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Introduction

It is not easy to summarize - even in a volume - the results of a scientific study con-
ducted by circa 30 researchers, in four different research institutions, though cooperating
between them and jointly with the International Institute for Applied Systems Analysss,
but working part-time, sponsored not only by IIASA’s national currency funds, but also
by several other research grants in Poland. The aims of this cooperative study were de-
fined broadly by its title Theory, Software and Testing Ezamples for Decision Support
Systems. The focusing theme was the methodology of decision analysis and support
related to the principle of reference point optimization (developed by the editors of
this volume and called also variously: aspiration-led decision support, quasi-satisfying
framework of rationality, DIDAS methodology etc.). This focusing theme motivated
extensive theoretical research - from basic methodological issues of decision analysis,
through various results in mathematical programming (in the fields of large scale and
stochastic optimization, nondifferentiable optimization, cooperative game theory) mo-
tivated and needed because of this theme, through methodological issues related to
software development to issues resulting from testing and applications. We could not
include in this volume all papers - theoretical, methodological, applied, software manu-
als and documentation - written during this cooperative study. The selection principle
applied for this volume was to concentrate on advances of theory and methodology,
related to the focusing theme, to supplement them by experiences and methodological
advances gained through wide applications and tests in one particular application area
- the programming of development of industrial structures in chemical industry, and
finally to give a very short description of various software products developed in the
contracted study agreement. The material of this volume is thus divided correspond-
ingly into three unequal parts (it must be noted, however, that the last and shortest
part corresponds to the most extensive research effort).

PART 1 is composed of 15 theoretical and methodological papers. It starts with
two more general papers, the first explaining the focusing theme of this volume and
the second describing the methodology of decision analysis in decision support systems
(DSS) of the DIDAS family. The following five papers are devoted to various aspects of
linear programming: three represent innovative approaches to large-scale programming
problems and new mathematical and algorithmic results in this field, including a new
idea of decomposition of augmented Lagrangian functions for large—scale problem — mo-
tivated and related to the work on DSS, next addresses basic problems of multiobjective
dynamic trajectory optimization, a further one presents a more detailed methodological
guide to a multiobjective mathematical programming package HYBRID. We present
such a mixture of results on purpose, to show the broad scope of the study, its com-
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ponents of mathematical theory, components of methodological value and an example
of methodological background for a software package. A further four papers combine
two themes: the use of two reference levels for multiobjective analysis and optimization
and the issues of nonlinear optimization in decision-support (starting with differentiable
approximations and issues of symbolic differentiation of models and combining with ad-
vances in nondifferentiable optimization). The next three papers are related to various
methodological aspects of multiobjective decision support for the case of a large num-
ber of discrete alternatives and for the case of mixed linear-integer programming models
of the class of transshipment problems with facility location. The final paper of this
part reports on theoretical advances in interactive decision support for bargaining and
negotiations.

PART 2 contains six papers related to experiences in developing and using decision
support methodology for a special but rather broad task of programming the develop-
ment of a processing industry - to be specific, a chosen branch of chemical industry.
The team of authors coming from Jotnt System Research Department of the Institute of
Automatse Control, Academy of Mining and Metallurgy, Krakow and of the Industrial
Chemsical Research Institute, Warsaw, has worked on various projects for Polish govern-
mental agencies, for international development agencies coordinated by UNIDO and in
cooperation with various IIASA projects and programs. They developed a dedicated
decision support system MIDA for the complicated task of multiobjective programming
of the development of an industrial structure, used this system with various.decision
makers and for various tasks within chemical industry development, in countries such as
China, Algeria, various central African countries - beside Poland. The papers summarize
their experiences in these studies and applications. They start with an overview paper
that surveys the applications, experiences and the main features of the DSS MIDA,
then continue with a paper on the basic model of an industrial structure used in this
system, with three papers discussing the methodology of interactive decision analysis in
this application area - namely, the problems of multiobjective evaluation of an industrial
structure, of hierarchical aspects of this evaluation related to various goals and dynamic
development, of spatial allocation and investment scheduling aspects. The final paper of
this part describes in more detail the architecture and functions of the DSS MIDA and
contains a kind of short manual for this system. Although we tried to exclude software
manuals from this volume, since it is devoted mostly to theoretical and methodological
issues together with lessons from applications, an exception seems to be justified in
the case of the system MIDA, because of the wide range of actual applications of this
system: giving a shortened manual illustrates best the inside working aspects of this
important and widely tested system.

PART 3 contains short descriptions of software. Following the principles of compo-
sition of this volume, we do not include any other manuals, but only short executive
summaries and very general descriptions of eight software systems. They comprise four
prototype DSS:

e JAC-DIDAS-L - for multiobjective linear and linear dynamic models,
e TAC-DIDAS-N - for nonlinear models, with symbolic model differentiation,

e DISCRET - for the case of a large number of discrete alternatives,



¢ DINAS - for multiobjective mixed programming models of the type of transship-
ment problems with facility location;

and three multiobjective mathematical programming systems that can be used when
building dedicated DSS:

e HYBRID - for dynamic linear and linear-quadratic models, with a non-simplex
solver of augmented Lagrangian type,

e PLP and POSTAN - described together because both are extensions of the MINOS
system from Stanford Optimization Laboratory: one towards handling multiob-
jective problems via reference point optimization, second towards various aspects
of post-optimal analysis in this widely used optimization system,

e MCBARG - for supporting bargaining and negotiation.

Neither of these software systems is as widely tested and applied as the DSS MIDA
described in Part 2, but all of them contain testing and demonstrative examples as well
as some methodological and software developments that might make them interesting
for other researchers working in this field.
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Decision Support Systems Using
Reference Point Optimization

Andrzej Lewandowski, Andrzej P. Wierzbicki

Institute of Automatic Control, Warsaw University of Technology.

Abstract

This paper presents a review of various approaches to decision support, dis-
tinguishes a methodological approach based on reference point optimization and
reviews advances in this field done in Poland under the contracted study agreement
“Theory, Software and Testing Examples for Decision Support Systems” with the
International Institute for Applied Systems Analysis.

1 Introduction

The concept of a decision support system — though widely used and developed both in
research and in practical applications through more than last ten years — is not yet
quite precisely defined. On the other hand, it is possible to give a broad definition of
this concept by enumerating possible classes of decision support systems, describing the
concept of a decision making process that is fundamental to all decision support systems,
defining what a decision support system should and what it should not do, discussing :
possible approaches to and types of decision support. After attempting such a broad
definition, we review in this paper in more detail a specific class of decision support
systems — those that use the principle of reference point optimization for generating
and evaluating decision alternatives, mostly with help of a computerized analytical
model describing the essential features of a decision situation. Many of such systems
have been developed during four years of a contracted study agreement between the
Polish Academy of Sciences (including, as subcontractors, the Institute of Automatic
Control of Warsaw University of Technology, the Institute of Systems Research of Polish
Academy of Sciences, the Institute of Automatic Control of the Academy of Mining and
Metallurgy of Krakow and the Institute of Informatics of the University of Warsaw)
and the International Institute for Applied Systems Analysis, Laxenburg near Vienna,
Austria. These developments and implementations are also reviewed in the paper.




2 Concepts and definitions of decision support
systems

There are many proposed definition of a decision support systems in the current lit-
erature — see, e.g., Keen and Scott-Morton (1978), Sage (1981), Parker and Al-Utabi
(1986), Gray (1986), Jarke (1986) and others. However, most of them do not take
into account the fact that three main classes of decision support systems have been
practically developed in applications and research. These are (see Lewandowski and
Wierzbicki, 1987, also next paper):

A) Simple tools for managerial decision support (that might be used as building blocks
of more sophisticated decision support systems) such as modern data bases, elec-
tronic spreadsheet systems, etc. as well as more complex but pragmatically de-
signed systems composed of such tools;

B) Decision support systems based on logical models and logical inference whose main
function are to help in recognizing a logical pattern in a decision situation; these
systems typically involve the use of logical programming languages, expert systems
style programming, knowledge bases, other tools of artificial intelligence;

C) Decision support systems based on analytical models, multiobjective optimization
and choice, whose main functions concentrate on the process of choice among
various decision alternatives either specified a priori or generated with help of the
system. Such systems typically include a computerized model of a decision situ-
ation formulated in analytical terms and elements of multiobjective optimization
and evaluation of alternatives.

All these three classes can be further subdivided according to various methodological
principles. For example, the systems of the class C can be subdivided in various ways:
systems that serve a strategic evaluation of novel decision situations versus systems
that support repetitive, tactical decisions; systems that handle a number of discrete
alternatives versus those that support the generation and choice among alternatives
from a set of continuum power; between the latter, systems that use static linear,
dynamic linear, static nonlinear or dynamic nonlinear analytical models that describe a
given decision situation; systems in which the methodology of multiobjective alternative
evaluation follows a definite (typically, culturally determined) framework of rationality
versus systems that try to accommodate intercultural perceptions of rationality, see
next paper; etc.

However, there are certain features that are common to all decision support systems.
Observe that the systems of classes B and C contain explicitly models of the decision
situation, although of different types. The same can be said, in fact, about the systems
of the class A: when preparing a simple decision support tool, such as a date base or a
spreadsheet, to support a definite decision process, one must assume, even if implicitly,
a kind of a model of the decision situation. Thus, we can state that all decision support
systems contain such models.



All decision support systems can be subdivided into two large classes: those that are
designed to serve essentially one user or decsston maker versus those that are explic-
itly designed to serve many users or multiple decision makers. The latter class can be
further subdivided into two essentially different subclasses: those that serve cooperative
group dectsion making versus those that are designed to help in truly game-like situa-
tions that might involve conflict escalation through noncooperative decisions and thus
serve bargaining and negotiations (through they might and should try to help reach-
ing cooperative decisions, such systems do not take cooperative behaviour of users for
granted, see Wierzbicki, 1983a,b). In the latter case, another universal feature of deci-
sion support systems becomes apparent: all decision support systems should be designed
not to serve reaching a single decision, but to help sn organizing a decision process.

This essential feature of decision support systems was noted by many authors —
see, e.g., Parker and Al-Utabi (1986). An early characterization of a decisions process
was given by Simon (1958). According to this definition, a decision process consists of
the following three steps: intelligence — searching the environment for opportunities
calling for a decision, design — defining the decision situation, inventing, developing
and analysing possible courses of action, finally chotce — selecting a particular course of
action from those available. However, the experience in analysing decision processes and
constructing decision support systems since this time indicates that a decision process
might be much more complicated and contains more essential elements. Cooke and
Slack (1984) combine the decision making with problem solving process and define its
phases as observation, a formal recognition of a problem, interpretation and diagnosis,
the definition of a decision problem, the determination of options or alternatives, an
evaluation of options, and selection, implementation and monitoring. When including
implementation and monitoring phases in a decision process, a much more sophisticated
treatment of various types of uncertainty becomes possible — Wierzbicki (1983a).

The results of Dreyfus (1984) indicate that an essential distinction should be made
between familiar (even complex) decision situations and novel decision situations as well
as between various levels of expertize of the decision maker in a given field. A master
expert in a decision field is able to treat most of the decision situations as familiar
ones, recognize them immediately and select and implement a decision instantly with
great efficiency. The quality of his decisions might exceed considerably the quality of
decisions achieved by any computerized system; we still do not have adequate models
and interpretations of the parallel processing of information performed in human mind.
However, even master expert recognises (through certain feeling of uneasiness) situations
that are novel and deliberates about them. Again, the process of such deliberation is
not understood by us fully and is certainly not as ordered and linear as the models of
decision processes described above; it ends in a sudden recognition of a decision pattern
or in a deeper understanding of the decision problem. An expert of a lower level or a
novice in a decision field treats more decision situations as novel and thus needs more
logical or analytical decision support.

When seen from this perspective, every decision process is a part of a longer process
of learning in order to become a master expert. Thus, a decision process in all novel
situations is not necessarily linearly ordered, can have many recourses to earlier stages,
while as a decision situation becomes more familiar for a given decision maker, the




decision process becomes shorter and finally looses its distinctive phases. This is similar
to an adaptive treatment of uncertainty, to the old concept of Feldbaum (1962) of the
dual role of control — this of control and that of learning. This also indicates several
concepts of dynamics in a decision process. One is related to the fact that decisions
are concerned with future events and have dynamic consequences — even if we do use
sometimes static models of their consequences in more simple cases. The second reflects
the fact that even reaching a single decision is a process, possibly with many phases and
recourses and with a role of learning during this process. The third reflects the fact that
separate decision processes are embedded in a longer learning process of the decision
maker to become a master expert, with its much more complicated dynamics. We
can conclude also that the requirement of consistency of a decision maker, essential to
many classical approaches to decision analysis, has a fundamental drawback: a learning
decision maker can often gain by being inconsistent.

All this indicates that decision support systems can have multiple functions in a
decision process. Most important are two general functions: helping the decissons maker
to learn about the decision situation (to familiarise it by playing with the proxy of
reality provided by the decision support system) and filling in details to the outlines of
decision suggested by decision maker (even a master expert might need this function
in more complex decision situation and a learning decision maker needs it the more,
while striving to become a master expert). This suggests that the emphasis on the
phase of decision choice, typical for more classical approaches to decision processes and
decision support, is actually misplaced: if adequately supported, humans can make
(until now, and probably for a long time to come) much better decision than most
advanced computerized systems — and the problem is not how to replace, but how
to support human decision making. There certainly are decision problems of repetitive
type that might and should be automated — because of the necessary speed of decisions,
because of their tediousness for humans, because of the reliability of automata that do
not grow tired and do not have the human right to change their minds — but this
becomes then the field of automatic control, not of decision analysis and support.

Even as a tool for learning and filling in details, however, decision support systems
can perform many functions in various phases of a decision process. In the first phase
of intelligence and observation, main support can come from information processing
systems that, when considered alone, need not be decision support systems because
they do not necessarily contain a model of the decision situation. When interpreting
this information, however, in the phases of formal problem recognition, interpretation
and diagnosis, many tentative decision situation models might be tried. Thus the first
function of a decision support system is to help in model formalization, edition, simu-
lation, parametric analysis etc. Naturally, models used in decision support can be of
various types — very simple or more complex, of logical or analytical nature, etc. — and
contemporary decision support systems cannot work with all possible classes of models,
are necessarily specialized. Nevertheless, good decision support system should contain
a model edition and simulation interface and a directory of models together with a data
base of the results of experiments with these models.

The phase of problem definition typically results in an (explicit or implicit) selection
of one of possible models of the decision situation, or at least — of a class of such



models. Decision means and ends are also typically determined in this phase, while the
distinction between then is not necessarily sharp: resources allocated to a given problem
can be considered both decision outcomes (ends) and decision variables (means). There-
fore, it is useful to distinguish more precisely between decision variables in the sense of
input variables to a model and decision outcomes in the sense of the output variables,
although in some simplistic models this distinction is not sharp either and it is better
to speak about decision alternatives (options) and attributes (outcomes). Some of the
output variables might be chosen as objectives (or attributes, or criteria) of the decision.
In fact, a given model of a decision situation allows typically for various definitions of a
decision problem, since various variables of the model can be selected either as decision
variables or as decision outcomes. In this sense, a good decision support system should
have a directory of problems (related to given models) and a data base of experimental
analysis results for given problems.

The latter feature is necessary in the phase of generating and reviewing or evaluating
options and alternatives. If the decision situation is modelled as one with a discrete,
exogenously given number of options or alternatives, the generation of alternatives must
be done outside of a decision support system. However, in most cases the options or
alternatives are not exogenously given — even if discrete — and only limited by certain
constraints that must be represented in the model. In such a case, or in a case when the
number of exogenously given options is very large, the issue of selecting on option for
analysis is equivalent to alternative generation. If the decision variables have continuous
character (the number of alternatives is of continuum power), there is no difference at
all between alternative generation and selecting a decision option for analysis. Such
selected alternatives together with results of their analysis or evaluation need a data
base.

The phase of selection or choice of a decision can be variously represented in decision
support systems. If we insist on the sovereignty of a human decision maker and consider
the system as supporting mostly learning and filling in details, then each decision choice
proposed by the system must be only tentative and the user must have convenient means
of influencing this choice. In such a case, there is no need to make an essential distinction
between the phase of alternative generation, analysis and evaluation and the phase of
choice: in both of them, the decision support system should use some methodological
device for selecting and evaluating an alternative or option while being guided by the
general wishes of the user. Various methods of multiobjective decision analysis can be
used for this purpose, if the model has analytical form; for models of logical type, the
issue of appropriate methodological device for such a purpose is yet open.

It must be stressed here that the insistence on the user’s sovereignty is a relatively
new feature of decision support systems developed in the last decade together with “high
tech — high touch” trend in modern societies (see Naisbit, 1984). Older approach to
decision support systems, while stressing that such a system should only help decision
makers in reaching decisions, was not quite consistent with this assumption in the
phase of decision choice. Typically, such systems (based either on utility maximization
or another — often logical — “inference engine”) communicate the following message to
the user in the phase of choice: “if your answers to my questions have been consistent,
your best decision is as follows”. This often helps the user, but not sufficiently: he



does not know which of his answers is responsible for this particular choice, nor how to
change general instructions to the system in order to influence the final decision if he
does not like it for some reason. Thus, there is a need for a further development of such
systems that would take into account the right of a human decision maker to change
his mind and the need for supporting him in learning.

Finally, it should be stressed that decision support systems could, in principle, help
also in the last phases of implementation and monitoring the results of a decision, by
providing a proxy of costly experiments in reality through post-optimal and sensitivity
analysis of models of a decision situation. This function can include even special ap-
proaches to sensitivity, uncertainty and robustness analysis as suggested by Wierzbicki
(1983a, 1984a). Not many functions of this type have been included, however, in the
decision systems developed until now.

3 The principle of reference point optimization in
decision support systems (DSS)

While leaving a more detailed review of various frameworks of rationality to another
paper (see next paper), we stress here firstly some essential facts related to such review.

Any mathematical formalization of rationality framework is typically concerned with
two preorderings of the spaces of decision outcomes (attributes, objectives) and decision
variables (alternative decisions):

— a partial preordering in the space of outcomes that is usually implied by the deci-
sion problem and usually has some obvious interpretation, such as maximization
of profit competing with the maximization of market share, etc.; a standard as-
sumption is that this preordering is transitive and can be expressed by a posttive
cone D.

— a complete preordering in the spaces of outcomes and decisions or, at least, in the
set of attainable outcomes and decision alternatives, which is usually not given
in any precise mathematical form, but is contained in the mind of the decision
maker, such as how actually the preferences between the maximization of profit
and the maximization of market share should be distributed in a market analysis
case.

The main differences between various frameworks of rationality that lead to diverse
approaches to interactive decision support are concerned with the assumptions about
this complete preordering and the way of its utilization in the DSS. This issue is also
closely related with the way in which the DSS interacts with the decision maker; some
variants of DSS require that the user answers enough questions for an adequate estima-
tion of this complete preordering, some other variants need only general assumptions
about the preordering, still other variants admit a broad interpretation of this preorder-
ing and diverse frameworks of rationality that might be followed by the user.

The most strongly established rationality framework is based on the assumption of
mazimization of a value function or an utility function. Under rather general assump-
tions, the complete preordering that represents the preferences of the decision maker



can be represented by an utility function such that by maximizing this function over
admissible decisions we can select the decision which is most preferable to the deci-
sion maker; the publications related to this framework are very numerous, but for a
constructive review see, for example, Keeney and Raiffa (1976).

There are many fundamental and technical difficulties related to the identification
of such utility function. Leaving aside various technical difficulties, we should stress
the fundamental ones. Firstly, a continuous utility function ezists if there s no strict
hierarchy of values between decision outcomes, if all decision outcomes can be aggre-
gated into one value — say, of monetary nature; this does not mean that hierarchically
higher ethical considerations cannot be incorporated in this framework, but that they
must be treated as constraints, cannot be evaluated in the decision process. Thus, the
utility maximization framework — although it represents the behaviour of many human
decision makers — is by no means the universal case of human rationality — see, for
example, Rappoport (1984). Secondly, while the utility maximization framework might
be a good predictor of mass economic phenomena, it has many drawbacks as a predictor
of individual behaviour — see, for example, Fisher (1979), Erlandson (1981), Horsky
and Rao (1984). According to the results of research presented in these papers, the
utility function approach can be used in a rather simple, laboratory environment, but
can fail in more complex situations. .

Thirdly — and most importantly for applications in decision support systems — an
experimental identification and estimation of an utility function requires many questions
and answers in the interaction with the decision maker. Users of decision support
systems are typically not prepared to answer that many questions, for several reasons.
They do not like to waste too much time and they do not like to disclose their preferences
in too much detail because they intuitively perceive that the decision system should
support them in learning about the decision situation and thus they should preserve
the right to change their minds and preferences. Therefore, if any approximation of an
utility function is used in a decision support system, it should be nonstationary in time
in order to account for the learning and adaptive nature of the dectsion making process.
Such an approximation cannot be very detailed, it must have a reasonably simple form
characterized by some adaptive parameters that can aggregate the effects of learning.

Another rationality framework, called satisficing dectsion making, was formulated
by Simon (1969) and further extended by many researchers, see for example Erland-
son (1981) for a formalization and review of this approach. Originally, this approach
assumed that human decision makers do not optimize, because of the difficulty of opti-
mization operations, because of uncertainty of typical decision environment, and because
of complexity of the decision situations in large organizations. Therefore, this approach
was sometimes termed bounded rationality, that is, somewhat less than perfect ratio-
nality; however, there are many indications that this approach represents not bounded,
but culturally different rationality. While the first two reasons for not optimizing have
lost today their validity (both in the calculative sense, with the development of com-
puter technology and optimization techniques, including issues of uncertainty, and in
the deliberative sense — expert decision makers can intuitively optimize in quite com-
plex situations), the third reason remains valid and has been reinforced by the results
of various studies.
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For example, the studies of human behaviour in situation of social traps or games
with paradoxical outcomes — see Rappoport (1984) — and of evolutionary development
of behavioural rules that resolve such social traps — see Axelrod (1985) — indicate that
evolutionary experience forces humans to accept certain rules of ethical character that
stop maximizing behaviour. Any intelligent man after some quarrels with his wife learns
that maximization is not always the best norm of behaviour; children learn from conflicts
among themselves that cooperative behaviour is also individually advantageous for a
longer perspective. All these observations and studies might motivate in the future
the development of a new framework of evolutionary rationality, but certainly reinforce
the conclusions of the satisficing framework that there are rational reasons for stopping
maximization in complex situations.

A very important contribution of the satisficing framework is the observation that
decision makers often use aspiration levels for various outcomes of decisions; in classical
interpretations of the satisficing framework, these aspiration levels indicate when to stop
optimizing. While more modern interpretations might prefer other rules for stopping
optimization, the concept of aspiration levels is extremely useful for aggregating the
results of learning by the decision maker: aspiration levels represent values of decision
outcomes that can be accepted as reasonable or satisfactory by the decision maker and
thus are aggregated, adaptable parameters that are sufficient for a simple representation
of his accumulated experience.

There might be also other frameworks of rationality, such as the framework of goal-
and program oriented planning, see Glushkov (1972), Pospelov and Irikov (1976), Wierz-
bicki (1985), that corresponds to the culture of planning organizations. This framework
has some similarities, but also some differences to the utility maximization framework,
the satisficing framework and to the principle of reference point optimization developed
by Wierzbicki (1980) in multiobjective optimization and decision support.

In order first to include the principle of reference point optimization into the frame-
work of satisficing decisions and then to develop a broader framework that would be
useful for decision support for decision makers representing various perspectives of ra-
tionality, Wierzbicki (1982, 1984b, 1985, 1986) proposed the following principles of
quastsatisficing decision making — a quasisatisficing decision situation consists of (one
or several) decision makers or users that might represent any perspective of rationality
and have the right of changing their minds due to learning and of stopping optimiza-
tion for any reason (for example, in order to avoid social traps) as well as of a decision
support system that might be either fully computerized or include also human experts,
analysts, advisors. It is assumed that:

— The user evaluates possible decisions on the basis of a set (or vector) of attributes
or objective outcomes. These factors can be expressed in numerical scale (quan-
titatively) or in verbal scale (qualitatively), like “bad”, “good” or “excellent”.
Each factor can be additionally constrained by specifying special requirements on
it that must be satisfied. Beside this, objective outcomes can be characterized by
their type: maximized, minimized, stabilized — that is, kept close to a given level
(which corresponds to foregoing optimization), or floating — that is, included for
the purpose of additional information or for specifying constraints. The user has
the control over the specification of objective outcomes together with their types
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and of possible aggregation of such factors.

One of the basic means of communication of the user with the decision support
system is his specification of aspiration levels for each objective outcome; these
aspiration levels are interpreted as reasonable values of objective outcomes. In
more complex situations, the user can specify two levels for each objective outcome
— an aspiration level interpreted as above and a reservation level interpreted as
the lowest acceptable level for the given objective outcome.

Given the information specified by the user — i.e., the specification of objective
outcomes and their types, together with aspiration and possibly reservation levels
— the decision support system following the quasisatisficing principle should use
this guiding information, together with other information contained in the system,
in order to propose to the user one or several alternative decisions that are best
attuned to this guiding information. When preparing (generating or selecting)
such alternative decisions, the decision support system should not impose on the
user the optimizing or the satisficing or any other behaviour, but should follow the
behaviour that is indicated by the types of objective outcomes. This means that
the decision support system should optimize when at least one objective outcome
is specified as minimized or maximized and should satisfice (stop optimizing upon
reaching aspiration levels) when all objective outcomes are specified as stabilized.
The later case corresponds actually to the technique of goal programming, see e.g.
Ignizio (1978), hence the quasisatisficing decision support can be also considered
as a generalization of this technique. By using aspiration or reservation levels
for some objective outcomes as constraints, also the goal- and program oriented
behaviour can be supported by a quasisatisficing decision support system.

In order to illustrate possible responses of a quasisatisficing decision support system
to the guiding information given by the user, let us assume that all specified objective
outcomes are supposed to be maximized and have specified aspiration levels or reference
points. In this original formulation of the principle of reference point optimization we
can distinguish the following cases:

Case

Case

1: the user has overestimated the possibilities implied by admissible decisions
(since their constraints express available resources) and there is no admissible
decision such that the values of all objective outcomes are exactly equal to their
aspiration levels. In this case, however, it is possible to propose a decision for
which the values of objective outcomes are as close as possible (while using some
uniform scaling, for example implied by the aspiration and reservation levels) to
their aspiration levels; the decision support system should tentatively propose at
least one or several of such decisions to the user.

2: the user underestimated the possibilities implied by admissible decisions and
there exist a decision which results in the values of objective outcomes exactly
equal to the specified aspiration levels. In this case, it is possible to propose a
decision which improves all objective outcomes uniformly as much as possible. The
decision support system should inform the user about this case and tentatively
propose at least one or several of such decisions.
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Case 3: the user, by a chance or as a result of a learning process, has specified aspira-
tion levels there are uniquely attainable by an admissible decision. The decision
support system should inform the user about this case and specify the details of
the decision that results in the attainment of aspiration levels

In the process of quasisatisficing decision support, all aspiration levels and the cor-
responding decisions proposed by the system have tentative character. If a decision
proposed by the system is not satisfactory to the user, he can modify the aspiration
levels and obtain new proposed decisions, or even modify the specification of objective
outcomes or constraints; the process is repeated until the user learns enough to make
the actual decision himself or to accept a decision proposed by the system.

The process of quasisatisficing decision making can be formalized mathematically —
see, e.g., Wierzbicki (1986) — and the mathematical formalization can be interpreted
in various ways; let us consider an interpretation that corresponds to the framework
of utility maximization. We assume that the user has a nonstationary utility function
that changes in time due to his learning about a given decision situation. At each
time instant, however, he can intuitively and tentatively (possibly with errors concern-
ing various aspects of the decision situation) maximize his utility; let this tentative
maximization determine his aspiration levels.

When he communicates these aspiration levels to the decision support system, the
system should use this information, together with the specification of the decision sit-
uation, in order to construct an approximation of his utility function that is relatively
simple and easily adaptable to the changes of aspiration levels, treated as parameters
of this approximation. By maximizing such an approximative utility function while us-
ing more precise information about the attainability of alternative decisions and other
aspects of the decision situation — for example, expressed by a model of the decision
situation incorporated by expert advice into the decision support system — a tentative
decision can be proposed to the user.

Such a tentative approximation of the user’s utility function, constructed in the deci-
sion support system only in order to propose a tentative decision to the learning decision
maker, is called here order-conssstent achievement function or simply achsevement func-
tion. It should be stressed that the concept of achievement function has been also used
in the context of goal programming, but without the requirement of order consistency
(achievement functions in goal programming are equivalent to norms and thus satisfy
the requirements of Cases 1 and 3 listed above but fail to satisfy the requirements of
Case 2).

There are many other interpretations of an order-consistent achievement function
(see Wierzbicki, 1986): penalty function related to aspirations treated as soft constrains,
a utility function not of the decision maker, but of the decision support system inter-
preted as an ideal staff trying to follow instructions given by it’s boss, a device for
automatically switching from norm minimization to maximization in generalized goal
programming upon crossing the boundary of attainable outcomes, a mathematical tool
for closely approximating the positive cone D in the space of outcomes, an extension of
the concept of membership function in a fuzzy set approach to multiobjective optimiza-
tion, etc.
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The general idea of reference point optimization has been independently devel-
oped or further used and extended by many researchers — Steuer and Cho (1983),
Nakayama and Savaragi (1985), Korhonen and Laakso (1986). The more specific use of
order-consistent achievement functions has been developed in many papers of IIASA —
see next paper and, specifically, in the contracted study agreement “Theory, Software
and Testing Examples for Decision Support Systems” between ITASA and the Polish
Academy of Sciences.

4 Recent research on decision support systems in
Poland

Under the contracted study agreement, various theoretical issues, special tools for de-
cision support systems mostly based on the quasisatisficing framework and reference
point optimization, decision support system prototypes for given classes of substantive
models of decision situation (that is, outlines for decision support systems that can be
further customized for a specific decision situation with a model of a given class), as
well as examples of decision support systems and their applications have been studied
and developed.
Between the theoretical issues studied, the following advances have been made:

- special types of simplex and non-simplex algorithms for large scale linear program-
ming problems of dynamic and stochastic type encountered when analysing multi-
objective linear programming type models for decision support, by A. Ruszczynski
and J. Gondzio, this also includes a new way of decomposing augmented La-
grangian functions for such problems;

— a study of theoretical issues related to a non-simplex algorithm based on aug-
mented Lagrangian regularization for multiobjective optimization of dynamic lin-
ear and quadratic programming type models in decision support, by J. Sosnowski
and M. Makowski;

— astudy of methodological issues related to multiobjective trajectory optimization,
particularly for models of dynamic multiobjective linear programming type , by
T. Rogowski;

— a study of uncertainty issues in multiobjective optimization through a special
interval approach developed by H. Gorecki and A. Skulimowski;

- astudy of methodological issues, achievement function forms and robust nonlinear
programming algorithms for decision support systems using models of nonlinear
programming type, by T. Kreglewski, together with issues of using symbolic dif-
ferentiation for such models, by J. Paczynski;

— a study of nondifferentiable optimization techniques for applications in multiob-
jective optimization of nonlinear models, by K. Kiwiel and A. Stachurski;
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a study of mixed-integer multiobjective transhipment and facility location prob-
lems using the quasisatisficing framework, by W. Ogryczak, K. Studzinski and
K. Zorychta;

methodological and game-theoretical research for the development of multi-person
decision support systems for bargaining and negotiations with multiple objectives,
by J. Bronisz, L. Krus and A. P. Wierzbicki.

The decision support tools and decision support system prototypes developed under
this research agreement include:

a multiobjective mathematical programming system — based on reference point
optimization — HYBRID, using the mentioned above algorithms by J. Sosnowski
and M. Makowski; this system can be used as a core for a more customized decision
support systems;

a decision support system prototype IAC-DIDAS-L (in two variants) for prob-
lems with linear programming type models, by T. Rogowski, J. Sobczyk and
A. P. Wierzbicki;

a nonlinear model edition, generation and symbolic differentiation package as a
tool for supporting first phases of the decision process with nonlinear models, by
J. Paczynski and T. Kreglewski (only some methodological background aspects of
this package are described in this volume);

a decision support system prototype IAC-DIDAS-N for problems with nonlinear
programming type models, by T. Kreglewski, J. Paczynski and A. P. Wierzbicki;

a decision support system prototype DINAS for multiobjective transportation and
facility location problems with models of mixed-integer programming type, by
W. Ogryczak, K. Studzinski and K. Zorychta;

a pilot version of a decision support system prototype DISCRET for multiob-
jective problems with a large number of explicitly given discrete alternatives, by
J. Majchrzak;

a pilot version of a nondifferentiable nonlinear optimization package NOA-1 with
possible applications in multiobjective decision support, by K. Kiwiel and A. Sta-
churski {only methodological background of this package is described in this vol-
ume);

a pilot version of a multi-person decision support system prototype for multiob-
jective bargaining and negotiations, by J. Bronisz, L. Krus and B. Lopuch;

a postoptimal analysis package POSTAN and a parametric programming package
PLP compatible with the optimization system MINOS and adapted for multiobjec-
tive optimization, by G. Dobrowolski, A. Golebiowski, K. Hajduk, A. Korytowski
and T. Rys.
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Most of the software packages and system prototypes are developed to the level of
documented and tested, scientific transferable software; packages and system prototypes
include testing and demonstrative examples for their applications. The documentation
of these packages and system prototypes will be available from IIASA in autumn 1988.

A separate group concentrated on a range of applications of decision support sys-
tems using reference point optimization — in programming the development of industrial
structures in chemical industry. A specialized decision support system MIDA has been
developed for these purposes by J. Kopytowski, M. Zebrowski, G. Dobrowolski and
T. Rys, then widely tested in many applications in Poland and abroad as well as ex-
tended to handle hierarchical, spatial, dynamic and scheduling issues by its original
authors and M. Skocz, W. Ziembla. The experiences from this field of applications give
a strong testing ground for the general development of decision support methodology.

It is necessary to point out that this short review focuses mostly on activities within
the contracted study agreement between IIASA and Polish scientific institutions. This
research constitutes, however, only a part of research done within the System and Deci-
sion Sciences Program regarding problems of theory, implementation and applications
of Decision Support Systems. We will not discuss all these activities — they are pre-
sented in the recent issues of OPTIONS (1987). It is necessary to mention, however,
such important contributions of scientists cooperating with SDS and SDS staff members
like multiple criteria optimization aspects of uncertain dynamic systems (Kurzhanski,
1986), several theoretical aspects of multiple criteria optimization (Nakayama, 1986,
Tanino, 1986, Sawaragi at all., 1985, Valyi, 1986, 1987) problems of voting and util-
ity theory (Saari, 1987), stochastic programming aspects of DSS (Michalevich, 1986)
fuzzy set approach in DSS (Sakawa and Yano, 1987, Seo and Sakawa, 1987), DSS for
scheduling (Katoh, 1987) as well as new approaches in development of DSS (Larichev,
1987). Another activity not mentioned in this volume is the development of multi-user
cooperative decision support system (SCDAS) implemented in distributed computing
environment (Lewandowski and Wierzbicki, 1987, Lewandowski 1988). Finally, several
scientific activities coordinated by SDS are also contributing to further advancement of
theory and methodology of Decision Support Systems — such as the International Com-
parative Study in DSS (Anthonisse at all., 1987). Without this stimulating scientific
atmosphere and without scientific environment created in SDS it would be definitely
not possible to achieve the results presented in this volume.
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Abstract

This paper presents a review of methodological principles, mathematical theory,
variants of implementation and various applications of decision support systems of
DIDAS family, developed by the authors and many other cooperating researchers
during the years 1980-1986 in cooperation with the Systems and Decision Sciences
Program of the International Institute for Applied Systems Analysis. The purpose
of such systems is to support generation and evaluation of alternative decisions in
interaction with a decision maker that might change his preferences due to learning,
while examining a substantive model of a decision situation prepared by experts and
analysts. The systems of DIDAS family are based on the principle of reference point
optimization and the quasisatisficing framework of rational choice.

Introduction

The results reported in this paper are an outcome of a long cooperation between the
System and Decision Sciences Program of the International Institute for Applied Sys-
tems Analysis (ITASA) and the Institute of Automatic Control, Warsaw University of
Technology as well as many other institutions in Poland and in other countries. This
cooperation concentrated on applications of mathematical optimization techniques in
multiobjective decision analysis and on the development of decision support systems.
Although many articles in scientific journals and papers at international conferences
described specific results obtained during this cooperation (in fact, four international
workshops and several working meetings were organized during this cooperation), one
of the main results—the family of Dynamic Interactive Decision Analysis and Support
systems—has not been until now comprehensively described. Such a description is the
purpose of this paper.
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1 Concepts of decision support and frameworks for
rational decisions

1.1 Concepts of decision support systems

The concept of a decision support system, though quite widely used and developed in
contemporary research, is by no means well defined. Without attempting to give a
restrictive definition (since such definition in an early stage of development might limit
it too strongly), we can review main functions and various types of decision support.

The main function of such systems is to support decisions made by humans, in
contrast to decision automation systems that replace humans in repetitive decisions
because these are either too tedious or require very fast reaction time or very high
precision. In this sense, every information processing system has some functions of
decision support. However, modern decision support systems concentrate on and stress
the functions of helping human decision makers in achieving better decisions, following
the high tech—high touch trend in the development of modern societies (Naisbitt, 1982).
We can list several types of systems that serve such purposes:

e stmple managerial support systems, such as modern data bases, electronic spread-
sheet systems, etc;

o expert and knowledge base systems whose main functions relate to the help in
recognizing a pattern of decision situation; more advanced systems of this type
might involve considerable use of artificial intelligence techniques;

e alternative generation and evaluation systems whose main functions concentrate
on the processes of choice among various decision alternatives either specified a
priori or generated with help of the system, including issues of planning, of collec-
tive decision processes and issues of negotiations between many decision makers;
more advanced systems of this type might involve a considerable use of mathemat-
ical programming techniques, such as optimization, game theory, decision theory,
dynamic systems theory etc.

Some authors (Van Hee, 1986) restrict the definition of decision support systems only
to the third group while requiring that a decision support system should contain a model
of decision support. Although the systems described in this paper belong precisely to
this category, we would like to draw the attention of the reader that it is a narrow sense
of interpreting decision support systems. With this reservation, we will concentrate on
decision support systems in the narrow sense. These can be further subdivided along
various attributes into many classes:

¢ systems that support operational planning of repetitive type versus systems that
support strategic planning, confronting essentially novel decision situations;

e systems that concentrate on the choice between a number of discrete alternatives
versus systems that admit a conttnuum of alternatives and help to generate inter-
esting or favorable alternatives among this continuum;
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o systems that are essentially designed to be used by a single decision maker (“the
user”) versus systems that are designed to help many decision makers simultane-
ously;

o spectalized systems designed to help in a very specific decision situation versus
adaptable system shells that can be adapted to specific cases in a broader class of
decision situations;

¢ systems that use versus such that do not use explicitly mathematical programming
techniques, such as optimization, in the generation or review of alternatives;

e systems that assume (explicitly or implicitly) a specific framework of rationality of
decisions followed by the user versus systems that try to accommodate a broader
class of perceptions of rationality (Wierzbicki, 1984a).

This last distinction was an important issue in the development of decision support
systems described in this paper.

1.2 Frameworks for rational decisions

When trying to support a human decision maker by a computerized decision support
system, we must try to understand first how human decisions are made and how to help
in making rational decisions. However, the rationality concept followed by the designer
of the system might not be followed by the user; good decision support systems must be
thus flexible, should not impose too stringent definitions of rationality and must allow
for many possible perceptions of rationality by the user.

The first distinction we should make is between the calculative or analytical ratio-
nality and the deliberative or holistic rationality, the “hard” approach and the “soft”
approach. The most consistent argument for the “soft” or holistic approach was given
by Dreyfus (1984). He argues—and supports this argument by experimental evidence—
that a decision maker is a learning individual whose way of making decisions depends
on the level of expertise attained through learning. A novice needs calculative ratio-
nality; an experienced decision maker uses calculative rationality in the background,
while concentrating his attention on novel aspects of a decision situation. An expert
does not need calculative rationality: in a known decision situation, he arrives at best
decisions immediately, by absorbing and intuitively processing all pertinent information
(presumably in a parallel processing scheme, but in a way that is unknown until now).
A master expert, while subconsciously making best decisions, continuously searches
for “new angles”—for new aspects or perspectives, motivated by the disturbing feeling
that not everything is understood, the feeling that culminates and ends in the “gha”
or heureka effect of perceiving a new perspective. Thus, the holistic approach can be
understood as the rationality of the culture of experts.

However, even a master expert needs calculative decision support, either in order to
simulate and learn about novel decision situations, or to fill in details of the decision in
a repetitive situation; novice decision makers might need calculative decision support
in order to learn and become experts. These needs must be taken into account when
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constructing decision support systems that incorporate many elements of calculative
rationality.

There are several frameworks for calculative or analytical rationality; most of these,
after deeper analysis, turn out to be culturally dependent (Wierzbicki, 1984a). The
utility mazimization framework has been long considered as expressing an universal ra-
tionality, as the basis of decision analysis; every other framework would be termed “not
quite rational”. The abstractive aspects of this framework are the most developed—see,
e.g., (Fishburn, 1964, Keeney and Raiffa, 1976)—and a monograph of several volumes
would be needed to summarize them. Without attempting to do so, three points should
be stressed here. Firstly, utility maximization framework is not universal, is culturally
dependent; it can be shown to express the rationality of a small entrepreneur or con-
sumer facing an infinite market (Wierzbicki, 1984a). Secondly, its descriptive powers
are rather limited; it is a good descriptive tool for representing mass economic behaviour
and a very poor tool for representing individual behaviour. Thirdly, it is difficult to
account for various levels of expertise and to support learning within this framework.

Many types of decision support systems attempt to approximate the utility function
of the user and then to suggest a decision alternative that maximizes this utility function.
Most users find such decision support systems not convenient: it takes many experiments
and questions to the decision maker to approximate his utility and, when the user finally
learns some new information from the support system, his utility might change and the
entire process must be repeated. Moreover, many users resent too detailed questions
about their utility or just refuse to think in terms of utility maximization. However, a
good decision support system should also support users that think in terms of utility
maximization. For this purpose, the following principle of interactive reference point
mazimization and learning can be applied.

Suppose the user is an expert that can intuitively, holistically maximize his unstated
utility function; assume, however, that he has not full information about the available
decision alternatives, their constraints and consequences, only some approximate mental
model of them. By maximizing holistically his utility on this mental model, he can
specify desirable consequences of the decision; we shall call these desirable consequences
a reference point in the outcome or objective space. The function of a good decision
support system should be then not to outguess the user about his utility function, but
to take the reference point as a guideline and to use more detailed information about
the decision alternatives, their constraints and consequences in order to provide the user
with proposals of alternatives that came close to or are even better than the reference
point.

This more detailed information must be included in the decision support system
in the form of a substantive model of the decision situation, prepared beforehand by
a group of analysts (in a sense, such a model constitutes a knowledge base for the
system). Upon analysing the proposals generated in the system, the utility function of
the user might remain constant or change due to learning, but he certainly will know
more about available decision alternatives and their consequences. Thus, he is able to
specify a new reference point and to continue interaction with the system. Once he
has learned enough about available alternatives and their consequences, the interactive
process stops at the maximum of his unstated utility function. If the user is not a
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master expert and might have difficulties with holistic optimization, the system should
support him first in learning about decision alternatives, then in the optimization of his
utility; but the latter is a secondary function of the system and can be performed also
without explicit models of utility function while using the concept of reference points.

The concept of reference point optimization has been proposed by Wierzbicki (1975,
1977, 1980); following this concept, the principle of interactive reference point optimiza-
tion and learning was first applied by Kallio, Lewandowski and Orchard-Hays (1980)
and then lead to the development of an entire family of decision support systems called
DIDAS. However, before describing these systems in more detail, we must discuss shortly
other frameworks of calculative rationality.

A concept similar or practically equivalent to the reference point is that of aspira-
tion levels proposed over twenty years ago in the satisficing rationality framework by
Simon (1957, 1958) and by many others that followed the behavioural criticism of the
normative decision theory based on utility maximization. This framework started with
the empirical observation that people do form adaptive aspiration levels by learning
and use these aspirations to guide their decisions; very often, they cease to optimize
upon reaching outcomes consistent with aspirations and thus make satisficing dect-
sions. However, when building a rationale for such observed behaviour, this framework
postulated that people cannot maximize because of three reasons: the cost of comput-
ing optimal solutions in complex situations; the uncertainty of decision outcomes that
makes most complex optimization too difficult; and the complexity of decision situations
in large industrial and administrative organizations that induces the decision makers
to follow some well established dectsion rules that can be behaviourally observed and
often coincide with satisficing decision making. This discussion whether and in what
circumstances people could optimize substantiated the term bounded rationality (which
implies misleadingly that this is somewhat less than full rationality) applied to the sat-
isficing behaviour and drown attention away from the essential points of learning and
forming aspiration levels.

Meanwhile, two of the reasons for not optimizing quoted above have lost their rel-
evance. The development of computers and computational methods of optimization,
including stochastic optimization techniques, has considerably decreased the cost and
increased the possibilities of calculative optimization; moreover, the empirical research
on holistic rationality indicates that expert decision makers can easily determine best
solutions in very complex situations even if they do not use calculative optimization.
The third reason, supported by empirical observations, remains valid: the satisficing ra-
tionality is typical for the culture of big industrial and administrative organizations (see
also Galbraith, 1967). However, it can today be differently interpreted: the appropriate
question seems to be not whether people could, but whether they should mazimize.

Any intelligent man, after some quarrels with his wife, learns that maximization
is not always the best norm of behaviour; children learn best from conflicts among
themselves that cooperative behaviour is socially desirable and that they must restrict
natural tendencies to maximization in certain situations. In any non-trivial game with
the number of participants less than infinity, a cooperative outcome is typically much
better for all participants than an outcome resulting from individual maximization.
This situation is called a soctal trap and motivated much research that recently gave re-
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sults of paradigm-shifting importance (Rappoport, 1985, Axelrod, 1985): we can speak
about a perspective of evolutionary rationality, where people develop—through social
evolution—rules of cooperative behaviour that involve foregoing short-term maximiza-
tion of gains.

When trying to incorporate the lessons from the perspective of evolutionary rational-
ity into decision support systems, another question must be raised: in which situations
should we stop maximizing upon reaching aspiration levels? We should stop maximizing
for good additional reasons, such as avoiding social traps or conflict escalation, but if
these reasons are not incorporated into the substantive model of the decision situation,
the question about foregoing maximization should be answered by the decision maker,
not by the decision support system. This constitutes a drawback of many decision
support systems based on goal programming techniques (Charnes and Cooper, 1975,
Ignizio, 1978) that impose on the user the unmodified satisficing rationality and stop
optimization upon reaching given aspirations, called goals in this case.

When trying to modify goal programming techniques and strictly satisficing rational-
ity to account for above considerations, the principle of ideal organization (Wierzbicki,
1982) can be applied in construction of decision support systems. This principle states
that a good decision support system should be similar to an ideal organization consist-
ing of a boss (the user of the system) and the staff (the system), where the boss specifies
goals (aspirations, reference points) and the staff tries to work out detailed plans how
to reach these goals. If the goals are not attainable, the staff should inform the boss
about this fact, but also should propose a detailed plan how to approach these goals as
close as it is possible. If this goals are just attainable and cannot be improved, the staff
should propose a plan how to reach them, without trying to outguess the boss about
his utility function and proposing plans that lead to different goals than stated by the
boss.

If, however, the goals could be improved, the staff should inform the boss about this
fact and propose a plan that leads to some uniform improvement of all goals specified
by the boss; if the boss wishes that some goals should not be further improved, he
can always instruct the staff accordingly by stating that, for some selected objectives,
the goals correspond not to maximized (or minimized) but stabslized variables, that is,
the staff should try to keep close to the goals for stabilized objectives without trying
to exceed them. By specifying all objectives as stabilized, the boss imposes strictly
satisficing behaviour on the staff; but the responsibility for doing so remains with him,
not with the staff.

The above principle of ideal organization can be easily combined with the principle
of interactive reference point maximization and learning; jointly, they can be interpreted
as a broader framework for rationality, called guasisatisficing framework (Wierzbicki,
1984a, 1986), that incorporates lessons from the holistic and the evolutionary rationality
perspectives and can support decision makers adherence either to utility maximization
or satisficing. In fact, the quasisatisficing framework can also support decision makers
following other perspectives of rationality, such as the program- and goal-oriented plan-
ning and management framework. This framework, proposed by Glushkov (1972) and
Pospelov and Irikov (1976), represents the culture of planning, but has been indepen-
dently suggested later also by representatives of other cultures (Umpleby, 1983). In this
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framework, rational action or program are obtained by specifying first primary objec-
tives, called goals, and examining later how to shift constraints on secondary objectives,
called means, in order to attain the goals. In distinction to the utility maximization
or satisficing frameworks, the stress here is laid on the hierarchical arrangement of
objectives; but the quasisatisficing framework can also handle hierarchical objectives.

2 Quasisatisficing and achievement functions

The main concepts of the quasisatisficing framework, beside the principle of interactive
reference point optimization and learning and the principle of ideal organization, are
the use of reference points (aspiration levels, goals) as parameters by which the user
specifies his requirements to the decision support system (controls the generation and
selection of alternatives in the system) as well as the maximization of an order-consistent
achievement function as the main mechanism by which the decision support system re-
sponds to the user requirements. Achievement functions have been used also in goal
programming (Ignizio, 1978), however, without the requirement of order-consistency
(Wierzbicki, 1986). When following the principle of interactive reference point opti-
mization and learning, an order-consistent achievement function can be interpreted as
an ad hoc approximation of the utility function of the user (Lewandowski et al., 1986);
if the user can holistically maximize his utility and interactively change reference points,
there is no need for any more precise approximation of his utility function. When follow-
ing the principle of ideal organization, an order-consistent achievement function can be
interpreted as a proxy for utility or achievement function of the ideal staff (the decision
support system) guided by aspirations specified by the boss (the user); this function is
maximized in order to obtain best response to the requirements of the boss.

Based upon above principles and starting with the system described in (Kallio et
al., 1980), many decision support systems have been developed with the participation
or cooperation of the authors of this paper (Lewandowski and Grauer, 1982, Grauer
et al., 1982, Kreglewski and Lewandowski, 1983, Lewandowski et al., 1984a, Lewan-
dowski et al., 1984b, Makowski and Sosnowski, 1984, Kaden and Kreglewski, 1986),
either in ITASA, or in several Polish institutions cooperating with IIASA. The name
DIDAS (Dynamic Interactive Decision Analysis and Support) has been first used by
Grauer, Lewandowski and Wierzbicki (1983). Other systems based upon such princi-
ples are now being developed for implementations on professional microcomputers; all
these systems we broadly call here “systems of DIDAS family”. However, also other re-
searchers adopted or developed parallely some principles of quasisatisficing framework,
represented in the works of Nakayama and Sawaragi (1983), Sakawa (1983), Gorecki
et al. (1983), Steuer et al. (1983), Strubegger (1985), Messner (1985), Korhonen et al.
(1986) and others; decision support systems of such type belong to a broader family
using quasisatisficing principles of rationality or aspiration-led decision analysis and
support methods.

Since the maximization of an order-consistent achievement function is a specific
feature of systems of DIDAS family, we review here shortly the theory of such functions.

We consider first the basic case where the vector of decisions £ € R™, the vec-
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tor of objectives or outcomes of decisions ¢ € RP, and the substantive model of deci-
sion situation has the form of a set of admissible decisions Xy C R™ —assumed to be
compact—together with an outcome mapping, that is, a vector-valued objective func-
tion f : Xy — RP —assumed to be continuous, hence the set of attainable outcomes
Qo = f(Xo) be also compact; further modifications of this basic case will be considered
later. If the decision maker wants to maximize all outcomes, then the partial ordering
of the outcome space is implied by the positive cone D = R}, —which means that the
inequality ¢ > ¢" < ¢ — ¢ € D is understood in the sense of simple inequalities for
each component of vectors ¢, ¢ .

However, the cone D = R%, has nonempty interior; a more general case is when the
decision maker would like to maximize only first p' outcomes, minimize next outcomes
from p' + 1 until p", while the last outcomes from p" + 1 until p are to be kept close to
some given aspiration levels, that is, maximized below these levels and minimized above
these levels; such objectives or outcomes are called (softly) stabslized. In this case, we
redefine the positive cone to the form

D={qeRP:¢>0,i=1,...,p;¢ <0,i=p+1,...,p ;¢ =0,i=p +1,...,p} (1)

This cone D does not have an interior if p" < p. Since the cone D is closed and the
set Qo is compact, there exist D-efficient (D-optimal) elements of Qo , see (Wierzbicki,
1982). These are such elements § € Qo that Qo N (§ + D) = @ where D = D\ {0};
if p = pand D = RY, then D-efficient elements are called also Pareto-optimal (in
other words—such that no outcome can be improved without deteriorating some other
outcome). The corresponding decisions £ € X, such that § = f(%) are called D-efficient
or Pareto-optimal as well. Although the decision maker is usually interested both in
efficient decisions and outcomes, for theoretical considerations it is sufficient to analyse
only the set of all D-efficient outcomes

Qo={¢i€Qo!Qon(é+ﬁ):@}, D =D\{0} (2)

Several other concepts of efficiency are also important. The weakly D-efficient ele-
ments belong to the set

Qv ={4€Qo: QN (§+intD) =0} (3)

In other words, these are such elements that cannot be improved in all outcomes
jointly. Although important for theoretical considerations, weakly D-efficient elements
are not useful in practical decision support, since there might be too many of them: if
p' < p and the interior of D is empty, then all elements of Q, are weakly D-efficient.
Another concept is that of properly D-efficient elements; these are such D-efficient
elements that have bounded trade-off coefficients that indicate how much one of the
objectives must be deteriorated in order to improve another one by a unit (for various
almost equivalent definitions of such elements see Sawaragi et al., 1985). In applications,
it is more useful to further restrict the concept of proper efficiency and consider only
such outcomes that have trade-off coefficients bounded by some a priori number. This
corresponds to the concept of properly D-efficient elements with (a priori) bound € or
D.-effictent elements that belong to the set

Q5={4€Qo: QN (§+D.) =0}, (4)
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D, = {q € R : dist(q, D) < ¢|q]}} \ {0}

where ¢ > 0 is a given number (Wierzbicki, 1977). D-efficient elements have trade-
off coefficients bounded approximately by ¢ and 1/¢. For computational and practical
purposes, an efficient outcome with trade-off coefficients very close to zero or to infinity
cannot be distinguished from weakly efficient outcomes; hence, we shall concentrate in
the sequel on properly efficient elements with bound e.

When trying to characterize mathematically various types of efficiency with help of
achievement functions, two basic concepts are needed: this of monotonicity, essential for
sufficient conditions of efficiency, and that of separation of sets, essential for necessary
conditions of efficiency. The role of monotonicity in vector optimization is explained by
the following basic theorem (Wierzbicki, 1986):

Theorem 1. Let a function r : Qo — R! be strongly monotone, that is, let ¢’ > ¢"
(equivalent to ¢' € q"+ﬁ) imply r(¢') > r(¢"). Then each maximal point of this function
is efficient. Let this function be strictly monotone, that is, let ¢ > ¢" (equivalent
to ¢ €q¢" +int D) imply r(q') > r(q"). Then each maximal point of this function is
weakly efficient. Let this function be e-strongly monotone, that is, let ¢ € ¢" + D,
imply r(¢') > r(¢"). Then each maximal point of this function is properly efficient with
bound e.

The second concept, that of separation of sets, is often used when deriving necessary
conditions of scalar or vector optimality. We say that a function r : R — R! strongly
separates two disjoint sets Q1 and Q; in RP, if there is such € R! that r(g) < S for all
g € Q1 and r(q) > B for all ¢ € Q;. Since the definition of efficiency (2) requires that
the sets Qo and ¢+ D are disjoint (similarly for the definitions (3) or (4)), they could be
separated by a function. If @y is convex, these sets can be separated by a linear function.
If Qo is not convex, the sets @y and § + D could be still separated at an efficient point
g, but we need for this a nonlinear function with level sets {¢ € R* : r(q) > 8} which
would closely approximate the cone § + D. There might be many such functions; their
desirable properties are summarized in the definitions of order-consistent achievement
functions (Wierzbicki, 1986) of two types: order-representing functions (which, however,
characterize weak efficiency and will not be considered here) and order-approzimating
functions. The latter type is defined as follows:

Let A denote a subset of RP, containing Qo but not otherwise restricted, andlet § € A
denote reference points or aspiration levels that might be attainable or not (we assume
that the decision maker cannot a priori be certain whether § € Qo or § ¢ Q). Order-
approximating achievement functions are such continuous functions s : Qg x A — R!
that s(g, ) is strongly monotone (see Theorem 1) as a function of § € Qo for any ¢ € A
and, moreover, possesses the following property of order approximation:

g+ D:C{ge R’ :s(q,q) >0} C g+ D, (5)

with some small € > € > 0; together with the continuity requirement, the requirement
(5) implies that s(g,q) = 0 for all ¢ = q.
Ifp =pand D = RY | then a simple example of an order-approximating function
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is:

P
s(9,9) = min ai(g — &) + aps1 ) eiles — &) (6)

1<i<p =1
with A = RP, some positive weighting coefficients o, (typically, we take a; = 1/s;, where
s; are some scaling units for objectives, either defined by the user or determined auto-
matically in the system, see further comments) and some a,4; > 0 that is sufficiently
small as compared to € and large as compared to € (typically, we take a,4+1 = €¢/p). This
function is not only strongly monotone, but also éstrongly monotone. For the more

complicated form (1) of the positive cone D, function (6) modifies to:

S(Q,Q) = mln Z.(q.,q-) + apt1 Zzt qlvql) (7)

where the functions 2;(g:,§;) are defined by:

(6 — @)/si, if 1<i<p,
z(¢,@) = (F—a)/si, if p+1<i<p’, (8)
min(z}, ), if p' +1<i<p,

with '

Z=(@—-@)/s = =(G—a)/s (9)
The coefficients s;, s:-, s:-' are scaling units for all objectives, either defined by the user
(in which case s; = s;, the user does not need to define two scaling coefficients for a
stabilized objective outcome) or determined automatically in the system; again, we use
here ap41 = €/p.

Since the definition of an order-approximating achievement function requires that
only its zero-level set should closely approximate the positive cone, many other forms of
such functions are possible. For example, in some DIDAS systems the following function
has been used:

1 P
s(¢,q) = min mmz.(q.,q.) ppZ (%, @)

=1

P

> zi(e, @) (10)

=1

'GI"\

where the functions z(gi, &) are defined as in (8), (9) and the coefficient p > 1 indicates
to what extent the minimal overachievement is substituted by the sum of overachieve-
ments in the level sets for positive values of this function.

At any point § that is properly efficient with bound ¢, an order-approximating func-
tion with § = § strictly separates the sets § + D, and Qo. This and related properties of
order-approximating functions result in the following characterization of D.-efficiency
(Wierzbicki, 1986):

Theorem 2. Let s(g,q) be an order-approximating function with ¢ > & > 0. Then,
for any ¢ € A, each point that maximizes s(g, §) over ¢ € Qo is efficient; if § is properly
efficient with bound ¢ (D,-optimal), then the maximum of s(g,§) with § = § over ¢ € Qo
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is attained at § and is equal zero. Let, in addition, s(g, §) be &strongly monotone with
respect to g; then each point that maximizes s(g,g) over ¢ € Qo is properly efficient
with bound e.

The essential difference between order-consistent achievement functions and other
types of achievement functions, used in goal programming and based on norms, is that
the aspiration or reference point § needs not to be unattainable in order to achieve
efficiency; this is because order-consistent achievement functions remain monotone, even
if the reference point crosses the efficient boundary of Q. Somewhat simplifying, we
can say that an order-consistent achievement function switches automatically from norm
minimization to maximization when the aspiration point g crosses the efficient boundary
and becomes attainable. On the other hand, the characterization by Theorem 2 is
obtained without any convexity assumptions, because the order-approximating property
of achievement functions results in a constructive though nonlinear separation of sets Qo
and §+ D even in nonconvex cases. In fact, the set @ needs not to be even connected and
the order-consistent achievement functions can be as well used to characterize solutions
of multiobjective discrete or mixed programming. Theorem 2 is valid even if the decision
outcomes are elements of infinite-dimensional complete normed (Banach) spaces, as in
many cases of multiobjective dynamic trajectory optimization—see (Wierzbicki, 1982).

Order-approximating achievement functions have several interpretations. From the
point of view of utility maximization, achievement function can be interpreted as an ad
hoc approximation of the utility function of the user, based on the information that he
conveyed to the decision support system: the partial preordering of the objective space
(which objectives are to be maximized, which minimized and which stabilized) and the
aspiration levels § for all objectives; if more information is already available, this ad hoc
approximation can be improved—see further comments. The coefficient € can be then
interpreted as the weight that the user attaches to correcting the underachievement in
the worst outcome by average overachievements in other outcomes. However, such an
ad hoc approximation is not a classical utility function, since it is context-dependent: it
explicitly depends on the aspiration levels § that summarize the experience of the user
and change due to his learning during interaction, thus changing the approximation of
the utility function. On the other hand, the achievement function (6) can have cardinal
form: if ; = 1/s;, then function (6) is independent on affine transformations of outcome
space; the same applies to function (7).

When following the principle of an ideal organization, an order-approximating achieve-
ment function can be interpreted as the utility function of the staff that is aware of
aspirations set by the boss; the maximum of the achievement function is then positive,
if the staff can propose a solution that exceeds the aspiration levels, it is negative, if the
staff cannot propose a solution that satisfies aspiration levels and only comes as closely
as possible to them, and it is zero (Theorem 2) if the staff finds an efficient solution
that produces outcomes strictly corresponding to the aspiration levels.

From the point of view of strictly satisficing rationality, one should take function (7)
and set p = p" = 0, that is, let all outcomes be softly stabilized; this is actually done in
goal programming approaches. From the point of view of program- and goal oriented
planning, one should either assume that the primary objectives are constrained to be
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equal to their corresponding aspiration levels, thereby modifying the set of admissible
decisions X, (such objectives or outcomes are called guided or strictly stabilized), or
assign much greater weights to primary objectives than to secondary objectives. We see
that the quasisatisficing approach can be used by decision makers following either of
these three frameworks of rationality.

Further mathematical properties of order-approximating achievement functions have
been also investigated; for example, it can be shown that order-approximating functions
give the strongest characterization of efficient solutions for cases where the set @ is
of an arbitrary, a priori unknown shape, which is a reasonable assumption in most
applied cases (Wierzbicki, 1982). Another important property of an order-approxi-
mating function of the form (6) or (7) is that its maximal point § depends Lipschitz-
continuously on the aspiration point § in all cases when the maximum of this function
is unique and the set Qo is connected; thus, the user of the decision support system
can continuously influence his selection of efficient outcomes by suitably modifying the
aspiration or reference point.

Computationally, the maximization of an order-approximating achievement function
is either simple—if Qg is a convex polyhedral set, then the problem of maximizing (6),
(7) or (10) can be rewritten as a linear programming problem—or more complicated for
nonlinear or nonconvex problems. In such cases, we must either represent (6), (7) or (10)
by additional constraints, or apply nondifferentiable optimization techniques, since the
definition of order-approximating achievement functions imply their nondifferentiability
at ¢ = q. Often, it is advisable to use smooth order-approximating functions that give
weaker necessary conditions of efficiency than in Theorem 2, but are better suited for
computational applications—see further comments.

3 Phases of decision support in systems of DIDAS
family

A typical procedure of working with a system of DIDAS family consists of several phases:

A. The definition and edition of a substantive model of analysed process and decision
situation by analyst(s);

B. The definition of the multiobjective decision problem using the substantive model,
by the final user (the decision maker) together with analyst(s);

C. The initial analysis of the multiobjective decision problem, resulting in determin-
ing bounds on efficient outcomes and, possibly, a neutral efficient solution and
outcome, by the user helped by the system;

D. The main phase of interactive, learning review of efficient solutions and outcomes
for the multiobjective decision problem, by the user helped by the system;

E. An additional phase of sensitivity analysis (typically, helpful to the user) and/or
convergence to the most preferred solution (typically, helpful only to users that
adhere to utility maximization framework).
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These phases have been implemented differently in various systems of DIDAS family;
however, we describe them here comprehensively.

Phase A: Model definition and edition.

There are four basic classes of substantive models that have been used in various
systems of DIDAS family: multiobjective linear programming models, multiobjective
dynamic linear programming models, multiobjective nonlinear programming models
and multiobjective dynamic nonlinear programming models. First DIDAS systems have
not used any specific standards for these models; however, our accumulated experience
has shown that such standards are useful and that they differ from typical theoretical
formulations of such models (although they can be reformulated back to the typical
theoretical form, but such reformulation should not bother the user).

A substantive model of multiobjective linear programming type consists of the spec-
ification of vectors of n decision variables z € R™ and of m outcome variables y € R™
together with linear model equations defining the relations between the decision vari-
ables and the outcome variables and with model bounds defining the lower and upper
bounds for all decision and outcome variables:

y = Az; ° < z < 1%, Y <y<y*® (11)

where A is a m X n matrix of coefficients (obviously, a more general form y = Az + b
can be also considered; it sometimes useful to admit an implicit, recursive definition
of the model, see further comments on nonlinear models). Between outcome variables,
some might be chosen as guided outcomes, corresponding to equality constraints; denote
these variables by y¢ € R™ C R™ and the constraining value for them by b° to write
the additional constraints in the form:

Y= Az =05 gt <b <yt (12)

where A° is the corresponding submatrix of A. Some other outcome variables can be
chosen as optimized objectives or objective outcomes; actually, this is done in the phase
B together with the specification whether they should be maximized, minimized or softly
stabilized, but we present them here for the completeness of the model description. Some
of the objective variables might be originally not represented as outcomes of the model,
but we can always add them by modifying this model; in any case, the corresponding
objective equations in linear models have the form:

¢g=Cz (13)

where C is another submatrix of A. Thus, the set of attainable objective outcomes is
Qo = C X and the set of admissible decisions X is defined by:

Xo={z€R": <z <z'; y° <Az <y A’z =1b) (14)

By introducing proxy variables and constraints, the problem of maximizing func-
tions (7) or (10) over outcomes (13) and admissible decisions (14) can be equivalently
rewritten to a parametric linear programming problem, with the leading parameter §;
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thus, in phases C, D, E, a linear programming algorithm called solver is applied. In ini-
tial versions of DIDAS systems for linear programming models, the typical MPS format
for such models has been used when editing them in the computer; recent versions of
DIDAS systems include also a user-friendly format of a spreadsheet.

A useful standard of defining a substantive model of multiobjective linear dynamic
programming type is as follows. The model is defined on T + 1 discrete time periods
t, 0 <t < T. The decision variable z, called in this case control trajectory, is an entire
sequence of decisions:

z={z[0],...,z[t],....,z[T — 1]} € R,  z[t]€ R (15a)

and a special type of outcome variables, called state variables w[t] € R™ is also consid-
ered. The entire sequence of state variables or state trajectory:

w = {w[0],...,wt],...,w[T — 1],w[T]} € R™T+Y (158)

is actually one time period longer than z; the initial state w[0] must be specified as
given data. The fundamental equations of a substantive dynamic model have the form
of state equations:

w(t + 1] = Aft|w[t] + Blt]z[t]; t=0,...,T -1, w(0] — given (16a)
The model outcome equations have then the form:
y[t] = C[tjw[t] + D[t]z[t], t=0,...,T - 1; (16b)

y|T] = C[T|w|T] € B™

and define the sequence of outcome variables or outcome trajectory:

y={y[0],...,ult],....y[T - 1],y[T]} € R™ T+) (15¢)

The decision, state and outcome variables can all have their corresponding lower and
upper bounds (each understood as an appropriate sequence of bounds):

£’ <z < %, wh <w < w”, yo<y<y” (16¢)

The matrices Aft], B[t], C[t], D[t| of appropriate dimensions can be dependent or
independent on time ¢; in the latter case, the model is called time-invariant. This
distinction is important in multiobjective analysis of such models only in the sense of
model edition: time-invariant models can be defined easier by automatic, repetitive
edition of model equations and bounds for subsequent time periods.

Between the outcomes, some might be chosen to be equality constrained or guided
along a given trajectory:

vlt] = e[| €R™ CR™, t=0,...,T; ¢ ={e0],...,e[t],....,e[T]}  (17)

The optimized (maximized, minimized or stabilized) objective outcomes of such
model can be actually selected in phase B among both state variables and outcome
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variables (or even decision variables) of this model; in any case, they form an entire
objective trajectory:

¢={ql0],-..,qlt],....qlT — 1],q[T]} € RPT*),  qlt] € R? (18)

If we assume that the first components g;[t] for 1 < i < p are to be maximized,
next for p +1 < i < p" are to be minimized, last for p° +1 < ¢ < p are to be
stabilized (actually, the user in the phase B does not need to follow this order—he
simply defines what to do with subsequent objectives), then the achievement function

s(q,q)—for example, originally given by (10)—in such a case takes the form:

s(¢,q) = min | min  min z[t],

0<I<T 0<i<p T+1 ZZZ'M T+1 ZZZ-[t] (19)

tOtl tOll

where the functions z[t] = z(¢[t], g[t]) are defined by:

(alt] — &[t])/silt], if 1<i<p,
zlt] = (&lt] - lt))/sift], if P +1<i<p, (20)
min(z,f[t],zé'[t]), if p+1<i¢<p

where , , ., .
zlt] = (alt] - @lt])/sift], 2 [t] = (&[] — alt]) /s8], (21)

The user does not need to define time-varying scaling units s;[t] nor two different
scaling units s;[t], s; [t] for a stabilized objective: the time-dependence of scaling units
and separate definitions of s;[t], s; [¢] are needed only in the case of automatic scaling in
further phases.

A useful standard for a substantive model of multiobjective nonlinear programming
type consists of the specification of vectors of n decision variables z € R"™ and of m
outcome variables y € R™ together with nonlinear model equations defining the rela-
tions between the decision variables and the outcome variables and with model bounds
defining the lower and upper bounds for all decision and outcome variables:

y=g(z); °<z<z; Yo<y<y® (22)

where ¢ : R® — R™ is a (differentiable) function. In fact, the user or the analyst
does not have to define the function g explicitly; he can also define it recursively, that
is, determine some further components of this vector-valued function as functions of
formerly defined components. Between outcome variables, some might be chosen as
guifled outcomes corresponding to equality constraints; denote these variables by y¢ €
R™ C R™ and the constraining value for them by ¢ to write the additional constraints
in the form:

¥ =g%(z) = b5yt b <yt (23)
where ¢°¢ is a function composed of corresponding components of g. In phase B, some
other outcome variables can be also chosen as optimized objectives or objective out-
comes. The corresponding objective equations have the form:

q = f(z) (24)
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where f is also composed of corresponding components of g. Thus, the set of attainable
objective outcomes is Qo = f(X,) where the set of admissible decisions X is defined
by:

Xo={z€R": £°<z<z" y°<g(z) <y ¢°(z) = b} (25)

In further phases of working with nonlinear models, an order-approximating achieve-
ment function must be maximized; for this purpose, a specially developed nonlinear
optimization algorithm called solver is used. Since this maximization is performed
repetitively, at least once for each interaction with the user that changes the parameter
g, there are special requirements for the solver that distinguish this algorithm from
typical nonlinear optimization algorithms: it should be robust, adaptable and efficient,
that is, it should compute reasonably fast an optimal solution for optimization problems
of a broad class (for various differentiable functions g(z) and f(z)) without requiring
from the user that he adjusts special parameters of the algorithm in order to obtain
a solution. The experience in applying nonlinear optimization algorithms in decision
support systems (Kreglewski and Lewandowski, 1983, Kaden and Kreglewski, 1986)
has led to the choice of an algorithm based on penalty shifting technique and projected
conjugate gradient method. Since a penalty shifting technique anyway approximates
nonlinear constraints by penalty terms, an appropriate form of an achievement function
that differentiably approximates function (7) has been also developed and is actually
used. This smooth order-approzimating achievement function has the form:

" 1/
1 14 p+l

s(a,0) = 1= § > S (w)* + 3, max((w],u))" (26)

=1
r " . =
where w;, w;, w; are functions of ¢;, g :

i,maz — i)/ Si, if 1 S 1 S '
wilgg) = | Bomer T @ A<y (27a)
(¢ — Gimin)/si, f p+1<i<p

w; (6, &) = (Gi,maz — @) /54

n " ? if P" + 1 S 1 S b, (27b)
w; (%, &) = (g — gimin)/s;

and the dependence on §; results from a special definition of the scaling units that are
determined by:
Gimaz — @), if 1<i<p
5 = ( i,maz Q.), l P., ) (28(1)
(& = Gimin), if p+1<i<p,

] —
Sy = 4, — ¢ . " .
' (Gimax — ) , if p'+1<i<p (28b)
8; = (@ — Gimin)
In the initial analysis phase, the values ¢; mq; and ¢; min are set to the upper and lower
bounds specified by the user for the corresponding outcome variables; later, they are
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modified, see further comments. The parameter @ > 2 is responsible for the approxima-
tion of the function (7) by the function (26): if @ — oo and € — 0, then these functions
converge to each other (while taking into account the specific definition of scaling coeffi-
cients in (26-28)). However, the use of too large parameters results in badly conditioned
problems when maximizing function (26), hence a = 4,...,8 are suggested to be used.

The function (26) must be maximized with ¢ = f(z) over £ € Xo, while Xj is
determined by simple bounds z** < £ < z% as well as by inequality constraints y* <
g(z) < y* and equality constraints ¢g°(z) = b°. In the shifted penalty technique, the
following function is minimized instead:

P(z, ¢, f,u',u",v) = —s(f(x),q) + %iz f;(max(O, gi(z) — yi* + u;))2+

17T Elmax(o,sf —ale) + ) 45 3 Eaile) ~ 6+ ) (29

. 1
1=p

where &', ¢", £ are penalty coefficients and u', u", v are penalty shifts. This function is
minimized over z such that z! < z < 2" while applying conjugate gradient directions,
projected on these simple bounds if one of the bounds becomes active. When a minimum
of this penalty function with given penalty coefficients and given penalty shifts (the
latter are initially equal zero) is found, the violations of all outcome constraints are
computed, the penalty shifts and coefficients are modified according to the shifted-
increased penalty technique (Wierzbicki, 1984b) and the penalty function is minimized
again until the violations of outcome constraints are admissibly small. The results are
then equivalent to the outcomes obtained by maximizing the ac