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Aspergillus niger, one of the most common and important fungal species, is ubiquitous in

various environments. A. niger isolates possess a large number of cryptic biosynthetic

gene clusters (BGCs) and produce various biomolecules as secondary metabolites with a

broad spectrum of application fields covering agriculture, food, and pharmaceutical

industry. By extensive literature search, this review with a comprehensive summary on

biological and chemical aspects of A. niger strains including their sources, BGCs, and

secondary metabolites as well as biological properties and biosynthetic pathways is

presented. Future perspectives on the discovery of more A. niger-derived functional

biomolecules are also provided in this review.
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INTRODUCTION

Aspergillus, one sizeable genus belonging to Aspergillaceae family, comprises as many as 492 species
registered on the database of the National Center for Biotechnology Information (NCBI) to date. Its
section Nigri is an important group of species, and the A. niger aggregate represents its most
complicated taxonomic subgroup with eight morphologically indistinguishable taxa (Perrone et al.,
2011). Owing to superior adaptability and survivability, A. niger is ubiquitous in nature, including in
terrestrial soil (Xie et al., 2006), ocean (Li et al., 2016; Uchoa et al., 2017), the Arctic (Singh et al.,
2011), and space. It also occupies a wide spectrum of habitats in plants and animals such as herb
(Shreelalitha and Sridhar, 2015; Manganyi et al., 2018), shrub (Kaur et al., 2015; Liu et al., 2016), tree
(Soltani and Moghaddam, 2014; Wang et al., 2019), lichen (Elissawy et al., 2019), shrimp (Liu et al.,
2013; Fang et al., 2016), and marine sponge (Takano et al., 2001; Hiort et al., 2004). A. niger strain
grows well in various media with different carbon sources, including glucose, bran, maltose, xylan,
xylose, sorbitol, and lactose (Toghueo et al., 2018). However, its metabolism is remarkably affected by
culture conditions, such as medium composition and fermentation mode.

The genome features of strain L14 are summarized in a polycyclic graph (Figure 1), which
consists of in-paralog pair, GC skew, widely, SM biosynthetic gene cluster (BGC), ncRNA, repeat,
strand coding sequence (CDS) annotation, and scaffold. There are some in-paralog pairs between
different scaffolds, and SM BGCs and CDS distributed widely in genome. As shown in Table 1,
genome sizes ofWTA. niger strains range from 33.8 to 36.1 Mb. Their G + C% and gene numbers are
closely similar, while the numbers of scaffolds are different owing to various sequencing and
assembling manners. The antibiotics and Secondary Metabolite Analysis Shell (antiSMASH) results
indicated that each WT A. niger strain harbors at least 20 cryptic SM BGCs, including PKS, NRPS,
NRPS-like, and their hybrids (Figure 2 and Supplementary Table S1) (Blin et al., 2019). These BGCs
involving in indole and terpene biosynthesis are ubiquitous and have great potential to synthesize
therapeutical agents and pesticides, such as AbT1, azanigerone A, fusarin, ferrichrome, nidulanin A,
melanin, TAN-1612, yanuthone D, and aflavarin (Supplementary Table S2).
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It is a matter of controversy that some A. niger isolates are
renowned for biosynthesis of valuable natural products of
nutritional, agrochemical, and pharmaceutical interest, while
others are reputed to cause the “black mold” disease (Hayden
et al., 1994; Ozer and Koycu, 2006) and produce a plethora of
mycotoxins (Sanchez et al., 2012). A. niger possesses a bulk

warehouse of prolific genes, which involve in regulation of
primary and secondary metabolisms (Pel et al., 2007). A
genome-scale metabolic network for A. niger has been
established on account of its high efficiency in rational
metabolic design and systems biology studies, such as strain
improvement and process optimization (Sun et al., 2007; Lu

FIGURE 1 |General genome features of marine strain Aspergillus niger L14 (From the inside out: In-paralog pairs; GC skew, the green part represent positive value

while the orange part represent negative value; G + C%; SMs gene clusters; ncRNA; repeat; minus strand coding sequence (CDS) annotation; plus strand CDS

annotation; scaffolds).
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et al., 2017). Numerous A. niger strains have been applied in many
fields for a long time. For instance, citric acid as one of incredible
organic acids in food industry had been produced on a large scale
by A. niger 100 years ago (Cairns et al., 2018; Li et al., 2020). It is
important thatA. niger is one of the excellent producers of valuable
proteases, which had been widely used as detergents and food
ingredients and additives, such as acetylesterase, amylase,
fucosidase, glucose oxidase, glucosidase, mannanase,
phospholipase, phytase, prolyl endopeptidase, triacylglycerol
lipase, trehalase, and xylanase. In addition, numerous chemical
studies have indicated that A. niger is one of the rich sources of
bioactive SMs, with great potential application in agriculture and
medicine. Moreover, endoxylanase isozymes of A. niger have great
potential transforming lignocellulose in pulp and paper industry as
industrial bleaching aids (Duarte and Costaferreira, 1994).
Furthermore, A. niger is also able to deal with the phenolic
contaminants in waste water of fermentation broth from
industry (Duarte and Costaferreira, 1994). Since genetic
engineering is inefficient for fully exploiting in the filamentous
fungi industry, a CRISPR (clustered regularly interspaced short
palindromic repeats)–Cas9 system had been developed (Nødvig
et al., 2015; Nødvig et al., 2018). Based on these genome-editing

toolbox, gene inactivation and knockout, gene insertion, base
editing, promoter replacement, and regulation of gene
expression in A. niger have come true. In the future, more
importance may be focused on traceless gene editing, multiple
gene editing and fine regulation of gene expression in A. niger.

SECONDARY METABOLITES FROM
ASPERGILLUS NIGER

By extensive search on the database of Dictionary of Natural
Products (DNP), as many as 166 A. niger–derived secondary
metabolites (1–166) were detected till 2020. On the basis of
chemical structures, these chemicals are grouped into five
types: pyranone, alkaloid, cyclopentapeptide, polyketide, and
sterol and, respectively, introduced as follows. (More detailed
information about these substances is provided in the
Supplementary Materials (Supplementary Table S3).)

Pyranones
c-Naphthylpyradone Monomers
Pyranone derivatives are the most isolated SMs from A. niger,
including γ-naphthylpyradones (1–31), α-pyranones (32–56),
and γ-pyranones (57–60). A. niger–derived naphthylpyradones
are sorted into two classifications: monomers and dimers, with
linear and angular naphtho-γ-pyrone. Fonsecin (1) is one of the
most frequently isolated γ-naphthylpyradone produced by
several A. niger strains from various sources, including
terrestrial soil (Sakurai et al., 2002), marine (Leutou et al.,
2016; Zhou et al., 2016), and plants (Bouras et al., 2005;
Fernand et al., 2017; Akinfala et al., 2020). Biological tests
suggested that compound 1 possesses dose-dependent
inhibitory effect on the interleukin-4 (IL-4) signal transduction
and stronger radical scavenging activity against 2,2-diphenyl-1-
picrylhydrazyl (DPPH) than ascorbic acid (Sakurai et al., 2002;
Leutou et al., 2016). Two analogs TMC-256A1 (3) and TMC-
256C1 (8) also effectively inhibited the IL-4 driven luciferase
(Sakurai et al., 2002). However, fonsecin B (2) and nigerasperone
A (4) exhibited weak bioactivity against luciferase and DPPH

TABLE 1 | General genomic features of 12 Aspergillus niger strains from NCBI database.

Strain Genome size (Mb) G +C% Scaffold Gene tRNA Protein-coding

genes

Isolation source Assembly ID

ATCC 1015 34.8 50.3 24 10947 – 10950 – GCA_000230395.2

CBS 513.88 34.0 50.4 20 10828 263 14165 – GCA_000002855.2

SH-2 34.6 50.3 349 – – – Soil GCA_000633045.1

ATCC 13496 35.7 49.5 133 12468 273 12194 – GCA_003344705.1

An76 34.9 49.4 669 10373 – 10373 Soil GCA_001515345.1

JSC-

093350089

36.1 49.5 223 – – – International space station environmental

surface

GCA_001931795.1

H915-1 36.0 49.2 30 – – – Soil GCA_001741905.1

L2 36.4 49.2 30 – – – Soil GCA_001741915.1

A1 34.6 50.1 319 – – – Soil GCA_001741885.1

MOD1-FUNGI2 33.8 50.4 3199 – – – Red seedless grapes GCA_004634315.1

RAF 106 35.1 49.1 10 – – – Pu-er tea GCA_011316255.1

L14 36.1 49.3 30 11524 296 – Marine sponge JADEYF000000000

FIGURE 2 |Biosynthetic gene clusters of secondarymetabolites of 12 A.

niger strains.
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(Sakurai et al., 2002; Zhang et al., 2007b). One new cytotoxic and
antimicrobial rubrofusarin B (5) was purified from strain IFB-
E003 endophytic on Cynodon dactylon Linn. (Song et al., 2004).
When cultivated in NaBr or CaBr2-containing medium, one
marine-derived strain MSA773 was found to secrete a new
brominated derivative 6,9-dibromoflavasperone (9) with potent
radical scavenging activity (Leutou et al., 2016).

c-Naphthylpyradone Dimers
A. niger–derived dimeric naphthylpyradones (10–31) consist of
two monomers with linear and/or angular structure(s). It is
interesting that most of these bis-naphtho-γ-pyrones were
produced by symbiotic A. niger strains. Chemical investigation
of eight A. niger strains led to isolation of the same SM
aurasperone A (10) (Tanaka et al., 1966; Tanaka et al., 1972;
Akiyama et al., 2003; Zhang et al., 2007b; Fang et al., 2016; Li et al.,
2016; Wang et al., 2018; Padhi et al., 2020), which possessed a
broad spectrum of bioactivities including moderate cytotoxicity
(Fang et al., 2016; Padhi et al., 2020), strong antimicrobial effect
(Lu et al., 2014; Padhi et al., 2020), and xanthine oxidase (XO)
inhibitory and anti-hyperuricosuric activity (Song et al., 2004).
Aurasperone B (15) had potent radical scavenging activity against
DPPH with an IC50 value of 0.01 μM (Leutou et al., 2016). Marine
strain SCSIO Jcsw6F30 was a prolific producer of asperpyrone-
type bis-naphtho-γ-pyrones (BNPs) 10, 13–16, 18, 20–22, 24,
and 27, among which compounds 13, 16, and 20 exhibited
remarkable inhibitory effects on COX-2 (Fang et al., 2016). In
addition to nigerasperone A (4), two dimeric naphthylpyradones
nigerasperones B (29) and C (19) were obtained from strain
EN-13 and shown to exhibit a moderate radical scavenging effect on
DPPH (Zhang et al., 2007b). Bioassay-guided fractionation of the
crude extract of strain AKRN associated with Entandrophragma
congoënse afforded a new antibacterial naphtho-γ-pyrone dimer 2-
hydroxydihydronigerone (30) (Happi et al., 2015).

One possible pathway for biosynthesis of γ-naphthylpyradone
derivatives had been first proposed by Obermaier and Muller
(2019). As shown in Figure 3, one acetyl-CoA and six malonyl-
CoA clusters were used as substrates for the biosynthesis of
compounds 1–3 and 8 by successive catalytic reactions in a
nonreducing PKS (nrPKS) system. Two of these monomers
further dimerized at various carbon positions (C-6, C-7, C-9,
or C-10) and resulted in the formation of dimers 16, 21, 27, and
28. Lately, one nrPKS gene D8.t287 responsible for the
biosynthesis of the initial precursor heptaketone was identified
and characterized by target gene knockout experiment and
UPLC-MS analysis (Hua et al., 2020). However, the role of the
gene AunB or BfoB is not confirmed so far.

α-Pyranones
A. niger–derived α-pyranones contain 14 monocyclic compounds
(32–40, 50), 7 dicyclics (41–47, 51), three tricyclics (48, 49, and
56), and four tetracyclics (52–55). Chemical analysis of an
endophytic A. niger strain colonizing in liverwort
Heteroscyphus tener (Steph.) Schiffn resulted in isolation of
three new amide campyrones A–C (38–40) together with
compounds 33 and 34 (Talontsi et al., 2013; Li et al., 2015).
One possible biosynthetic pathway proposed by Reber and
Burdge (2018) suggested that compounds 38–40 were,
respectively, formed by one malonyl-CoA and three N-acetyl
aliphatic amino acids including L-valine, L-leucine, and
L-isoleucine (Figure 4), along with two congeners
asnipyrones A (42) and B (46) and nigerapyrones A-H
(35–37, 43–45, 48–49) were first discovered from a
mangrove plant–derived strain MA-132 (Liu et al., 2011).

FIGURE 3 | Proposed biosynthetic pathway of γ-naphthylpyridones.
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Unfortunately, none of these compounds showed potent
cytotoxic or antimicrobial activities. Nafuredin (50) and
bicoumanigrin (52) were new α-pyranone analogs produced
by marine sponge-derived A. niger strains; the former
exhibited a powerful and selective inhibitory effect on
NFRD (NADH-fumarate reductase) (Takano et al., 2001; Ui
et al., 2001) and the latter 3,3′-bicoumarin had moderate
cytotoxicity against leukemia and carcinoma cell lines
(Hiort et al., 2004). Three 8,8′-bicoumarins, orlandin (53),
kotanin (54), and 7-desmethyl-kotanin (55) were produced by
a number of A. niger strains from various sources, and 53

showed potent inhibitory activity against wheat coleoptile
growth at 1 mM but not toxic to day-old cockerels (Cutler
et al., 1979; Ovenden et al., 2004; Sorensen et al., 2009; Jomori
et al., 2020). Biosynthetically, one acetyl-CoA and four
malonyl-CoAs comprised one coumarin through several
successive reactions catalyzed by PKSs, followed by
formation of compounds 52–55 through dimerization
(Figure 5) (Huttel et al., 2003; Huttel and Muller, 2007;
Girol et al., 2012). In this pathway, PKS gene ktnS was
responsible for origination of dimeric coumarins 52–55,
gene ktnB encode O-methyltransferase, and gene ktnC
encode CYP450 monooxygenase, manipulating the
dimerization of 52–55.

c-Pyranones
To the best of our knowledge, only four γ-pyranone derivatives
(57–60) had been detected in SM of A. niger. Among these
substances, kojic acid (57) is the most common product with
weak antimicrobial property (Liu et al., 2011; Happi et al., 2015;
Padhi et al., 2020). In addition to carbonarone A (59) and tensidol
B (60), one new benzyl γ-pyranone nigerpyrone (58) was
discovered from a mutant strain FGSC A1279 ΔgcnE and was
found to have potent and selective activity against Candida
parapsilosis (Wang et al., 2018; Padhi et al., 2020).

Alkaloids
Pyrroles
Pyranonigrin derivatives (61–69) are a family characterized by
pyrano [2,3-b] pyrrole skeleton, and their biosynthesis are

manipulated by the pyn gene cluster in A. niger (Riko et al.,
2014; Yamamoto et al., 2015). Chemical investigation of one
marine sponge–derived strain afforded four pyranonigrins
B-D (61, 62, 64) and Ab (63), which 63 showed a strong
inhibitory effect on the growth of neonate larvae of the
plant pest insect Spodoptera littoralis (Hiort et al., 2004).
Pyranonigrins A (65), S (66), and E (67) were important
agents with potent radical scavenging activity toward DPPH
and superoxide (Miyake et al., 2007; Riko et al., 2014). One
possible biosynthetic pathway of pyranonigrin E (67) had
been first proposed by Yamamoto et al. (2015) and coworker
in 2015, in which the start units contained one acetyl-CoA,
six malonyl-CoAs, and one L-Ser (Figure 6), under the
action of gene pynA (PKS-NRPS hybrid synthase), pynI

(encode thioesterase), pynC (encode methyltransferase),
pynG (encode flavin-dependent oxidase), pynD (encode
CYP450), and pynH (encode aspartyl protease). After
non-enzymatic reaction, two pyranonigrin E (67) units
could be dimerized to form pyranonigrin F (69). One soil-
derived A. niger strain was found to produce a new
dichlorinated pyrrole pyoluteorin (70), which obviously
induced cell cycle arrest and apoptosis in human triple-
negative breast cancer cells MDA-MB-231 (Ding et al., 2020).
Two benzyl furopyrrols tensidols A (71) and B (72) from strain

FIGURE 4 | Proposed biosynthetic pathway of campyrones.

FIGURE 5 | Proposed biosynthetic pathway of orlandin (53) and

kotanin (54).
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FKI-2342 were potentiators of antifungal miconazole activity
(Fukuda et al., 2006) and lately corrected as compounds 59 and
60 (Henrikson et al., 2011).

Pyridones
A. niger–derived pyridone derivatives (73–82) have one benzyl
group and possess antimicrobial and cytotoxic properties (chatr
4). Two new α-pyridones aspernigrins A (73) and Bb (74) were
isolated from one A. niger strain of marine sponge Axinella
damicornis and showed moderate cytotoxicity and a potent
neuroprotective effect, respectively, (Hiort et al., 2004). When
cultivated in fermentation medium containing suberoylanilide
hydroxamic acid (SAHA) and p-fluoro SAHA, strain ATCC 1015
was discovered to produce three antifungal c-pyridones,
nygerones A (78), B (75), and p-fluoro nygerone B (77)
(Henrikson et al., 2009; Henrikson et al., 2011). In addition to
three γ-naphthylpyradones (1, 3, and 5) and one cyclic peptide
(111), three 2-benzyl-γ-pyridones aspernigrins B-D (80–82) were
obtained from the marine strain SCSIO Jcsw6F30, and 81 was
found to have potent inhibitory activity toward HIV-1 SF162-
infected TZM-bl cells (Zhou et al., 2016).

Other Alkaloids
Three fatty amines fumonisins B2 (83), B1 (84), and B4 (85) from
stains FGSC A1279 and IBT 28144 were carcinogenic (Nielsen
et al., 2009; Sorensen et al., 2009; Li et al., 2019). The aza gene
cluster in strain ATC C1015 was found be responsible for
biosynthesis of azanigerone D (86) (Zabala et al., 2012). In
addition to pyoluteorin (70), phenazine-1-carboxylic acid (87)
was produced by the soil A. niger strain (Ding et al., 2020). Two
new piperazines nigragillin (88) and nigerazine B (89) were
purified from strain ATCC 11414, and their biosynthesis were
regulated by the naphthopyrone precursor BGC alb gene cluster
(Chiang et al., 2011). Endophytic strain IFB-E003–derived
aspernigerin (90) displayed a potent effect on the tumor cell
lines nasopharyngeal epidermoid KB, cervical carcinoma Hela,
and colorectal carcinoma SW1116 (Shen et al., 2006).

Amides
Till the end of 2020, only six amides (91–96) had been isolated
and characterized from A. niger strains. Fractionation of crude
extract of marine strain BRF-074A afforded one furan ester
derivative (91), one cerebroside chrysogeside D (93), and two
spiro amides pseurotins A (95) and D (96), among which 91
exerted a cytotoxic effect on HCT-116 cell line (Uchoa et al.,
2017). When cultivated on wheat bran, strains CFR-W-105 and
MTCC-5166 were discovered to produce nigerloxin (92) with free
radical DPPH scavenging activity and inhibitory effect on
lipoxygenase-I (LOX-1) and rat lens aldose reductase (RLAR)
(Rao et al., 2002; Chakradhar et al., 2009). Ergosterimide (94) was
a new natural Diels–Alder adduct of ergosteroid and maleimide
produced by the strain EN-13 from marine alga (Zhang et al.,
2007a).

Cyclopeptides
All peptides of A. niger are cyclic and consist of ten dipeptides
(97–106), eight pentapeptides (107–114), and three
bis(dipeptide)s (115–117). In addition to α-pyranones 32–34,
38, and 40, four diketopiperazines (97, 99, 115, and 116) were
isolated from an endophytic strain of liverwort Heteroscyphus
tener (Steph.). Schiffn, and compounds 115 and 116 showed
weak activity against the human ovarian carcinoma cancer cell
line A2780 (Li et al., 2015). However, 115 exhibited significant
selective cytotoxicity to human leukemia murine colon 38 and
human colon H116 and CX1 cell lines (Varoglu et al., 1997;
Varoglu and Crews, 2000). One strain BRF-074A from
Northeast Brazilian coast was a prolific producer of
cyclopeptides (101–107, 114) (Uchoa et al., 2017).
Phytochemcial analysis of an uncoded marine strain afforded
a new diketopiperazine dimer (117) and nine monomers
(98–106) (Ovenden et al., 2004; Zhang et al., 2010; Uchoa
et al., 2017). Compounds 98 and 99 had been reported to
regulate plant growth (Kimura et al., 1996; Kimura et al.,
2005), and 101 had selectively potential cytotoxicity (Graz
et al., 2000). Eight malformin analogs (107–114) were a
group of SMs containing structural skeleton of cyclo-D-
cysteinyl-D-cysteinyl-L-amino acid-D-amino acid-L-amino
acid (Kim et al., 1993). Malformin A (107) demonstrated
antibacterial (Suda and Curtis, 1966; Liu et al., 2013) and

FIGURE 6 | Proposed biosynthetic pathway of pyranonigrin E (67) and

pyranonigrin F (69).
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anticancer activities (Wang et al., 2015), while malformin C
(114) exhibited a broad spectrum of biological properties
including anti-HIV-1 (Zhou et al., 2016), cytotoxic (Jomori
et al., 2020), anticancer (Wang et al., 2015), and antibacterial
(Suda and Curtis, 1966; Liu et al., 2013).

Polyketides
Polyketides (118–155) are the largest group of SMs produced by
A. niger. Citric acid (118) and itaconic acid (119) have been
large-scale products in food and pharmaceutical industry for
decades (Andersen et al., 2011; Li et al., 2012). Some other
valuable chemicals with low molecular weight are also produced
by A. niger, such as 2-phenylethanol (128) (Etschmann et al.,
2015), p-hydroxyphenylacetic acid (129) (Happi et al., 2015),
gallic acid (130) (Saeed et al., 2020), benzoic acid derivative
(131) (Zabala et al., 2012), and asperyellone (147) (Jefferson,
1967; Chidananda et al., 2008). In comparison with 119, the
biological activity of hexylitaconic acid (120) dramatically
attenuated (Varoglu et al., 1997; Varoglu and Crews, 2000).
By overexpression of transcriptional regulator pBARAGA-CaaR
of BGC caa in glucose minimal medium, strain ATC C1015
successfully produced three acyltetronic acid derivatives carlosic
acid (123), carlosic acid methyl ester (124), and agglomerin F
(125) (Yang et al., 2014). Chemical analysis of two strains
KB1001 and F97S11 afforded fifteen meroterpenoid
derivatives (132–146), in which biosynthesis was deduced to
be manipulated by the yan gene cluster in strain KB1001
(Figure 7) (Bugni et al., 2000; Holm et al., 2014). Furthermore,
yan gene cluster consisted of gene yanA [encode 6-methylsalicylic
acid synthase (6-MSAS)] together with eight additional genes yanB
(encode decarboxylase), yanC (encode CYP450), yanD (encode
dehydrogenase), yanE (unknown), yanF (encode oxidase), yanI

(encode O-mevalon tiransferase), yanH (encode CYP450), and
yanG (encode prenyl transferase).

Asperyellone (147) was the common product of strains NRRL-
3 and CFTRI 1105 (Jefferson, 1967; Chidananda et al., 2008) and
exhibited inhibitory effect on lipoxygenase and human platelet
aggregation (Rao et al., 2002), UVB protection (Santhakumaran
et al., 2019), and antifungal activity (Ayer et al., 1996). In addition

FIGURE 7 | Proposed biosynthetic pathway of yanuthones.
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to γ-pyridone (86), five highly oxygenated pyranoquinones (86,
149, and 151–154) were detected in SMs of strain T1 by activation
of the aza gene cluster (Zabala et al., 2012) (Figure 8). In
biosynthesis of pyranoquinones, genes azaE (encode
ketoreductase), azaF (encode acyl:CoA ligase), azaG (encode
FAD-dependent oxygenase), azaH (encode salicylate
monooxygenase), azaI (encode CYP450), azaJ (encode
dehydrogenase), and azaL (encode FAD-dependent oxygenase)
play important roles. Funalenone (150), one phenalene derivative,
was obtained from strain ATCC 11414 whether the albA gene was
auxotrophic or not (Chiang et al., 2011). Meanwhile, funalenone
(150) was also found in A. nigermutant ΔgcnE (strain FGSC A1279
lacking epigenetic regulatorgcnE) (Wang et al., 2018). Two
tetracycline analogs BMS-192548 (157) and TAN-1612 (158)
were, respectively, obtained from strains WB2346 and ATC
C1015 and shown to be acyclic binding inhibitors of neuropeptide
Y receptors (Kodukula et al., 1995; Shu et al., 1995; Li et al., 2011).

Sterols
As the by-product of manufacture of citric acid, 14-
dehydroergosterol (159) and its benzoate (160) were the first
steroids isolated from A. niger (Barton and Bruun, 1951) and
possessed anti-inflammatory and cytotoxic properties (Ano et al.,
2017). Strain MA-132–derived nigerasterols A (161) and B (162)
had potent antiproliferative activity against human promyelocytic
leukemia (HL60) and human lung carcinoma (A549), with IC50

values of 0.11 and 0.43 μM, respectively, (Liu et al., 2013). In
addition to ergosterimide (94), four steroid derivatives (163–166)
were discovered from the endophytic strain EN-13 associated with
marine brown alga (Zhang et al., 2007a).

CONCLUSION AND FUTURE PROSPECTS

A. niger strains are ubiquitous in nature and occupy a wide
spectrum of habitats in animal and plant environments, and
they are economically important both as harmful or beneficial
microorganisms. Numerous chemical studies suggest that A.
niger is one of the prolific sources of functional biomolecules,
including organic acids, vitamins, pesticides, valuable
proteases, and therapeutic agents, which have potential

FIGURE 8 | Proposed biosynthetic pathway of pyranoquinones in strain

ATCC 1015.
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application in various fields including agriculture, food
industry, and medicine. However, the number of new
bioactive compounds from A. niger has been decreasing for
the past 5 years. This deteriorating trend will result in a
negative impact on discovery and development of new A.
niger–derived valuable substances, such as new drug leads.
Therefore, more efforts should be made to explore more
sources for isolation of new A. niger strains and to awaken
their silent BGCs to manufacture novel functional
biomolecules using new strategies, such as one strain
many compounds (OSMAC) approach (Hemphill et al.,
2017; Pan et al., 2019) and genetic mining combined with
metabolic engineering (Zhang et al., 2019; Li et al., 2020; Wei
et al., 2021). Moreover, functional genomics should allow for
an in-depth understanding of the underlying biosynthetic
logic of A. niger–derived SMs (He et al., 2018). In order to
accelerate development of valuable products from A. niger,
construction and breeding of robust strains as well as
optimization of their cultivation and fermentation
processes should be intensively conducted at various levels
(Zou et al., 2015; Xu et al., 2019).
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