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The study investigated the efficacy of two isolates of Aspergillus terreus (65P and 9F) on

the growth, morphology and pathogenicity of Pythium aphanidermatum on cucumber.

In vitro tests showed that the two isolates inhibited the growth of P. aphanidermatum in

culture. Investigating P. aphanidermatum hyphae close to the inhibition zone showed

that the hyphae showed abnormal growth and loss of internal content. Treating

P. aphanidermatum with the culture filtrate (CF) of A. terreus resulted in significant rise in

cellular leakage of P. aphanidermatum mycelium. Testing glucanase enzyme activity by

both A. terreus isolates showed a significant increase in glucanase activity. This suggests

that the cell walls of Pythium, which consist of glucan, are affected by the glucanase

enzyme produced by A. terreus. In addition, Aspergillus isolates produced siderephore,

which is suggested to be involved in inhibition of Pythium growth. Also, the CFs of 65P

and 9F isolates significantly reduced spore production by P. aphanidermatum compared

to the control (P < 0.05). In bioassay tests, the two isolates of A. terreus increased the

survival rate of cucumber seedlings from 10 to 20% in the control seedlings treated

with P. aphanidermatum to 38–39% when the biocontrol agents were used. No disease

symptoms were observed on cucumber seedlings only treated with the isolates 65P and

9F of A. terreus. In addition, the A. terreus isolates did not have any negative effects on

the growth of cucumber seedlings. This study shows that isolates of A. terreus can help

suppress Pythium-induced damping-off of cucumber, which is suggested to be through

the effect of A. terreus and its glucanase enzyme on P. aphanidermatum mycelium.

Keywords: biocontrol, antagonistic activity, cucumber damping-off, oomycete, biological control

INTRODUCTION

In Oman, over 90% of greenhouses are dedicated exclusively for cucumber (Cucumis sativus).
However, cucumber production suffers from Pythium-induced damping-off disease which is
responsible for over 75% mortality in cucumber seedlings (Al-Kiyumi, 2006; Al-Sadi et al., 2012).
Damping-off of vegetable crops is caused by several species of Pythium (Kraus and Loper, 1992;
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Al-Sadi et al., 2010), Rhizoctonia solani (Asaka and Shoda,
1996; Sadeghi et al., 2006), Phytophthora capsici (Sharifi-
Tehrani and Omati, 1999), and Fusarium (Berg et al., 2017;
Hrunyk et al., 2017; Lamprecht and Tewoldemedhin, 2017).
P. aphanidermatum is the main causal agent of damping-off of
cucumber in Oman and elsewhere (Al-Sadi et al., 2011, 2012;
Hatami et al., 2013).

Several methods are used to manage damping-off disease,
which include chemical, physical and biological methods.
Chemical control of Pythium damping-off is practiced through
the use of Mefenoxam, Hymexazol, Propamocarb, and other
fungicides (Papavizas et al., 1978; Al-Sa’di et al., 2008, Al-
Sadi et al., 2015a). Growers usually use solarization in summer
to reduce Pythium propagules in soil (Deadman et al.,
2007). Biological control, using microorganisms to inhibit
plant pathogens, offers another alternative to chemical control.
Several studies indicated the successful use of biocontrol
agents to suppress Pythium damping-off of cucumber. These
include the use of biocontrol agents such as Pseudomonas
fluorescens, Trichoderma harzianum, and Penicillium stipitatum
(Georgakopoulos et al., 2002; Al-Hinai et al., 2010; Al-Sadi et al.,
2015b).

Endophytic fungi promote biotic stress tolerance, including
disease stress, to host plants and they have critical roles in
plant survival under stress conditions. Various endophytic fungi
and bacteria, including Actinomycetes, Bacillus, Pseudomonas,
Trichoderma, and Epicoccum were reported to elicit plant disease
tolerance in tomato, cotton, chilli, potato and cacao (Rajendran
and Samiyappan, 2008; Lahlali and Hijri, 2010; Muthukumar
et al., 2010; Goudjal et al., 2014). There are several mechanisms
followed by endophytic fungi and bacteria in the biocontrol of
pathogens. These include the synthesis of secondary metabolites
such as antibacterial, antifungal and anti-insect substances (Xiao
et al., 2014; Mousa et al., 2016; Burgess et al., 2017), competition
in rhizosphere (Weller, 1988; Whipps, 2001) and the induction
of defense responses in plants against pathogens (Yedidia et al.,
1999; Howell, 2003). Others play an important role in mineral
and element solubilisation for plant absorption and nutrition
(Wakelin et al., 2004; Zhang et al., 2013).

Aspergillus terreus is a common fungus in soil and plants
(Tarafdar et al., 1988; Khan et al., 2010). A study showed that
an antifungal compound from A. terreus effectively inhibited
the phytopathogenic fungi Botrytis cinerea, Rhizoctonia solani,
and Pythium ultimum (Kim et al., 1998). Another study revealed
the effect of Aspergillus species bioactive metabolites on Pythium
ultimum control (Abdallah et al., 2014). Moreover, applying A.
terreus provided effective disease control to soil infested with
P. deliense that causes damping-off disease of maize (Abdelzaher
et al., 2000). Also, the combined treatment of A. terreus and
Acremonium strictum led to antagonistic influence on root-knot
disease of tomato caused by Meloidogyne incognita (Singh and
Mathur, 2010).

To our knowledge, the efficacy of A. terreus to control
P. aphanidermatum-induced damping-off of cucumber has not
yet been reported, therefore, this study aims to investigate
the ability of the endophytic fungus A. terreus to suppress
P. aphanidermatum and Pythium-induced damping-off of

cucumber. Objectives of this research work were (1) to
select and identify endophytic fungi from plants in Oman
which are effective in suppressing P. aphanidermatum; (2) to
determine the morphological changes of P. aphanidermatum
under A. terreus treatments using light microscope and scanning
electron microscope; (3) to determine the effect of A. terreus
culture filtrate (CF) on spore production and cellular leakage of
P. aphanidermatum; and (4) to investigate the ability of A. terreus
in the biocontrol of damping-off of cucumber. The selection of
Rhazya stricta and Tephrosia apollinea plants for the isolation
of endophytic fungi was mainly due to the intention to isolate
endophytes which are present in/on native plants, and not on
cultivated plants on which endophytes might be introduced from
abroad. This will help come up with antagonistic fungi adapted
to conditions of this part of the world.

MATERIALS AND METHODS

Collection, Isolation, and Identification of
Aspergillus Isolates
Fresh plants of Rhazya stricta and Tephrosia apollinea were
collected from Haima and Adam, in the Sultanate of Oman in
May 2016. Endophytic fungi present in the samples were isolated
using a modified method of Larran et al. (2002). Briefly, root,
shoot and leaves were washed under running tap water and cut
into several pieces (approximately 5 mm diameter). Then, they
were surface sterilized by dipping successively into 70% ethanol
for 1 min, sodium hypochlorite 1% for 1.5–2 min, and finally
rinsed twice in sterile distilled water. Four pieces of each sample
were placed in each Petri dish containing 2.5% potato dextrose
agar (PDA). Dishes were incubated in darkness at 27◦C for
7 days and checked every 2 days for the emergence of endophytic
fungi. Colonies growing on plates were then transferred to
PDA plates. For the biocontrol study, P. aphanidermatum strain
SQUCC002 was obtained from the Sultan Qaboos University
culture collection.

To identity the isolated Aspergillus to the species level, total
genomic DNA was extracted from freeze dried mycelium using
the protocol of Lee and Taylor (1990). The internal transcribed
spacer region of the ribosomal RNA (ITS), b-tubulin (TUB) and
Calmodulin (CMD) regions were amplified using the primer
pairs ITS1 and ITS4 (White et al., 1990), BT2A/BT2B (Koenraadt
et al., 1992), and CMD5/CMD6 (Hong et al., 2005), respectively.
The temperature profile for the ITS was an initial denaturation
step for 10 min at 95◦C, followed by 35 cycles of denaturation
at 95◦C for 30 s, annealing at 55◦C for 30 s and extension at
72◦C for 90 s and a final extension step of 72◦C for 10 min.
The temperature profile for TUB and CMD was an initial
denaturation step for 5 min at 94◦C, followed by 35 cycles of
denaturation at 94◦C for 45 s, annealing at 55◦C for 45 s and
extension at 72◦C for 60 s and a final extension step of 72◦C for
7 min. Purification and sequencing of PCR products were carried
out at Macrogen, Korea. Sequences were aligned and improved
using MEGA v.6 (Tamura et al., 2013). A maximum likelihood
analysis was performed by using raxmlGUI v.1.3 (Silvestro and
Michalak, 2012) to identify the species of Aspergillus using the
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combined alignment of ITS, TUB, andCMD regions. The optimal
ML tree search was conducted with 1000 separate runs, using the
default algorithm. Bootstrap 50% majority-rule consensus trees
were generated and the final tree was selected among suboptimal
trees from each run by comparing likelihood scores under the
GTRGAMMA substitution model. Sequences generated from
the analysis were deposited in GenBank under the accession
numbers: ITS (65P: MG050978, 9F: MG050979), TUB (65P:
MG050980, 9F: MG050981), and CMD: (65P: MG050982, 9F:
MG050983).

Effect of Aspergillus terreus on Growth
and Morphology of Pythium

aphanidermatum
The antagonistic activity of Aspergillus terreus 65P and 9F isolates
was checked against P. aphanidermatum in vitro. A 3-mm
diameter disk of 2-day old P. aphanidermatum culture was placed
on the edge of PDA plates. On the opposite edge, a 3-mm
diameter disk of 7 day-old A. terreus culture was placed. The
plates were incubated at 28◦C until fungal mycelia of the control
plate of P. aphanidermatum covered the agar surface. After that,
the inhibition zone length (mm) was measured for all plates. The
experiment was repeated twice using three replicates each time.

The changes in the hyphal morphology of P. aphanidermatum
under the effect of A. terreus isolates 65P and 9F was screened
using a light microscope. The morphology of 50 main hyphae
and 50 hyphal tips were thoroughly examined to determine the
morphological differences between P. aphanidermatum grown
on PDA (Control) and P. aphanidermatum hypha close to
the inhibition zone with A. terreus. Three basic morphological
characteristics were screened in this study: general shape, internal
content (cytoplasm), and end form of both main and hyphal
tips. The experiment was repeated twice. Morphology of hyphae
was also examined using a scanning electron microscope SEM
(INSTUMENT JSM- 5600) at a voltage of 20 kV. A protocol
described by Goldstein et al. (2003) was followed to prepare
samples for the electron microscopy.

Effects of Aspergillus terreus Culture
Filtrate on Electrolyte Leakage and
Oospore Production of Pythium

aphanidermatum
Aspergillus terreus isolates 65P and 9F were grown in potato
dextrose broth (PDB) for ten days in an incubator at 28◦C,
and then the fungal mycelium and CF were separated by
centrifugation at 10,000 g. Then CF was further filtered using
Minisart filters with 0.2 µm pore size. The effect of CF of 65P
and 9F CFs on P. aphanidermatum cellular leakage was studied
by measuring extracellular conductivity (Lee et al., 1998; Manhas
and Kaur, 2016). P. aphanidermatum was grown in PDB for
7 days at 28◦C in an incubator shaker. Subsequently the fungal
mycelium was obtained by centrifugation for 20 min at 10,000g.
After that, the mycelium was washed in sterile distilled water and
dried on sterile filter paper. Five microgram of dried mycelium
was added to 10 ml of 65P and 9F CFs. The supernatants were
obtained twice instantly (0 min) and after 24 h of treatment by

centrifugation at 10,000g for 15 min. Conductivity meter was
used to measure the extracellular conductivity for the treatments
and control. The test was repeated three times.

The influence of bioactive antifungal metabolites of A. terreus
strains 65P and 9F on P. aphanidermatum oospore production
was studied. The CF wasmixed with V8 agar at a concentration of
20%, whereas the control plates had V8 agar only. Then the plates
were inoculated with 3 mm disk of P. aphanidermatum PDA
plates at 28◦C for three weeks. Oospores were enumerated in
30 consecutive microscopic squares at 40x magnification. There
were three replicates for treatments and control.

Biochemcial Analysis of the Culture
Filtrate of Aspergillus Isolates
To detect extracellular enzyme (glucanase) production by
A. terreus isolates the method of Jackson et al. (2013) was
followed. Briefly, glucanase substrate (4-MUB-β-D-cellobioside),
4-methylumbelliferone standard, and NaHCO3 buffer solutions
were prepared. Then the CF of A. terreus and the media
(PDB) were organized on a 96-well black microplate and
mixed with the prepared solutions, using six replicates for each
sample. Absorbance was measured at 410 nm, and the following
formula was used to determine enzyme activity (Jackson et al.,
2013):

Enzyme activity = (mean sample fluorescence – mean initial
sample fluorescence)/((mean standard fluorescence/0.5 mol) ×

(mean quench control fluorescence/mean standard fluorescence)
× (0.2 ml) × (time in hour)).

Analysis of Aspergillus terreus metabolites was done by
growing A. terreus isolates 65P and 9F in PDB for ten
days in an incubator at 28◦C. Then the CF was separated
from fungal mycelium spores in a centrifuge, followed by
filtration through Minisart filters with 0.2 µm pore size. Liquid
chromatography–mass spectrometry (LC-MS) was used for
the detection of metabolites produced by A. terreus isolates
depending on their masses. The CFs of A. terreus isolates 65P
and 9F were concentrated by a freeze dryer machine to 25% of its
total volume, then injected directly to LC-MS equipped with an
electrospray ionization (ESI) source. The analysis was performed
in positive polarities at ion spray voltage of+3000 V, Frag= 5.0V
CF = 0.000, and DF = 0.000.

Four media were prepared to detect siderophore production
by 65P and 9F strains including: King B medium consisting of
glycerine 10 g/L, proteose-peptone 20 g/L, and MgSO4 1.5 g/L
(de Villegas et al., 2002), glucose medium consisting of K2HPO4

0.56 g/L, Glucose 10 g/L, urea 0.85 g/L, and Glutamic acid 1 g/L
(de Villegas et al., 2002), citrate medium consisting of K2HP04
6.0 g/L, KH2P04 3.0 g/L, (NH4)2S04 1.0 g/L, MgS04.7H20 0.2 g/L,
and citric acid 4.0 g/L (Meyer and Abdallah, 1978) and asparagine
medium consisting of Asparagine 5 g/L, MgSO4 0.1 g/L, and
K2HPO4 0.5 g/L (Rachid and Ahmed, 2005). The pH for all the
media was adjusted to 7.0. A 3 mm diameter mycelial disk taken
from fresh potato dextrose agar plates of 65P and 9F isolates
was transferred to the prepared media and incubated at 28◦C on
a rotary shaker (120 rpm) for 5 days. The culture broths were
centrifuged at 10,000 g for 15 min and the supernatants were
filtered through 0.2 µM Minisart filters. The absorbance of the
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supernatants wasmeasured at 400 nmusing six replicates for each
sample.

The concentration was calculated according to method
of Meyer and Abdallah (1978) using absorption maximum
(λ = 400 nm) and molar extinction coefficient ε = 20000 (Rachid
and Ahmed, 2005).

Control of Pythium-Induced
Damping-Off of Cucumber by Aspergillus

Isolates
The effect of 65P and 9F A. terreus isolates on Pythium damping-
off of cucumber was studied using the following experimental
approach. Four pots (12-cm in diameter) were used, with seven
cucumber seeds sown in each pot. There were one control
(irrigated with PDB) and three treatments: the first treatment
was inoculated with a 57 mm plate of P. aphanidermatum, 2 cm
below soil level; the second treatment was irrigated with 25 ml
spore/mycelial suspension of 65P or 9F A. terreus isolates and
the third treatment was inoculated with P. aphanidermatum
and irrigated with 25ml spore/mycelial suspension of 65P or 9F
A. terreus isolates (Al-Hinai et al., 2010). Pots were incubated
in a glasshouse and the temperature was adjusted at 28◦C. After
3 weeks the surviving seedlings, seedlings shoot length, seedlings
fresh weight and seedlings dry weight were determined. The
experiment was repeated twice.

Statistical Analysis
Data were analyzed using IBM SPSS Statistics 24.0. Treatment
means ± SD were compared using independent sample t-test,
One-way ANOVA and Duncan’s Multiple Range Test. Pearson

Chi-Square test was used for P. aphanidermatum morphological
study and Poisson test was applied for spore production count
analyze.

RESULTS

Identification of Aspergillus Isolates
Aspergillus isolate 65P was isolated from the root of R. stricta and
Aspergillus isolate 9F was isolated from the root of T. apollinea.
Species in Aspergillus are shown in Figure 1. The combined ITS,
TUB and CMD dataset comprises 12 isolates of Aspergillus with
Penicillium herquei (CBS 336.48) as the outgroup taxon. The
manually adjusted dataset comprised 1664 characters including
gaps (ITS: 1-565, TUB: 566-1102, CMD: 1103- 1664). A best
scoring RAxML tree resulted with the value of Likelihood: –
7589.972036 (Figure 1). The Aspergillus isolates in this study
grouped with previously published A. terreus with high a
boostrap support.

Effect of Aspergillus terreus on Growth
and Morphology of Pythium

aphanidermatum
The antagonism test showed the suppression of
P. aphanidermatum growth in PDA plates under the influence of
A. terreus isolates. This suppression was illustrated through the
production of an inhibition zone by A. terreus. The inhibition
zone produced by isolate 65P (8.66 mm) was significantly larger
than the one produced by isolate 9F (Table 1).

FIGURE 1 | RaXML tree for the analysis Aspergillus spp. based on the combined ITS, TUB, and CMD gene regions. The tree is rooted with Penicillium herquei (CBS

336.48).
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TABLE 1 | Effect of Aspergillus terreus isolates 65P and 9F on the inhibition of

Pythium aphanidermatum growth and the effect of their culture filtrate (CF) on

extracellular conductivity (0–24 h) and spore production by P. aphanidermatum.

Inhibition zone

(mm)

Extracellular

conductivity (mV)

Spore production

(no.)

Control 0 c 2.1 b 73 a

9F 5.8 b 24.6 a 17 b

65P 8.7 a 35.7 a 18 b

Values with the same letters in the same column are not significantly different from

each other (Duncan test, P > 0.05).

Microscopic examination showed that Aspergillus isolates 65P
and 9F induced significant changes in the general appearance,
content and ends of P. aphanidermatum hyphae (Figure 2). The
effects were on the main hyphae and hypha branches close to the
inhibition zone. The general appearance of hyphae became wavy
(Figure 3), while for the internal content the hyphae lost most
or part of its content (the cytoplasm) (Figure 3). Hyphal ends
were also affected (Figure 3). Significant differences were found
between the two Aspergillus isolates in their effect on general
shape of main hypha and branches and also on the internal
content of the main hyphae.

Furthermore, the scanning electron microscope showed that
Aspergillus isolates 65P and 9F caused considerable changes in
P. aphanidermatum hyphal morphology (Figure 4). Most of
the observed hyphal patterns were wrinkled in both treatments
compared to control which had normal hyphae.

Effects of Aspergillus terreus Culture
Filtrate on Electrolyte Leakage and
Oospore Production of Pythium

aphanidermatum
Treating P. aphanidermatum with the CF of Aspergillus
isolates 65P and 9F resulted in significantly higher extracellular
conductivity values after 24 h in comparison with the control,
with the values been 35.7 mV for 65P, 24.6 mV for 9F and 2.1 mV
for the control (Table 1). This gives indication that the mycelium
of P. aphanidermatum leaked electrolytes as a result of possible
enzymes or metabolites produced by A. terreus.

The CFs of 65P and 9F isolates of A. terreus significantly
reduced spore production by P. aphanidermatum compared to
the control (P < 0.05) (Table 1). Oospores which were produced
in control (73) were higher than the spores in 65P treatment (18)
and 9F treatment (17).

Biochemical Analysis of the Culture
Filtrate of Aspergillus Isolates
The concentration of glucanase in the CFs of 65P (3.99) and 9F
(4.73) were significantly higher than the media control which
was (0.47). Enzyme activity is expressed in nmoles substrate
consumed h−1 ml of CF or media−1). This confrms that
A. terreus isolaetes produce glucanse enzyme and its activity
increases within minutes of application.

The spectra of isolate 65P CF showed a set of peaks in
the positive and negative ion ESI spectra. The positive spectra

FIGURE 2 | Effect of Aspergillus terreus 65P and 9F isolates on Pythium

aphanidermatum morphology using light microscope. Normal general shape

in control plate (A) vs. disintegrated/wavy hyphae (B); (C) the normal internal

content; (D) abnormal hyphae: semi-empty pattern with content degradation

under influence of 9F treatment, and abnormal hyphae: pale granular, semi

empty and empty under influence of 65P (E) and 9F (F) treatments

consecutively; (G) normal ends in control plate (no treatment); (H,I) wrapped

up end under effect 65P treatment; (J) wrapped up end under effect 9F

treatment; (K) swollen end under effect 9F treatment and (L,M) hook-like end

under effect of 65P and 9F treatments, consecutively.

showed distributions of peaks ranging between 146.8000 and
909.6000 m/z (Supplementary Figure S1). However, peaks in
the negative ion mode spectra were in the range of 148.8000
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FIGURE 3 | Effect of A. terreus on the hyphal morphology of

P. aphanidermatum. Columns and bars represent percentage ± CV of SD.

Values with the same letters are not significantly different from each other

(Pearson Chi-Square: asymptotic significance, 2-sided; > 0.05).

to 2522.7000 m/z. Peaks in the positive and negative ion
mode spectra for isolate 9F were in the ranges of 132.0000
to 928.5000 m/z and 149.0000 to 2560.3000 m/z, respectively
(Supplementary Figure S2).

Siderophore production by 65P and 9F isolates in four media
is displayed in Table 2. It indicates siderophore secretion by
both isolates of A. terreus at varying values depending on the
medium. The best medium that contains the highest amount of
siderphore was King B medium for 65P isolate (93.63 µM) and
9F isolate (55.88 µM), followed by Glucose medium (63.78 µM
for 65P isolate and 15.91µM for 9F isolate). However, Citrate and
Asparagine media had low amounts of siderophore compared to
King B and Glucose media.

Control of Pythium-Induced
Damping-Off of Cucumber by Aspergillus

Isolates
Inoculation of cucumber seedlings with P. aphanidermatum
resulted in the development of damping-off symptoms, with only
10–20% of the seedlings survived. The rate of seedling survival
increased to 39.3% in seedlings treated by 65P and 37.5% in
seedlings treated by 9F (Figure 5).

TABLE 2 | Effect of medium content on siderophores concentration (µM)

produced by 65P and 9F isolates.

Medium King B

medium

Glucose

medium

Citrate

medium

Asparagine

medium

65P 93.63a ± 3.74 63.78b ± 3.23 7.18e ± 0.11 6.96e ± 0.32

9F 55.88c ± 1.29 15.91d ± 0.52 6.99e ± 0.11 7.20e ± 0.1

Values (concentration in µM ± SD) with the same letters are not significantly

different from each other (Duncan test, P > 0.05).

FIGURE 4 | Effect of A. terreus on the P. aphanidermatum hyphae

morphology using SEM. (A,B) Abnormal hyphae: wrinkled or shrunken

patterns under effect of 9F treatment (C,D) abnormal hyphae: wrinkled or

shrunken patterns with under effect of 65P treatment, (E,F) normal patterns of

hyphae in the control.

No significant effect was found for the 65P isolate on the shoot
length of cucumber seedlings, while the 9F isolate significantly
increased the shoot length of cucumber seedlings (Figure 6). No
effect was found forAspergillus isolates on the shoot fresh and dry
weight (Figure 7).

DISCUSSION

The current study identified Aspergillus terreus as an entophytic
fungus in R. stricta and T. apollinea. A. terreus was not
isolated previously from R. stricta and T. apollinea. A. terreus
was identified to the species level based on sequences of the
ITS, TUB, and CALMODULIN genes, which were efficient
in discriminating this species from other Aspergillus species
(Peterson, 2008; Arabatzis and Velegraki, 2013; Samson et al.,
2014).

Aspergillus terreus 65P and 9F isolates inhibited the growth
of P. aphanidermatum in vitro. A study carried out by Kumar
et al. (2000) showed the production of an inhibition zone by
A. terreus against Neurospora crassa. Moreover, a study by Wang
et al. (2011) revealed that new compounds from A. terreus could
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FIGURE 5 | The biocontrol efficacy of endophytic fungi treatments against

P. aphanidermatum damping-off. (A) 65P treatment (B) 9F treatment.

Columns and bars represent percentage ±95% confidence limit. Values with

the same letters are not significantly different from each other (Duncan test,

P > 0.05).

produce inhibition zone against Pseudomonas aeruginosa and
Enterobacter aerogenes growth. It is likely that an inhibition
zone was produced because A. terreus secrets metabolites that
interfere with the growth of P. aphanidermatum. Ferrón et al.
(2005) and Wang et al. (2011) reported the production of
terremides A and B and lovastatin by A. terreus that were found
responsible for the production of inhibition zones. In our study,
the use of CF from A. terreus isolates resulted in electrolyte
leakage in P. aphanidermatum mycelium and also interfered
with oospore production in P. aphanidermatum. Extracellular
conductivity of Streptomyces hydrogenans supernatant that was
treated with Alternaria brassicicolamycelium was increased with
the progress of time compared to 0 min (Manhas and Kaur,
2016). P. aphanidermatum cell wall polysaccharides consist of
18% of cellulose and 82% of (1 → 3), (1 → 6)-β-D-glucans
(Blaschek et al., 1992). Our study showed that A. terreus 65P
and 9F isolates have the ability to produce glucanase enzyme.
A previous study by Gao et al. (2008) proved the production
of extracellular enzymes by thermoacidophilic fungal A. terreus
M11. Also, the results of Djonović et al. (2006) demonstrated
the involvement of β-1,6-glucanase in mycoparasitism and its
relevance in the biocontrol activity of Trichoderma virens against
plant pathogen Pythium ultimum. Furthermore, T. harzianum
produced 1,3-β-glucanase and cellulase which led to control

FIGURE 6 | Effect of inoculation with 65P (A) and 9F (B) fungi on cucumber

seedlings shoot length. Error bars represent 95% confidence limit of a means.

Values with the same letters are not significantly different from each other

(ANOVA Test, P > 0.05).

Pythium damping-off of cucumber seedlings (Thrane et al.,
1997). In addition, El-Tarabily et al. (2009) showed that the
glucanase-producing actinomycetes could replace the use of
metalaxyl in the control of Pythium aphanidermatum diseases.
Many other fungi have the ability to produce extracellular
enzymes such as Phoma medicaginis and Penicillium citrinum
(Khan et al., 2016) and Talaromyces emersonii (McHale and
Coughlan, 1981). The production of extracellular enzymes
by Talaromyces flavus effectively contributed to control of
Sclerotium rolfsii and Verticillium dahliae (Madi et al., 1997).
The electrolyte leakage, which was observed in our study,
appears to be because of the glucanase enzyme production
by A. terreus isolates, which appears to play a role in
the biological control against P. aphanidermatum through
the degradation of Pythium cell wall and release of cell
components.

Aspergillus terreus has been shown to produce several
metabolites (Nakagawa et al., 1982; Hendrickson et al., 1999;
Gao et al., 2008; Goutam et al., 2017; Saha et al., 2017). In
our study, by comparing the current molecular weight results
of 65P (389.1 m/z) and 9F (390.7 m/z) with the findings from
previous studies, both isolates seem to produce mevastatin
(390.513 g/mol). Mevastatin production by A. terreus was
reported by previous studies (Manzoni et al., 1998). It has also
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FIGURE 7 | Effect of inoculation with 65P (A) and 9F (B) fungi on cucumber

seedlings shoot weight. Error bars represent 95% confidence limit of a means.

The same letters are not significantly different from each other (ANOVA Test,

P > 0.05).

been reported to be produced by other fungi (Brown et al.,
1976; Reino et al., 2008). Mevastatin has been reported to have
biological inhibitory activities (Kumar et al., 2000). Thus, it is
possible that the production of this compound and others could
explain the suppression role of A. terreus isolates against P.
aphanidermatum.

Our study showed that A. terreus isolates induced
morphological changes in the mycelium of P. aphanidermatum.
The general shape of Pythium mycelium changed from
straight normal pattern to abnormal patterns as wavy, and
the internal content became granular, disintegrated and
lost. A previous study by Chet et al. (1981) showed that
Trichoderma hamatum induced morphological changes in
Pythium spp and Rhizoctonia solani, where the mycelium
had bulbular or hook-like structures that contained granular
cytoplasm. Another study by Paulitz et al. (2000) showed that
Pseudomonas aureofaciens resulted in abnormalities in hyphal
morphology of Pythium ultimum. Prapagdee et al. (2008)
showed that Streptomyces hygroscopicus produced extracellular
antifungal metabolites such as chitinase and β-1,3-glucanase
that affected the growth and morphology of Colletotrichum
gloeosporioides and Sclerotium rolfsii phytopathogenic
fungi. Several metabolites such as enzymes, antibiotics and

organic acids are secreted by A. terreus (Calton et al., 1978;
Nakagawa et al., 1982; Hendrickson et al., 1999; Gao et al.,
2008; Goutam et al., 2017; Saha et al., 2017; Sreedevi et al.,
2017). In our study, it is very likely that the production of
glucanase enzyme contributed to abnormalities in Pythium
mycelia.

Our scanning electron microscope results showed that
P. aphanidermatum hyphae became wrinkled or shrunken as well
as smaller in size; however, in control the hyphae had normal
cell wall morphology with a smooth surface and full content.
These results indicate that P. aphanidermatum cytoplasm in the
treated petri dishes plates were degraded by the effect ofA. terreus
isolates and their enzyme, glucanase. This shrunken morphology
was observed in Fusarium oxysporummycelia which were treated
with Streptomyces cinereus (Gangwar et al., 2015).

Spore production by P. aphanidermatum has been
inhibited by the CF of 65P and 9F isolates. A previous
study by El-Tarabily (2006) showed that P. aphanidermatum
oospores were parasitized by Actinoplanes philippinensis and
Micromonospora chalcea and as a result had disorganized
cytoplasm. Also, Manhas and Kaur (2016) study demonstrated
suppression of germination as well as loss of pigmentation
and shrinkage of Alternaria brassicicola spores due to
treatment with the CF of Streptomyces hydrogenans.
Only Actinoplanes campanulatus was capable of affecting
P. aphanidermatum oospores in El-Tarabily et al. (2009)
study.

Our results proved that both A. terreus isolates can produce
siderophore, with some differences between the isolates in
their ability to produce siderophore. King B was the best
medium for obtaining the highest value of siderophore.
Similarly Rachid and Ahmed (2005) found that king B medium
is better than several other media. Many studies indicated
siderophore production by several fungi such as Aspergillus
terreus (Waqas et al., 2015), Aspergillus fumigatus (Haas,
2014), and Chaetostylum fresenii (Thieken and Winkelmann,
1992).

Siderophore production is an effective mechanism of
biological control of multiple diseases caused bacterial
and fungal agents. Siderophore production by Rhodotorula
glutinis has been reported to suppress blue rot caused by
Penicillium expansum in harvested apples (Calvente et al.,
1999). Moreover, Bacillus subtilis inhibits Fusarium-wilt of
tomatoes disease and secrets siderophore. Furthermore, the
inhibition role of Pseudomonas fluorescens against several
Pythium species is due to siderophore production (Weller and
Cook, 1986).

The bioassay test showed a significant effect of A. terreus
on the survival of cucumber seedlings inoculated by
P. aphanidermatum. The A. terreus isolates did not have
any negative effects on the shoot length, dry weight, or fresh
weight. Various studies were carried out to characterize the
biocontrol efficacy against P. aphanidermatum damping-off
by multiple microorganisms such as Trichoderma harzianum
(Sivan et al., 1984), Pseudomonas chlororaphis, and Bacillus
subtilis (Nakkeeran et al., 2006) and endophytic actinomycetes
(El-Tarabily et al., 2009). Some studies used several biocontrol
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species, which led to greater disease suppression (Szczech and
Shoda, 2004; Liu et al., 2017). Other studies used seed treatment
with biocontrol agents which proved its effectiveness in damping-
off control (Lifshitz et al., 1986; Callan et al., 1990).

Our study demonstrates for the first time that A. terreus
can be effectively used to manage Pythium-induced damping-
off of cucumber. A. terreus was found to interfere with the
growth and spore production of P. aphanidermatum and induce
morphological changes in its mycelium. In addition, A. terreus
produces glucanase enzyme and mevastatin, the activities of
which are suggested to play a role in the antagonism against
P. aphanidermatum. In addition to the active role of enzymes
in biological control, several other secondary metabolites
contribute effectively to the control of plant pathogens such
as siderophore (Schwyn and Neilands, 1987; Naureen et al.,
2017) and Hydrogen cyanide (HCN) (Ramette et al., 2003).
Baakza et al. (2004) indicated production of siderophore by
Aspergillus species including A. terreus. It is therefore important
to conduct a separate study to look into all the possible
mechanisms by which A. terreus inhibits or interfere with
P. aphanidermatum. Since A. terreus is known to have some
side effects on human health, future studies should take into
account investigating the side effects, if any, of A. terreus
when used as a biocontrol agent. These include effects of
plants as well as safety during applications. The effects of
A. terreus on other biocontrol agents in soil should also be
investigated.
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FIGURE S1 | Mass spectrum (m/z) of Aspergillus terreus 65P isolate culture

filtrate (CF). (A–C) Shows positive ESI scan (at 0.146 min and 100–3000 m/z), (at

156 min and 100:1075 m/z), (at 156 min and 260–920 m/z), respectively, while

(D–F) show negative ESI scan (at 0.146 min and 100:3000 m/z), (at 0.146 min

and 100:1250 m/z), (at 0.146 min and 1050:3000 m/z), respectively.

FIGURE S2 | Mass spectrum (m/z) of A. terreus 9F isolate CF. (A–C) Shows

positive ESI scan (at 0.146 min and 100–3000 m/z), (at 136 min and

100:1125 m/z), (at 136 min and 280–1140 m/z), respectively, while (D–F) show

negative ESI scan (at 0.146 min and 100:3000 m/z), (at 0.146 min and

100:1300 m/z), (at 0.146 min and 500:3000 m/z), respectively.
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