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Potholes are one type of pavement surface distresses whose assessment is essential for developing road network maintenance
strategies. Existing methods for automatic pothole detection either rely on expensive and high-maintenance equipment or could
not segment the pothole accurately. In this paper, an asphalt pavement pothole detection and segmentation method based on
energy 
eld is put forward. 	e proposed method mainly includes two processes. Firstly, the wavelet energy 
eld of the pavement
image is constructed to detect the pothole by morphological processing and geometric criterions. Secondly, the detected pothole is
segmented by Markov random 
eld model and the pothole edge is extracted accurately. 	is methodology has been implemented
in a MATLAB prototype, trained, and tested on 120 pavement images. 	e results show that it can e�ectively distinguish potholes
from cracks, patches, greasy dirt, shadows, and manhole covers and accurately segment the pothole. For pothole detection, the
method reaches an overall accuracy of 86.7%, with 83.3% precision and 87.5% recall. For pothole segmentation, the overlap degree
between the extracted pothole region and the original pothole region is mostly more than 85%, which accounts for 88.6% of the
total detected pavement pothole images.

1. Introduction

	e pavement maintenance is important and helpful for
saving cost and ensuring driving safety, of which pavement
condition assessment is crucial to developing repair and
maintenance strategies. 	e process of pavement condition
assessment can be divided into three parts: data collection,
distress identi
cation, and defect assessment. 	e data col-
lection is to a large extent automatically performed, while the
latter two are mostly performedmanually.	is paper focuses
on pavement pothole identi
cation, including pothole detec-
tion and segmentation.

Potholes are important clues that indicate the structural
defects of the asphalt road. 	ey are usually caused by
aging, heavy trac, poor drainage, thin asphalt surface, weak
substructure, too little asphalt in the mix, and so forth.	ese
localized failed areas would delay trac, frustrate drivers,
create a dangerous driving condition, and cause expensive
repairs because of tire wear, wheel alignments, and structural
fatigue [1]. A pothole is de
ned as a bowl-shaped depression
in the pavement surface, and its minimum plane diameter

is 150mm [2]. Accurately detecting these potholes is an
important task for asphalt-surfaced pavement maintenance
and rehabilitation [3].

Because the commonly used manual detecting methods
are expensive and time-consuming, several e�orts have
been made to automate the pothole detection process. At
present, the automatic pothole detection methods include
vibration-basedmethods, 3D reconstruction-basedmethods,
and 2D vision-based methods [4]. 	ese methods promote
the automatic detection process signi
cantly, but they have
both advantages and disadvantages. Vibration-based meth-
ods [5–8] require small storage and can be used in real-
time processing, but it can only get a rough assessment
of pavement potholes or even provide wrong results. 3D
reconstruction-based methods [9–15] can obtain detailed
information of the potholes, but the drawback is that they cost
too much equipment money or too much calculation time.
2D vision-based methods [16–22] can 
nd a balance between
the vibration-based methods and 3D reconstruction-based
methods. It only needs on-board high-speed camera to obtain
the road image and the processing time is little. However,
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the existing visual-basedmethods carry out the grayscale and
texture information of the pothole separately in turn, which
will a�ect the detection results.

In this paper, a pothole detection and segmentation
method based on wavelet energy 
eld is proposed. 	e
wavelet energy 
eld e�ectively integrates the grayscale and
texture information together, which can accurately and e-
ciently detect the pavement pothole. 	en, the constructed
wavelet energy 
eld is used as the label 
eld of Markov
random 
eld model, which signi
cantly promoted the pot-
hole segmentation accuracy. 	e proposed method has been
implemented in a MATLAB prototype and achieves a high
detection and segmentation accuracy.

2. Literature Review

At present, automatic pavement pothole detection methods
mainly include three di�erent types: vibration-based meth-
ods, 3D reconstruction-based methods, and 2D vision-based
methods [4], of which the latter two types belong to computer
vision technology. Details of previous works about pothole
detection are discussed below.

Vibration-based methods use accelerometers to record
the mechanical responses imposed by the pavement surface
and apply the responses to estimate the surface condition. B.
X. Yu and X. Yu [5] have proposed a preliminary pavement
condition survey. De Zoysa et al. [6] and Eriksson et al.
[7] proposed a similar method that combines accelerometers
and GPS to locate the position of the pothole. Rode et al.
[8] integrated the detection and warning system that could
help the driver avoid potholes. In general, vibration-based
methods require small storage and can be used in real-time
processing. However, it can only get a rough assessment of
pavement potholes or even provide wrong results that the
hinges and joints of road can be detected as potholes and
potholes in the center of a lane cannot be detected using
accelerometers due to no hit by any of the vehicle’s wheels [7].

3D reconstruction-based methods include 3D laser scan-
ner methods, stereo vision methods, and visualization using
Microso� Kinect sensor. Chang et al. [9] applied time-of-
�ight scanners, with an accuracy of a millimeter, to get
accurate 3D point-cloud points and extract speci
c distress
features by means of a grid-based processing approach to
quantify the severity of pavement distresses. Li et al. [10]
developed a real-time, low-cost laser triangulation based
inspection system, with at horizontal and vertical resolu-
tions of around 2mm, to achieve 3D geometric features
to di�erentiate di�erent distresses, like potholes and rut-
ting. Wang [11] used two digital cameras, while Hou et al.
[12] used four digital cameras to detect and classify any
pavement distress, and the images of the same pavement
distress surface are matched and reconstructed to establish
3D surface model. Joubert et al. [13] developed a low-cost
vehicle mounted sensor system using Kinect sensor and
a high-speed USB camera to detect and analyze potholes
and pack the results together with the GPS coordinates
of the pothole. Moazzam et al. [14] used Kinect sensor to
capture depth images, generated meshes of the pothole, and
calculated some geometrical information of the pothole like

depth, area, and volume. Mahmoudzadeh et al. [15] provided
a thorough literature review on usage of Kinect in pavement
management and proposed the best approach which is cost-
e�ective and precise. 3D reconstruction-based methods can
obtain detailed information of the potholes. However, laser
scanning systems cost toomuch to be applied at vehicle-level,
and stereo vision methods need a high computational e�ort
to reconstruct pavement surface through the procedure of
matching feature points between di�erent views. Although
Microso� Kinect sensor is cost-e�ective as compared to
industrial lasers and cameras, the visualization method using
Microso� Kinect sensor is still a novel idea and further
research is necessary.

2D vision-based methods can 
nd a balance between
the vibration-based methods and 3D reconstruction-based
methods. 	e equipment cost is little, and the detection
results can obtain high accuracy. 2D vision-based methods
can be further distinguished into 2D image-based approaches
and video-based approaches. For 2D image-based approach-
es, Lin and Liu [16] extracted the texture measure based
on histogram as the features of the image region, and the
nonlinear support vector machine was built up to identify
whether a potential region is a pothole or not. 	e method
proposed by Koch and Brilakis [17] 
rstly segmented the
pavement images into defect and nondefect regions, then the
potential pothole shape was approximated, and subsequently,
the texture inside a potential defect shape was extracted and
compared with the texture of the surrounding nondefect
pavement to determine if the region of interest represents
an actual pothole. Buza et al. [18] utilized image processing
and spectral clustering method to detect potholes. Ryu et
al. [19] presented a method that combines image processing
with geometric information to extract the potential pothole
region and compared the histogram similarity and standard
deviation of the potential pothole region with the nondefect
region to identify whether the potential region is a pothole
or not. In video-based approaches, Huidrom et al. [20]
used a heuristic decision logic approach that combines area,
standard deviation, roundness, and diameter information to
detect and classify potholes and cracks from video clips of
Indian highways. Koch et al. [21] presented a method to
evaluate the severity of potholes by incrementally updating
texture signature for intact pavement regions and using a
vision tracker to trace detected potholes over a sequence
of frames. Tedeschi and Benedetto [22] proposed a new
system using computational resources provided by a mobile
Android-based device, which embedded the recognition
system based on OpenCV library, to detect the potholes and
cracks. All these 2D vision-based methods have achieved
good detection results, but they carry out the grayscale and
texture information of the pothole separately in turn, which
will reduce the detection accuracy.

Considering the signi
cance of the pothole exists in
both the grayscale and texture aspects, a di�erent 2D vision
method based on wavelet energy 
eld is proposed in this
paper. 	e constructed wavelet energy 
eld integrates the
grayscale and texture information together to improve detec-
tion accuracy. And the wavelet energy 
eld is used as the label



Mathematical Problems in Engineering 3

Wavelet decomposition

Pavement image

Calculate wavelet

coe�cient modules

Construct wavelet

energy �eld

Morphological

processing and

geometric judgment

Pothole End

Pothole segmentation

Morphological

processing

Edge extraction

Construct Markov

random �eld model

Yes

No

P
o

th
o

le
 d

et
ec

ti
o

n

P
o

th
o

le
 s

eg
m

en
ta

ti
o

n

Figure 1: 	e process of pothole detection and segmentation.


eld of Markov random 
eld model to segment the pothole
accurately.

3. Mathematical Models

As is shown in Figure 1, the method proposed by this paper
mainly includes two aspects, that is, pothole detection and
pothole segmentation. First of all, the pothole is detected
by morphological processing of the constructed wavelet
energy 
eld. Secondly, the detected pothole is segmented
using Markov random model and morphological operation.
Above all, the wavelet energy 
eld model and the Markov
random 
eld model are the keys for pothole detection and
segmentation.

3.1. Wavelet Energy Field Model. 	e high-frequency coe-
cients of the image wavelet decomposition re�ect the detailed
information of the pavement image. In image segmentation,
taking the wavelet coecients of the same scale or di�erent
scales as texture features, and combining with FCM (Fuzzy �-
means) algorithm, arti
cial intelligent algorithms, orMarkov
random 
eld, can achieve good segmentation results. For
example, in the detection of pavement cracks, the method
proposed by Nejad and Zakeri [23] has combined wavelet
decomposition and neural network to obtain good detection
and classi
cation results.

However, the texture feature of the pothole is more
complex than that of the crack, such as gravels outside the
pothole, and 
ne grained texture inside the pothole would
reduce texture signi
cance that only taking the wavelet high-
frequency coecients as the characteristic is not appropriate.

Fortunately, from the probability point of view, the gray
value inside the pothole is generally lower than the external
grayscale, and the internal texture is generally rough.	e goal
is to integrate these two characteristics together. Firstly, the
wavelet high-frequency coecients are synthesized to obtain
the wavelet coecient modules, which are then averaged and
divided by the grayscale of the pixel to enhance the internal
texture featureswhileweakening the external texture features.
In this way, the texture and the grayscale information of
the pothole are well integrated into the wavelet energy 
eld,
and the signi
cance of the pothole region is highlighted. 	e
wavelet energy 
eld is obtained according to

�� (�, �) = √	
�2 (�, �) + 
	�2 (�, �) + 		�2 (�, �),
� ∈ [1, 
]

� = ⋅ ⋅ ⋅ + imresize (��, size (�)) + ⋅ ⋅ ⋅
� ,

� = number of imresize (��, size (�))

� (�, �) = �(�, �)� (�, �) .

(1)

��(�, �) represents the wavelet coecient module obtained
by combining the horizontal, vertical, and diagonal details in
the wavelet domain of the grayscale image �, � represents
the average value of �wavelet coecient modules at di�erent
level of wavelet domain, �(�, �) represents the pixel value of the
grayscale image, and �(�, �) represents the obtained wavelet
energy 
eld.
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(a) First level (b) Second level (c) 	ird level (d) Fourth level

Figure 2: Energy 
elds constructed, respectively, from the 
rst, second, third, and fourth level of wavelet coecients.

	emain steps of constructing wavelet energy 
eld are as
follows.

Step 1. Convert RGB image to grayscale image.

Step 2. Apply median 
ltering for image enhancement.

Step 3. Carry out wavelet decomposition, calculate wavelet
modules by high-frequency subband coecients, and average
the wavelet coecient modules.

Step 4. Construct wavelet energy 
eld through dividing the
averaged wavelet coecient module by the pixel value of the
grayscale image.

Step 5. Normalize the energy 
eld.

Taking the pothole in Figure 3(a)(1) as an example, its
energy 
eld constructed by the wavelet coecients in the

rst, second, third, and fourth level of wavelet domain is
shown in Figures 2(a), 2(b), 2(c), and 2(d) respectively. As we
can see, Figure 2(a) mainly describes the edge information of
the pothole, and Figure 2(b) is a more accurate description
of the pothole region, while Figures 2(c) and 2(d) highlight
not only the pothole region, but also its surrounding area.
It can be concluded that the pothole region described by the
energy 
eld is gradually enlargingwith the increase of wavelet
decomposition level.

In order to improve the accuracy and stability of the
pothole region represented by the energy 
eld, the grayscale
image is decomposed by three-level wavelet decomposition,
and the high-frequency coecients of the second level and
the third level are taken to construct the wavelet energy

eld. 	e constructed energy 
eld of di�erent types of
pavement conditions is shown in Figure 3. FromFigures 3(1)–
3(7), each 
gure represents pothole, nondefect pavement,
cracks, patches, greasy dirt, shadows, and manhole cover,
respectively.	e le� column (a) shows the original pavement
images, the middle column (b) shows the averaged wavelet
modules, and the right column (c) shows the corresponding
wavelet energy 
elds. Comparing energy 
elds of these seven
typical pavement conditions, it is found that the wavelet
energy 
eld of the pothole is distinct from the energy 
eld of
other pavement conditions and can highlight the signi
cance
of the pothole region to improve the accuracy of pothole
detection and segmentation.

3.2. Markov Random Field Model. Although using wavelet
energy 
elds and morphological processing can accurately
detect the pothole, it is not recommended to segment the
pothole with only the wavelet energy 
eld model because the
energy 
elds of some pavement images can only describe part
region of the pothole. 	erefore, a method of segmenting
potholes by Markov random 
eld is presented. Speci
cally,
the original image is taken as the feature 
eld, and the wavelet
energy 
eld is taken as the label 
eld, which can improve the
segmentation accuracy.

Use the Potts model to describe the label 
eld �, which
can have two or more values. Considering the 
rst-order
neighborhood system and the second-order neighborhood
system, the potential function is de
ned as

�2 (��, ��) =
{
{
{
0, if �� = ��
�, if �� ̸= ��.

(2)

� is the direction parameter of the two-point potential
regiment and �� and �� represent the label value of �(�, �) of
the energy 
eld.

By the local correlation of the Markov random 
eld, the
local probability of the label 
eld model can be expressed as

� (�� | ���) =
exp [−��� (��)]

∑���=1 exp [−��� (��)]
. (3)

��(��) represents the number of neighborhood points whose
label value is not equal to ��.

Regarding the value of image pixels as the characteristic,
the original image constitutes a feature 
eld. Assuming that
the probability distribution of each pixel is independent with
each other under the given label, the Gaussian model can be
used to represent the feature 
eld, and the local conditional
probability is

� (��	 | ��	 =  ) = 1
(√2")3 ####Σ
####1/2

⋅ exp [−12 (��	 − &
)
� (Σ
)−1 (��	 − &
)] .

(4)

&
 and Σ
, respectively, represent the mean and covariance
matrices of the original image pixels labeled .
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(c) Segmentation results of met-
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Figure 4: Contrasts of pothole initial segmentation results by Markov random 
eld model.

As mentioned above, taking the given original image as
the feature 
eld * and the constructed wavelet energy 
eld as
the labeled 
eld �, the maximum a posteriori probability of
Bayesian theory can be expressed as

-� = argmax� �(
�
*) = argmax�

� (�) � (*/�)
� (*) . (5)

�(�) is the prior probability of the label 
eld,�(*/�) is called
the likelihood function, which is the probability description
of the original image observed from the label 
eld �, and
�(*) is the probability of the feature 
eld. For a given
pavement image, �(*) can be regarded as a constant because
the pixel of the image * is certain. 	erefore,

argmax� �(
�
*) ∝ argmax� {� (�) � (

*
�)} . (6)

According to formula (6), formula (5) can be expressed as

-� = argmax� {� (�) � (
*
�)} . (7)

	e objective function is gained by taking logarithm of
formula (7), as is shown below:

-� = argmax� {ln� (�) + ln�(
*
�)} . (8)

Because of the equivalence of MRF and Gibbs distribu-
tion, �(�) can be expressed as

� (� = �) = 8−1exp(− 19: (�)) . (9)

	erefore, under the MRF-MAP framework, the objec-
tive function (8) can be transformed into the sum of the

energy of the label 
eld and the feature 
eld, which is
demonstrated below:

-� = argmax� ∏
(�,	)∈

{
{
{
:(�) + ln{{

{
1

(√2")3 ####Σ
####1/2

⋅ exp [−12 (��	 − &
)
� (Σ
)−1 (��	 − &
)]

}
}
}
}
}
}

= argmax� ∏
(�,	)∈

{−���	 ( �	) − ln [(√2")3

⋅ ####Σ
####1/2] − 12 (��	 − &
)
� (Σ
)−1 (��	 − &
)}

= argmin� ∏
(�,	)∈

{���	 ( �	) + ln [(√2")3 ####Σ
####1/2]

+ 12 (��	 − &
)
� (Σ
)−1 (��	 − &
)} .

(10)

B is the set of all the pixel locations. � is the direction
parameter of the two-point potential regiment. �	 represents
that the label value at position (�, �) is  . ��	( �	) represents
the number of pixels whose label value is not equal to  in
the neighborhood of position (�, �). C
 and Σ
, respectively,
represent the mean and covariance matrices of the original
image pixels labeled .

	e Iterated Conditional Modes Algorithm is used to
solve the transformed objective function (10). 	e required
initial segmentation is obtained by applyingD-means cluster-
ing algorithm to the wavelet energy 
eld. For the sake of con-
venience, taking the original image as both the feature 
eld
and the label 
eld is calledmethod A, while taking the energy

eld as the label 
eld and the original image as the feature

eld is called method B. In order to illustrate that method
B is better than method A, this paper makes a comparative
analysis of these two methods. As shown in Figure 4, column
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(a) represents two original pothole images, column (b)
represents the segmentation results ofmethodA, and column
(c) represents the segmentation results of method B. On the
one hand, it can be seen from the comparison of Figures
4(b)(1) and 4(c)(1) that method B can eliminate the in�uence
of asphalt strips and some other noise outside the pothole.
On the other hand, in Figure 4(b)(2), the lower end of the
segmented pothole is not connected, while in Figure 4(c)(2),
the lower end of the segmented pothole is closed, and the
internal region has less holes, which indicate that method B
can enhance the segmentation inside the pothole. In other
words, taking wavelet energy 
eld as the label 
eld can not
only reduce noise, but also enhance internal characteristics
of the pothole and improve the segmentation accuracy.

4. Methodology and Implementation

4.1. Detection of Potholes Based on Wavelet Energy Field. 	e
methods proposed by Ryu et al. [19] and Koch and Brilakis
[17] not only need to calculate the geometric criterions of
the pothole region, but also need to extract the texture
information to identify whether it is a pothole or not.
But for the method proposed by this paper, it only need
the geometric criterions to judge whether the pavement
image has a pothole or not because the wavelet energy 
eld
combines the grayscale and texture information together.	e
processing steps are as follows.

Step 1 (simplify wavelet energy 
eld). Considering coe-
cients of the wavelet energy 
eld is between 0 and 1 a�er the
normalization process of Section 3.1, the coecients less than
0.3 is set to 0 to discard the redundancy coecients.

Step 2. Apply Otsu method to perform binarization of the
wavelet energy 
eld.

Step 3 (performmorphological operations). Firstly, morpho-
logical open operation is utilized to eliminate small objects,
separate objects connected by 
ne points, and smooth the
boundaries between larger objects. 	en, morphological
expansion is carried out to 
ll the holes inside the white
pixels.

Step 4 (extract the potential pothole region). A�er the
morphological operations, the area of the pothole region
should be the largest among all the connected regions. So, the
potential pothole region can be extracted through comparing
the area of each connected region.

Step 5 (pothole recognition by calculating geometric criteri-
ons). 	e geometric criterions include ellipticity E, density C,
and area F of the potential pothole region, with which the
potholes can be separated from small shadows, greasy dirt,
and cracks. 	e ellipticity E and density G are de
ned as

E = Hmax

Hmin

G = Hmax

2

4"F .
(11)

Hmax represents the major axis’s length of the ellipse that has
the same standard second-order central moments with the
potential pothole region, and meanwhile, Hmin represents the
minor axis’s length of the ellipse and F represents the area of
the ellipse.

	en, select appropriate thresholds 9�, 9�, and 9� for
ellipticity rate E, density G, and area F, respectively, and
identify whether the extracted potential pothole region is
really a pothole or not.

J = {{
{
pothole, if F > 9�, E > 9�, G > 9�
not a pothole, otherwise. (12)

	e pothole detection process is shown in Figure 5.
Figure 5(a) is the original pothole image. Figure 5(b) is
the constructed wavelet energy 
eld, which emphasizes the
pothole region. Figure 5(c) is the result of the simpli
ed
energy 
eld that the redundancy coecients are eliminated.
Figure 5(d) shows the result of binarization, and Figure 5(e)
shows the result of morphological operations, which further
highlights the pothole region. Figure 5(f) is the extracted
potential pothole region, and with the geometric criterions,
it can be concluded whether it is a pothole or not.

In order to illustrate the advantage of the wavelet energy

eld in extracting the potential pothole region, the initial
extraction result of Figure 5(d) is compared with the extrac-
tion results using texture or grayscale information alone
shown in Figures 6 and 7. Figure 6 is the initial extrac-
tion result using GLCM (Gray Level Cooccurrence Matrix)
texture and FCM (Fuzzy c-means) algorithm. 	e shadow
inside the pothole is not extracted and the rough texture
outside the pothole is extracted as messy regions. Figure 7
is the binarization result of the grayscale image using Otsu
method. Most of the regions with low grayscale level inside
the pothole are not extracted. On the contrast, Figure 5(d)
extracts most of the pothole region because the wavelet
energy 
eld integrates texture and gray information together.

4.2. Segmentation of the Detected Pothole. With the detection
process of Section 4.1 based on wavelet energy 
eld, the
pothole image is detected, and it needs to be accurately
segmented for pavement assessment. 	e process includes 5
steps.

Step 1. UseMarkov random 
eld model of Section 3.2 to seg-
ment the pothole. However, as is shown in Figure 4(c)(2), the
segmentation result contains scattered spots and holes, which
need to be further improved by morphological operations.

Step 2. Fill the internal small holes by morphological close
operation whose structure element is a small disc with a
radius of 3, and a�er that, extract the connected region with
the largest area, which is exactly the pothole region.

Step 3. Apply morphology close operation again to 
ll the
internal big holes, but the di�erence is that the structural
element is a big disc with a radius of 18.

Step 4 (remove the sharp corners and thin sections). Firstly,
apply morphological erosion whose structural element is a
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(a) Original image (b) Wavelet energy 
eld (c) Eliminate redundancy coecients

(d) Binarization (e) Morphological operations (f) Potential pothole region

Figure 5: 	e pothole detection process based on the wavelet energy 
eld.

Figure 6: Initial segmentation result using GLCM texture and FCM
algorithm.

Figure 7: 	reshold result using Otsu method.

disc with a radius of 10, and extract the connected regionwith
the largest area.	en, applymorphological dilation to restore
the size of the pothole region before morphological erosion.

Step 5. Extract the outer edge of the pothole with canny
operator.

Figure 8 shows the segmentation results of 
ve di�erent
pavement potholes. Column (a) represents the original pot-
hole images, among which, both the texture and gray features
of the pothole shown in Figure 8(a)(1) are signi
cant, but the
pothole shown in Figure 8(a)(2) lacks texture information,
the pothole shown in Figure 8(a)(3) lacks gray information,
and even worse the pothole shown in Figure 8(a)(4) lacks
both the grayscale and texture information, and there is
water in the pothole shown in Figure 8(a)(5). Although the
conditions of these pavement potholes are complex, all of
the segmentation results are ideal. Column (b) represents
the initial segmentation results of each corresponding pot-
hole, column (c) represents the results a�er morphological
processing, and column (d) represents the extracted edges
of each pothole. It is worth noting that the water inside the
pothole shown in Figure 8(a)(5) will cause the wavelet high-
frequency coecients very small and lead the energy 
eld’s
coecients to almost zero, which is shown in Figure 8(b)(5).
Eventually, the segmentation result of the pothole appears a
large hole, but this could be solved by extracting the outer
edge of the pothole, as is shown in Figures 8(c)(5) and 8(d)(5).

5. Results

5.1. Pothole Detection Results. 	e proposed method in this
paper was implemented in a MATLAB prototype. 120 pave-
ment images were selected using Google search engine as the
database for pothole detection, of which 30 images were used
for manual training, and the remaining 90 images were used
to test the performance of themethod proposed by this paper.
As Koch’s method, some premises are made for the sample
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Figure 8: Pothole segmentation results of 
ve kinds of di�erent pavement images.

set to improve the reliability of image processing. Firstly,
the collected sample set of this paper properly represents
a common population of pavement images, which contain
several kinds of typical pavement distresses and other objects.
Secondly, the image resolution is not at a low level. 	irdly,
the resolution of each collected image is not much di�erent
from the others.

For the training phase, the threshold values of ellipticity
E, density G, and area F were selected based on the change of
precision, recall, and accuracy.

Precision = (TP)
(TP + FP)

Recall = (TP)
(TP + FN)

Accuracy = (TP + TN)
(TP + FP + TN + FN) .

(13)

Precision describes the detection exactness or 
delity,
recall is a measure for detection completeness, and accuracy
is used to describe the average correctness of a classi
cation

process. TP (true positives) represents correctly detected
shapes, FP (false positives) represents wrongly detected
shapes, TN (true negatives) represents correctly detected as
false shapes, and FN (false negatives) represents wrongly
detected as false shapes.

In order to select thresholds for ellipticity E, densityG, and
area F, we performed a simple optimization strategy. First of
all, 9� was tested without taking the other two parameters
into account, since we consider the area has the major impact
on the results.	en, combining the selected threshold 9�, 9�
was tested without taking9� into account, while9� was tested
without taking 9� into account. 	e statistical results were
depicted in Figure 9.

As is shown in Figure 9(a), recall, precision, and accuracy
are at theirmaximumvaluewhen the threshold9� is between
15000 and 30000. In order to improve the possibility of detect
small potholes correctly, the smallest value 15000 is regarded
as the threshold of areaF. Figure 9(b) demonstrates that, with
the increase of the threshold9�, recall has a downward trend,
precision is on the rise, and accuracy is showing the trend
of 
rst rising and then falling. When 9� is increased to 0.12,
recall and accuracy will reach their maximum value, and the
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Figure 9: Precision-recall graphs for choosing thresholds 9�, 9�, 9�.

Table 1: 	reshold value of ellipticity E, density G, and area F.
Category 9� 9� 9�
	reshold value 15000 0.12 0.17

value of precision is at a satisfying level. If we continue to
increase 9�, the precision will become larger, but both recall
and accuracy will decline.	e reasonable value for 9� is 0.12.
Figure 9(c) indicates that recall, precision, and accuracy are
at their best level when the threshold 9� is 0.17. Table 1 shows
the selected threshold values.

A�er the training phase, the remaining 90 pavement
images were tested. Precision, recall, and accuracy were cal-
culated to measure the performance of the method proposed
by this paper. 	e statistical results of the performance were
shown in Table 2.

From the statistical results in Table 2, it can be seen
that most of the pothole images and nonpothole images can

be distinguished correctly. 	e pothole detection method
proposed by Ryu et al. [19] reached an overall accuracy
of 73.5%, with 80.0% precision and 73.3% recall, and the
resulting accuracy byKoch andBrilakis’smethod [17] reached
86%, coming along with 82% precision and 86% recall,
while the method proposed by this paper reaches an overall
accuracy of 86.7%, with 83.3% precision and 87.5% recall,
which demonstrates that themethod of this paper has a better
detection result.

However, false detection exists both in pothole images
and nonpothole images. For the pothole, the brighter inside
will weaken the value of its wavelet energy 
eld, and the
smooth inside means small wavelet high-frequency coe-
cients, which will also cause the wavelet energy 
eld at a low
value. 	ese two situations will a�ect the pothole detection
accuracy. For the nonpothole images, the value of wavelet
energy 
eld is large at the edge of shadows, cracks and lane-
marking, and so forth. Mesh shadows, alligator cracks, and
dense lane-markings are very likely to be wrongly detected
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Table 2: Statistical pothole detection results of 90 pavement images.

Category Nondefect Cracks Patches Greasy dirt Shadows Manhole covers Potholes Total

TP — — — — — — 35 35

FP 1 5 0 0 1 0 — 7

TN 6 20 5 5 4 3 — 43

FN — — — — — — 5 5

Recall 87.5%

Precision 83.3%

Accuracy 86.7%

Table 3: Statistics of segmentation results of 35 potholes.

Overlap degree Number of segmented potholes Percentage

>0.95 26 74.3%

>0.85 31 88.6%

<0.85 4 11.4%

as a pothole. Besides, the lighting conditions and blur images
will also impact the pothole detection results. For example,
the shadow inside the pothole could always help to strengthen
the wavelet energy 
eld, but to a small possibility, if the
shadow is too dark to hide the texture feature, it will weaken
the wavelet energy 
eld and cause wrong detection results.
As to the blur image, it will reduce the capability of detecting
potholes correctly, which means reducing TP, but it will
also reduce the possibility of wrongly detecting nonpothole
images as potholes, which means reducing FP.	e impaction
of blur images needs to be further studied.

5.2. Pothole Segmentation Results. A�er pothole detection
process of 90 pavement images, 35 of the 40 pothole images
were successfully detected. 	en, the segmentation process
was implemented. 	e overlap degree between the extracted
pothole region and the real pothole region was used to
measure the performance of the segmentation results, which
is shown in Table 3. 	e overlap degree of more than 0.95
accounts for 74.3% of the pavement pothole images and the
overlap degree of more than 0.85 accounts for 88.6%. For
the few remaining, its overlap degree is less than 0.85. 	ere
are some reasons for this, such that cracks on the pothole
edge will result in excessive segmentation, and too much
water or dust inside the pothole will result in insucient
segmentation. But on the whole, the segmentation results are
ideal that most (88.6%) of the segmented potholes’ overlap
degree is more than 0.85.

5.3. Comments on Processing Time. Table 4 shows the com-
puting time of pothole detection and segmentation time
of 
ve pavement pothole images that are mentioned in
Section 4.2. 	e mean time to construct the wavelet energy

eld is 2.31 s. Because the constructed wavelet energy 
eld
integrates the texture and gray information of the pothole
together, it only needs to calculate the shape of the potential

pothole region to determine whether it is a pothole or not.
	e detection process is simpli
ed, and the average time
consumed by the detection process is 0.46 s. Overall, it takes
about 2.77 s from the beginning of the program to the 
nish of
pothole detection, which indicates that the speed of pothole
detection process is acceptable.

However, theMarkov random 
eld segmentation is time-
consuming during optimizing the energy function. 	e pot-
hole segmentation result is e�ective at accuracy, but it takes
too much time that the average segmentation time reaches
25.27 s. In the future, the computing performance of Discrete
Two-Dimensional Wavelet Transform and Markov random

eld model can be improved by using GPU (Graphics
Processing Unit) hardware [24–26], which can not onlymake
the pothole detection perform in real time, but also speed up
the pothole segmentation process.

6. Conclusions

Considering the present 2D visual-based methods apply
grayscale and texture information of the potholes separately
in turn to detect the pothole, this paper proposed a method
for asphalt pavement pothole detection and segmentation
based on wavelet energy 
eld, which integrates the gray and
texture features together to highlight the pothole region.

Although the pavement images contain cracks, patches,
greasy dirt, shadows, and manhole covers, the method
proposed by this paper only needs geometric criterions to
detect the pothole in the image. 	e performance is good
that it reaches an overall accuracy of 86.7%, with 83.3%
precision and 87.5% recall, which is better than the methods
proposed by Ryu andKoch. As for theMarkov randommodel
used for pothole segmentation, taking wavelet energy 
eld
is better than taking the original image as the label 
eld.
	e proposed method achieves good pothole segmentation
results for di�erent kinds of potholes that most (88.6%) of the
segmented potholes’ overlap degree is more than 0.85.

However, there are some limitations in the proposed
method. For example, a pothole with bright or smooth
inside is very likely to be detected as nonpothole, and mesh
shadows, alligator cracks, and dense lane-markings are very
likely to be wrongly detected as a pothole. Besides, the
lighting conditions and blur images will also impact the
pothole detection results. In terms of computing time, the
speed of pothole detection process is acceptable, but the
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Table 4: Processing time.

Images Construct wavelet energy 
eld (sec.) Detection process (sec.) Segmentation process (sec.) Total time (sec.)

Figure 8(1) 2.01 0.26 23.67 25.94

Figure 8(2) 2.43 0.49 26.01 28.93

Figure 8(3) 2.35 0.51 24.63 27.49

Figure 8(4) 2.39 0.71 27.70 30.80

Figure 8(5) 2.38 0.32 24.32 27.02

Average 2.31 0.46 25.27 28.04

pothole segmentation based onMarkov random 
eld is time-
consuming.

In the future, we will study a more e�ective mathe-
matic model to integrate wavelet high-frequency coecients
and pixel grayscale and take more visual characteristics to
improve the accuracy. For the processing speed, we plan to
apply GPU hardware [24–26] to make the pothole detection
perform in real time and speed up the pothole segmentation
process. And, we will also study the solutions to nonuniform
lighting conditions and blur images.

Competing Interests

	e authors declare that there is no con�ict of interests
regarding the publication of this paper.

Acknowledgments

	is research was supported by the grant from Central
University Fund Project of Chang’an University (Mechanical
Intelligent Controller [310825153313], Pothole Spray Injection
Technology [310825165028], and Green Intelligent Pavement
Maintenance Robot [310825173314]) funded by the Chinese
Ministry of Education.

References

[1] ASCE, Report Card for America’s Infrastructure, 2009, http://
www.infrastructurereportcard.org.

[2] Federal Highway Administration (FHWA), “Distress iden-
ti
cation manual for the long-term pavement performance
program,” Tech. Rep. FHWA-RD-03-031, FHWA, Washington,
DC, USA, 2003.

[3] Federal HighwayAdministration (FHWA), “Variability of pave-
ment distress data frommanual surveys,” Tech. Rep. FHWARD-
00-160, FHWA, Washington, DC, USA, 2000.

[4] T. Kim and S.-K. Ryu, “Review and analysis of pothole detection
methods,” Journal of Emerging Trends in Computing and Infor-
mation Sciences, vol. 5, no. 8, pp. 603–608, 2014.

[5] B. X. Yu and X. Yu, “Vibration-based system for pavement
condition evaluation,” in Proceedings of the 9th Applications of
AdvancedTechnology in Transportation (AATT ’06), pp. 183–189,
ASCE, Chicago, Ill, USA, August 2006.

[6] K. De Zoysa, C. Keppitiyagama, G. P. Seneviratne, and W.
W. A. T. Shihan, “A public transport system based sensor
network for road surface condition monitoring,” in Proceedings

of the 1st ACM SIGCOMMWorkshop on Networked Systems for
Developing Regions (NSDR ’07), Kyoto, Japan, August 2007.

[7] J. Eriksson, L. Girod, B. Hull, R. Newton, S. Madden, and
H. Balakrishnan, “	e Pothole Patrol: using a mobile sensor
network for road surface monitoring,” in Proceedings of the 6th
International Conference on Mobile Systems, Applications, and
Services (MobiSys ’08), pp. 29–39, ACM, Breckenridge, Colo,
USA, June 2008.

[8] S. S. Rode, S. Vijay, P. Goyal, P. Kulkarni, and K. Arya, “Pothole
detection and warning system: infrastructure support and
system design,” in Proceedings of the International Conference
on Electronic Computer Technology (ICECT ’09), pp. 286–290,
February 2009.

[9] K. T. Chang, J. R. Chang, and J. K. Liu, “Detection of pavement
distresses using 3D laser scanning technology,” in Proceedings
of the ASCE International Conference on Computing in Civil
Engineering, pp. 1085–1095, ASCE, Cancun, Mexico, July 2005.

[10] Q. Li, M. Yao, X. Yao, and B. Xu, “A real-time 3D scanning sys-
tem for pavement distortion inspection,” Measurement Science
and Technology, vol. 21, no. 1, pp. 15702–15709, 2010.

[11] K. C. P. Wang, “Challenges and feasibility for comprehensive
automated survey of pavement conditions,” in Proceedings of
the 8th International Conference on Applications of Advanced
Technologies in Transportation Engineering, pp. 531–536, ASCE,
Beijing, China, May 2004.

[12] Z. Hou, K. C. P. Wang, and W. Gong, “Experimentation of 3D
pavement imaging through stereovision,” in Proceedings of the
International Conference on Transportation Engineering 2007
(ICTE ’07), pp. 376–381, ASCE, Chengdu, China, July 2007.

[13] D. Joubert, A. Tyatyantsi, and J. Mphahlehle, “Pothole tagging
system,” in Proceedings of the 4th Robotics and Mechatronics
Conference of South Africa, pp. 1–4, Pretoria, South Africa,
November 2011.

[14] I.Moazzam,K. Kamal, S.Mathavan, S. Usman, andM.Rahman,
“Metrology and visualization of potholes using the microso�
kinect sensor,” in Proceedings of the 16th International IEEE
Conference on Intelligent Transportation Systems: Intelligent
Transportation Systems for All Modes (ITSC ’13), pp. 1284–1291,
October 2013.

[15] A. Mahmoudzadeh, S. F. Yeganeh, and A. Golroo, “Kinect,
a novel cutting edge tool in pavement data collection,” in
Proceedings of the ISPRS International Conference on Sensors
and Models in Remote Sensing and Photogrammetry, pp. 425–
431, ISPRS, Tehran, Iran, November 2015.

[16] J. Lin and Y. Liu, “Potholes detection based on SVM in the
pavement distress image,” in Proceedings of the 9th International
Symposium on Distributed Computing and Applications to Busi-
ness, Engineering and Science (DCABES ’10), pp. 544–547, Hong
Kong, China, August 2010.

http://www.infrastructurereportcard.org
http://www.infrastructurereportcard.org


Mathematical Problems in Engineering 13

[17] C. Koch and I. Brilakis, “Pothole detection in asphalt pavement
images,” Advanced Engineering Informatics, vol. 25, no. 3, pp.
507–515, 2011.

[18] E. Buza, S. Omanovic, and A. Huseinnovic, “Pothole detection
with image processing and spectral clustering,” in Proceedings of
the 2nd International Conference on Information Technology and
Computer Networks, pp. 48–53, Antalya, Turkey, October 2013.

[19] S.-K. Ryu, T. Kim, and Y.-R. Kim, “Image-based pothole
detection system for ITS service and roadmanagement system,”
Mathematical Problems in Engineering, vol. 2015, Article ID
968361, 10 pages, 2015.

[20] L. Huidrom, L. K. Das, and S. Sud, “Method for automated
assessment of potholes, cracks and patches from road surface
video clips,” Procedia—Social and Behavioral Sciences, vol. 104,
pp. 312–321, 2013.

[21] C. Koch, G. M. Jog, and I. Brilakis, “Automated pothole distress
assessment using asphalt pavement video data,” Journal of
Computing in Civil Engineering, vol. 27, no. 4, pp. 370–378, 2013.

[22] A. Tedeschi and F. Benedetto, “A real-time automatic pavement
crack and pothole recognition system for mobile Android-
based devices,” Advanced Engineering Informatics, vol. 32, pp.
11–25, 2017.

[23] F. M. Nejad and H. Zakeri, “An expert system based on wavelet
transform and radon neural network for pavement distress
classi
cation,” Expert Systems with Applications, vol. 38, no. 6,
pp. 7088–7101, 2011.

[24] C. Song, Y. Li, J. Guo, and J. Lei, “Block-based two-dimensional
wavelet transform running on graphics processing unit,” IET
Computers and Digital Techniques, vol. 8, no. 5, pp. 229–236,
2014.

[25] M. Haselich, S. Eggert, and D. Paulus, “Parallelized energy
minimization for real-time Markov random 
eld terrain clas-
si
cation in natural environments,” in Proceedings of the IEEE
International Conference on Robotics and Biomimetics (ROBIO
’12), pp. 1823–1828, IEEE, Guangzhou, China, December 2012.

[26] B. Kumar and O. Dikshit, “Parallel probabilistic relaxation
labelling based on Markov random 
elds for spectral-spatial
hyperspectral image classi
cation,” International Journal of
Remote Sensing, vol. 37, no. 18, pp. 4356–4379, 2016.



Submit your manuscripts at

https://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


