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Abstract—The phase of a complex field and its speed of propagation
are fundamental concepts of electromagnetic wave motion. Although it
seems to be well-known that faster than light propagation of the phase
may occur in, e.g., waveguides and certain dispersive media, it is often
ignored that a similar phenomenon, in fact a very marked one, presents
itself in the near-field of an arbitrary oscillating current in vacuum.
Connected herewith is the observation that the phases of the transverse
field components of a dipole approach kr − π/2, and not kr, in the
radiation zone. This article illustrates these phenomena by theoretical
and numerical examples as well as indicates their consequences for
broad-band wireless communication over short distances.

1. INTRODUCTION

The process of creation of electromagnetic waves by oscillating dipoles
was studied in great detail by Heinrich Hertz over a century ago [1],
and it has remained the key subject of antenna theory ever since.
It may thus come as a surprise (at least for the authors it did)
that the wave speed in the reactive near-field, when determined by
means of the phase, departs from the speed of light and, in fact,
exceeds it considerably [2, 3]. This seems prima facie to be in conflict
with the notion that, according to the law of causality, unbounded
electromagnetic waves in a homogeneous medium should under no
circumstances travel faster than light in vacuum.

Of course, there is no mystery involved here. The pitfall, if not
embarrassing at least instructive, is that ordinary plane-wave thinking
is applied to a mixture of travelling and reactive fields. In this article
we seek to demonstrate, by means of an elementary theoretical exercise,
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that the phase velocity near sinusoidally oscillating point dipoles does
indeed exceed the speed of light, without endangering the law of
causality. The effect is merely a result of the transition from the quasi-
static near-field, where the fields are “in phase” with the source, to
the far-field, where the field phases depart from kr by a phase angle of
π/2. In the time-domain the phenomenon manifests itself as a gradual
deformation, or a step by step differentiation, of the signal waveform.

The behaviour of the phase in the near-field is also studied by
electromagnetic simulations with dipoles of physical extension. Finally,
some aspects of the “phase delay” in antenna theory are adduced, the
most notable being that the near-field for electrically small antennas
extends much farther than the classical far-field limit, 2D2/λ, D being
the overall size of the antenna and λ, the wavelength. As correctly
pointed out for instance in [4, p. 33] this limit is relevant only for
structures having a size comparable to λ.

Besides being of theoretical interest the authors believe that the
issue also has some bearing on certain electromagnetic applications in
science and technology, where the distance between the source and the
point of observation is very small in terms of the free-space wavelength.
The phenomenon is relevant, in particular, in applications involving
very large bandwidths, where the distortion of the signal waveform
causes problems. Some recent papers, e.g., [5–7], deal with this subject,
although from the point of view of the time-domain response of finite
length wire structures in the radiation zone. In the present paper,
however, the attention is focused on the simplest of radiators, the
infinitesimal dipole, and especially the near-field it produces.

2. DESCRIPTION OF VELOCITY CONCEPTS

Let us begin by recapitulating the basic velocity concepts associated
with electromagnetic wave motion.

An electromagnetic field in a homogeneous, isotropic and lossless
medium is governed by the pair of equations

∇2E − 1
v2
∂2

∂t2
E = 0, ∇2H − 1

v2
∂2

∂t2
H = 0 (1)

where v — the speed at which electromagnetic fields propagate — is
a parameter depending entirely of the constitutive parameters of the
medium. In vacuum, v = c0, the speed of light.

For harmonic waves of angular frequency ω a local phase velocity
v(p) can be defined as [8, Sect. 1.3.3]

v(p)(r) =
[
u · ∇

(Φ
ω

)]−1

(2)
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where Φ(r) expresses the spatial dependence of the wave phase, u being
the unit vector of the direction into which the wave is travelling (in the
case of outgoing spherical waves, u = ur). The phase velocity of Eq. (2)
is verbatim the expression for the speed at which a co-phasal surface
of the wave propagates. For instance, in the case of a homogeneous
monochromatic plane-wave of the form ej(ωt−Φ(z)) travelling in the
positive z-direction, Φ(z) = kz, where k = ω/v(p) is the wavenumber.
Here, and in the sequel, it is worth noticing that Φ(z) is chosen to be
positive when moving in the direction of propagation.

The local group velocity v(g), on the other hand, is given by [8,
Sect. 1.3.4]

v(g)(r) =
[
u · ∇

(∂Φ
∂ω

)]−1

(3)

the ω-derivative being taken at the mean frequency of the wave
spectrum. It expresses the speed at which a surface of constant
amplitude of polychromatic wave propagates, being thus a measure
for the speed of the envelope of a modulated wave. As a historical
point it may be noted that the belief that the group velocity is a
measure for the speed at which signals are propagated seems to be
due to Lord Rayleigh, who was the first to analyse the concept in
acoustics [9, Ch. 1]. When, in the beginnings of the relativity era,
it was realised that the electromagnetic group velocity may in some
circumstances exceed the speed of light, this view was soon to be
rectified by Sommerfeld and Brillouin, who independently showed (by
considering the motion of a step-front) that energy and information
can be transmitted with no higher speed than that of light.

The phenomenon of superluminal phase and group velocities
manifests itself in various circumstances. In waveguides, for instance,
it is well-known that the group velocity is greater than c0, approaching
an infinite speed at the “cut-off” frequency. For waves in free space,
on the other hand, the effect may be observed in regions of anomalous
dispersion, that is, in a medium whose refractive index decreases
with increasing frequency [8, Sect. 1.3.3],[9, Ch. I.2] (contrary to so-
called normal dispersion, when the index increases). In recent years,
large efforts have been directed towards an artificial realisation of this
extraordinary property (see e.g., [10, 11]). In particular, we might
mention that certain periodic structures called photonic crystals have
opened the way to studies of superluminal RF-signal transmission at
the laboratory scale [12].

The goal of this paper is to demonstrate and discuss the
consequences of the fact that in the near-field of an oscillating dipole,
or an electrically small antenna in general, the fields propagate with a
phase velocity which is greater than the speed of light.



70 Sten and Hujanen

θ

φ
x y

z

L

E

Eθ

r Hφ

Figure 1. A short dipole, the co-ordinates and the field components.

3. DIPOLE FIELDS

3.1. General Time Dependence

Let us first consider an infinitesimal time-varying electric dipole with
the dipole moment p(r, t) = uzδ(r)p(t) in vacuum, shown in Fig. 1.
The changing moment p of the dipole can be pictured as a current flow

I(t) =
1
L

dp(t)
dt

(4)

L being the infinitesimal “length” of the dipole. Now, a time-varying
dipole moment (or equivalently, a time-varying current) provokes an
electromagnetic field in the surrounding space, expressed in terms of
the usual spherical co-ordinates (r, θ, ϕ) [8, Ch. 2.2.3], [13, Sect. 3.5]

E(r, t) =
1

4πε0

[
uθ

sin θ
r2

(
p(t̂)
r

+
1
c0

dp(t̂)
dt

+
r

c20

d2p(t̂)
dt2

)

+2ur
cos θ
r2

(
p(t̂)
r

+
1
c0

dp(t̂)
dt

)]
(5)

H(r, t) =
sin θ
4πr2

uϕ

(
dp(t̂)
dt

+
r

c0

d2p(t̂)
dt2

)
(6)

where t̂ = t− r/c0 is the retarded time variable. Thus, the supposition
that the field travels at the speed of light, c0, indifferent of the
waveform chosen for p(t), is implicitly embodied, as provided by the
law of causality. Expressions (5), (6) are usually derived by means of
the time retarded Hertz vector in a manner given in, for instance [13,
Ch. 3.5].

At a sufficiently large distance from the dipole, where terms in
the order 1/r prevail, the Poynting vector integrated over an arbitrary
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Figure 2. Illustrating the distortion of the Eθ-field waveform shown
at four different positions away from the dipole. Magnitudes are
normalised.

spherical surface drawn around the dipole gives

lim
r→∞

∫
S

(E × H) · urdS =
1

6πε0c30

(
d2p(t̂)
dt2

)2

(7)

which is the total power outflow from the dipole. Thus, in view of the
double differentiation of p(t̂) in time, it is evident that the waveform
at large distances will become distorted, except for strictly harmonic
excitation.

To illustrate, let us consider the waveform distortion of the Eθ-field
component as a function of distance when the excitation is a Gaussian
pulse; p(t) ∼ exp(−α(t − τ)2). In the example of Figs. 2(a)–2(d) the
waveform (magnitudes normalised) is represented as a function of time
at four distances when α = 1/0.36 (ns)2 and τ = 1 ns. The solid line
is the total Eθ-field, while the dashed line is the 1/r-dependent term
(the far-field component) relative to the Eθ-field. Interestingly, at a
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distance of 0.1 m (Fig. 2(b)) the actual peak of the signal occurs near
0.8 ns, that is, before the signal has achieved its maximum at the source
point. At first sight this might appear counter intuitive. However, it is
logically explained by the fact that the wave gradually deforms during
the propagation.

3.2. Harmonic Time Dependence

We now turn our attention to the time-harmonic excitation, initially
described by Hertz in his admirable work [1]. In the usual complex-
vector notation, the electromagnetic field excited by a sinusoidal
current of moment IL = jωp can be written as (see, e.g., [13, Sect.
3.7])

E(r) = jωµIL
e−jkr

4πr

[
uθ sin θ

(
1 − j

kr
− 1
k2r2

)

−2ur cos θ
(
j

kr
+

1
k2r2

)]
(8)

H(r) = jkIL
e−jkr

4πr
uϕ sin θ

(
1 − j

kr

)
(9)

Comparing these expressions with those of the corresponding time-
domain field, one sees that the individual “terms” of (5) and (6), with
their peculiar dependence of time, now intermingle as phasors.

By applying Euler’s formula, ejx = cosx + j sinx, the phase-
functions of the three field components are determined as [1, pp. 162–
165]

tan ΦEθ
= −kr sin kr + (1 − k2r2) cos kr

(1 − k2r2) sin kr − kr cos kr
(10)

tan ΦEr = − cot ΦHϕ = −cos kr + kr sin kr
sin kr − kr cos kr

(11)

Hence, by the aid of the well-known relationship

tan(z1 + z2) =
tan z1 + tan z2

1 − tan z1 tan z2
(12)

one deduces the explicit formulae for the phase-functions of the field
components as

ΦEθ
= kr − arctan

[ kr

1 − k2r2

]
+

{
π/2 kr ≤ 1
−π/2 kr > 1 (13)

ΦEr = kr − arctan kr + π/2 (14)
ΦHϕ = kr − arctan kr (15)
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with appropriate constants included. We wish to emphasise that ΦEθ

is continuous also at kr = 1, where the arctan-function switches
from −π/2 to π/2. One should also point out that another way of
reproducing Eqs. (13)–(15) is by always keeping the e−jkr-factor in
(8), (9) separate.

From expressions (13)–(15), first derived by Hertz [1, pp. 162–165],
as well as from the illustration in Fig. 3, each phase-function can be
seen to approach the “normal” kr + π times a constant, when r → ∞
as expected. But in the near-field, that is, within the radius of a half
a wavelength (kr = π), say, the situation is more complicated.

The positions at which ΦEθ
is Nπ/2, where N is an integer, may

be found numerically from Eq. (13). For N = 1 one thus finds the
distances r = 0 and 0.4367λ, as can be verified from Fig. 3, for N = 2
correspondingly 0.7133λ, forN = 3, 0.9735λ, and so on, the subsequent
distances approaching step by step an integer times a quarter of a
wavelength. This means, among other things, that Eθ at the origin
and on a sphere of radius 0.4367λ are “in phase”, while, intuitively one
would expect the phase of Eθ to have changed by 180◦ over a distance
of λ/2. In a sense, the radius 0.4367λ around the source point can
be interpreted as the limit outside which ΦEθ

starts to settle itself to
regular far-field behaviour.

The phase velocities, obtained using Eq. (2), are

v
(p)
Eθ
/c0 =

1 − k2r2 + k4r4

k2r2(k2r2 − 2)
(16)

v
(p)
Er
/c0 = v

(p)
Hϕ
/c0 = 1 +

1
k2r2

(17)

It is easy to see that, when r → 0, v(p)
Eθ

approaches asymptotically

−c0/(2k2r2), while v(p)
Er

= v
(p)
Hϕ

→ c0/(kr)2. Moreover, v(p)
Eθ

is negative
until kr =

√
2, when it changes sign at infinity, where after it rapidly

decelerates towards c0. v
(p)
Er

and v(p)
Hϕ

, on the other hand, asymptotically
decelerate towards c0 monotonically as r → ∞. Using Eq. (3) the
corresponding group velocities are

v
(g)
Eθ
/c0 =

(1 − k2r2 + k4r4)2

−6k2r2 + 7k4r4 − k6r6 + k8r8
(18)

v
(g)
Er
/c0 = v

(g)
Hϕ
/c0 =

(1 + k2r2)2

3k2r2 + k4r4
(19)

where it can be seen that, at a sufficiently large distances from the
source, the group velocities approach c0 asymptotically from below.
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Figure 3. Displaying the phase-functions ΦEθ
, ΦEr and ΦHϕ (in

radians).

In sum, from the point of view of the phase, the three components
of the field evolve from the point of origin with a highly variable speed,
gradually approaching c0 as the wave propagates towards infinity.

3.3. Near- and Far-Field Approximations

It is also instructive to compare approximations of the field expressions
(8), (9) at different distances from the source. In the near-field of the
dipole (kr 
 1) the expressions for the electromagnetic field are:

E(near)(r) ≈ −j ωµIL
4πk2r3

[
uθ sin θ + 2ur cos θ

]
(20)

H(r)(near) ≈ IL

4πr2
uϕ sin θ (21)

They are, of course, the quasi-static Coulomb-field of an electric dipole
with the moment, −jIL/ω, and the Ampère-Biot-Savart-field of a
differential current element, respectively. It is clearly seen that the
magnetic field is virtually “in phase” with the current, while the electric
field in “phase quadrature”.
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In the far-field region (kr � 1), on the other hand, the field
components are given by

E(far)(r) ≈ jωµILe
−jkr

4πr

[
uθ sin θ − 2

j

kr
ur cos θ

]
(22)

H(far)(r) ≈ jkILe
−jkr

4πr
uϕ sin θ (23)

taking into account the leading terms of each component. Comparing
(20) with (22) and disregarding the kr-dependence, the phase of the
θ-field component is seen to be reversed 180◦, while the r-component
is in a 90◦ phase lag. The phase of the magnetic field (23) is similarly
delayed by 90◦, when compared to the quasi-static field (21). It
is because of these lags that the phases must be moving with a
considerable speed in the near-field so as to catch up with their
respective values in the radiation-zone, where they evolve linearly with
kr.

4. SIMULATED EXAMPLE

Now that the effect has been demonstrated theoretically one may ask
for its significance. Does it manifest itself in practice or is it merely a
curiosity?

It is possible to verify the effect of superluminal phase-velocity
either through measurements [2, 3] or electromagnetic simulations.
Accordingly, let us evaluate using the “Numerical Electromagnetics
Code” (NEC) the near-field of an ordinary z-directed thin-wire dipole
and consider the phases of Eθ and Hϕ as a function of distance from
the feed point in the transverse direction, i.e. for θ = π/2 (note that
Er is zero in this direction). The total length of the antenna is 0.5
m, the wire diameter is 2 mm, and the frequencies 60 MHz and 300
MHz are used. At these frequencies the wire is λ/10 and λ/2 long,
respectively. It is also useful to keep in mind that the classical far-field
limit [4], 2D2/λ, is 0.1 m and 0.5 m, at the respective frequency.

Fig. 4(a), 4(b) shows the computed phase functions for the two
field components Eθ and Hϕ as a function of distance along the
transverse direction. Case (a) represents simulations at 60 MHz, case
(b) those at 300 MHz. In Fig. 4(a), the overall behaviour of the phases
of Eθ and Hϕ is quite similar to that of the elementary dipole in Fig. 3,
as can be expected due to the small size of the antenna. The phases
very close to the antenna are different, however, which is because of the
“voltage excitation” used in the simulations, which forces the phase
of Eθ to be zero at the feed, while the phase of Hϕ is essentially



76 Sten and Hujanen

0 0.5 1 1.5 2 2.5 3
2

1

0

1

2

r / m

ph
as

e 
/ r

ad
f=60 MHz

E
θ

H
φ

0 0.1 0.2 0.3 0.4 0.5 0.6
0

1

2

3

4

r / m

ph
as

e 
/ r

ad

f=300 MHz

E
θ

H
φ

(a) 

(b) 

Figure 4. The computed phases of Eθ and Hϕ near a 0.5 m long wire
dipole at 60 MHz (above) and at 300 MHz (below).

determined by the input impedance of the antenna (if desired, the
initial level of the phases could be adjusted by means of impedance
matching). In contrast, the phases of Fig. 4b are completely different:
both Eθ and Hϕ take a linear course almost from the start, and at
r = 0.5 m (= λ/2 at 300 MHz) the phases are practically the same.

In Fig. 5(a), (b), showing the local phase velocities corresponding
to Fig. 4(a), (b), the region of superluminal propagation is seen to be
much more pronounced and to extend much farther away for the lower
frequency. The same effect is seen in Fig. 6(a), (b), where the apparent
mean phase velocity, defined as

v(p),app =
ωr

Φ(r) − Φ(0)
(24)

is displayed. The apparent phase velocity represents the speed at
which the phase appears to have propagated from the phase reference
point (in this case the origin) to r. In practical measurements the
apparent velocity given by Eq. (24) may be easier to evaluate than the
local phase velocity of Eq. (2), because it does not involve numerical
differentiation. Of course, v(p),app approaches c0 when r → ∞, but not
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Figure 5. The local phase velocity corresponding to Fig. 4(a), (b).
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Figure 6. The apparent mean phase velocity corresponding to
Fig. 4(a), (b).
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Figure 7. The phase of the mutual impedance of two linear dipoles in
parallel as a function of distance at 60 MHz (above) and at 300 MHz
(below).

in the same asymptotic sense as v(p).
Fig. 7(a), (b), finally, displays the phase of the coupling or

mutual impedance Z21 between two identical dipoles, side by side in
parallel, when the separating distance is varied. Both dipoles are 0.5 m
long, 2 mm in diameter, and the same frequencies are considered as
earlier. Since the mutual impedance is essentially the ratio between
Eθ (integrated over the length of the receiving antenna) and Hϕ at the
excitation, it is not surprising that the features of the phase of the Eθ-
field, seen in Fig. 4(a), (b), are transferred to the mutual impedance
almost identically. Fig. 7(a), for example, shows that the phase of the
mutual impedance becomes π/2 at a distance of circa 0.436λ, which is
almost the same distance as was found numerically for the elementary
dipole of Fig. 3.

5. DISCUSSION

Finally, one may ask why the behaviour of the phase in the near
field appears so little known? So little, in fact, that today’s antenna
handbooks scarcely mention them.
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The answer, we believe, is to be sought in the traditional
demarcation between circuit-theory and electromagnetic field-theory.
It is well-known that in the domain of circuit theory, where physical
distance plays no part, the reaction of each “component” starts
instantaneously, at least seemingly. For harmonic signals this creates
an impression that the field somehow anticipated the behaviour
of the source in time. Although the quasi-static zone around a
current carrying region (a sphere of radius of a half wavelength,
say) can be considerable at low frequencies, the propagation time
is nevertheless so short that a smaller delay than expected is likely
to escape the attention. In antenna design, on the other hand, the
attention is usually concentrated on the far-field patterns, knowing
that antennas are traditionally located beyond each other’s reactive
zones. Moreover, as shown by the simulated experiment in Section 4,
the superluminal effect is predominantly a low-frequency (alternatively,
near-field) phenomenon, while antenna engineering is traditionally
more concerned with resonant structures.

Notwithstanding, in recent times we have witnessed a narrowing of
the gap between the “circuit-domain” and the “antenna-domain”, with
electrically small antennas and probes being increasingly integrated
in various short-range wireless applications of science, medicine and
consumer electronics. Additionally, there is a tendency of using wider
and wider signal bandwidths in such applications. In view of the
illustrations of this article, however, the success of such applications
may be facing serious problems. Thus, we feel that it is only a matter of
time when the peculiar features and implications of the electromagnetic
near-field must be properly taken into account.
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