse

and so it produced the parse trees for the two fragments, namely, shape

descriptions and shape recognition by computer.

Because of its flexibility, PLNLP is well-suited to information retrieval applica-
tions requiring the syntactic analysis of natural language text. Some applications

in the literature may be found in [Fag87,5SS89).

2.2.2 Syntactic Query Generation Algorithm

The approach to p-norm query generation introduced here is based on a postorder
tree traversal of the parse tree produced by the syntactic analyzer. Each node of
the tree represents a syntactic category, such as: NP (noun phrase), PP (preposi;
tional phrase), VERB, NOUN, ADJ (adjective), ADV (adverb), etc. A tree node
contains pointers to its children, which represent how the syntactic structure as-
sociated with the tree node can be broken down into lower-level structures. In
the example from Figure 2.1, the NP node can be seen to be associated with
memory management units point to three lower-level structures, namely the NP
node associated with memory, the NP node associated with management, and
the NOUN node associated with units.

In general, at each tree node the algorithm does the following:

1. Recursively calls itself on the children (if any).

2. If the node is a non-leaf, determines how the p-norm formulas returned by
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the children are to be combined, if at all, based on the syntactic category
associated with the tree node. As will be seen, a node may return more

than one p-norm query.

3. If the node is a leaf, determines whether to return the associated word

based on the syntactic category of the node.

4. If the node is the root of the tree, combines the p-norm formulas that were

to be returned are combined into a single formula using an AND operator.

After all the sentences of a search request are processed, the p-norm formulations
generated for them are combined into an OR clause with p-value 1.0.
The rules used by the algorithm to determine what to return when processing

a particular tree node are presented in the following subsections.

Lexical Categories:

A tree node belonging to a lexical category appears as a leaf of the syntax tree,
and has associated a single word of the text. When processing such a tree node,
the algorithm returns either a query consisting only of the associated word, or

an empty query, according to the following rules:

e DET, PRON, CONJ, PREP, and PUNC return empty query.
Terms from these categories are not considered to be good content indica-

tors, and they are therefore not included in the generated p-norm formula.

o ADV return empty query.
Since adverbs are only occasionally good content identifiers, it was decided
to always omit them. T
o All other lexical categories check whether the word associated with the node

is included in an ad-hoc list of words to be excluded. The lists used by the
algorithm may be found in Figures 2.5, 2.6, and 2.7. These are all-purpose
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appear do like relate
associate exist list result
base find look see
be get make shall
can give may state
cahsé have might ¢ study
compare help need undertake
consideér. hope note use
deal ' include obtain want
describe interest oppose will
determine involve pertain write
discuss know regard

Figure 2.5: Verbs to be Excluded

words typically found in queries; they generally are not good document
identifiers. If the word is on any of these lists, it is omitted. Otherwise, the
p-norm query consisting only of the single word associated with the node
is returned.

Examples of these lexical categories include: NOUN, ADJ, and VERB.
Adjectives are further restricted to be non-quantifying. Examples of ad-
jectives considered by PLNLP to be quantifying include: all, many, some,

first, second, etc.

Noun Phrases:

The description presented in this section is for non-conjoined® noun phrases only.
The processing of conjoined noun phrases is described in the section dealing with
conjoined clauses in general.

The structure of a noun phrase is:

premods . ..premodg head postmod; ... postmody,.

5A conjoined noun phrase is simply a noun phrase made up of several noun phrases joined
by some conjunction, such as and. An example of a conjoined noun phrase is: Journal articles,
technical reports, and conference proceedings.
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able easy just recent
above either likely same
additional entire ma jor simple
all esp. main some
another essential many special
any first more specialized
applicable following most specific
available further much such
basic general new together
better given no unable
best helpful only useful
both here opposed various
current how other very
complete important particular well
different including present what
each interested primary which
Figure 2.6: Adjectives to be Excluded
addition e.g. mechanism relationship
application emphasis method result
approach etc. name role
area example notion significance
aspect explanation one special
association factor other study
change ie. overview subject
comparison interest paper subtopic
concept introduction problem thing
consideration i1ssue purpose topic
description literature question l1se
detail material regard way
discussion mean relation work

Figure 2.7: Nouns to be Excluded
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The constituents preceding the head are the premodifiers, which may consist of
adjectives, nouns, adjective phrases, etc. The head is a noun, and the postmod-
ifiers are typically clauses such as prepositional phrases and participial clauses.
Thé @lgorithm processes each of the children of the node, combines the p-norm
formula.s! f;om the premodifiers and the head into an AND cfause, and then re-
turns this formula along with the p-norm formulas returned by the postmodifiers.

This process can be described formally as follows:

e Let Qprei be the set of p-norm formulas returned by premodifier :.
e Let Q; be the set of p-norm formulas returned by the head.
e Let Qposii be the set of p-norm formulas returned by postmodifier :.

e Let Qjoin be the AND clause whose operands are the p-norm formulas

from Qprer, - .-, Qprek and Q.

e Return the p-norm formulas from Qpost1, - .., Q@postm and Qjoin. These p-

norm formulations will be joined by some ancestor of this tree node.

The postmodifiers are not ANDed into Qjoin because of the difficulty in de-
termining the correct placement of clauses such as prepositional phrases. The

example in Figure 2.8 demonstrates this process.

Prepositional Phrases:

Non-conjoined prepositional phrases are handled the same way as noun phrases.
The only difference between these two categories is that prepositional phrases
include a preposition as the first premodifier of the head noun. Since PREP
always returns an empty query, this preposition is ignored. See the example of

Figure 2.8.
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NP NP NOUN*  “code”
NOUN* “optimization”
PP PREP “for”
NP NOUN* “space”

NOUN* “efficiency”
PUNC «.”

Leaf Nodes:

NOUN* (associated with code) returns query: Q1 = code.

NOUN* (associated with optimization) returns query: Q2 = optimization.
PREP (associated with for) returns empty query Q3.

NOUN* (associated with space returns query: Q4 = space.

NOUN* (associated with efficiency returns query: Qs = efficiency.
PUNC (associated with the period) returns empty query Qs.

Prepositional Phrases:

PP (associated with for space efficiency) combines the p-norm formulas re-
ceived from the two premodifiers, @3 and Q4, and the p-norm formula
received from its head, @s. This results in query: Q7 = space AND

efficiency.
Noun Phrases:

NP (associated with code) returns the only p-norm formula that it receives
from its one child, namely @;. '

NP (associated with space) returns the only p-norm formula that it receives
from its one child, namely Q4.

NP (associated with code optimization for space efficiency) joins the only p-
norm formula from its premodifier, Q;, with the p-norm formula from
its head, Q2. Thus, query

Qjoin = code AND optimization.

is constructed. If this node had not been the root, it , would have
returned the two queries Qjoin and the query from its postmodifier,
Q7. However, since this is the root, these two queries are combined
into one AND clause, producing:

(code AND optimization) AND (space AND efficiency)

Figure 2.8: Example of a Syntactic Query Generation
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Conjunctive Clauses:

A study presented in [DG87| discusses the ambiguity of the natural language
conjunction end and presents some insights as to how it is best translated into a
Boolean; operator. An example of the ambiguity inherent in this conjunction is

the following:
1. I am interested in computers and education.

2. I am interested in compilers and interpreters.

One needs to decide whether to translate the and into an AND or an OR. In both
sentences the conjunction and is used, but the intended meanings are probably
different. In particular, the first search request is better represented if the and
is translated into an AND operator, since documents that are not about both
computers and education are unlikely to be relevant. On the other hand, the
and of the second search request is better translated as an OR, since documents
dealing only with compilers or only with interpreters are likely to be relevant.
The interesting observation made in [DG87] is that when the conjuncts are
semantically similar, as was the case in the second search request above, the
intention behind the conjunction is to include alternative ways of expressing the
concept of interest, and therefore the conjunction is best translated as an OR.
On the other hand, if the conjuncts are semantically dissimilar as was the case
in the first search request, the intention behind the conjunction is to identify a
concept that is different from either conjunct alone — the concept computers and
education is different from computers and different from education. Through the
use of dictionary definitions, it is possible to determine whether two terms are
semantically similar or dissimilar [CBH85]. This was the approach taken by the
algorithm presented in [DG87] to automatically generate the proper translation
of the and conjunction for a set of natural language search requests. In 90% of the

cases, this algorithm agreed with a human’s translation. However, it was pointed
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out in [DG87] that in 72% of the conjunctions tested, the proper translation of
the conjunction was the OR. Since the translation to an OR is so much more
common, the algorithm will always translate the conjunction and into an OR.
An exceptioh is made in the case of a conjoined prepositional phrase where
the preposition is between. For example, if the natural language search request
1s:
I am interested in the relationship between data types and concurrency.

one would like to generate the following p-norm formulation for the prepositional

phrase between data types and concurrency:
(data AND types) AND concurrency.

Whenever the searcher uses the preposition between, he is indicating that it is
important that a retrieved document deal with both concepts. This special case is
important, because it is common for a query to ask for comparisons, relationships,
or interactions between concepts.

The conjunction or seems to be more straightforward than and. It may be

used to enumerate several unrelated concepts of interest, as in:

I am interested in documents about programming languages, distributed systems,

or information retrieval,

or it may be used to introduce alternative ways of expressing a given concept.
In the latter case, the semantic similarity of the concepts joined by or may vary

from being exact synonyms, as in:

I am interested in concurrent processing or parallel computation,

s !
! t

to being somewhat related, as in:
I am interested in the use of go-to or assignment in programming languages.

Regardless of how much similarity or dissimilarity there is between the concepts,
the best translation for the or seems always to be the OR operator. The query
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generation algorithm will therefore translate all natural language ors to OR
operators.

Other items considered by PLNLP to be conjunctions include:

e cettain punctuation marks such as commas, and

e certain; phrases such as as well as.

These conjunctions are generally used for enumerating concepts, and therefore,
when they are used as the head of a conjoined clause, they will also be translated
to OR operators.

The structure of a conjunctive clause is:
conjunct CONJ conjunct CONJ ... CONJ* conjunct.

Conjunctive clauses can be identified by checking whether the head of the clause
is labelled as CONJ* (PLNLP considers the last conjunctioﬁ to be the head of
the clause). A conjunct may consist of one or more constituents, as the conjoined
noun phrase of the example in Figure 2.9 illustrates. The first conjunct consists of
two constituents, namely, the NP for performance and the NP for evaluation, and
the second conjunct consists of a single constituent, namely, the NP for modelling
of computer systems. Furthermore, not all items labelled as CONJ in the parse
tree for a conjunctive clause need to be the same, as can be seen in the example of
Figure 2.10, where the conjoined prepositional phrase in local networks, network
operating systems, and distributed systems contains two conjunctions, namely, the
comma and the word and. However, the conjunction labelled as the head is the
one that determines whether the conjoined clause generates an AND clause or
an OR clause when joining the p-norm formulas returned by its children.

The processing of a conjunctive clause consists of first corhbining the p-norm
formulas for the individual conjuncts into AND clauses, and then joining these
AND clauses with an OR operator. Formally, one can describe this process as

follows:
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XXXX  NP* NP NOUN* “performance”
NP NOUN* “evaluation”
CONJ*  “and”
NP NOUN* “modelling”
PP PREP “of”
NP NOUN* “computer”

NOUN* “systems”
PUNC «.”

Figure 2.9: Example of the Parse of a Conjunctive Clause

XXXX NP* NP NOUN* “security”
NOUN* “considerations”
PP PREP “n”

NP AJP ADJ* “local”
NOUN* “petworks”

CONJ “,”

NP NP NOUN* “network”
AJP ADJ* “operating”
NOUN* “systems”

CONJ* “and” ‘

NP ADJP ADJ*  “distributed”
, NOUN* “systems” '
PUNC «.” .

Figure 2.10: Conjoined Clause with Different ConjunctionsA
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o Let Qi1, Qi2, ..., Qin; be the p-norm formulas returned by the constituents

of the i-th conjunct.
o Let Q; = Qi1 AND Q;2 AND ... AND Qi for each conjunct <.

° Re!tu;n Q1 OR Q; OR ... OR Q,,, where m is the number of conjuncts

in the clause.

Figure 2.11 illustrates this process.

This strategy is adequate for conjunctive clauses in which each premodifier
and postmodifier serves as a modifier of exactly one conjunct. However, conjoined
clauses may have a more complex construction, in which an individual constituent

serves as a modifier of more than one conjunct. For example, the query
fast algorithm for context-free language recognition or parsing,

whose parse appears in Figure 2.12, has a conjoined prepositional phrase for
contert-free language recognition or parsing with the adjective contezt-free and
the noun language serving as modifiers of both recognition and parsing. In order
for the p-norm formula to accurately reflect the structure of this natural lan-
guage statement, it must distribute the modifiers over all the conjuncts that they

modify. This is accomplished with the p-norm formula:
(contezt-free AND language AND (recognition OR parsing)).

It is important to note that it is not always appropriate to distribute the

modifiers over all the conjuncts. For example, the noun data in the sentence:
articles describing the relationship between data types and concurrency

only modifies types. Without semantic information, it is impossible to know
whether it is appropriate to distribute the modifier over all conjuncts. However, in
the phrase generation study presented in [Fag87], it was found that the following
strategy for deciding whether to distribute a modifier was appropriate for a large

number of cases:
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PP PREP “n”
NP NOUN* “embryo”
CONJ  «7
NP NOUN* “fetus”
CONJ “»
NP NOUN* “newborn”
NP NOUN*  “infant”
CONJ*  “or”
NP NOUN* “animal”
PUNC «”

Conjunct 1: Consists of @1 = embryo
Conjunct 2: Consists of Q3 = fetus

Conjunct 3: Consists of

o Q4 = newborn

o Q5 = infant
Conjunct 4: Consists of Q¢ = animal
PP node:

e Joins the p-norm formulas for conjunct 3 into an AND clause:
Q7 = (newborn AND infant)

e Since the other conjuncts consist of only one p-norm query, no joins
are necessary for them.

e Returns the pnom formula obtained by joining the p-ﬁorm formulas
corresponding to its conjuncts into an OR clause:

f
'Y i

embryo OR fetus OR (newborn AND infant) OR animal

Figure 2.11: Processing of a Conjoined Prepositional Phrase
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XXXX  NP* AJP
NOUN*
PP

" PUNC «”

ADJ*
“algorithm”
PREP

AJP

NP

NP

CONJ*

NP

“fa.St ”

“for”

ADJ* “context-free”
NOUN* “language”
NOUN*  “recognition”

or
NOUN* “parsing”

Figure 2.12: Example of a Complex Conjoined Clause

The only modifiers that can be distributed are the premodifiers of

the first conjunct, and the postmodifiers of the last conjunct. Fur-

thermore, the premodifiers of the first conjunct are distributed only

if none of the other conjuncts have premodifiers. Similarly, the post-

modifiers of the last conjunct are distributed only if none of the other

conjuncts have a postmodifier.

The algorithm adopts this strategy in its handling of complex conjoined clauses.
The processing of conjoined clauses presented earlier can now be refined to
include modifier distribution using the strategy from [Fag87]. Informally, modifier

distribution is accomplished by constructing an AND clause whose operands are:

1. the modifiers to be distributed, and

2. the OR clause of the conjuncts (omitting the modifiers to be distributed).

As an example, consider the noun phrase

automatic analysis, storage, and retrieval of information.

In the parse that PLNLP produced, shown in Figure 2.13, one can see that only
the first conjunct has a premodifier, namely, the adjective automatic, and only the

last conjunct has a postmodifier, namely, the prepositional phrase of information.

Thus, according to the strategy, they need to be distributed.
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NP NP AJP ADJ* “automatic”
NOUN* “analysis”
CONJ «
NP NOUN* “storage”
CONJ* « and”
NP NOUN*  “retrieval”
PP PREP “of”
NOUN* “information”
PUNC «.”

Figure 2.13: Example of another Complex Conjoined Clause
The p-norm formulas returned by these two modifiers are:
1. Qmod1 = automatic
2. Qmod2 = information

The p-norm formulation for the first conjunct without the modifiers being dis-

tributed is:
Qconj1 = analysis.

Similarly, the p-norm formulation for the second conjunct is:
Qconj2 = storage,

and for the last conjunct is:
Qconj3 = retrieval.

To distribute the modifiers, the formulas from the conjuncts are ORed and then
joined to the p-norm formulas from the modifiers being distributed in an AND

clause. Thus, the following p-norm formula is constructed: .
(automatic AND information AND (analysis OR storage OR retrieval)).

Formally, this more refined process for conjoined clauses can be described as

follows:
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XXXX NP NOUN* “palliation”
NAPPOS PUNC “”
AJP ADJ* “temporary”
NOUN* “improvement”
; I PUNC “)”
b PP PREP “of” ,
NP NOUN* “cancer”
b NOUN* “patients”
PUNC «.”

Figure 2.14: Example of a Noun Appositive
o Let M be the set of modifiers to be distributed based on the above strategy.

e Let Q;1, Qiz, ..., Qin; be the p-norm formulas returned by all the con-
stituents of the i-th conjunct excluding the p-norm formulas corresponding

to the modifiers in M.
o Let Q; = Qi1 AND Q2 AND ... AND Qj,,; for each conjunct :.

o Let Q,r = Q1 OR Q2 OR ... OR Qu, where m is the number of conjuncts

in the clause.

o Return the AND whose operands are Q,, and the p-norm formulas corre-

sponding to the modifiers in M.

Noun Appositives:

A noun appositive is a grammatical construction immediately following a noun
or noun phrase typically used to introduce an alternative way of expressing the

noun that it modifies or as a means of clarification. For example, the noun phrase
palliation (temporary improvement) of cancer patients

contains the noun appositive temporary improvement, which clarifies the meaning
of palliation. PLNLP was able to recognize the noun appositive, as shown in

Figure 2.14.
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The processing of a noun appositive node is then to simply combine the
p-norm formulas returned by its children in an AND clause. However, the pro-
cessing of all tree nodes with a NAPPOS child will have to be extended to do
the following:

Any time a child labelled as NOUN is followed by a NAPPOS node
join the p-norm formula for the NOUN and the p-norm formula for
the NAPPOS in an OR clause.

In the example of Figure 2.14, the following p-norm formula is produced:

((palliation OR (temporary AND improvement)) AND (cancer AND
patients))

Parenthesized Expressions:

The constituents within a parenthesized expression generally make up a concept
which is inserted into a sentence for explanatory purposes. In order to accu-
rately represent the concept associated with the parenthesized expression, all the
constituents within the parentheses need to be combined into an AND clause.
However, PLNLP often has difficulties parsing sentences with parenthesized ex-
pressions. As the example of Figure 2.15 illustrates, PLNLP sometimes does
not group together the constituents of the parenthesized expression into one con-
struct and often has difficulties in determining how the expression fits in with
the rest of the sentence. In this example, all the individual constituents of the
expression appear at the same level as the noun phrase the role of information
retrieval in knowledge based systems, and at the same level aé %he punctuation

marks. To remedy this situation somewhat, the algorithm does the ﬁ"ollowing:

o identifies parenthesized expressions when processing a node by searching for
a child whose node is associated with the punctuation mark “(”, followed
by a set of children, and then followed by another child whose node is

associated with the punctuation mark “)”, and
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XXXX NP* DET ADJ*  “the”
NOUN* “role”
PP PREP “of”
NP NOUN* “information”
‘ NOUN* “retrieval”
P PP PREP “in” :
NP NOUN* “knowledge”
PTPRTCL VERB* “based”
: NOUN* “systems”
PUNC «”

NP NOUN* “.e.”
AJP PUNC «”

ADJ*  “expert”
NP NOUN* “systems”
PUNC “)”
PUNC «”

Figure 2.15: Example of a Failed Parse with a Parenthesized Expression

e joins the constituents in between the parentheses into an AND clause.

All other Non-Lexical Categories:

The algorithm recursively calls itself on the children, and returns the set of p-
norm formulas that it receives. These formulas are joined only if the node is the
root of the parse tree.

This concludes the description of the algorithm’s processing of the various

syntactic categories.

Before the syntactic query generation method processes the parse tree with
this set of rules, the pre-processing steps described below are performed as a

further refinement.

e Including NOTs: PLNLP, in addition to producing a parse, can recognize
when some construction appears negated in a sentence. For example, if the

query is:
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I am not interested in logic programming,

PLNLP labels the entire sentence with a NEG tag. In the preprocessing
step, one take advantage of this by setting a flag indicating that the entire
query generated is to be embedded inside a NOT operator.

PLNLP is able to recognize when only a portion of the sentence is being
negated. For example, the sentence

I am interested in interfaces for users with no computer background

would produce a parse in which the noun phrase computer background is
labelled with a NEG tag. However, the algorithm is restricted to applying
a NOT operator only when the entire sentence is negated. The reasoning
behind this is that a portion being negated in the text does not neces-
sarily indicate that a document must not satisfy it. The sentence above
shows that, on the contrary, a relevant document retrieved must deal with

computer background.

Recognizing Typical Query Patterns: It is common for the structure
of a natural language search request to follow certain patterns. Examples
of queries that have typical patterns include:

1. I am interested in X.

2. I want information about X.

3. I would like documents about X.

4. I want references on X.

5. Lust all articles about X.

6. Give me information about X.

7. Information on X.

8. Articles about X.
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The first four queries start with a pronoun, followed by a verb requesting
or expressing interest, which may be followed by some information noun,
and end with a phrase describing the information desired. The information
no:uné in the sample queries above are information, documents, references,
and articles. Queries five and six are imperative senten“ces consisting first
of a verb for the request, which may be followed by a pronoun, followed
by an information noun, and ending with a phrase describing the requested
information. The last two queries are simply noun phrases consisting of an

information noun followed by the description of the desired information.

These common query patterns can be generalized as follows:

1. PRON WANT-VERB INFO-NOUN REST-OF-QUERY
2. WANT-VERB INFO-NOUN REST-OF-QUERY
3. INFO-NOUN REST-OF-QUERY

where:

WANT-VERB = {find, get, give, include, interest, like, list, look,

need, describe, note, show, want}, and

INFO-NOUN = {article, book, citation, document, information,

reference, research, study, work}.

If the natural language statement follows any of these three patterns, the
p-norm query will be constructed from the section labelled REST-OF-
QUERY.

The WANT-VERBs are all included in the list of words to be excluded
shown in Figures 2.5, 2.6, and 2.7. However, the INFO-NOUNSs are not
included because an INFO-NOUN can sometimes be an important part of
the query, and thus, appear in the section labelled as REST-OF-QUERY

as illustrated in the following examples:
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— I am interested in information retrieval.

— Last all articles about document indezing.

Clearly, not all queries follow these patterns. The searcher may simply go
straight to the point and avoid all of this superfluous information. When-
ever this happens, the p-norm query is constructed from the entire search

request.

2.3 Conclusion

Now that we have a method for automatically generating p-norm queries, we
need to evaluate the retrieval output produced by these queries, and to analyze
the amount of computational time required to perform a retrieval run with these

queries. These questions will be dealt with in the following chapters.



Ché\i)wter 3
Effectiveness of P-norm Queries

The purpose of this chapter is to evaluate the retrieval output produced by the
syntactically generated queries. In order to accomplish this, the following pa-

rameters must first be considered:

e

. weighting of document terms,

[

. weighting of query terms,

()

. weighting of query clauses, and

4. assignment of p-values.

The effectiveness of the syntactically generated queries is compared to the effec-
tiveness of statistically constructed queries, manually constructed queries, and
standard vector queries. The possibility of combining vector and p-norm retrieval

is considered as well.

3.1 Document Term and Query Term
Weighting

Two methods of weighting document terms in the p-norm model are described

in the literature [SV85,V0085,Fox83,Lee88,SBF83]. This section compares the

55
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retrieval output produced by the syntactically generated queries under the two
weighting schemes.

Both schemes weight a document term with a normalized product of a term
frequency component and an inverse document frequency component. The formula

used to compute the term frequency component in both schemes is

t .
0

if tf=0

where tf is the number of times the term appears in the text of the document
and maztf is the maximum frequency of any term (excluding stop words) in the
document. The frequency of the term is normalized by maztf and then further
normalized to lie between 0.5 and 1.0. The intuition behind this formula is that
terms appearing frequently in the text of a document are likely to be better
representatives of the document’s content than are terms appearing infrequently.
The nonzero values are made to lie in the interval [0.5, 1.0] to make a significant
distinction between the weight of an infrequent term and the weight of a term
that does not occur at all in the text of the document.

The inverse document frequency component varies inversely with the number
of documents to which the term is assigned. This reflects the fact that terms that
appear distributed throughout the entire collection are less likely to be important
than terms that are concentrated in only a few documents. The formula used by

both schemes is again the same:
log(N/n),

where N is the number of documents in the collection and n is the number of
' !
documents to which the term is assigned.
In determining the actual document term weights, both weighting schemes

start with a vector W consisting of unnormalized weights:

w = (w1, wy, ..., Wn)
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where
(0.5 + O'Sm_if‘iﬂ) log(N/n;) if tfi>0
0 iftf;=0

w; =

Because, the p-norm model requires that each w; lie in the interval [0,1], @ must
be normalized. The two schemes differ only in the way they normalize .
The weighting scheme used in [SV85,V0085] normalizes W so that its 2-norm

is 1. That is, each iv; is divided by

m
[@ll2 = | > w?
i=1

This is known as cosine normalization. The purpose of normalizing t‘he weights
with respect to the norm of the vector is to downweight long documents, which
would otherwise be more likely to have higher similarity values than short doc-
uments. The weights produced by this scheme will be referred to as tfidf-cosine
wetghts.

The weighting scheme introduced by Edward Fox [Fox83,Lee88] simply divides

each w; by log(N). Thus, a document term weight becomes

t o n) .
(0.5+0.5 ma{df)- (N i tf> 0

0 if tf= 0.

These weights will be referred to as Foz weights.
Retrieval runs were performed to compare the two document weighting meth-

ods. The following parameter settings were used in these experiments:

1. All p-values are set to 1.0.

2. The query terms are given weight

log(N/n)
log(N)

where N is the collection size and n is the number of documents to which

the query term is assigned.
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Table 3.1: Tfidf-cosine Weights vs. Fox Weights

Collection tf-idf-cosine weights | Fox Weights
CACM Avg. Prec. .2835 3170
Prec. top 10 .3098 .3078
INSPEC Avg. Prec. .2403 .2667
Prec. top 10 3753 4104
MEDLARS | Avg. Prec. .5833 .5932
Prec. top 10 .6100 .6367

3. AND clauses are given weight equal to the sum of the weights of the

operands.
4. OR clauses are given weight equal to the average weight of the operands.

5. NOT clauses are given the weight of their operand.

Various methods of clause weighting and p-value assignment are presented in the
next section. The settings used here are chosen for simplicity of presentation;
other parameter settings lead to the same conclusions.

Table 3.1 contains the retrieval performance obtained with these two weight-
ing methods, where retrieval effectiveness is measured in terms of average pre-
cision at recall-levels of .25, .50, and .75, and precision in the top 10 ranked
documents. This table shows that Fox document weights yield better retrieval
output than tf-idf-cosine weights in both CACM and INSPE(;. In CACM an
increase of 11.8% in average precision with essentially identical precision in the
top 10 documénts was observed. In INSPEC an increase of 11.0%; in average
precision and an increase of 9.4% in precision of the top 10 documents was ob-
served. In MEDLARS, only a minimal increase of 1.7% in average precision
and an increase of 4.4% in the precision of the top 10 documents was observed.

These results suggest that Fox document weights are in general preferable to
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tf-idf_cosine weights.

Normalization factors, such as cosine normalization, that equalize the norm
of the document vectors have been shown to improve retrieval output signifi-
cantlyl[SBS;S] in experiments using automatically indexed vector queries. The
questi01!1 then arises why unnormalized Fox weights perform Better than normal-
ized weights'in these p-norm experiments. In order to determine whether the
superiority of the u’nnormalized weights was due to the hierarchical structure of
the queries, the syntactically generated p-norm queries were transformed into
vectors and the retrieval output of these vectors was then analyzed. The trans-
formation consists in the removal of the p-norm operators by simply constructing

a vector made up of all the terms from the p-norm query. For example, query
t1 AND (¢, OR t3)
is transformed into vector
(t1,t2,t3).

A retrieval run computing inner product similarities between these vectors and
the document collection weighted by the two weighting schemes was then per-
formed. The results in Table 3.2 show that Fox weights still produce superior
retrieval output. An increase of 12.6% in the average precision and 7.4% in the
top 10 precision of CACM, and an increase of 10.7% in the average precision and
8.9% in the top 10 precision of INSPEC was obtained. As before, there was not
much change in MEDLARS.

Since these experiments were performed on vectors, the results indicate that
the superiority of Fox weights is not due to the p-norm query structure. The dif-
ference between these vectors and the standard automatically constructed vector
queries [SB88] is the vocabulary. The set of query terms used in the syntactically
generated p-norm queries was more carefully selected — a large stop word list

was used and syntactic information was also used to remove other words, such
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Table 3.2: Tfidf-cosine Weights vs. Fox Weights on Flattened P-norm Queries

Collection Tf-idf-cosine Weights | Fox Weights
CACM Avg. Prec. 2784 3135
Prec. top 10 .2902 3118
INSPEC Avg. Prec. .2459 2723
Prec. top 10 .3818 .4156
MEDLARS | Avg. Prec. .5542 .5541
Prec. top 10 .5800 .5833

as adverbs and INFO-NOUNs. This suggests that when the vocabulary used in
the queries is carefully selected, it is best not to normalize the document term
weights over the length of the document vectors. A simple measure of the amount
of matching between a document and a query seems to be good enough without
taking document length into account.

We now turn to query term weights. The only proposed method for weighting
query terms is the normalized idf weight

log(N/n)
log(N) ’

where N is the collection size and n is the number of documents to which the

query term is assigned. This weighting is used in all experiments in this thesis.

3.2 Clause Weighting and P-value Assignment

In previous work with p-norm queries, both AND and OR clauses have been
given weight equal to the average weight of the operands. Since an OR operator is
generally used as an indication that it is acceptable for only one of the operands
to be satisfied, it seems appropriate for an OR clause to be given a weight

representing the typical importance of its operands. However, this approach
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for weighting AND clauses seems less appropriate. In this section, alternative
weighting schemes for AND clauses are presented and analyzed.

In the syntactic query generation algorithm, an AND operator was used to
join cénﬁti}uents of grammatical structures which typically represent a concept
when cc;mbined. For example, the AND operator was used to combine the
premodifiers' with the heads of NPs and PPs.

A concept that ’is described by two or more terms is generally going to be
much more specific than a concept that is described by only one term. These
concepts are also less likely to be ambiguous — a common problem with one
term concepts. So, it seems that, in general, AND clauses should receive higher
weights than single terms.

A weighting scheme considered here is to give AND clauses a weight equal to
the sum of the weights of its operands, i.e. the importance in satisfying an AND
clause is considered to be the importance of satisfying the individual constituents.

So, for example, the AND clause
(database,.3) AND (sorting,.5)

is given weight .8, which is the importance of a document being about databases
plus the importance of a document being about sorting. This clause weighting
method will be referred to as sum-weights!. This weighting approach can be
viewed as a method of assigning idf weights to AND clauses, where the fre-
quency of the concept represented by the clause is calculated by assuming that
the concepts the clause is composed of are independent. For example, suppose
that the clause consists of terms ¢ and t; with frequency n; and n3, respectively.
If independence is assumed, the frequency of the clause is estimated as

ni-n2

N ?
INote that the sum of the weights may result in a value > 1. This is not a problem in
the p-norm model because of the normalization that is performed in evaluating a clause. An

equivalent formula with weights in the interval [0,1] can be obtained by dividing all the weights
by the maximum weight assigned in the query.
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where N is the size of the collection. It is easy to show that the idf weight
corresponding to this frequency is

log(£) . zog(%;
logN logN

The other method of weighting AND clauses that is proposed here is based
on the observation that sometimes terms that are not very specific can represent
very specific topics when combined into a clause. For example, in the CACM
collection, the terms data and type are very general. However, when combined

into the AND clause
data AND type,

they represent a very good concept, namely the concept data type. The impor-
tance of a document being indexed by both data and type is much greater than it
would be if the terms data and type were two general independent terms. Thus,
in such cases, the importance associated with the clause based on independence
assumptions is inaccurately low. The approach taken in this method is to assign

such clauses a somewhat higher weight than the sum-weights method as follows:

1. Let S be the sum of the weights of the operands.

2. If S < 1.0, then the clause is assigned weight
min{ 1.0, S increased by z%).

3. If $ > 1.0, then the clause is assigned weight S.

This method will be referred to as sum-weights-modified. The percentage increases
considered in the experiments are 75% and 100%.
If the value obtained when S is increased by z% is greater than 1.0, it is trun-

cated down to 1.0. The intuition behind this truncation is that if the components
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of a clause represent a single concept when combined, then the maximum appro-
priate weight that the clause can have is 1.02. Because of the truncation, the
weight of a clause whose sum weight is not much lower than 1.0 is only increased
slightlj, while the weight of a clause whose sum weight is very low is increased
by the f'ull. 2%. The effect of this approach is that the peréentage increase is
higher for clauses consisting of only very general terms than for clauses consist-
ing of medium speciﬁcity terms. A clause for which the sum of the weights of the
operands is greater than 1.0 probably consists of specific terms, and therefore,
need not have its weight increased.

These clause weighting methods were compared in a set of retrieval runs with
various combinations of schemes for p-value assignment to AND and OR op-
erators. In past work, p-values were assigned uniformly to both the ANDand
ORoperators. Ounly minimal improvements (if any) to the retrieval effective-
ness was produced by the uniform assignment of p-values greater than 1.0 when
compared to the retrieval output produced by a p-value assignment of 1.0 to
all operators [SV85]. Clearly sometimes a strict operator is desirable while at
other times it is not. So, a non-uniform scheme for assigning p-values to AND
operators is considered. |

The non-uniform scheme presented here assigns p-value p > 1.0 to all AND

opera.tors3 except when:

1. Some concept in the clause is very specific (even if the other concepts are

general). For example,

sorting AND methods.

2The maximum weight assigned to a single term with the idf formula being used here is

log (F) _
log(N)

1.0.

3The AND operators that are assigned p-value p > 1.0 under the non-uniform scheme will
be referred to as selected ANDs.
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Since a strict AND has the undesirable effect of downweighting those doc-
uments that are only indexed by sorting, p-value 1.0 is used.

None of the concepts are general.

In other words, a p-value greater than 1.0 is assigned when all the concepts in

the clause are sufficiently general. This scheme can be desctibed more precisely,

as follows:

1

Let mazwt be the maximum weight of the operands.
Let minwt be the minimum weight of the operands.

Estimate the frequency of the operand with the maximum weight by solving

for f1 in
og ()

log ( N) = mazwt

Similarly, estimate the frequency of the operand with the minimum weight.

Call it f2.

All clauses for which fI is greater than 3% of the collection size and f2 is
greater than 5% of the collection size are assigned some p-value p > 1.0. In
other words, only clauses containing a general concept* and not containing

a specific concept® are given a p-value > 1.0. All other clauses are assigned

p-value 1.0.

The following p-value assignment schemes for AND and OR operators were

used in the experiments:

1.

2.

the OR operators were uniformly given p-value 1.0, 2.0, 3.0': ot 4.0.

Both uniform and non-uniform schemes were used for assigning p-values to

AND operators:

“The general concepts are taken to be those with frequency > 5%.
5The very specific concepts are taken to be those with frequency < 3%.
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e All AND operators were uniformly given p-value 1.0, or 2.0.

e The non-uniform assignment of p-values to AND operators described

above was used with p = 1.5, 2.0, 3.0, and 4.0.

The Ere;u.lts obtained from these retrieval runs are shown'in Tables 3.3, 3.4,
3.5, and 3.6 for MEDLARS, Tables 3.7, 3.8, 3.9, and 3.10 for CACM, and
Tables 3.11, 3.12, 3.13, and 3.14 for INSPEC. For each collection and for each
clause weighting method, a table is given containing the average precision and
the precision of the top 10 documents retrieved.

From these tables, one can see that:

e The traditional average weighting method for AND clauses performs very
poorly as compared with either the sum-weights or sum-weights-modified
methods. All of the entries in the average clause weighting tables can be
seen to be significantly lower than the corresponding entries in the sum-

weights or sum-weights-modified clause weighting tables.

e In all three collections, the best precision in the top 10 documents ap-
pears to be in either of the sum-weights-modified tables with the following

parameter settings:
— OR operators with p-value 3.0 or 4.0
— Selected AND operators with p-value 3.0

o There is little difference between the sum-weights-modified method with

75% as compared with 100% increase.

e With respect to average precision, there is little difference between the sum-
weights and either of the sum-weights-modified methods, with the exception
of CACM, in which there is some improvement in the sum-weights-modified

as compared with the sum-weights clause weighting method.
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o Using p-values greater than 1.0 on the OR operators generally has a positive
effect.

e The non-uniform p-value assignment for AND operators seems to have a
minimal effect. With this selective approach, only about 15% of AND
clauses get assigned a p-value greater than 1.0, making it very difficult for

these clauses to have a significant effect on the overall effectiveness.
In conclusion, the best parameter settings appear to be
o sum-weights-modified clause weighting with a 75% increase,

e OR p-values of 3.0, and

e selective assignment of p-value 3.0 on AND operators.

These settings are used in the comparisons with other systems presented in the

following sections.
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Table 3.3: Average Clause Weighting for MEDLARS

;AND p-value OR p-values
' Assignment p=1.0 [ p=2.0/] p=3.0 | p=4.0
All ANDs with p=1.0 Avg. Prec. .5188 | .5257 | .5206 | .5179
L Prec. Top 10 | .5533 | .6000 | .6067 | .6033
All ANDs with p=2.0 Avg. Prec. 5214 | .5202 | .5195 | .5163
Prec. Top 10 | .5533 | .5900 | .5867 | .5867
Selected ANDs with p=1.5 | Avg. Prec. .5207 | .5281 | .5238 | .5214
Others with p=1.0 Prec. Top 10 | .5533 | .6000 | .6067 | .6067
Selected ANDs with p=2.0 | Avg. Prec. .5235 | .5300 | .5281 | .5242
Others with p=1.0 Prec. Top 10 | .5533 | .6033 | .6067 | .6033
Selected ANDs with p=3.0 | Avg. Prec. .5242 | .5305 | .5274 | .5238
Others with p=1.0 Prec. Top 10 | .5467 | .6067 | .6100 | .6067
Selected ANDs with p=4.0 | Avg. Prec. .5233 | .5276 | .5262 | .5243
Others with p=1.0 Prec. Top 10 | .5500 | .6533 | .6133 | .6067

Table 3.4: Sum-weights Clause Weighting for MEDLARS

AND p-value OR p-values
Assignment p=1.0 | p=2.0 | p=3.0 | p=4.0
All ANDs with p=1.0 Avg. Prec. .5932 | .5984 | .5976 | .5944
Prec. Top 10 | .6367 | .6500 | .6533 | .6533
All ANDs with p=2.0 Avg. Prec. .5855 | .5824 | .5799 | .5775
Prec. Top 10 | .6100 | .6300 | .6333 | .6333
Selected ANDs with p=1.5 | Avg. Prec. .5946 | .6021 | .6001 | .5974
Others with p=1.0 Prec. Top 10 | .6367 | .6500 | .6533 | .6533
Selected ANDs with p=2.0 | Avg. Prec. .5954 | .6025 | .6022 | .6000
Others with p=1.0 Prec. Top 10 | .6400 | .6533 | .6533 | .6500
Selected ANDs with p=3.0 | Avg. Prec. 5969 | .6051 | .6043 | .6025
Others with p=1.0 Prec. Top 10 | .6400 | .6533 | .6533 | .6500
Selected ANDs with p=4.0 | Avg. Prec. .5989 | .6066 | .6059 | .6028
Others with p=1.0 Prec. Top 10 | .6433 | .6533 | .6533 | .6467
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Table 3.5: Sum-weights-modified with 75% increase for MEDLARS

AND p-value OR p-values
Assignment p=1.0 | p=2.0 | p=3.0 | p=4.0
All ANDs with p=1.0 Avg. Prec. .5949 | .6048 | .6078 | .6055
Prec. Top 10 | .6400 | .6667 | .6667 | .6633
All ANDs with p=2.0 Avg. Prec. 5748 | .5779 | .5784 | .5790
Prec. Top 10 | .6200 | .6500 | .6500 | .6500
Selected ANDs with p=1.5 { Avg. Prec. .5955 | .6066 | .6086 | .6082
Others with p=1.0 Prec. Top 10 | .6367 | .6667 | .6700 | .6633
Selected ANDs with p=2.0 | Avg. Prec. .5961 | .6075 | .6092 | .6079
Others with p=1.0 Prec. Top 10 | .6367 | .6667 | .6700 | .6667
Selected ANDs with p=3.0 | Avg. Prec. .5957 | .6062 | .6089 | .6084
Others with p=1.0 Prec. Top 10 | .6367 | .6700 | .6733 | .6733
Selected ANDs with p=4.0 | Avg. Prec. .5930 | .6036 | .6067 | .6041
Others with p=1.0 Prec. Top 10 | .6333 | .6600 | .6733 | .6700

Table 3.6: Sum-weights-modified with 100% increase for MEDLARS

AND p-value OR p-values
Assignment p=1.0 | p=2.0 | p=3.0 | p=4.0
All ANDs with p=1.0 Avg. Prec. .5948 | .6048 | .6080 | .6059
Prec. Top 10 | .6400 | .6667 | .6667 | .6633
All ANDs with p=2.0 Avg. Prec. 5747 | .5779 | .5777 | .5783
Prec. Top 10 { .6200 [ .6500 | .6500 | .6500
Selected ANDs with p=1.5 | Avg. Prec. .5957 | .6067 | .6089 | .6082
Others with p=1.0 Prec. Top 10 | .6367 | .6667 |:.6700 | .6633
Selected ANDs with p=2.0 | Avg. Prec. .5962 | .6075 | .6097 | .6079
Others with p=1.0 Prec. Top 10 | .6367 | .6667 | .6700 | .6667
Selected ANDs with p=3.0 | Avg. Prec. .5955 | .6061 | .6084 | .6082
Others with p=1.0 Prec. Top 10 | .6367 | .6700 | .6733 | .6733
Selected ANDs with p=4.0 | Avg. Prec. .5930 | .6036 | .6067 | .6040
Others with p=1.0 Prec. Top 10 | .6333 | .6600 | .6733 | .6700
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Table 3.7: Average Clause Weighting for CACM

. AND p-value OR p-values
! Assignment p=1.0 | p=2.0:| p=3.0 | p=4.0
All ANDs with p=1.0 Avg. Prec. .2942 | .2928 | .2933 | .2956
b Prec. Top 10 | .2765 | .2706 | .2765 | .2745
All ANDs with p=2.0 Avg. Prec. .2657 | .2720 | .2727 | .2732
Prec. Top 10 | .2529 | .2471 | .2490 | .2490
Selected ANDs with p=1.5 | Avg. Prec. .2950 | .2929 | .2941 | .2963
Others with p=1.0 Prec. Top 10 | .2784 | .2745 | .2804 | .2765
Selected ANDs with p=2.0 | Avg. Prec. .2945 | .2899 | .2919 | .2943
Others with p=1.0 Prec. Top 10 | .2804 | .2725 | .2745 | .2725
Selected ANDs with p=3.0 | Avg. Prec. 2919 | .2892 | .2891 | .2915
Others with p=1.0 Prec. Top 10 | .2745 | .2765 | .2725 | .2706
Selected ANDs with p=4.0 | Avg. Prec. .2904 | .2896 | .2884 | .2907
Others with p=1.0 Prec. Top 10 | .2745 | .2784 | .2725 | .2686

Table 3.8: Sum-weights Clause Weighting for CACM

AND p-value OR p-values
Assignment p=1.0 [ p=2.0 | p=3.0 | p=4.0
All ANDs with p=1.0 Avg. Prec. .3170 | .3209 | .3219 | .3253
Prec. Top 10 | .3078 | 3176 | .3176 | .3196
All ANDs with p=2.0 Avg. Prec. 2915 | .2951 | .2955 | .2967
Prec. Top 10 | .2824 | .2902 | .2961 | .2961
Selected ANDs with p=1.5 | Avg. Prec. 3173 | .3205 | .3216 | .3232
Others with p=1.0 Prec. Top 10 | .3118 | .3157 | .3196 | .3157
Selected ANDs with p=2.0 | Avg. Prec. .3181 | .3203 | .3200 | .3222
Others with p=1.0 Prec. Top 10 | .3118 | .3137 | .3196 | .3157
Selected ANDs with p=3.0 | Avg. Prec. .3188 | .3198 | .3192 | .3210
Others with p=1.0 Prec. Top 10 | .3118 | .3118 | .3176 | .3196
Selected ANDs with p=4.0 | Avg. Prec. .3193 | .3189 | .3198 | .3211
Others with p=1.0 Prec. Top 10 | .3118 | .3118 | .3176 | .3176
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AND p-value OR p-values
Assignment p=1.0 | p=2.0 | p=3.0 | p=4.0
All ANDs with p=1.0 Avg. Prec. .3314 | .3340 | .3360 | .3387
Prec. Top 10 | .3294 | .3314 | .3373 | .3392
All ANDs with p=2.0 Avg. Prec. .3030 | .3064 | .3078 | .3075
Prec. Top 10 | .3078 | .3157 | .3196 | .3176
Selected ANDs with p=1.5 | Avg. Prec. 3319 | .3356 | .3388 | .3399
Others with p=1.0 Prec. Top 10 | .3314 | .3333 | .3373 | .3392
Selected ANDs with p=2.0 | Avg. Prec. 3315 | .3344 | .3382 | .3403
Others with p=1.0 Prec. Top 10 | .3294 | .3294 | .3353 | .3392
Selected ANDs with p=3.0 | Avg. Prec. .3324 | .3339 | .3381 | .3401
Others with p=1.0 Prec. Top 10 | .3314 | .3275 | .3412 | .3412
Selected ANDs with p=4.0 | Avg. Prec. 3304 | .3346 | .3370 | .3385
Others with p=1.0 Prec. Top 10 | .3333 | .3275 | .3392 | .3392

Table 3.10: Sum-weights-modified with 100% increase for CACM

AND p-value OR p-values
Assignment p=1.0 | p=2.0 | p=3.0 | p=4.0
All ANDs with p=1.0 Avg. Prec. .3309 | .3338 | .3354 | .3387
Prec. Top 10 | .3314 | .3314 | .3373 | .3392
All ANDs with p=2.0 Avg. Prec. .3048 | .3059 | .3067 | .3070
Prec. Top 10 | .3098 | .3176 | .3176 | .3137
Selected ANDs with p=1.5 | Avg. Prec. .3312 | .3336 | .3374 | .3388
Others with p=1.0 Prec. Top 10 | .3314 | .3314 '|:.3392 | .3392
Selected ANDs with p=2.0 | Avg. Prec. .3308 | .3333 | .3371 | .3391
Others with p=1.0 Prec. Top 10 | .3294 | .3294 | .3373 | .3392
Selected ANDs with p=3.0 | Avg. Prec. .3301 | .3330 | .3368 | .3383
Others with p=1.0 Prec. Top 10 | .3294 | .3275 | .3412 | .3412
Selected ANDs with p=4.0 | Avg. Prec. 3292 | .3335 | .3354 | .3368
Others with p=1.0 Prec. Top 10 | .3294 | .3235 | .3373 | .3373
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Table 3.11: Average Clause Weighting for INSPEC

. AND p-value OR p-values
| Assignment p=1.0 | p=2.0 | p=3.0 | p=4.0
All ANDs with p=1.0 Avg. Prec. 2196 | 2179 | .2145 | .2124
b Prec. Top 10 | .3545 | .3429 | .3390 | .3377
All ANDs with p=2.0 Avg. Prec. .2040 | .2007 | .1980 | .1959
Prec. Top 10 | .3325 | .3143 | .3104 | .3117
Selected ANDs with p=1.5 | Avg. Prec. .2203 | .2182 | .2146 | .2126
Others with p=1.0 Prec. Top 10 | .3532 | .3442 | .3390 | .3351
Selected ANDs with p=2.0 | Avg. Prec. 2204 | .2179 | .2146 | .2125
Others with p=1.0 Prec. Top 10 | .3545 | .3455 | .3403 | .3364
Selected ANDs with p=3.0 | Avg. Prec. 2204 | 2179 | .2144 | .2123
Others with p=1.0 Prec. Top 10 | .3532 | .3455 | .3377 | .3364
Selected ANDs with p=4.0 | Avg. Prec. 2198 | .2179 | .2146 | .2121
Others with p=1.0 Prec. Top 10 | .3571 | .3481 | .3377 | .3364

Table 3.12: Sum-weights Clause Weighting for INSPEC

AND p-value OR p-values
Assignment p=1.0 | p=2.0 | p=3.0 | p=4.0
All ANDs with p=1.0 Avg. Prec. .2667 | .2703 | .2712 | .2719
Prec. Top 10 | .4104 | .4156 | .4169 | .4182
All ANDs with p=2.0 Avg. Prec. .2509 | .2516 | .2495 | .2486
Prec. Top 10 | .3870 | .3792 | .3805 | .3779
Selected ANDs with p=1.5 | Avg. Prec. 2666 | .2711 | .2722 | .2724
Others with p=1.0 Prec. Top 10 | .4117 | .4156 | .4195 | .4182
Selected ANDs with p=2.0 | Avg. Prec. 2658 | .2709 | .2717 | .2724
Others with p=1.0 Prec. Top 10 | .4104 | .4143 | 4182 | .4182
Selected ANDs with p=3.0 | Avg. Prec. .2644 | .2699 | .2710 | .2719
Others with p=1.0 Prec. Top 10 | .4091 | .4130 | .4117 | .4143
Selected ANDs with p=4.0 | Avg. Prec. .2637 | .2691 | .2702 | .2709
Others with p=1.0 Prec. Top 10 | .4130 | .4130 | .4065 | 4104
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Table 3.13: Sum-weights-modified with 75% increase for INSPEC

AND p-value OR p-values
Assignment p=1.0 | p=2.0 | p=3.0 | p=4.0
All ANDs with p=1.0 Avg. Prec. 2671 | .2748 | 2772 | 2778
Prec. Top 10 | .4117 | .4221 | .4234 | .4247
All ANDs with p=2.0 Avg. Prec. 2456 | .2454 | .2454 | .2449
Prec. Top 10 | .3883 | .3818 | .3805 | .3792
Selected ANDs with p=1.5 | Avg. Prec. .2664 | .2739 | .2763 | .2777
Others with p=1.0 Prec. Top 10 | .4104 | .4221 | .4221 | .4234
Selected ANDs with p=2.0 | Avg. Prec. 2649 | .2728 | .2752 | .2758
Others with p=1.0 Prec. Top 10 | .4117 | .4247 | .4221 | .4247
Selected ANDs with p=3.0 | Avg. Prec. .2641 | .2708 | .2731 | .2740
Others with p=1.0 Prec. Top 10 | .4117 | .4247 | .4260 | .4247
Selected ANDs with p=4.0 | Avg. Prec. .2635 | .2698 | .2718 | .2727
Others with p=1.0 Prec. Top 10 | 4117 | .4247 | .4260 | .4247

Table 3.14: Sum-weights-modified with 100% increase for INSPEC

AND p-value OR p-values
Assignment p=1.0 | p=2.0 | p=3.0 | p=4.0
All ANDs with p=1.0 Avg. Prec. .2661 | .2748 | .2766 | .2774
Prec. Top 10 | .4117 | .4208 | .4195 | 4221
All ANDs with p=2.0 Avg. Prec. 2453 | .2457 | .2456 | .2454
Prec. Top 10 | .3857 | .3844 | .3857 | .3805
Selected ANDs with p=1.5 | Avg. Prec. .2653 | .2738 | .2756 | .2766
Others with p=1.0 Prec. Top 10 | .4091 | .4169 | :..4182 | .4195
Selected ANDs with p=2.0 | Avg. Prec. 2643 | .2729 | .2749 | .2755
Others with p=1.0 Prec. Top 10 | .4091 [ .4221 | .4195 | .4195
Selected ANDs with p=3.0 | Avg. Prec. 2627 | .2709 | .2722 | .2733
Others with p=1.0 Prec. Top 10 | .4117 | .4260 | .4247 | .4273
Selected ANDs with p=4.0 | Avg. Prec. .2619 | .2699 | .2714 | .2719
Others with p=1.0 Prec. Top 10 | .4117 | 4260 | .4247 | .4273
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3.3 The Effects of Hierarchical Structure and
P-values

The goal of this section is to determine the effect that the hierarchical structure
of p-nor!in lE'lueries and the p-values greater than 1 have on retrieval effectiveness.
To determineg the effect of the structure, the p-norm queries are compared against
their flattened version. The flattening process consists in removing the structure

of the query by applying an OR!? to all the terms in the query. For example,

query
(t1,wt;) ANDPL ( (3, wt) ORP? (t3,wi3) )
is flattened into
(t1,wt;) ORI (t5,wt) OR!O (¢3,wt3).

Table 3.15 shows how the retrieval output of the structured p-norm queries with
the p-value of 1.0 on all operators and sum-weights-modified clause weighting
compares with that of the flattened p-norm query. This table also shows how the
optimal run of the p-norm queries compares with the flattened p-norm queries.
As can be seen, the results are not consistent. MEDLARS and CACM benefit a
moderate amount from the hierarchical structure, but INSPEC does not benefit
at all.

Table 3.16 compares the retrieval output of the p-norm queries with p-value
1.0 and with the set of p-values that was found best, namely OR operators
with p-value 3.0 and selected AND operators with p-value 3.0. In this Table,
only those queries with p-value other than 1.0 are used for comparison, since
we are only interested in finding the effect that p-values have. Only small gains
are observed — the most being again in MEDLARS, and the least in INSPEC.
The precision in the top 10 documents is improved a bit more than the average

precision.
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Table 3.15: Flat P-norm Queries vs. Structured P-norm Queries

Flat | Structured % Structured %
Collection Queries p=1.0 Change | mixed p | Change
MEDLARS
Avg. Prec. 5541 .5949 +7.4% .6089 +9.9%
Prec. top 10 | .5833 .6400 +9.7% 6733 +15.4%
CACM
Avg. Prec. 3135 3314 +5.7% 3381 +7.8%
Prec. top 10 [ .3118 3294 +5.6% 3412 +9.4%
INSPEC
Avg. Prec. 2723 2671 -1.9% 2731 +0.3%
Prec. top 10 | .4156 4117 -0.9% 4260 +2.5%

Table 3.16: P-norm Queries with p=1.0 vs. P-norm Queries with mixed p-values

Collection p=1.0 | mixed p-values | Improvement
MEDLARS | Avg. Prec. | .5869 .6038 +2.9%
Prec. top 10 | .6560 6960 . +6.1%
CACM Avg. Prec. .3200 .3293 +2.9%
| Prec. top 10 | .3216 3378 +5.0%
INSPEC | Avg. Prec. | .2822 2897 +2.7%
Prec. top 10 | .4500 4677 +3.9%




75

The effectiveness is best when the hierarchical structure and the p-value as-
signment are combined, since both of these aspects of p-norm queries lead to

some improvement.

3.4 Statistically vs. Syntactically Generated
Queries

In this section, the retrieval effectiveness of the queries generated by the two
p-norm‘query generation algorithms is compared. The statistically generated
queries were derived from the algorithm described in [SBF83], and the syntac-
tically generated queries were derived from the algorithm presented in Chapter
2.

A set of retrieval experiments using the statistically generated p-norm queries

was performed with the following settings:

1. The number of desired documents was taken to be 30.

2. P-values used were uniformly 1.0 or 2.0. These were found generally to be
best in [SBF83|.

3. The clause weighting schemes considered were:

(a) Traditional average weighting of operands for AND and OR opera-

tors.

(b) Sum-weights method.

The retrieval output from these experiments is compared against the best re-
trieval output from the syntactically generated experiments, namely sum-weights-
modified clause weighting with a 75% increase, OR p-values of 3.0, and a non-
uniform assignment of p-value 3.0 on AND operators.

The retrieval effectiveness obtained from these methods is presented in ta-

ble 3.17, where the top number for each entry represents the average precision at
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Table 3.17: Statistically vs. Syntactically Generated Queries

% % %
MEDLARS | change | CACM | change | INSPEC | change

Syntactic .6089 - .3381 - 2731 -

(Best Params) .6733 - .3412 - 4260 -
Statistical .5013 17.7% 1 2634 | -22.1% .1758 -35.6%
Avg Wts, p=1 .5700 -15.3% | .2654 | -22.2% .2896 -32.0%
Statistical 4981 -18.2% | .2560 | -24.3% .1665 -39.0%
Avg Wts, p=2 .5367 -20.3% | .2462 | -27.8% .2558 -40.0%
Statistical 4954 -18.6% | .2550 | -24.6% .1692 -38.0%
Sum-weights,p=1 .5800 -13.9% | .2712 | -20.5% | .2896 |-32.0%
Statistical 5154 -15.4% | .2644 | -21.8% .1684 -38.3%
Sum-weights,p=2 5733 -14.9% | .2558 |-25.0% | .2636 |-38.1%

recall points of .25, .50 and .75, and the bottom number represents the precision
of the top 10 documents retrieved. The columns labelled % change contain the
percent change of the various statistical runs when compared with the syntactic
run. It can be seen that both the average precision and the precision of the top
10 documents produced by the statistically constructed queries range from 15%
to 40% worse than the precision of the syntactically constructed queries. Thus,

the syntactically generated p-norm queries are far better in the three collections.

3.5 Manual vs. Syntactically Generated
Queries

In this section the retrieval effectiveness of the p-norm queries constructed manu-
ally is compared against the retrieval effectiveness of the’ synt@cli:ica]ly generated
p-norm queries. The manually constructed queries were created ‘.from the natural
language text i)y. Cornell graduate students for CACM, by Syracuse University
students and faculty for INSPEC, and by actual searchers for MEDLARS.

The following four runs were performed with the manually constructed queries:

1. Queries treated as pure Boolean.
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Table 3.18: Precision from Manual P-norm Runs

sum-weights-modified
Avg. Clause Wits. sel. AND p=3.0

Collectioﬂ Boolean p=1.0 p=1.0 OR p=3.0
CACM : ‘Avg. 1395 3344 .3361 3154

Top 10 1780 .3380 .3480 .3240
INSPEC Avg. .0998 .2958 .2897 .2818

Top 10 | .1857 4169 4325 .4195
MEDLARS | Avg. .1943 .0385 5375 .5288

Top 10 | .3867 .6133 .6033 .6100

2. Traditional average clause weighting with p-value p=1.0.

3. Sum-weights-modified clause weighting with 75% increase, and p-value as-

signment of 1.0.

4. Sum-weights-modified clause weighting with 75% increase, and p-value 3.0
for OR operators, and p-value 3.0 for selected AND operators.

Table 3.18 shows the retrieval performance of these runs. The runs for MED-
LARS were included for completeness, but due to some modifications that were
made to the manually constructed queries through the use of the MESH thesaurus
[Fox83], one cannot make any generalizations about manually constructed queries
based on these runs.

The Sum-weights-modified clause weighting method can be seen to slightly
improve the precision in the top 10 of INSPEC and CACM, as with the syntac-
tically generated queries. However, the runs including p-values of 3.0 performed
very poorly with the manually constructed queries. An observation that can be
made is that these manual queries were written with a pure Boolean system in

mind, and thus, there can be significant differences between these queries and
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the queries that a user would have constructed for use in a p-norm system. For
instance, in a pure Boolean system the AND operator has to be used very care-
fully because it can lead to a very small number of documents being retrieved
or even no documents at all being retrieved. Thus, the OR operator is more
heavily used than it would be in a p-norm system. That is, in a pure Boolean
system an OR is often used to combine concepts to avoid restricting the size of
the retrieved sets, even when the concepts being combined are not synonymous
and even when the user is not indifferent to whether one or all of the concepts
are satisfied by a retrieved document. For example, the manually constructed

query corresponding to the natural language search request

The use of operations research models to optimize information system
performance. This includes fine tuning decisions such as secondary

index selection, file reorganization, and distributed databases.
was the following:

(operations AND research AND optimize AND performance)
OR
(secondary AND indez AND selection)
OR
(file AND reorganization)
OR
(distributed AND databases)

Because of the weak interpretation of the operators in the p-norm model, there
is no harm done by using many AND operators in a query. In fact, this is what
the syntactic p-norm query generation algorithm does — it uses OR operators
only in representing conjoined natural language constructs and noun appositives.
So, it is not surprising that the parameter settings that were found best for the
syntactically generated p-norm queries are not necessarily good for the manually

constructed queries.
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Table 3.19: Syntactic Queries vs. Manual Queries

Collection Manual | Syntactic
; CACM Avg. Prec. .3361 .3381
e Prec. Top 10 | .3480 | .3412
: | INSPEC Avg. Prec. .2897 2731
| Prec. Top 10 | .4325 | .4260
MEDLARS | Avg. Prec. 5375 .6089

Prec. Top 10 | .6033 6733

The best p-norm retrieval of the manually constructed queries is obtained
with sum-weights-modified clause weighting and p-value 1.0. Table 3.19 shows
how the best retrieval of manually constructed queries compares with the best
retrieval of syntactically generated queries. As can be seen, the syntactic queries

produce comparable results.

3.6 Standard Vector vs. Syntactically
Generated Queries

In this section, the syntactically generated queries are compared against vector
queries that are also automatically constructed from the natural language search

request. The vector queries are constructed as follows:

1. All words from a stop word list are removed.

2. The remaining words are placed in vector form with tf.idf weight

(0.5 +0.5- m(tz{z;tf) -log (%) ,

where N is the number of documents in the collection, n is the number of

documents to which the term is assigned, ¢fis the number of times the term

occurs in the query text, and maztfis the maximum ¢fin the vector.
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Table 3.20: Standard Vector Queries vs. Syntactic P-norm Queries

Vector | P-norm %
Collection Queries | Queries | Change
CACM Avg. Prec. 3630 | .3534° | -2.6%
Prec. Top 10| .3635 3423 | -5.8%
INSPEC Avg. Prec. .2626 2731 | +4.0%
Prec. Top 10 | .4286 .4260 -0.6%
MEDLARS | Avg. Prec. .5628 6089 | +8.2%
Prec. Top 10 | .6367 6733 | +5.7%

%Tn addition to the natural language statement of need, some queries in CACM
include a list of names of individuals who have written articles on the subject of
interest. These names are part of the standard vector query, and so, they were
joined to the syntactically generated p-norm via an AND operator with p-value

1.0.

In the vector retrieval runs, the document terms are weighted according to

the following tf idf formula:
tf - log (E-) ,
n

where tfis the number of times the term occurs in the document text, N is the
collection size, and n is the number of documents indexed by the term. These
weights are then cosine normalized. These weights are standard and were found
best in [SB88]. The similarity function used in these runs is inner product.

Table 3.20 shows how the effectiveness of a retrieval with the syntactically
generated que;ies compares with that of the standard vector queries. Overall,
the two metho‘ds are similar in retrieval effectiveness. However, 1t ’can be seen
that the vector queries are somewhat better on CACM, while the ﬁ-nofm queries
are somewhat better on MEDLARS.

Possibly this difference between the performances on CACM versus on MED-
LARS is of no significance. But it has been observed by Salton and Buckley
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[SB88] that the vocabulary of MEDLARS is especially technical, and they con-
clude that as a consequence, document terms should be weighted differently in
MEDLARS than in collections with more varied vocabulary, such as CACM.
One might;.speculate, then, that terms in MEDLARS are in general more reliable
than terms in CACM. Indeed, one can easily give examples of terminological

difficulties in computer science:

o Certain concepts in computer science are commonly referred to by a variety
of different names. For example, the terms functional language, applicative
language, and declarative language all refer to more or less the same con-
cept. So a search for papers about functional languages might easily miss

a relevant paper that used the term applicative language instead.

¢ Many ordinary words are used in computer science with specialized mean-
ing. Consider, for example, system, type, object, and method. A search for
papers about type systems might easily be fooled into thinking that a paper

called “A new type of operating system” was relevant.

In summary, in the CACM collection neither the absence nor the presence of any
term in a document can be taken too seriously.

Now consider the characteristics of vector retrieval. Vector retrieval is very
“relaxed”: the similarity between a document and a vector is the result of ac-
cumulating all the terms in the document that match terms in the vector. The
vector model does regard some terms as more important than others, but it
doesn’t make a big fuss over the presence or absence of any term. A good sim-
ilarity value simply means that the document abstract uses a lot of the same
words that the natural language query uses.

In contrast, p-norm retrieval is structured. The essence of this structure is
that some terms are emphasized. Indeed, disjunctivity can loosely be described

as making a big fuss over the presence of certain terms, while conjunctivity can
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be described as making a big fuss over the absence of certain terms. As discussed
above, in the CACM collection such behavior can easily lead to mistakes.

This discussion suggests that vector and p-norm retrieval might complement
one another, especially in collections with unreliable terms. Possibly the vector
model could exert a steadying influence on the p-norm model in such collections.

The next section describes a system that uses a combination of vector and p-norm

retrieval.

3.7 Combined Vector and P-norm Retrieval

The combined system averages the results of vector and p-norm retrieval. More

precisely, to perform retrieval in the combined system do the following:

1. Perform vector retrieval.

2. Normalize the vector similarity values by dividing each similarity by the

maximum similarity of the vector retrieval.
3. Perform p-norm retrieval.

4. Normalize the p-norm similarity values by dividing each similarity by the

maximum similarity of the p-norm retrieval.

5. Rank the documents based on the average of the normalized vector and

p-norm similarity values.

Table 3.21 shows how the combined system compare§ with the standard vec-
tor system. It can be seen that the combined system outperforms the vector
system on all collections. The largest gains are in average precisioil. :INSPEC, in
particular, improves by 21% in average precision. |

Table 3.22 shows how the combined system compares with the p-norm sys-

tem. It is interesting to note that the combined system outperforms the p-norm
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Table 3.21: Standard Vector System vs. Combined System

Vector | Combined

'Ciollection Retrieval | Retrieval | % Change
CACM Avg. Prec. 3630 3087 " +9.8%
} Prec. Top 10 .3635 .3692 +1.6%
INSPEC Avg. Prec. .2626 3181 +21.1%
Prec. Top 10 4286 .4766 +11.2%

MEDLARS | Avg. Prec. .5628 .6028 +7.1%
Prec. Top 10 .6367 6767 +6.3%

model on all collections except MEDLARS, the collection with the most technical

vocabulary.

3.8 Conclusion

In this chapter, the quality of the syntactically generated p-norm queries was

investigated. First a variety of parameter settings for these queries were explored,

leading to a number of conclusions:

Document terms are better weighted with uniformly normalized Fox weights

[Fox83] than with the cosine normalized weights of [SV85,Voo085].

OR clauses are best weighted with the average of the weights of their

operands.

AND clauses are best weighted with sum of the weights of their operands,
and certain AND clauses should be further boosted in weight.

OR operators are best given p-value 3.0.

AND operators should usually be given p-value 1.0, but selected ANDs
with the non-uniform scheme should be given p-value 3.0.
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Table 3.22: P-norm System vs. Combined System

P-norm | Combined
Collection Retrieval | Retrieval | % Change
CACM Avg. Prec. .3534 .3987 +12.8%
Prec. Top 10 | .3423 .3692 +7.9%
INSPEC Avg. Prec. 2731 3181 +16.5%
Prec. Top 10 .4260 .4766 +11.9%
MEDLARS | Avg. Prec. .6089 .6028 -1.0%
Prec. Top 10| .6733 6767 +0.5%

It is encouraging that AND and OR clauses are best weighted differently and
that p-values larger than 1.0 are sometimes useful, for these facts suggest that
the p-norm structure of the queries does, to some extent, model the meaning of
the natural language search requests. Experiments with flattened versions of the
queries further support this conclusion: both hierarchically derived query weights
and boosted p-values lead to improved retrieval effectiveness.

Comparisons between the syntactic query generation method and other meth-
ods of generating p-norm queries are also favorable. The syntactically generated
queries are much better than statistically generated queries, and are comparable
in quality to manually generated queries.

Comparisons between the syntactically generated p-norm queries and stan-
dard vector queries produce no clear-cut winner. However, it seems possible that
the two systems complement one another. This observation lea to consideration
of a combined ‘system that averages the results of vector and p-norm retrieval.
The combined system produces significant gains in all collections as compared to
the standard vector system alone.

In the next two chapters, attention is turned to the question of p-norm re-

trieval efficiency.



Chéi).‘ter 4

Improving the Retrieval Time of

the P-norm Model

To be practical, an information retrieval system must provide prompt responses
to a user’s search requests. This chapter compares the efficiency of two algorithms

for p-norm retrieval:

1. the straightforward algorithm formerly implemented in the SMART system,

and

2. a new algorithm, based on inverted list manipulation, which is introduced

here.

An asymptotic analysis of these two algorithms is given, and the actual running

times obtained in experimental retrieval runs are given as well.

4.1 Document Collection and Query
Representation

Both algorithms assume that the document collection is represented by a set of
inverted lists [Sal89]. There is an inverted list for each index term consisting of

the document identifiers of all documents indexed by that term. Paired with each

85
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document identifier is the weight of the term in that document. Furthermore,
these document identifiers are assumed to appear in sorted order in the inverted
lists.

For example, suppose that the collection consists of the following documents

Dy = ((t1,w11),(ts,w14),(ts, w1s))
Dy = ((t3,w2s),(ts, w2s))
D3 = ((t1,ws31), (t2, w32), (t3, w33), (t4, w3s))

where w;; is the weight of term ¢; in document D;. Then the set of inverted lists

representing the document collection is

t1 : ((D1,wn), (D3, w31))

tz : (D3, wsz)

t3 @ ((D2,wss), (D3, ws3))

ts : ((D1,w14), (D2, w24), (D3, w34)

ts : (D1,wis)

P-norm queries are stored in the form of a tree, where each tree node corre-
sponds to either a term or a Boolean operator. A node corresponding to a term
appears as a leaf, and a node corresponding to a Boolean operator is an inter-
nal node with the operands appearing as the children. For example, the query
A AND (B OR C) is represented by the tree in Figure 4.1.

4.2 Straightforward Algorithm

The straightfofwa.rd algorithm evaluates one document at a time by tr;aversing the
query tree recursively beginning at the root. The value returned ‘by a recursive
call to a tree node is simply the similarity between the document and the subquery
corresponding to the subtree with this tree node as the root. So to evaluate a

document with respect to a node, one must
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Figure 4.1: P-norm Query Represented as a Tree
e Recursively evaluate the document with respect to the children, if any.

o If the node is a leaf, then it corresponds to a query term, and one simply

returns the weight of the query term in the document.

o If the node is not a leaf, then it corresponds to a clause; one returns the
value calculated by combining the values returned by the children with the
appropriate p-norm formula, which depends on the operator and p-value

associated with the node.

Only documents having at least one term in common with the query are
evaluated. All the other documents have similarity 0, so they are ignored!. The
query evaluation method is demonstrated in Example 1, and stated formally in

Figure 4.3.

Example 1: (Document Evaluation with the Straightforward Algorithm)

Suppose that document
D = ((clustering,.5), (efficiency,.2))

is to be evaluated with respect to p-norm query

1Actually, the similarity of these other documents may be nonzero when the NOT operator is
used. However, those documents are not retrieved.
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| 1.AND? | returns.30

N

l 2:c‘lustem'ng | | 3.0R? ] returns .14
returns .5

I 4:efficiency l l5:eﬁectiveness
returns .2 returns 0

Figure 4.2: Query Tree for Example 1
Q = clustering AND? (efficiency OR? effectiveness)

Assume that all query term weights and clause weights are 1.0 for simplicity.
The corresponding query tree is shown in Figure 4.2, where each node is
labelled with a number to facilitate the description of the evaluation process

described below.

Node 1:
¢ Asks node 2 for evaluation of document D and receives .5
e Asks node 3 for evaluation of document D and receives .14

¢ Returns 1 - [L, distance? from (.5,.14) to (1,1)] = .30

ZAll L, distances mentioned in this chapter are normalized L, distances.
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Node 2: Returns .5 (i.e. the weight of clustering in document D)
Node 3:

° Asks node 4 for evaluation of document D and receives .2

i
i L]

° Alsks node 5 for evaluation of document D and receives 0
¢ Returns [Ly distance from (.2,0) to (0,0)] = .14

Node 4: Returns .2 (i.e. the weight of efficiency in D)
Node 5: Returns 0 (D does not contain effectiveness)

This tree traversal is performed once for each document that is evaluated.

4.3 New Algorithm

Whereas the straightforward algorithm traverses the entire query tree once for
each document, the new algorithm that is proposed here traverses the query tree
only once as it evaluates the entire collection. The tree is traversed recursively, as
in the straightforward algorithm. However, the value returned by a recursive call
to a tree node is now an inverted list instead of a similarity value. The inverted
list resulting from processing a tree node contains the document identifiers of all
the documents with non-zero similarity with respect to the subquery with this
tree node as the root. These document identifiers are paired with their associated

similarity values. This can be accomplished by processing a tree node as follows:

e Recursively process the children, if any.

o If the tree node is a leaf, then its corresponding subquery is just a query

term. Therefore, return the inverted list associated with the term.

e If the tree node is not a leaf, then the corresponding subquery is a clause.

Return the list consisting of all documents that appear on any of the lists



90

Let @ be a p-norm query.
Let the terms in @ be ¢1,92,...,¢na.
fori=1ton
get inv; = inverted list for term g;;
/* Process documents and remove them from lists in sorted order */
while any inverted list is not empty {
Let D = minimum doc id in inv. lists invy, ..., 1nvy;
(Can be computed in O(n) time since the front of each
contains the document with lowest id.)
Sim = p-eval(D, Q);
Add pair (D, Sim) to result_inv list;
Remove D from inverted lists

}

Return result.inv_list sorted by similarity value.

p-eval (D,Q) {

if (Q is a term)
return weight of term in document D;
(This value is obtained from the inv. list entry).

if (Q = NOT Qy)
return 1 — p_eval(D, Q1);

if (Q = (Q1,wt1) AND? (Qq,wtz) AND? ... AND? (Qu, wty)) {
fori=1tom

sim; = p-eval(D, Q;);

wif(1—simy )P+ +wip(1—simm )P
return 1 — {/ T r———ra

if (Q = (Q1,wt;) OR? (Qa,wtz) OR? ... OR? (Qm,wtm)) {
fori=1tom
sim; = p-eval(D, Qi);

wt’l’sim’l’+~--+wt‘,’naim£’n
return {/ "

}oo .

Figure 4.3: Straightforward Algorithm
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returned by the children. Each document is paired with the value obtained
by combining into the proper p-norm formula the document’s similarity
values with each of the operands. If the document does not appear in some

list, then it is handled as if it appeared on that list with value 0.

Thus, the value that the root of the query tree returns conmsists of the list of
documents evaiuating to a non-zero similarity along with their similarity values.

This query evaluation method is illustrated in the following example.

Example 2: (P-norm Retrieval with New Algorithm)
Suppose that a retrieval is to be performed with query

Q = clustering AND? (efficiency OR? effectiveness)
and suppose that the collection contains

D; = ((clustering,.5),(efficiency, .2))
Dy = ((efficiency,.8),(algorithms, .3))
D3 = ((clustering,.9))

Dy = ((clustering,.4),(effectiveness, .2))

The query tree along with the values returned by each of the tree nodes is shown

in Figure 4.4. The following is a description of the retrieval process:
Node 1:

o Asks node 2 for the list of documents that match the sub-query with root
at node 2 (i.e. clustering), along with the values that they evaluate to. It
receives list [(D;,.5),(D3,.9),(D4,.4))].

e Asks node 3 for the list of documents that match the subquery with root at
node 3 (i.e. efficiency OR? effectiveness), along with the values that they
evaluate to. It receives list [(D1,.14),(D2,.57),(Dy,.14)).
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l 1AND2 | (Dla'3)a(D27'23)a(D3a'29)’(D41'26)

| 2:clusteringJ [ 3:OR? —l(Dl,.14),(D2,.57),(D4,.14)
(D1,.5),(Ds3,.9),(Dy4,.4)

| 4:efficiency ] [5:eﬂectiveness]
(D1a°2)7(D27'8) (D4s2)

Figure 4.4: Query Tree for Example 2

e Computes the weight of document D; as 1 - La((p,q),(1,1)) where

p = weight of D; in the list from Node 2

q = weight of D; in the list from Node 3.
o Returns the list [(D1,.3),(D2,.23),(D3,.29),(D4,.26)]

Node 2: Returns the inverted list of clustering: [(D1,.5),(D3,.9),(D4,.4)]
Node 3:

o Asks node 4 for the list of documents that match the subquery efficiency.
It receives the list [(D,.2),(Ds,.8)). |

e Asks node 5 for the list of documents that match the subquery effectiveness.
! 1
It receives the list [(D4,.2)].

o Computes the weight of document D; as La((x,y),(0,0)) where

x = weight of D; in the list from Node 4
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and
y = weight of D; in the list from Node 5

e Retyrns the list [(D1,.14),(D2,.57),(Dy,.14)]

Node 4: Returns the inverted list of efficiency: [(D1,-2),(Ds2,.8)]
Node 5: Returns the inverted list of effectiveness: [(Ds,.2)]
Note that only one tree traversal is performed in the evaluation of the entire

collection.

A possible drawback of this method is that the inverted lists returned by a
recursive call to this algorithm can be very long if many documents have terms
in common with the subquery that the algorithm is called with. In particular,
the NOT operator can create especially long inverted lists if we do not deal
with it carefully. For example, the inverted list returned by a call to subquery
“NOT @Q;” would contain almost the entire collection since

Sim(D,NOTQ;) #0 & 1— Sim(D,Q;1)# 0
& Sim(D,Q1) #1

and generally very few documents are going to have similarity 1.0 with Q;. Such
a list would take up vast amounts of space for reasonably sized collections. How-

ever, the following observation can be made:

Sim(D,NOT @Q;) is the same for all documents that are not indexed

by any terms from Q;.

This similarity value can be computed by simply associating a weight of 0.0 with
all the leaves of the subtree of @;. Thus, the new algorithm is revised to return
the list containing the documents having a term in common with the subquery,
as before. In addition, the value of the similarity between the subquery and any

document that is not indexed by any of the subquery terms is also returned. This
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(D1,.09), (D2, .88), (Ds, .40), (Ds, .50)
disjoint_val=.15

r2:democracy I I 3:AND? J (D1,.18),(D2,.86)
(Ds,.9),(D3,.5),(Dy,.T) disjoint_val=.29
disjoint_val=0.0

| 4:government | | 5NOT | (Di,4)

(D2,.8) disjoint_val=1.0

disjoint_.val=0.0 I 6:marxist I (Dy,.6)
disjoint_val=0.0

Figure 4.5: Query Tree for Example 3

value will be referred to as disjoint_val. The following example shows how this is

accomplished.

Example 3: (Handling of NOT in New Algorithm)
Suppose that a retrieval is to be performed with query

Q = democracy OR! (government AND? NOT marzist),

whose query term weights and clause weights are assumed to be 1.0 for simplicity,

and suppose that the collection contains:

Dy = ((marzist,.6))
Dy, = ((government,.8),(democracy, .9))
D; = ((democracy,.5)) |

s !

Dy = ((democracy,.7),(elections,.8))

The query tree along with the values returned by each of the tree nodes is

found in Figure 4.5, and the following is a description of the retrieval process:

Node 1:
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o Asks node 2 for the list of documents that match the sub-query with root
at node 2 (i.e. democracy), along with the value that all the non-matching
documents would evaluate to. It receives the list [(Ds,.9),(Ds,.5),(D4,.7)]
Aqd ;disjoint_val =0.

o Asks node 3 for the list of documents that match the subquery with root
at node 3 (i.e. government AND? NOT marzist) and for the value that
all the non-matching documents would evaluate to. It receives the list

[(D1,.18), (D2, .86)] and disjoint_val = .29.

e Computes the weight for D as L1((p,.18),(0,0)) where
p = disjoint_val returned by node 2 = 0.

e Computes the weight for Dy as Ly((.9,.86),(0,0))

e Computes the weight for D3 as L1((.5,q)(0,0)) where
q = disjoint_val returned by node 3 = .29
o Computes the weight for Dy as L1((.7,9)(0,0))
o Returns the list [(D;,.09), (D2, .88),(Ds,.40),(D4,.50)]
e Returns disjoint_val = Li((p,q),(0,0)) = .15
Node 2:
o Returns the inverted list of democracy: [(Ds,.9),(Ds,.5),(Ds,.7)]

¢ Returns disjoint_val = 0 since any document not matching query democracy

evaluates to O.

Node 3:
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o Asks node 4 for the list of documents that match the subquery government
and the disjoint.val associated with it. It receives the list [(D2,.8)] and
disjoint_val 0.

o Asks node 5 for the list of documents matching the subquery “NOT marzist”
and the value that the non-matching documents evaluate to. It receives the

list [(D1,.4)] and disjoint_val = 1.
e Computes the weight for D; as 1 - Lz((x,.4),(1,1)) where
x = disjoint_val returned by node 4 = 0.
o Computes the weight for Dy as 1 — Ly((.8,y)(1,1)) where
y = disjoint_val returned by node 5 = 1.

o Returns the list [(D;,.18), (D2, .86)].

o Returns disjoint_val = 1 — La((x,y),(1,1)) = .29
Node 4:

o Returns the inverted list of government: [(D3,.8)].

¢ Returns disjoint_val = 0 since any document not matching the query gov-

ernment evaluates to 0.
Node 5:

o Asks Node 6 for the list of documents that match the subquery marzist
and for its disjoint_val. It receives the list [(D,.6)] and disjoin‘?t_.val = 0.

o Returns the list [(Dy,1 — .6)] = [(D1, .4)}.

o Returns disjoint_val = 1 — (disjoint_val returned by node 6) =1 — 0 = 1.
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Node 6:
o Returns the inverted list of marzist: [(D1,.6)).

o RQtli,rns disjoint_val = 0 since any document not matching the query marzist

evaluates to 0.

The formai description of this algorithm is found in Figure 4.6.

4.4 Experimental Data

Experimental retrieval runs were performed to compare the actual running times
of the straightforward and the new p-norm retrieval algorithms. The syntactically
generated queries were used in these experiments with the following parameter

settings that were found to be best in Chapter 3, namely:

1. Foz weights were used to weight the document collection.

2. Clauses were weighted using sum-weights-modified method with 75% in-

crease.
3. The OR operators were assigned p-value 3.0.

4. The non-uniform method was used to assign p-values to AND operators,

where the selective ANDs were assigned p-value 3.0.

These runs will be referred to as the optimal runs. An additional set of runs was
performed with Foz weights and clause weights as above, but with p-value 1.0
assigned to all operators.

Table 4.1 shows the time required for these retrieval runs on a SUN-4. The
amount of retrieval time required by the new algorithm is around 40% less than
that of the straightforward algorithm in all three collections. From the Table it

can also be observed that, not surprisingly, the amount of retrieval times for the
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Output the list returned by p_eval(Q) sorted by similarity value.
peval (Q) {
if (Q is a term) {
result_inv = inverted list for this term,;
disjoint_val = 0;
return (result_inv, disjoint_val)
}
if (@ = NOT Qy) {
(result_inv;, disjoint_val;) = p_eval(Q1);
for each pair (D,sim) in result_inv,
add (D,1 — sim) to result_inv
return (result_inv, 1 - disjoint_val;)
}
/* @ = (Q1,wt1)OP(Q2, wtz)OP --- OP(Qm, wim) */
denominator = wtf + wth + - - - + witk,;
numerator = 0;
fort=1tom
(result_inv;, disjoint_val;) = p_eval(Q;);
/* Docs are processed and removed from lists in sorted order */
while inverted lists result_inv; not empty {
Let D = document with minimum id in result_inv; lists;
fort=1tom
let sim; = weight of D in resultinv; if D is in resultinv;
or disjoint_val; otherwise ,
if OP = AND? add to numerator (1 — sim;)Pwt!
if OP = OR? add to numerator sim?wt}
Remove D from inverted lists;
Add D to result_inv with weight:

1—

numerator

denominator’ if OP = AND?

numerator  if Hp — OR?
denominator’ -

}
if OP = AND?, disjoint_val = 1 — {’/Ei-—l(

1-disjoint -.V"ﬂ.' P wt?
denominator

.
s !

S, disjoint valf wef
denominator '’

if OP = ORP, disjoint_val = {/
return (result_inv, disjoint_val)

Figure 4.6: New Algorithm
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Table 4.1: Straightforward Algorithm vs. New Algorithm

Straightforward New %

Collection | P-values Algorithm Algorithm | Improvement
MEDLARS | Optimal |  10.8 sec. 6.6 sec. | 38.9%
. p=1 6.9 sec. 4.2 sec. 39.1%
CACM '‘Optimal 48.9 sec. 28.6 sec. 41.5%
p=1 32.7 sec. 19.9 sec. 39.1%
INSPEC Optimal 669.5 sec. 343.9 sec. 48.6%
p=1 465.8 sec. 239.0 sec. 48.7%

runs with p-values of 1.0 are much shorter than the retrieval times of the optimal
runs, which need to perform many floating point computations for the required

exponentiations.

4.5 Asymptotic Analysis

This section presents an asymptotic analysis of the computational time of the
straightforward and the newly proposed algorithm. Even though the experi-
mental data has already demonstrated that the new algorithm is faster for the
SMART collections, an asymptotic analysis of these algorithms is important in
order to know what to expect when very large collections are used. The fol-
lowing two lemmas formally describe the computational requirements of the two

algorithms.

Lemma 1 The time complezity of the straightforward algorithm is
O(|Nondis{ Q)| - # of tree nodes)
where Nondisj(Q) is the set of documents having a term in common with query Q.

Proof:
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Reading in the inverted lists for the query terms takes
O(|Nondisj(Q)| - # of terms of Q)

since each list can be at most |Nondisj(Q)| long.
The while loop is executed |Nondisj(Q)| times, and the cost for each iteration of
the loop is:

1. O(# of terms in Q) to find the minimum document id.

2. O(# of tree nodes) for doing p_eval since this routine calls itself recursively

these many times.

3. O(# of terms in Q) to remove document from the inverted lists
This totals O(# of terms in Q + # of tree nodes), which is equal to
O(# of tree nodes).

So, the total cost for the while loop is
O(|Nondisj(Q)| - # of tree nodes)
Therefore, the entire algorithm has time complexity:
O(|Nondisj(Q)| - # of tree nodes)

QED

Lemma 2 The time complezity of the new algorithm is

O( > b; - | Nondis{(node;)|)
node;ETREE_NODES
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where:

TREE_NODES = set of tree nodes of the query tree,
Nondisj(node;) = set of documents with at least one term from the
| subtree with root node;, and

b; = number of children of node; (i.e. # of operands),

or 1 if node; s a leaf.
Proof: (By induction on the number of tree nodes)

Basis Let number of tree nodes = 1.

Queries represented by only one tree node consist of just a query term.

So, the time to run p-eval(Q) = time to read inverted list for the term

= |Nondisj(term)|
Therefore, the lemma holds.

Induction Suppose we know that the lemma holds for trees with < ¢ nodes.
Let the tree for query @ have c nodes.
Suppose that Q = (Q; OR Q2 OR --- OR Q).

The time to process Q is:
1. time to process each of Q1 ...Qm plus
2. O(m) for computing the denominator plus

3. time to execute the while loop, which can be calculated as follows:

o the while loop is executed |Nondisj(root)| times
e the cost for each time around the loop is:
(a) O(m) for finding minimum document id

(b) O(m) for computing numerator
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(¢) O(m) for removing document from inverted lists
e So, the total cost for the while loop is
O(m - [Nondisj(root)|)

Since each Q; has < ¢ nodes, we know that lemma holds for them by the

inductive hypothesis. Therefore, the time to process Q is:

O( > b; - |Nondisj(node;)|)+ O(m - Nondisj(root))
node;€(J]~, TREE_NODES of Q;

Note that the TREE_NODES of Q are:

m
TREE_NODESqg = | J TREE_NODES of Q; U {root}
j=1

Since m is the number of children of the root, the above time complexity

becomes:

o( 3 b; - |Nondisj(node;)|)
node; ETREE_NODESq

So, the lemma holds for this case. For the cases of @ = NOT @Q; and
Q = @1 AND ... AND Q,, similar arguments hold.

QED

The savings of the new algorithm comes from not having to process each
document at every tree node. The larger the difference between |Nondisj(@Q)| and
a typical value of |Nondisj(node;)|, the greater the speed-up that this algorithm
will yield. Note that, in the worst case, |Nondisj(Q)| = |Nondjsj(node,')[ for all ¢,
and the time c’,omplexity from Lemma 2 becomes

O(|Nondisj(Q)] - > bi),

node;ETREE_NODESq

which is equal to
O(|Nondisj(Q)]| - # of tree nodes)
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as Yonode; bi counts each tree node at most twice. So there is no speed-up if we
make the unrealistic assumption that all the terms in the query always co-occur.

It should be noted that the longer the query, the more likelihood there
is of hlayin'g a large difference between |[Nondisj(Q)| and the average value of
|Nondisj!(nc.)de,')|. For example, the set of documents having a term in common
with a query of 20 terms is much greater than the set of documents having a given
term, and the more terms the query has, the greater the expected difference be-
tween the two sets. In a relevance feedback setting® in which the query length
can be fairly large, the new algorithm would prove to be even more valuable.

An important property that must be pointed out is that the running time
of the new algorithm also grows linearly with the size of the collection. For
instance, if the collection grows to be twice its original size, typically so will the
sets Nondisj(node;), thereby doubling the total running time.

The memory requirements of the new algorithm can be very large, and thus
needs to be dealt with carefully. The reason for the large memory requirement
1s:

1. The inverted lists can get very long. Note that when processing a node

associated with an operator, the lists of the children are merged. Thus, the

length of the lists continually grows as they are propagated up the tree.

2. When merging the lists returned by the children of an operator, all of the
lists need to be kept in memory at the same time. Thus, the broader the

query the more memory that is required.

Since the expected length of the inverted lists is proportional to the collection size,
an unreasonable amount of memory would be required by this algorithm in very
large collections. However, this drawback can easily be handled by processing

small portions of the collection and then combining the results. For example,

3Relevance Feedback is a process in which queries are reformulated for subsequent searches
based on the user’s evaluation of the previously retrieved documents [Sal89].
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suppose that the collection contained 1,000,000 documents, and suppose that
given the amount of memory available, the largest acceptable set of documents
that can be handled is 200,000. The document collection can then be split into

5 sets, each containing 200,000 documents:

S1 = consisting of documents 1 through 200,000

S9 = consisting of documents 200,001 through 400,000
S3 = consisting of documents 400,001 through 600,000
S4 = consisting of documents 600,001 through 800,000

S5 = consisting of documents 800,001 through 1,000,000

A set of inverted lists would then be created for each set S;. To process a query,

the following process is performed:
e For each i, run the new algorithm on set S;, yielding a list L; which is
sorted by similarity value.
o Merge lists L;, Lo, L3, Ly, and Ls. This can be done in linear time.

The expected memory requirements for this process would be one fifth of the
requirements for running the new algorithm on the entire collection of 1,000,000
documents.

Determining what the largest acceptable set of documents that can be pro-

cessed is system dependent, and is based on:

o The expected breadth of the query trees.

o The expected length of the inverted lists.

4.6 Boolean vs. P-norm Retrieval

In order to determine the feasibility of the new p-norm retrieval algorithm, its
running time is compared against that of a pure Boolean retrieval. The algo-

rithm for performing Boolean retrieval is described formally in Figure 4.7. This
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Table 4.2: New Algorithm vs. Boolean Algorithm

New Boolean
Collection | P-values | Algorithm | Algorithm
MEDLARS | Optimal | 6.6 sec. 1.9 sec.

p=1 4.2 sec.
CACM Optimal | 28.6 sec. 7.3 sec.
p=1 19.9 sec.
INSPEC Optimal | 343.9 sec. | 98.1 sec.
p=1 239.0 sec.

algorithm was described in Chapter 1 as the processing of the operators AND,
OR, and NOT as set intersection, set union, and set difference, respectively.
Table 4.2 shows the difference in retrieval time between the two systems. Pure
Boolean retrieval can be seen to be much faster than p-norm retrieval. Even when
all p-values are 1.0, pure Boolean retrieval is much faster. Thus, the floating
point computations only partially account for the greater computational time
requirements of the p-norm model. The other factor contributing to the p-norm
model’s extra time requirements is the length of the lists that are manipulated
by the algorithm. Note that whereas the lists of the p-norm algorithm always
grow as they are propagated up the tree, the lists of the pure Boolean algorithm
shrink whenever an AND operator is processed due to the list intersection that

is performed.

4.7 Conclusion

Although the new p-norm retrieval algorithm is considerably faster than the
straightforward algorithm, it is still much slower than pure Boolean retrieval.
The two factors contributing to the extra computational time are the floating

point computations and the size of the lists that need to be manipulated in the
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Let Q be a Boolean query with terms qp,... gn.

fort=1ton
get tnv; = inverted list for term g;

Let union_list = union of inverted lists tnv; for 1 = 1,...

result_inv_list = bool_eval(Q)

return result_inv_list

bool_eval(Q)
{
if (Q is a term) {
result snv = inverted list for this term
return( result_inv )
}
if (Q = NOT @) {
inv; = bool_eval(Q1)
for each document D in union_list
if D ¢ invy add it to resultanv
return( resultinv )
}
if (Q=Q; AND --- AND Qp) {
for(:=1,...,m)
inv; = bool_eval(Q;)
resultinv = %, inv;
return( result_inv )
}
if (@Q=Q1 OR--- OR Q) {
for(:1=1,...,m)
inv; = bool_eval(Q;)
resultinv = U2 inv;
return( result_inv )
)
}

,n

Figure 4.7: Pure Boolean Algorithm
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p-norm retrieval process. Thus, the goal of the next chapter is to reduce the
p-norm retrieval time further by reducing the time that these two factors require
in an attempt to make the p-norm retrieval processing time comparable to that

of pure Boblean retrieval.



Chapter 5

Improving P-norm Retrieval
Efficiency through

Approximations

In Chapter 4, a new algorithm was presented for performing p-norm retrieval
in less time than the straightforward algorithm formerly implemented in the
SMART system. However, the new algorithm was also seen to be slower than the
pure Boolean retrieval algorithm. Because most commercial information retrieval
systems use pure Boolean retrieval, it seems important to try to reduce the time
for p-norm retrieval to be comparable to that for pure Boolean retrieval. This
chapter introduces a new information retrieval model, the infinity-one model, with
a much more efficient retrieval process, and with a retrieval effectiveness approx-
imating that of the p-norm model. List pruning methods for further efficiency

improvements are also presented.

.
s !

5.1 Infinity-One Model

The p-norm operator OR? varies from a neutral operator OR!? to a pure dis-

junction OR® as p grows from 1 to co. Hence it seems possible to approximate

108



109

OR? by a linear combination of OR!' and OR®. This possibility is the basis
for the infinity-one model.
The operators of the infinity-one model, ORZ, ; and ANDZg, ,, are defined in

terms of p-norm operators as follows:
P

Sim(D,Q1 OR%, Q2) = a- Sim(D, @10RMQy) +
| (1 - a) - Sim(D, Q;OR®Q,)

and

Sim(D,Q1 ANDZ, | Q2) = o Sim(D,Q1AND Q) +
(1 - a)- Sim(D,QAND®Q,)

Because the p-norm operators OR®, OR!? (= AND!?), and AND® can all be
evaluated without exponentiation, it follows that infinity-one operators are much
less expensive to evaluate than general p-norm operators, which make heavy use
of exponentiation.

The parameter a, which varies between 0 and 1.0, specifies how strictly an
infinity-one operator is to be evaluated. Clearly an a-value of 1.0 corresponds to
a p-value of 1.0, and an a-value of 0 corresponds to a p-value of co. In generai,
as the p-value increases from 1.0 to oo, the corresponding a-value decreases from
1.0 to 0. Figure 5.1 shows various level curves of ORY, ; passing through a point
(z,z). From the figure, it can be seen that all the level curves for the infinity-
one model are made up of two line segments meeting at the diagonal, 1.e. the
line £ = y. The angle between the two line segments is 90° when a = 0, and it
increases to 180° when a = 1. The strictness with which the operator is evaluated

is determined by the slope of these line segments.

5.1.1 Determining o from a Given P-value

Due to the curved nature of the p-norm level curves for p-values other than 1 and

00, the infinity-one model can only approximate these level curves. Two methods,
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(z,2)

Figure 5.1: Level Curves of ORS, ; Passing Through a Point (z,z)

P

a=1
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the half method and the quarter method, are given below for determining a value
for a whose corresponding level curves approximate those of a given p-value. In
the next section the effectiveness obtained by using the o values produced by
these mptl;xods is compared with the effectiveness of the p-norm model.

The !half method approximates the level curve of OR? passing through a point
(s,s) with two line segments meeting at the point (s,s).! The line segment above
the diagonal intersécts the OR? level curve at point (s, 3) and at the point on the
curve corresponding to the x-coordinate . The reflection of this line segment
with respect to the diagonal is used to approximate the lower portion of the level

curve. Figure 5.2 shows what this looks like.

The value of the y-coordinate, when z =  can be determined by solving the

. ()P +y?
(/—2 .

In other words, y is the value for which the point (§,y) obtains similarity s. The

following equation:

following simplifying assumptions have been made here:

e the weights are all 1.0, and

e the number of operands in the clause is 2.

Through straightforward algebraic manipulations, the above equation becomes

It is easy to show that
a-Sim ((s,s),z OR!? y) +(1~a)-Sim((s,s),z OR® y) =3

So, in order for the points (s,s) and (%,s {2 - %) to lie in the same level-

curve in the infinity-one model, one needs to determine a value of a for which

1Such a level curve corresponds to similarity s because of the idempotence property which is
satisfied by the p-norm model. Such properties are discussed in Chapter 6.
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the similarity at point (%,3 {2 - %) is also s. In other words, a must satisfy

the following;:

s = a~5im((%,s- 2--2—1; ,xORl'Oy)

. 38 1 .
+ (l—a)-Szm((E,s-HZ—-z—p',mOR y)
s 1 S 1
= a-avg(g,s-VZ——z;’+(1—a)~max(§,s- 2—5

By dividing through by s, the above equation becomes

1 1 1 1
1=a-avg(§,</2—2—p'+(1—a)-max(§, 2—2—p (5.1)

After solving for a, one gets

Note that a does not depend on s. So all the ORP? level curves are approximated
with the same a.

The same value for o approximates the level curves of AND? in the same
manner as the curves of OR?, for consider the level curve of AND? corresponding
to similarity s. Again, this level curve passes through the point (s,s). The line
segment used to approximate the AND? level curve intersects the curve at point
(s,s) and at the point whose x-coordinate is halfway betfveen sand 1,i.e. §+ %
The reflection approximates the other portion of the level curve. See Figure 5.3.

The quarter method is identical to the half method, except that éhe line seg-
ment used in the approximation intersects the OR? level curve at tixe point §

instead of §. See Figure 5.4.
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>

(s:9)

S

2

>

Figure 5.2: Approximating the OR?? Level Curve with the Half Method

(1,1)

($:9)

g1
z2t3

Figure 5.3: Approximating the AND?29 Level Curve with Half Method
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(8,5)

]

4
Figure 5.4: Approximating the OR?? Level Curve with the Quarter Method

5.1.2 Effectiveness & Efficiency

The syntactically generated p-norm queries with the parameter settings that
were found best in Chapter 3 are used in the comparisons between the infinity-
one model and the p-norm model. The only p-values used in these queries were
1.0 and 3.0. Clearly, the a corresponding to p-value 1.0 is 1.0. The values of o for
p-value 3.0 produced by the half method and the quarter method are .64 and .51,
respectively. Table 5.1 shows the effectiveness obtained by approximating the
level curves for p-values 1.0 and 3.0 with these values of a. The approximation
produced by the quarter method is slightly better than the half method. However,
some deterioration in precision is present as compared with the p-norm model —
the largest being in the MEDLARS where there is a de;:]ine in: the precision of
the top 10 documents of 4.5%. |
Major assuinptions were made in the half method and quarter 1;ze£hod, namely

that:

1. the number of operands was always 2, and

2. the weights of the operands were always 1.0.
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Table 5.1: Infinity-One Model vs. P-norm Model

Half % Quarter %

Collection P-norm | method | change | method | change
MEDLARS | Avg. Prec. | .6089 | .5939 | -2.5% | :.5938 | -2.5%
| Prec. Top 10 | .6733 | .6467 | -4.0% | .6433 | -4.5%

CACM Avg Prec. | .3381 | .3355 | -0.8% | .3356 | -0.7%
Prec. Top 10 | .3412 3294 | -3.5% | .3314 | -2.9%

INSPEC Avg. Prec. 2731 2696 | -1.3% 2704 | -1.0%
Prec. Top 10 | .4260 4182 | -1.8% | .4208 | -1.2%

These assumptions made it possible to have the values of o pre-computed for
all allowable p-values before the retrieval is performed. In this manner, all of
the complex computations required to determine o can be done ahead of time.
However, there are often more operands than 2, and the weights of the operands
certainly vary a great deal. Thus, the values of a produced by these methods can
be quite different from the values that would be produced if the actual weights
and number of operands were taken into account.

Another approach to approximating the p-norm effectiveness with the infinity-
one model is to find values of a that generally do well in approximating AND3?
and OR3? over all queries. Table 5.2 shows the retrieval output produced by a
set of runs in the infinity-one model with varying values of a for approximating
these operators with p-value of 3.0, where the top number of each entry repre-
sents average precision and the lower number represents precision in the top 10
documents retrieved. It can be seen that in the three collections, setting a = .75
to approximate the AND?3? operators and setting a = .25 to approximate the
OR?3? operators comes very close to producing the exact average precision and
top 10 precision of the p-norm model.

In table 5.3, it can be seen that the infinity-one model retrieval with o = .75
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Table 5.2: Varying a in the Infinity-One Model

% % %
Method MED | Change | CACM | Change | INSPEC | Change
P-norm .6089 - .3381 - 2731 -
6733 - 3412 - .4260 -

a=.75for AND3% | 5979 | -1.8% | .3361 | -0.6% 2719 | -0.4%
a = .50 for OR3? | 6533 | -3.0% | .3294 | -3.5% 4221 -0.0%
a = .75 for AND3? | 6038 | -0.8% | .3402 | +0.6% | .2748 | +0.6%
a=.25for OR3? | 6700 | -0.5% | .3412 | +0.0% | .4247 | -0.3%
a = .50 for AND3? | 5935 | -2.5% | .3357 | -0.7% 2707 | -0.9%
a = .50 for OR3? | 6433 | -4.5% | .3314 | -2.9% 4195 -1.5%
a = .25 for AND39 | 5932 | -2.6% | .3377 | -0.1% 2707 -0.9%
a = .25 for OR3? | .6500 | -3.5% | .3353 | -1.7% 4169 -2.1%

approximating AND?? and a = .25 approximating OR3? is much faster than the
p-norm retrieval with the fast algorithm presented in Chapter 4. The algorithm
used in performing the infinity-one model’s retrieval is exactly like the fast p-
norm algorithm, with the exception of the formula that is used to combine the
inverted lists that are returned by the recursive processing of the operands. The
retrieval time with the infinity-one model is about 60% less than that of the

p-norm model, but it is still significantly slower than the Boolean retrieval.

5.2 List Pruning

A user of an information retrieval system is often interested in ol;ta.ining only a
small number of references about the topic of interest. The question considered
in this section is whether retrieval efficiency can be improved in a setting where

only a small number of documents is desired. The approach taken in the two
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Table 5.3: Infinity-one Efficiency vs. P-norm and Boolean Efficiency

P-norm | Boolean | Infinity-One
Collection Retrieval | Retrieval Retrieval
e MEDLARS 6.6 sec. | 1.9 sec. 2.6 sec.
CACM 28.6 sec. | 7.3 sec. 11.6 sec.
INSPEC 343.9 sec. | 98.1 sec. 144.4 sec.

methods presented below is to prune the the lists that are propagated up the tree
by omitting those documents that are not likely to be ranked in the top 10.

5.2.1 Constant Threshold Pruning

Many of the documents that are retrieved in response to a query have a very
small similarity value. This is because a retrieved document is typically indexed
only by a small percentage of the query terms. In fact, many of the documents
retrieved have only one term in common with the query. These documents are not
likely to be ranked in the top 10. Thus, the ability to recognize these documents
and omit them when processing a query node can reduce the amount of required
processing time significantly.

Constant threshold pruning is a simple modification of the new algorithm
presented in Chapter 4. The modification simply consists of pruning from the
list returned by each query node all documents whose similarities fail to exceed
some threshold, say .01.

The assumption that is made in the constant threshold method is that a
document needs to do very well in some component of the query if it is to be
ranked in the top. Note that a document eliminated from a node’s list can still
be reintroduced by some other node. However, once a document is omitted from

a node’s list, the similarity between the document and the subquery associated
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with the node is taken to be the disjoint-value of the node.?

5.2.2 Variable Threshold Pruning

Variable threshold pruning also requires that all documents placed in the list
returned by a query node exceed a certain threshold. The threshold used starts
out at some constant value, as in constant threshold pruning. However, after
a sizable number of documents, say 300, have been inserted into the list, the
threshold is updated to be the average similarity of the documents placed in the
list so far. As more and more documents are processed, a continuously better
estimate of the typical similarity between a matching document and the subquery
associated with the node can be obtained. Thus, a fairly low initial threshold
of .01 is used, and later updated, thereby requiring subsequent documents that
are processed to be as good as the typical documents already on the list. The
intuition behind this more stringent requirement is that a document ranked in

the top 10 generally has an above average similarity with some component of the

query.

5.2.3 Effectiveness and Efficiency of List Pruning
Methods

Table 5.4 shows the retrieval times required by infinity-one retrieval with and
without list pruning, and table 5.5 shows the effectiveness of infinity-one retrieval
with and without list pruning. The precision of the top 10 documents retrieved
is essentially the same whether or not list pruning is used. However, there is a
large variation in efficiency between these runs. The runs with variable threshold
pruning were the fastest. The retrieval times for this method ra.n'ge';d from 11%
faster to 51% faster than for retrievals without list pruning. Variable threshold

pruning is also significantly faster than constant threshold pruning. Since many

2As a result, in the presence of NOTs, the pruning must be modified slightly. Such details
are ignored here for simplicity.
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Table 5.4: Efficiency of List Pruning Methods

Infinity- | Constant Variable
| One | Threshold % Threshold %
Collection Retrieval Pruning | Change | Pruning | Change
MEDLARS 2.6 sec. 2.3 sec. | -11.5% 2.3 sec. | -11.5%
CACM © 11.6 sec. 9.5 sec. | -18.1% 7.7 sec. | -33.6%
INSPEC 144.4 sec. | 104.3 sec. | -27.8% | 70.6 sec. | -51.1%
Table 5.5: Effectiveness of List Pruning Methods
Infinity- | Constant Variable
One Threshold % Threshold %
Collection Retrieval | Pruning | Change | Pruning | Change
MEDLARS | Avg .6038 .6040 +0.0% .6015 -0.4%
Top 10 | .6700 6700 | +0.0% | .6733 | +0.5%
CACM Avg .3402 .3403 +0.0% 3361 -1.2%
Top 10 3412 .3431 +0.6% .3373 -1.1%
INSPEC Avg .2748 2741 -0.3% .2599 -5.4%
Top 10 .4247 4234 -0.3% 4221 -0.6%

documents are discarded by list pruning, it is not surprising that the average

precision at recall points of .25,

.50, and .75 decreases. However, this is of no

importance in a setting in which only the top 10 documents are desired.

When variable threshold pruning infinity-one retrievals are compared against

pure Boolean retrievals, one finds that they are comparable in speed and can

sometimes be even faster. Table 5.6 shows this comparison.
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Table 3.6: Infinity-One with Variable Threshold Pruning vs. Pure Boolean

Boolean | Infinity-One
Collection | Retrieval | Retrieval
MEDLARS | 1.9 sec. 2.3 sec.
CACM 7.3 sec. 7.7 sec.
INSPEC 98.1 sec. 70.6 sec.

5.3 Summary

This chapter has shown that the infinity-one model is approximately as effective
as the p-norm model, but much less expensive in retrieval time. Furthermore,
by using variable threshold pruning in settings where only a small number of
documents are desired in response to a query, the retrieval time has been reduced
to an amount comparable to that of pure Boolean retrieval without lowering the

precision of the top ranked documents.



Chéli:)?tler 6

Waller-Kraft Wish List and the
P-norm Model

There has been a great deal of debate about the desirable properties for an
extended Boolean information retrieval model. This chapter concentrates on the
well-known criteria in the Waller-Kraft wish list[WK79] and evaluates the p-norm
model with respect to these critena.

It is shown that the p-norm model satisfies most of the criteria on the wish
list. Of the criteria that are not satisfied, it is argued that only the Boolean self-
consistency property is actually desirable. The failure of Boolean self-consistency
is shown to be unavoidable by formalizing the notion of weak Boolean operators
and then demonstrating that no system having such weak operators can satisfy
Boolean self-consistency. In particular, the p-norm model is shown to satisfy all
the Boolean algebra properties that can be satisfied by any system containing

weak as well as strict Boolean operators.
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6.1 Formalization of Extended Boolean
Systems

The descriptions of the Waller-Kraft wish list found in the literature typically
formalize the effect of query term weights (and query clause weights) in extended
Boolean systems in terms of partial retrieval status values (partial RSV)! [BK81a).
The similarity between a query and a document is sometimes called the retrieval

status value (or RSV). When a query consists of several components, such as
(A AND B) OR (C AND D),

one may consider the contribution made by each of the components (i.e. sub-
queries) to the final similarity value between a document and the entire query.
For example, one could analyze how much the clause (A AND B) contributes to
the similarity for the above query. The amount of contribution of a subquery is
referred to as its partial RSV. In the presence of weighted subqueries, the partial
RSV is described in [BK81a,CK87,CK89] as a function

g:[0,1] x [0,1] — [0,1].
The partial RSV for a document d based only on term ¢ can be described as:

g9(F(d,t),a(?)),

where

F:DxT —/[0,1]

a:T —[0,1].

! t
D is the set of documents, T is the set of index terms, F assigns weights to index
terms in a document, and a assigns weights to query terms. The partial RSV

function g typically used in weighted Boolean systems is scalar multiplication.

1Also referred to as generalized retrieval values in [CK87,CK89)
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This formalization assumes that the behavior of all weighted Boolean systems
can be described in terms of the partial RSV function g. This assumption has
led to claims that the term properties and separability condition of the wish list,
described jn the next section, cannot be simultaneously satisfied [BK81b,BK81a].
Howeve;, not all weighted Boolean systems can be described i1:1 terms of this type
of partial RSV function. In particular, the p-norm model cannot, as will be seen
below.

First, let us suggest an alternative formalization of an extended Boolean re-
trieval system that clarifies the partial RSV approach above.

In an extended Boolean system, the set of possible similarity values between

queries and documents is the interval [0,1]. So a query is a map?
D — [0,1].

The set Q of queries consists of primitive queries and compound queries. Primi-

tive queries are simply terms;i.e., a term ¢ is a map
t:D—[0,1].

How are compound queries defined? The similarity space [0,1] comes equipped
with a variety of operations, and each such operation induces an operation on Q.

To see how this works, consider for example the operation
OR:[0,1] x [0,1] — [0,1]
given by
OR(z,y) = maz(z,y).
This induces an OR operation on queries
OR:Q xQ@—Q

by pointwise application:

2Gince queries are viewed as maps, the notation Q;(d) will be used in place of the usual
Sim(d, Q1) throughout this chapter.
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OR(Q1,Q2)(d) = OR(Q1(d), Q2(d)).

Similarly, there are induced AND and NOT operations on Q.

In summary, the set of queries is generated from

1. terms, and

2. operations induced from operations on [0,1].

The partial RSV approach to query weights can now be described as the use

of an operation wt : [0,1] x [0,1] — [0,1] to induce an operation
wt:Q x[0,1] = Q.
Thus wt(Q1,a)(d) = wt(Q1(d), a).

This approach of incorporating query weights into an extended Boolean sys-

tem, though intuitively appealing, can be seen to run into problems. Consider

wt(t1,0) AND ¢,
wt(t1,0) OR ¢y,

where AND and OR are min and maxz, respectively. One expects both of these
queries to be equivalent to t3. Since term t; is given weight 0, it should have no
effect on the retrieval output. So wt(t1,0) must be a constant function returning,

say c. So

(wt(t1,0) AND t,)(d) = min(c,to(d))
and

(wi(t1,0) OR t,)(d) = maz(c, tz(d)).
Clearly no choice of ¢ gives

min(c, ta(d)) = maz(c, ta(d)) = ta(d)

in general, thus there is no way for query weights to work properly if this approach

is used.
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In constrast, the approach taken by the p-norm model is to treat query weights
as representatives of the relative importance of the operands in a given clause.
Thus, the weights are considered to be associated with the operators rather than
the sﬁbéqu;eries themselves. Formally, this approach can be described as the use

of weighted OR and AND operations
OR: ([0,1] x [0,1]) x ([0,1] x [0,1]) — [0, 1]
AND: ([0,1] x [0,1]) x ([0,1] x [0,1]) — [0,1]
to induce operations
OR: (@ x[0,1])x (@ x[0,1]) = @
AND: (@x[0,1)x(@x[0,1]) - @Q
Using the terminology of the literature, this approach can be described as one in

which given query

(Q1,w1) OR (Q2,w2)

the weights wliand we are not used in computing the partial RSV of @; and
Q;. Instead, these weights are used in computing the partial RSV of the entire
OR clause. With this handling of query weights, the weight w; in (Q,w) is
considered to have no meaning unless it is a component of a larger query where
it represents how important subquery @ is relative to the other components.
Thus the operator that combines Q; with other components is the only one that
needs to handle the weight assigned to @;. This formalization is used in the
Waller-Kraft wish list description presented below.

6.2 Waller-Kraft Wish List

The Waller-Kraft wish list [WK79] consists of the following six items:
1. separability

2. generalization
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3. Boolean self-consistency
4. term properties
5. expression properties

6. merging properties.

Separability is the ability to evaluate a query by first evaluating the individual
terms, then the Boolean combinations of the terms, and so forth. In other words,
a complex Boolean query can be evaluated from the evaluations of terms and
simpler Boolean queries that it is composed of. This is exactly the way that
extended Boolean queries are formalized above; separability is the same as the
property that operations on queries are all induced from operations on {0,1]. P-
norm queries are evaluated in this way, as is demonstrated by the recursive nature
of the algorithms presented in Chapter 4 and Chapter 5. The p-norm model thus
satisfies the separability property.

The generalization property requires that when term weights are restricted to
0 and 1, the evaluation of queries be identical to that of the pure Boolean model.
The p-norm model also satisfies this property since, as described in Chapter 1,
the Boolean model is included as a special case when weights are restricted to
{0,1} and p-values are set to co.

Boolean self-consistency is the property that logically equivalent queries yield
identical results. The notion of logical equivalence is based on Boolean alge-
bra properties such as commutativity and associativity. Unfogtunately, the p-
norm model fajls to satisfy this property. A detailed discussion of Boolean self-
consistency in "systems with weak Boolean operators is deferred to S';ection 6.3.

Term properties describe the effect of weights on query terms. Ezpression
properties describe (among other things) the effect of weights on query clauses.
Really there is no reason to separate these two cases; they can be unified into a

single list of properties that describe the effect of weights on arbitrary subqueries.
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The properties are as follows: If (Q1,w;) is an argument to a weighted AND or
OR clause C, then

1. C(d) should increase monotonically with Q1(d).

i

2. If wy = 0, then C(d) should be constant with respect t6 Q1(d).

3. As w; increases, the rate of growth of C(d) versus Q1(d) should increase

monotonically.

The first property says that the similarity between a document and clause C
should be higher for those documents that have a higher similarity with @;. In
other words, the more similar a document is to @1, the greater its similarity to
C.

The second property simply states that if an operand’s weight is zero, then
the similarity between this operand and a document should have no effect on the
similarity between the document and the entire clause.

The third property states that given two weights for @1, say w; and @i, where
wy > 7, the graph of C(d) versus Q1(d) for w; should increase faster than the
graph of C(d) versus Q1(d) for 3. ‘

The p-norm model satisfies these three properties. For consider the p-norm

clause
C = (Qlawl) AND? (Q27w2)°

The similarity between a document d and this clause is

4 AW =P+ wh(1 — sp)P
c(d) =1 '\1 S ,

where 51 = Q1(d) and s3 = Q2(d).

As s1 increases, (1 — s1)? decreases, thereby making the numerator

wi(l = s1) + wh(1 ~ s2)”
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decrease. Since the entire p-th root component is negated, C(d) increases.

If w; =0, then C(d) becomes

wy(1 — s2)?

" )
which is equivalent to sz (or @Q2(d)). Thus when w; = 0, subquery @; has no
effect on the final similarity value.

The third property is equivalent to the condition that %CT increase monotoni-
cally with w;. That is, given two weights for @, say w; and @;, where w; > o3,
the derivative of gSCT is greater when Q) is given weight w; than when Q) is given
weight ;.

The derivative % when weight w; is assigned is

3-1
— (l) . [Uli’(]. - Sl)p + w‘g(l - 52)p] . prl’(l _ Sl)p—l(_l)

P {fwh +wh
!
b1 = ) + (1 5] k(1 — sy
ffuwl +wh
||

b

[ w1 — s0)PuB(t — o] [wp?] P (wh o+ ud) P
|| -
v[1+wl_p(1—sl)_pwg(1—32)”]%’_1 [1+w1"’w’2’]_; (6.1)
Similarly, tile derivative % when weight @] is assigned is *
[1+ @771 = s1)Puh(1 — 55)7] P! 1+ @‘l"’wg]'% : (6.2)

It can trivially be shown that formula 6.1 is greater than formula 6.2 for the case

when p = 1. The following two claims show that this is also true when p > 1.
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. _ 1 4 . 1 4
Claim 1: [1 +wP(1 - s1)"Puwh(1 - 52)”]” > [1 + @1 7P(1 — s1)"Pwh(1 - 32)”] P
for p > 1.
Proof: By raising both sides of the inequality to the T%; power?, we get:

i

[1+wiP(1 — s1)~Puw(1 - o)) < [1+ @i 7P(1 - s1)~Puw(l — s2)?]

i
wiP(1 = 51)7Pwh(1 = s2)? < @1 77(1 = 81)Pwh(1 — 52)?

3
wi? < @7?
)
wy > Wi
QED
-1 -1
Claim 2: [1+wiw}| ? > [1+ @ Pwf|?

Proof: By raising both sides of the inequality to the —p power, we get:
[ ainud] < [+
i
Wit < @l
g
wl_p < Wi~
¢

wy > W]

p

QED

A similar argument shows that these three properties hold in OR clauses as
well.

There are a few expression properties that have not yet been considered.

These are:

3Note that this is a negative number.
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1. If C = (Q1,w1) AND (term t,wty), then C(d) should not increase as wty

increases for any document d.

2. If (Q1,w;) is an argument to a weighted AND or OR clause C, then
as Q1(d) increases, the rate of growth of C(d) versus w; should increase

monotonically.

3. If (NOT t,wt;) is an argument to a weighted AND or OR clause C, then
C(d) should decrease monotonically as ¢(d) increases.

The explanation given in [WK79, page 241] as a justification of the first
property is that

such a term is connected via an AND to restrict the size of the

retrieved subset of documents, increasing precision...and decreasing

recall.

Increasing the weight wts is taken to mean that the query is more difficult to
satisfy, thereby restricting the set of retrieved documents. Since the query is con-
sidered more difficult to satisfy, the requirement is made that C(d) should not
increase. However, if we consider that the weights express the relative importance
of the components of a clause, then increasing weight wts simply makes term ¢
more important relative to the other clause components®. Given this interpreta-
tion of query weights, it is inappropriate to require that C(d) not increase. For

example, consider
C1 = (Q1,.5) AND (term t,.01).

Query Cy states that component @ is much more important than te!;rm t. If the

weight of term ¢ is increased to 1.0, i.e. Cy = (Q1,.5) AND (term ¢,1.0), then

4In fact, in the p-norm model the relative values of the weights are what matters, not the
absolute values. So, for example

(Q1,.01) AND (Qz,.01) AND (Qs,.01) = (Q,1.0) AND (Q3,1.0) AND (Q3, 1.0).
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term ? is considered to be twice as important as ;1. Suppose that the document
collection contains a document d, such that

t(d) = 1 and Qy(d) = 0.

i

Document d does not satisfy query C; very well, since it contains only term ¢,
which is not regarded as very important by query Ci. On the other hand, C;
considers term ¢ to be very important. This implies that C3(d) is greater than

Ci1(d). Conversely, consider document d', such that
t(d') = 0 and Q:1(d') = 1.

Document d' does not contain term ¢, which is an unimportant component of Cy
and a very important component of C;. This implies that C3(d') should be less
than C;(d'). The effect of increasing weight wt; should depend on the similarity
values of the individual components of the clause — it can either increase or
decrease the evaluation of a document. Since the weight interpretation of the
p-norm model is relative importance, this is the effect obtained by increasing
wts.

The second property can be easily proven by an argument similar to that used
to show that the third term property held for the p-norm model.

The evaluation of a negated term is simply one minus the weight of the term in
the document. Thus, (NOT t)(d) = 1 - ¢(d). Clearly, as t(d) increases, (1 —t(d))
decreases. Therefore, by the first term property, which we have shown is satisfied
by the p-norm model, C(d) decreases.

The merging properties refer to the behavior of the AND and OR operators
in general when evaluating complex Boolean expressions. The following criteria

are given:

1. the evaluation should not increase if an additional expression is connected

to the already existing expression via an AND
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2. the evaluation should not decrease if an additional expression is connected

to the already existing expression via an OR.

These merging properties can hold only in systems with strict interpretations
of the AND and OR operators. Although these properties may appear reason-
able at first glance, they are actually undesirable. For example, suppose that the
original expression was @ and that expression Q3 was connected to Q; via an

AND operator yielding the new query

Q = (lewl) AND (Q2’w2)'

Suppose that for document d we have
Q1(d) =0 and Q2(d) =1.

Since d satisfies @y very well, it seems clear that document d must be better
than a document that does not satisfy Q2 at all. In other words, d must partially
satisfy query @, and therefore, @(d) should be greater than zero. But if Q(d) > 0,
then
Q(d) > Qi1(d),

and this violates the first merging property. A similar argument demonstrates
the undesirability of the second merging property. Clearly, the p-norm model
does not satisfy these merging properties, but this should be regarded as a good

feature rather than a drawback.

6.3 Boolean Algebra and the P-norm Model

In this section,v we consider the Boolean algebra properties of extended Boolean
information retrieval systems with weak operators. Certain proper.tie;s, for exam-
ple associativity, are shown to fail in any such system, and the p-hornﬁ model is
thus shown to do essentially as well as possible.

In our formalization of extended Boolean systems, all operations on queries

are induced from operations on [0,1]. Because of this, our discussion of Boolean
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algebra properties can be carried out entirely in terms of the operations on [0,1].

For example, consider commutativity:

C AND is commutative on Q

n i ,

VQ1,Q2 ( Q1 AND Q; = Q2 AND Q)
|3

VQ1,Q2 Vd ((Q1 AND Q2)(d) = (Q2 AND Q1)(d))
3
YQ1,Q2 Vd ( Q1(d) AND Q2(d) = Q2(d) AND @:1(d) )
3
Vsi1,32 ( s1 AND s3 = s3 AND s; )

¢

AND is commutative on [0,1].

There are many possible operations
A :[0,1] x [0,1] — [0,1]

that could be used as AND or OR operations in an extended Boolean system,
but most would be completely unreasonable. At a minimum, A should satisfy

the following three conditions:

1. 0AO0O =0and 1A1 = 1. (ie. given query A A B, a document not
containing either A or B should be given the lowest possible similarity
value. Similarly, a document containing both A and B with the highest
possible weight, should be given the highest possible similarity value.)

2. A is commutative. (i.e. query A A B should be equivalent to B A A.)

3. A is monotonic on each component. If z < z’ then z Ay < z' Ay, and if
y<y thenzAy<zAy'. (ie. given query A A B and two documents
with the same weight for term B, the document with the higher weight for
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term A should be given a similarity value no lower than that of the other

document.)

Let any function satisfying these three conditions be referred to as a combining
function. Examples of combining functions include the min and maz operators
used in the fuzzy set model. A weak Boolean operator may now be defined as
a combining function that is strictly monotonic on each component. In other
words, the third condition of combining functions is made stronger by requiring
that if z < z' then ¢ Ay < ' A y, and similarly for the second component.
Strict monotonicity is a desirable property because it says that when the value
of a component increases the value of the entire expression must also increase.
This condition overcomes one of the major drawbacks of the fuzzy set model

illustrated by the following example.

Example: Consider query @ = A AND B and documents
dy = ((4,.9),(B, 1))
d2 = ((A, .2),(B,.1)).
The fuzzy set model considers d; and d3 to be equally good since:
Q(d;) = min(.9,.1) = .1
Q(dz) = min(.2,.1) = .1,
which is clearly undesirable. Document ds certainly comes closer to satisfying

the query than does d;.

The main result presented in this section simply states that there exists a
trade-off between satisfying the Boolean algebra properties and being strictly
monotonic. Inother words, any extended Boolean system containing v;vea.k Boolean
operators cannot be a Boolean algebra.

Recall that a Boolean algebra [AO69] is a set of elements together with three
operations: 7, A, and ~, such that for all elements A, B, and C, the following
properties hold:
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idempotence: AJA=AALAA=A
commutativity: Ay B=Bvy Aand
_ AAB=BAA
associativity: AvV(ByC)=(AvB)vC and
| AA(BAC)=(AAB)AC

distributivity: . AvV(BAC)=(AvB)A(AvC)and

AA(ByC)=(AAB)V(AAC)
absorption: AV(AAB)=A=AA(AV B)
There are 2 special elements 1 and 0 having the properties:
intersection: 1AA=A
union: OvVA=A

The unary operation ~ has the following properties:

involution: ~(~A)=A

relation of 1 and 0: ~1=0

De Morgan’s rules: ~ Ay ~ B =~ (AAB)

complementarity: ~ AA A=0and
~AgVA=1

Lemma 1: A weak operator 7 cannot satisfy associativity.
Proof: By the property of strict monotonicity, we have:
(1v0)>(0v0),
and since (0 7 0) = 0, we have that
(1wv0)>0.
Thus, through strict monotonicity on the second component:

1v(1y0)>1v0.
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Since (1 1) =1,
1v(1v0)>(1v1)vo.

QED

Lemma 2: Absorption does not hold for any two weak operators A, and /.
Proof: By the property of strict monotonicity, we have:
1v0)<(1v1l).
Thus, through strict monotonicity on the second component:

1A(1v0) < 1A(1v1)
= 1A1 since(lyl)=1

=1
Therefore, 1 A (1 0) < 1.

QED

Lemma 3: A weak operator A cannot satisfy the intersection property.
Proof: By strict monotonicity

1A0 > 0A0 . |

= 0
Therefore, 1 A0 > 0.

QED
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Lemma 4: A weak operator 7 cannot satisfy the union property.
Proof: By strict monotonicity

0yl < 1y1

Therefofe, Oyl

QED

Lemma 5: A weak operator A cannot satisfy the complementarity property.
Proof:

(NOT1)A1 > (NOT1)AO0 strict monotonicity on 2nd component
> 0A0 since (NOT 1) lies in [0,1]

= 0

Therefore, (NOT 1) A1 > 0.

(NOT0)AO0 < (NOTO0)A1 strict monotonicity on 2nd component
< 1A1 since (NOT 0) lies in [0,1]

=1
Therefore, (NOT 0) A0 < 1.
QED

An attractive feature that an information retrieval system may have is the
ability to handle weak operators as well as strict Boolean operators, i.e. the min

and max operators. Thus, allowing the user to enter queries such as:
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(interfaces ANDY ¥ windows) AND?rict (author Jones).

In this query the user was able to express a weak desire that the documents
retrieved be about both interfaces and windows, as well as the requirement that
all retrieved documents be written by Jones. However, as the following lemma
shows, any system containing these two kinds of operators cannot satisfy the

distributivity property.

Lemma 6: Any system with weak operators and containing the strict Boolean

operators min and maz cannot satisfy distributivity.

Proof: (By contradiction) Let A be a weak conjunction, 7 be a strict disjunction
(max), and suppose that 7 distributes over A.

By strict monotonicity of A,
(0A1)>(0A.5).
Thus,
0A1 = (0A1)v(0A.5) since ¢/ is max
= [0v(0A .5)]A[1v(0A.5)] by distributivity
= (0A.5)A1 since ¥/ is max
> (0A0)A1 by strict monotonicity of A

= 0A1
Therefore, we have a contradiction.

QED

Note that the statement of Lemma 6 is not very strong in the seﬁseithat it does
not say anything about distributivity when only weak operators are present. In
fact, distributivity can hold among weak operators. Consider a system in which
the disjunction 7 and the conjunction A are both the average operation. These

are clearly weak combining functions since:
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1. 0A0 =avg(0,0) =0and 1 A1 = avg(1,1) = 1.
2. r Ay = avg(z,y) = avg(y,z) = y A z.

3. A, is strictly monotonic on each component since avg is.

i »

Distributivity holds because

tV(yAz) = z9(

and

cvnaeva) = (FHaEEE

)A (5
(31 + (53

2
2r+y+ =2
—a

Lemma 7: The p-norm model satisfies idempotence, commutativity, involution,

relation of 1 and 0, and De Morgan’s rules.

Proof:
idempotence
w?(1 — s)? + wh(1 — s)P
(s,w1) ANDP (s,w2) = 1_< - Zfiu)’z,( :
= 1—=7 (w{’—f—wg)(l—s)l’
Vo ouf el

A similar argument holds for the case when the operator is an OR.
commutativity This is trivially true since addition is commutative.

involution NOT (NOTs)=1-(1-s)=s
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Relation of 1 and 0 NOT1=1-1=0
De Morgan’s Rules
(NOT s3,w1) AND? (NOT s2,w3)

L A0 = (1= s +wh(1 - (1 sp))P
wy +wy

NOT((s;, w;) OR? (Szﬂvz))'

QED

6.4 Conclusion

An analysis of the p-norm model with respect to the criteria of the Waller-Kraft
wish list was presented, showing that the p-norm model satisfies most of the wish
list. Upon consideration of the criteria which the p-norm model fails to satisfy, it
was found that only the Boolean self-consistency property is actually desirable.
However, it was shown that any system attempting to dvercon:5e the drawbacks
of the fuzzy set model through the use of weak operators cannot satisfy basic

desirable Boolean algebra properties, such as associativity.



Chia.pter 7
Conclusion

Theoretical as well as practical issues relating to the p-norm information retrieval
model are explored in this thesis in response to the following criticisms that have

been made of the p-norm model:

1. The p-norm model does not satisfy all Boolean algebra properties.
2. P-norm retrieval is too slow to be useful.

3. Formulating p-norm queries is difficult for untrained users.

The theoretical investigation includes a study of the desirable properties that
an extended Boolean system should have as stated in the Waller-Kraft wish list
[WK79], and how the p-norm model relates to them. Boolean self-consistency,
i.e. the property stating that logically equivalent queries should produce identi-
cal results, is thoroughly studied. A key result of this study is that some basic
Boolean algebra properties, such as associativity, cannot be satisfied by any ex-
tended Boolean system with weak operators. Weak operators, defined as strictly
monotonic functions on each component, are clearly desirable because they over-
come many of the drawbacks of the fuzzy set model.

This thesis presents a new p-norm retrieval algorithm which evaluates the en-

tire document collection in one recursive traversal of the query tree and compares

141



142

it against the straightforward algorithm formerly implemented in the SMART
system, which requires a traversal of the query tree for each document that is
evaluated. An asymptotic analysis showed that the time complexity of the new
algorithm is better, and an experimental analysis shows a reduction in retrieval
time of 40%.

Since p-norm retrieval with the new algorithm is still significantly slower than
pure Boolean retﬁeva], further efficiency improvements are introduced by means
of approximations. The infinity-one model is introduced and shown to closely
approximate the effectiveness of the p-norm model without requiring exponenti-
ation. Furthermore, in a setting in which only a small number of documents in
response to a search request are desired, the variable threshold pruning method
for reducing the size of the inverted lists manipulated by the infinity-one retrieval
algorithm is shown to significantly reduce the retrieval time further without af-
fecting the precision of the top ranked documents. The retrieval time of the
infinity-one model together with variable threshold pruning was found to be
comparable to pure Boolean retrieval time. In fact, in INSPEC it was found
to be 28% faster.

The implication of these efficiency results is that it really doesn’t make sense
to use pure Boolean systems. With the p-norm model, far better retrieval effec-
tiveness is obtained, along with comparable retrieval efficiency via the infinity-one
model with variable threshold pruning. Thus, current information retrieval sys-
tems based on pure Boolean retrieval can improve signiﬁcantly by interpreting
Boolean queries entered by users as p-norm queries. This modification can be
done very simply since the front-end of the system can remain the same. Users do
not even need to be aware of this change. However, users would f{nci the system
much easier to use since they would no longer have to worry about too many or
too few documents being retrieved, a very common concern when writing Boolean

queries.
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The possibility of generating p-norm queries automatically from natural lan-
guage search requests by relying on the syntactic structure of the sentences is
also explored in this thesis. With the algorithm presented, the effectiveness ob-
tained i§ f?und to be comparable to manually constructed queries and far better
than the statistically generated queries obtained from the aigorithm presented
in [SBF83]. H'owevgr, the syntactically constructed queries outperform the stan-
dard vector model only in the experiments with MEDLARS, a collection with a
very technical vocabulary. It was observed that queries with structure tend to be
more sensitive to indexing errors than vector queries. To overcome this drawback
of structured queries, a combination of the p-norm model and the vector model
was proposed. It was found that the vector model has a moderating effect on
the p-norm model, which leads to significant improvements in effectiveness in the
three collections — the most impressive being in INSPEC where a 21.1% increase
in average precision is obtained when compared with the average precision of the
standard vector model.

Further work with p-norm queries should further explore the issue of param-
eter setting. In this thesis, only term frequency information was used to assign
term weights, clause weights, and p-values. Co-occurrence information of the
terms in a clause could prove to be useful for clause weighting and p-value as-
signments. The use of a technical dictionary may also be useful for this purpose
because the goodness of a clause of single terms can be based on whether the
phrase made up of the terms in a clause appears as an entry in the dictionary.
The dictionary may also help in expanding the query with synonyms by means
of the OR operator — this natural means of query expansion is not present in
unstructured systems.

Further work should also explore the use of the p-norm model in environments
which require both exact matching and partial matching, such as an electronic

mail system. In such a system, queries could include specific information, such as
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the date of the message or the sender of the message, as well as fuzzy information,
expressing the subject of the message. The p-norm model may prove to be most

useful in these types of environments.



Bitf)l'ipgraphy

[AO69]

[BK81a]

[BK81b]

[BooT8]

[Boo80]

[Boo81]

[Buc85]

[Bue81]

[BVW72]

[CBHS5]

Carl B. Allendoerfer and Cletus O. Oakley. Principles of Mathematics.
McGraw-Hill, Inc., 1969.

Duncan A. Buell and Donald H. Kraft. A model for a weighted re-
trieval system. Journal of the American Society for Information Sci-
ence, 32:211-216, 1981.

Duncan A. Buell and Donald H. Kraft. Threshold values and boolean
retrieval systems. Information Processing & Management, 17:127-136,
1981.

A. Bookstein. On the perils of merging boolean and weighted retrieval
systems. Journal of the American Society for Information Science,
29:156-158, 1978.

Abraham Bookstein. Fuzzy requests: An approach to weighted
boolean searches. Journal of the American Society for Information
Science, 31:240-247, 1980.

A. Bookstein. A comparison of two systems of weighted boolean

retrieval. Journal of the American Society for Information Science,
32(4):275-279, July 1981.

Chris Buckley. Implementation of the smart information retrieval
system. Technical Report 85-686, Cornell University, May 1985.

Duncan A. Buell. A general model of query processing in information
retrieval systems. Information Processing & Management, 17:249-262,
1981.

F.H. Barker, D.C. Veal, and B.K. Wyatt. Towards automatic profile
construction. Journal of Documentation, 28(1):44-55, March 1972.

M.S. Chodorow, R.J. Byrd, and G.E. Heidorn. Extracting seman-
tic hierarchies from a large on-line dictionary. In Proceedings of the

145



[CK87]

[CK89]

[DG87]

[Fag87]

[Fox83]

[GK83]

[Hei72]
[HH70]

[HIM*82]

[KBS3]

[Lee88]

146

28rd Annual Meeting of the Association for Computational Linguistics,
pages 299-304, 1985.

Steven C. Cater and Donald H. Kraft. Tirs: A topological information
retrieval system satisfying the requirements of the waller-kraft wish
list. In Proceedings of the Tenth Annual International ACM-SIGIR
Conference on R&D in Information Retrieval, pages 171-180, 1987.

Steven C. Cater and Donald H. Kraft. A generalization and clarifica-
tion of the waller-kraft wish list. Information Processing & Manage-
ment, 25(1):15-25, 1989.

Padmini Das-Gupta. Boolean interpretation of conjunctions for doc-
ument retrieval. Journal of the American Society for Information Sci-
ence, 38(4):245-254, 1987.

Joel L. Fagan. Ezperiments in Automatic Phrase Indezing For Docu-
ment Retrieval: A Comparison of Syntactic and Non-Syntactic Meth-
ods. Ph.D. dissertation, Cornell University, 1987.

Edward Alan Fox. FEztending the Boolean and Vector Space Models
of Information Retrieval with P-norm Quertes and Multiple Concept
Types. Ph.D. dissertation, Cornell University, 1983.

Hanna Grzelak and Kazimierz Kowalski. Automatic construction
of information queries. Information Processing & Management,
19(6):381-389, 1983.

George E. Heidorn. Natural Language Inputs to a Stmulation Program-
ming System. Ph.D. dissertation, Yale University, 1972.

David Hsiao and Frank Harary. A formal system for information
retrieval from files. Communications of the ACM, 13(2):67-73, 1970.

G.E. Heidorn, K. Jensen, L.A. Miller, R.J. Byrd, and M.S. Chodorow.
The epistle text-critiquing system. IBM Systems Journal, 21(3):305—
326, 1982. o

Donald H. Kraft and Duncan A. Buell. Fuzzy sets and,generalized
boolean retrieval systems. International Journal on Man-Machine
Studies, 19:45-56, 1983. o

Whay C. Lee. Experimental comparison of schemes for interpreting
boolean queries. Masters dissertation, Virginia Polytechnic Institute
and State University, 1988.



[Paisd]

[Rad76]

!
i

[Rad77]'

[Rad79]

[Rad82]

[Rob78]
[Sal71]
[Sal75]

[Sal89)
[SB8S]
[SBF83)

[SFW83]

[SM83]

147

C.D. Paice. Soft evaluation of boolean search queries in information
retrieval systems. Information Technology, 3(1):33—41, January 1984.

Tadeusz Radecki. Mathematical model of information retrieval sys-

- tem based on the concept of fuzzy thesaurus. Information Processing

. & Management, 12:313-318, 1976.

Tadeusz Radecki. Mathematical model of time-effective information
retrieval system based on the theory of fuzzy sets. Information Pro-
cessing &4 Management, 13:109-116, 1977.

Tadeusz Radecki. Fuzzy set theoretical approach to document re-
trieval. Information Processing & Management, 15:247-259, 1979.

Tadeusz Radecki. Reducing the perils of merging boolean and
weighted retrieval systems. Journal of Documentation, 38(3):207-211,
September 1982.

Stephen E. Robertson. On the nature of fuzz: A diatribe. Journal of
the American Society for Information Science, 29:304-307, 1978.

Gerard Salton. The SMART Retrieval System: Ezperiments in Auto-
matic Document Processing. Prentice-Hall, 1971.

Gerard Salton. Dynamic Information and Library Processing.
Prentice-Hall, 1975.

Gerard Salton. Automatic Text Processing: The Transformation, Anal-
ysis, and Retrieval of Information by Computer. Addison-Wesley Pub-
lishing Company, Inc., 1989.

Gerard Salton and Christopher Buckley. Term-weighting approaches
in automatic text retrieval. Information Processing & Management,
24(5):513-523, 1988.

G. Salton, C. Buckley, and E.A. Fox. Automatic query formulationsin
information retrieval. Journal of the American Society for Information
Science, 34(4):262-280, 1983.

G. Salton, E.A. Fox, and H. Wu. Extended boolean information re-
trieval. Communications of the ACM, 26(11):1022-1036, Nov 1983.

Gerard Salton and Michael J. McGill. Introduction to Modern Infor-
mation Retrieval. McGraw-Hill, Inc., 1983.



[SP86]

[SS89)]

[SV85)

[Tah76]

[Tah77]

[Usz86]

[Voo85]

[Win83]
[WK79]

[Wu8l]

[WZWs5)

[Zad65]

148

Michael A. Shepherd and W.J. Phillips. The profile-query rela-
tionship. Journal of the American Society for Information Science,
37(3):146-152, 1986.

G. Salton and M. Smith. On the application of syntactic methodolo-
gies in automatic text analysis. In Proceedings of the Twelfth Annual
SIGIR Conference, pages 137-150, 1989.

Gerard Salton and Ellen Voorhees. Automatic assignment of soft
boolean operators. In Proceedings of the Eighth Annual SIGIR Con-
ference, pages 54-69, 1985.

Valiollah Tahani. A fuzzy model of document retrieval systems. In-
formation Processing & Management, 12:177-187, 1976.

Valiollah Tahani. A conceptual framework for fuzzy query
processing—a step toward very intelligent database systems. Infor-
mation Processing & Management, 13:289-303, 1977.

Marc Uszynski. Fuzzy queries with linguistic quantifiers for informa-
tion retrieval from data bases. Technical Report UCB/CSD 87/333,
University of California, July 1986.

Ellen M. Voorhees. The Effectiveness and Efficiency of Agglomera-
tive Hierarchic Clustering in Document Retrieval. Ph.D. dissertation,
Cornell University, 1985.

T. Winograd. Language as a Cognitive Process. Addison-Wesley, 1983.

W.G. Waller and Donald H. Kraft. A mathematical model of a
weighted boolean retrieval system. Information Processing & Man-
agement, 15:235-245, 1979.

Harry Chih Chien Wu. On Query Formulation in Information Re-
trieval. Ph.D. dissertation, Cornell University, 1981.

S.K.M. Wong, Wojciech Ziarko, and Patrick C.N. Wong. Generalized
vector space model in information retrieval. In Proceedings of the
Eighth Annual SIGIR Conference, pages 18-25, 1985.

L.A. Zadeh. Fuzzy sets. Information and Control, 8:338-353, 1965.






	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif
	pdftemp/0016.tif
	pdftemp/0017.tif
	pdftemp/0018.tif
	pdftemp/0019.tif
	pdftemp/0020.tif
	pdftemp/0021.tif
	pdftemp/0022.tif
	pdftemp/0023.tif
	pdftemp/0024.tif
	pdftemp/0025.tif
	pdftemp/0026.tif
	pdftemp/0027.tif
	pdftemp/0028.tif
	pdftemp/0029.tif
	pdftemp/0030.tif
	pdftemp/0031.tif
	pdftemp/0032.tif
	pdftemp/0033.tif
	pdftemp/0034.tif
	pdftemp/0035.tif
	pdftemp/0036.tif
	pdftemp/0037.tif
	pdftemp/0038.tif
	pdftemp/0039.tif
	pdftemp/0040.tif
	pdftemp/0041.tif
	pdftemp/0042.tif
	pdftemp/0043.tif
	pdftemp/0044.tif
	pdftemp/0045.tif
	pdftemp/0046.tif
	pdftemp/0047.tif
	pdftemp/0048.tif
	pdftemp/0049.tif
	pdftemp/0050.tif
	pdftemp/0051.tif
	pdftemp/0052.tif
	pdftemp/0053.tif
	pdftemp/0054.tif
	pdftemp/0055.tif
	pdftemp/0056.tif
	pdftemp/0057.tif
	pdftemp/0058.tif
	pdftemp/0059.tif
	pdftemp/0060.tif
	pdftemp/0061.tif
	pdftemp/0062.tif
	pdftemp/0063.tif
	pdftemp/0064.tif
	pdftemp/0065.tif
	pdftemp/0066.tif
	pdftemp/0067.tif
	pdftemp/0068.tif
	pdftemp/0069.tif
	pdftemp/0070.tif
	pdftemp/0071.tif
	pdftemp/0072.tif
	pdftemp/0073.tif
	pdftemp/0074.tif
	pdftemp/0075.tif
	pdftemp/0076.tif
	pdftemp/0077.tif
	pdftemp/0078.tif
	pdftemp/0079.tif
	pdftemp/0080.tif
	pdftemp/0081.tif
	pdftemp/0082.tif
	pdftemp/0083.tif
	pdftemp/0084.tif
	pdftemp/0085.tif
	pdftemp/0086.tif
	pdftemp/0087.tif
	pdftemp/0088.tif
	pdftemp/0089.tif
	pdftemp/0090.tif
	pdftemp/0091.tif
	pdftemp/0092.tif
	pdftemp/0093.tif
	pdftemp/0094.tif
	pdftemp/0095.tif
	pdftemp/0096.tif
	pdftemp/0097.tif
	pdftemp/0098.tif
	pdftemp/0099.tif
	pdftemp/0100.tif
	pdftemp/0101.tif
	pdftemp/0102.tif
	pdftemp/0103.tif
	pdftemp/0104.tif
	pdftemp/0105.tif
	pdftemp/0106.tif
	pdftemp/0107.tif
	pdftemp/0108.tif
	pdftemp/0109.tif
	pdftemp/0110.tif
	pdftemp/0111.tif
	pdftemp/0112.tif
	pdftemp/0113.tif
	pdftemp/0114.tif
	pdftemp/0115.tif
	pdftemp/0116.tif
	pdftemp/0117.tif
	pdftemp/0118.tif
	pdftemp/0119.tif
	pdftemp/0120.tif
	pdftemp/0121.tif
	pdftemp/0122.tif
	pdftemp/0123.tif
	pdftemp/0124.tif
	pdftemp/0125.tif
	pdftemp/0126.tif
	pdftemp/0127.tif
	pdftemp/0128.tif
	pdftemp/0129.tif
	pdftemp/0130.tif
	pdftemp/0131.tif
	pdftemp/0132.tif
	pdftemp/0133.tif
	pdftemp/0134.tif
	pdftemp/0135.tif
	pdftemp/0136.tif
	pdftemp/0137.tif
	pdftemp/0138.tif
	pdftemp/0139.tif
	pdftemp/0140.tif
	pdftemp/0141.tif
	pdftemp/0142.tif
	pdftemp/0143.tif
	pdftemp/0144.tif
	pdftemp/0145.tif
	pdftemp/0146.tif
	pdftemp/0147.tif
	pdftemp/0148.tif
	pdftemp/0149.tif
	pdftemp/0150.tif
	pdftemp/0151.tif
	pdftemp/0152.tif
	pdftemp/0153.tif
	pdftemp/0154.tif
	pdftemp/0155.tif
	pdftemp/0156.tif
	pdftemp/0157.tif
	pdftemp/0158.tif
	pdftemp/0159.tif
	pdftemp/0160.tif
	pdftemp/0161.tif
	pdftemp/0162.tif
	pdftemp/0163.tif
	pdftemp/0164.tif

