

Lecture Notes
in Economics and
Mathematical Systems

Managing Editors: M. Beckmann and W. Krelle

331

A. Lewandowski A. P Wierzbicki (Eds.)

Aspiration Based Decision
Support Systems
Theory, Software and Applications

Springer-Verlag
Berlin Heidelberg NewYork London Paris Tokyo Hong Kong

Editorial Board

H.Albach M. Beckmann (Managing Editor) P. Dhrymes

G. Fandel G. Feichtinger J. Green W. Hildenbrand W. Krelle (Managing Editor)

H.P. Kunzi K. Ritter R. Sato U. Schittko P. Schonfeld R. Selten

Managing Editors

Prof. Dr. M. Beckmann

Brown University

Providence, RI 02912, USA

Prof. Dr. W. Krelle

Institut fUr Gesellschafts- und Wirtschaftswissenschaften

der Universitat Bonn

Adenauerallee 24-42, D-5300 Bonn, FRG

Editors

Dr. Andrzej Lewandowski

Project Leader

Methodology of Decision Analysis Project

System and Decision Sciences Program

International Institute for Applied Systems Analysis

A-2361 Laxenburg, Austria

Prof. Dr. Andrzej Piotr Wierzbicki

Institute of Automatic Control

Warsaw University of Technology

Warsaw, Poland

ISBN 3-540-51213-6 Springer-Verlag Berlin Heidelberg New York

ISBN 0-387-51213-6 Springer-Verlag New York Berlin Heidelberg

This work is subject to copyright. All rights are reserved. whether the whole or part of the material

is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation,

broadcasting, reproduction on microfilms or in other ways, and storage in data banks. Duplication

of this publication or parts thereof is only permitted under the provisions of the German Copyright

Law of September 9, 1965, in its version of June 24, 1985, and a copyright fee must always be

paid. Violations fall under the prosecution act of the German Copyright Law.

© International Institute for Applied Systems Analysis, Laxenburg/Austria 1989

Printed in Germany

Printing and binding: Druckhaus Beltz, Hemsbach/Bergstr.

2847/3140-543210

Introduction

It is not easy to summarize - even in a volume - the results of a scientific study con­

ducted by circa 30 researchers, in four different research institutions, though cooperating

between them and jointly with the International Institute for Applied Systems Analysis,

but working part-time, sponsored not only by IIASA's national currency funds, but also

by several other research grants in Poland. The aims of this cooperative study were de­

fined broadly by its title Theory, Software and Testing Examples for Decision Support

Systems. The focusing theme was the methodology of decision analysis and support

related to the principle of reference point optimization (developed by the editors of

this volume and called also variously: aspiration-led decision support, quasi-satisfying

framework of rationality, DIDAS methodology etc.). This focusing theme motivated

extensive theoretical research - from basic methodological issues of decision analysis,

through various results in mathematical programming (in the fields of large scale and

stochastic optimization, nondifferentiable optimization, cooperative game theory) mo­

tivated and needed because of this theme, through methodological issues related to

software development to issues resulting from testing and applications. We could not

include in this volume all papers - theoretical, methodological, applied, software manu­

als and documentation - written during this cooperative study. The selection principle

applied for this volume was to concentrate on advances of theory and methodology,

related to the focusing theme, to supplement them by experiences and methodological

advances gained through wide applications and tests in one particular application area

- the programming of development of industrial structures in chemical industry, and

finally to give a very: short description of various software products developed in the

contracted study agreement. The material of this volume is thus divided correspond­

ingly into three unequal parts (it must be noted, however, that the last and shortest

part corresponds to the most extensive research effort).

PART 1 is composed of 15 theoretical and methodological papers. It starts with

two more general papers, the first explaining the focusing theme of this volume and

the second describing the methodology of decision analysis in decision support systems

(DSS) of the DIDAS family. The following five papers are devoted to various aspects of

linear programming: three represent innovative approaches to large-scale programming

problems and new mathematical and algorithmic results in this field, including a new

idea of decomposition of augmented Lagrangian functions for large-scale problem - mo­

tivated and related to the work on DSS, next addresses basic problems of multiobjective

dynamic trajectory optimization, a further one presents a more detailed methodological

guide to a multiobjective mathematical programming package HYBRID. We present

such a mixture of results on purpose, to show the broad scope of the study, its com-

IV

ponents of mathematical theory, components of methodological value and an example

of methodological background for a software package. A further four papers combine

two themes: the use of two reference levels for multiobjective analysis and optimization

and the issues of nonlinear optimization in decision-support (starting with differentiable

approximations and issues of symbolic differentiation of models and combining with ad­

vances in nondifferentiable optimization). The next three papers are related to various

methodological aspects of multiobjective decision support for the case of a large num­

ber of discrete alternatives and for the case of mixed linear-integer programming models

of the class of transshipment problems with facility location. The final paper of this

part reports on theoretical advances in interactive decision support for bargaining and

negotiations.

PART 2 contains six papers related to experiences in developing and using decision

support methodology for a special but rather broad task of programming the develop­

ment of a processing industry - to be specific, a chosen branch of chemical industry.

The team of authors coming from Joint System Research Department of the Institute of

Automatic Control, Academy of Mining and Metallurgy, Krakow and of the Industrial
Chemical Research Institute, Warsaw, has worked on various projects for Polish govern­

mental agencies, for international development agencies coordinated by UNIDO and in

cooperation with various IIASA projects and programs. They developed a dedicated

decision support system MIDA for the complicated task of multiobjective programming

of the development of an industrial structure, used this system with various;decision

makers and for various tasks within chemical industry development, in countries such as

China, Algeria, various central African countries - beside Poland. The papers summarize

their experiences in these studies and applications. They start with an overview paper

that surveys the applications, experiences and the main features of the DSS MIDA,

then continue with a paper on the basic model of an industrial structure used in this

system, with three papers discussing the methodology of interactive decision analysis in

this application area - namely, the problems of multiobjective evaluation of an industrial

structure, of hierarchical aspects of this evaluation related to various goals and dynamic

development, of spatial allocation and investment scheduling aspects. The final paper of

this part describes in more detail the architecture and functions of the DSS MIDA and

contains a kind of short manual for this system. Although we tried to exclude software

manuals from this volume, since it is devoted mostly to theoretical and methodological

issues together with lessons from applications, an exception seems to be justified in

the case of the system MIDA, because of the wide range of actual applications of this

system: giving a shortened manual illustrates best the inside working aspects of this

important and widely tested system.

PART 3 contains short descriptions of software. Following the principles of compo­

sition of this volume, we do not include any other manuals, but only short executive

summaries and very general descriptions of eight software systems. They comprise four

prototype DSS:

• IAC-DIDAS-L - for multiobjective linear and linear dynamic models,

• IAC-DIDAS-N - for nonlinear models, with symbolic model differentiation,

• DISCRET - for the case of a large number of discrete alternatives,

v

• DINAS - for multiobjective mixed programming models of the type of transship­

ment problems with facility location;

and three multiobjective mathematical programming systems that can be used when

building dedicated DSS:

• HYBRID - for dynamic linear and linear-quadratic models, with a non-simplex

solver of augmented Lagrangian type,

• PLP and POSTAN - described together because both are extensions of the MINOS

system from Stanford Optimization Laboratory: one towards handling multiob­

jective problems via reference point optimization, second towards various aspects

of post-optimal analysis in this widely used optimization system,

• MCBARG - for supporting bargaining and negotiation.

Neither of these software systems is as widely tested and applied as the DSS MIDA

described in Part 2, but all of them contain testing and demonstrative examples as well

as some methodological and software developments that might make them interesting

for other researchers working in this field.

Table of Contents

Introduction

Part 1: Theory and Methodology

Decision Support Systems Using

Reference Point Optimization

Andrzej Lewandowski, Andrzej P. Wierzbicki

Decision Support Systems of DIDAS Family

(Dynamic Interactive Decision Analysis & Support)

Andrzej Lewandowski, Tomasz Kreglewski, Tadeusz Rogowski,

A ndrzej P. Wierzbicki

Modern Techniques for Linear Dynamic

and Stochastic Programs

Andrzej Ruszczynski

A Sensitivity Method for Solving Multistage

Stochastic Linear Programming Problems

Jacek Gondzio, Andrzej Ruszczynski

Regularized Decomposition and Augmented Lagrangian

Decomposition for Angular Linear Programming Problems

A ndrzej Ruszczynski

Dynamic Aspects of Multiobjective Trajectory Optimization

in Decision Support Systems

Tadwsz Rogowski

Mathematical Programming Package HYBRID

Marek Makowski, Janusz S. Sosnowski

iii

1

3

21

48

68

80

92

106

VIII

Safety Principle in Multiobjective Decision Support 145

in the Decision Space Defined by Availability of Resources

Henryk Gorecki, Andrzej M.J. Skulimowski

Nonlinear Optimization Techniques 158

in Decision Support Systems

Tomasz Kreglewski

Nonlinear Computer Models - 172

Issues of Generation and Differentiation

Jerzy Paczynski

Issues of Effectiveness Arising in the Design of a System 180

of Nondifferentiable Optimization Algorithms

Krzysztof C. Kiwiel, Andrzej Stachurski

A Methodological Guide to the Decision Support System 193

DISCRET for Discrete Alternatives Problems

Janusz Majchrzak

A Generalized Reference Point Approach 213

to Multiobjective Transshipment Problem with Facility Location

Wlodzimierz Ogryczak, Krzysztof Studzinski, Krystian Zorychta

Solving Multiobjective Distribution- 230

Location Problems with the DINAS System

Wlodzimierz Ogryczak, Krzysztof Studzinski, Krystian Zorychta

Towards Interactive Solutions in a Bargaining Problem 251

Piotr Bronisz, Lech Krus, Andrzej P. Wierzbicki

Part 2: Applications and Experiences 269

MIDA: Experience in Theory, Software and Application 271

of DSS in the Chemical Industry

Jerzy Kopytowski, Maciej Zebrowski

IX

Basic Model of an Industrial Structure

Grzegorz Dobrowolski, Maciej Zebrowski

Multiobjective Evaluation of Industrial Structures

Maciej Zebrowski

Hierarchical Multiobjective Approach

to a Programming Problem

Grzegorz Dobrowolski, Maciej Zebrowski

Spatial Allocation and Investment Scheduling

in the Development Programming

Maciej Skocz, Maciej Zebrowski, Wieslaw Ziembla

Architecture and Functionality of MIDA

Grzegorz Dobrowolski, Tomasz Rys

Part 3. Short Software Descriptions

287

294

310

322

339

371

IAC-DIDAS-L - A Dynamic Interactive Decision Analysis 373

and Support System for Multicriteria Analysis of Linear and Dynamic

Linear Models on Professional Microcomputers

Tadeusz Rogowski, Jerzy Sobczyk, Andrzej P. Wierzbicki

HYBRID - A Mathematical Programming Package 376

Marek Makowski, Janusz S. Sosnowski

IAC-DIDAS-N - A Dynamic Interactive Decision Analysis 378

and Support System for Multicriteria Analysis of Nonlinear Models

Tomasz Kreglewski, Jerzy Paczynski, Janusz Granat,

Andrzej P. Wierzbicki

DISCRET - An Interactive Decision Support System 382

for Discrete Alternatives Multicriteria Problems

Janusz Majchrzak

x

DINAS - Dynamic Interactive Network Analysis System

Wlodzimierz Ogryczak, Krzysztof Studzinski, Krystian Zorychta

MCBARG - A System Supporting Multicriteria Bargaining

Piotr Bronisz, Lech Krus, Bozena Lopuch

POSTAN 3 and PLP - Extension of MINOS for Postoptimal

Analysis

Grzegorz Dobrowolski, Tomasz Rys, Adam Golebiowski,

Krystyn Hajduk, Adam Korytowski

385

388

391

Part 1

Theory and Methodology

Decision Support Systenls Using

Reference Point Optimization

Andrzej Lewandowski, Andrzej P. Wierzbicki

Institute of Automatic Control, Warsaw University of Technology.

Abstract

This paper presents a review of various approaches to decision support, dis­

tinguishes a methodological approach based on reference point optimization and

reviews advances in this field done in Poland under the contracted study agreement

"Theory, Software and Testing Examples for Decision Support Systems" with the

International Institute for Applied Systems Analysis.

1 Introduction

The concept of a decision support system - though widely used and developed both in

research and in practical applications through more than last ten years - is not yet

quite precisely defined. On the other hand, it is possible to give a broad definition of

this concept by enumerating possible classes of decision support systems, describing the

concept of a decision making process that is fundamental to all decision support systems,

defining what a decision support system should and what it should not do, discussing:

possible approaches to and types of decision support. After attempting such a broad

definition, we review in this paper in more detail a specific class of decision support

systems - those that use the principle of reference point optimization for generating

and evaluating decision alternatives, mostly with help of a computerized analytical

model describing the essential features of a decision situation. Many of such systems

have been developed during four years of a contracted study agreement between the

Polish Academy of Sciences (including, as subcontractors, the Institute of Automatic

Control of Warsaw University of Technology, the Institute of Systems Research of Polish

Academy of Sciences, the Institute of Automatic Control of the Academy of Mining and

Metallurgy of Krakow and the Institute of Informatics of the University of Warsaw)

and the International Institute for Applied Systems Analysis, Laxenburg near Vienna,

Austria. These developments and implementations are also reviewed in the paper.

4

2 Concepts and definitions of decision support

systems

There are many proposed definition of a decision support systems in the current lit­

erature - see, e.g., Keen and Scott-Morton (1978), Sage (1981), Parker and AI-Utabi

(1986), Gray (1986), Jarke (1986) and others. However, most of them do not take

into account the fact that three main classes of decision support systems have been

practically developed in applications and research. These are (see Lewandowski and

Wierzbicki, 1987, also next paper):

A) Simple tools for managerial decision support (that might be used as building blocks

of more sophisticated decision support systems) such as modern data bases, elec­

tronic spreadsheet systems, etc. as well as more complex but pragmatically de­

signed systems composed of such tools;

B) Decision support systems based on logical models and logical inference whose main

function are to help in recognizing a logical pattern in a decision situation; these

systems typically involve the use of logical programming languages, expert systems

style programming, knowledge bases, other tools of artificial intelligence;

C) Decision support systems based on analytical models, multiobiective optimization

and choice, whose main functions concentrate on the process of choice among

various decision alternatives either specified a priori or generated with help of the

system. Such systems typically include a computerized model of a decision situ­

ation formulated in analytical terms and elements of multiobjective optimization

and evaluation of alternatives.

All these three classes can be further subdivided according to various methodological

principles. For example, the systems of the class C can be subdivided in various ways:

systems that serve a strategic evaluation of novel decision situations versus systems

that support repetitive, tactical decisions; systems that handle a number of discrete

alternatives versus those that support the generation and choice among alternatives

from a set of continuum power; between the latter, systems that use static linear,

dynamic linear, static nonlinear or dynamic nonlinear analytical models that describe a

given decision situation; systems in which the methodology of multiobjective alternative

evaluation follows a definite (typically, culturally determined) framework of rationality

versus systems that try to accommodate intercultural perceptions of rationality, see

next paper; etc.

However, there are certain features that are common to all decision support systems.

Observe that the systems of classes Band C contain explicitly models of the decision

situation, although of different types. The same can be said, in fact, about the systems

of the class A: when preparing a simple decision support tool, such as a date base or a

spreadsheet, to support a definite decision process, one must assume, even if implicitly,

a kind of a model of the decision situation. Thus, we can state that all decision support

systems contain such models.

5

All decision support systems can be subdivided into two large classes: those that are

designed to serve essentially one user or decision maker versus those that are explic­

itly designed to serve many users or multiple decision makers. The latter class can be

further subdivided into two essentially different subclasses: those that serve cooperative

group decision making versus those that are designed to help in truly game-like situa­

tions that might involve conflict escalation through noncooperative decisions and thus

serve bargaining and negotiations (through they might and should try to help reach­

ing cooperative decisions, such systems do not take cooperative behaviour of users for

granted, see Wierzbicki, 1983a,b). In the latter case, another universal feature of deci­

sion support systems becomes apparent: all decision support systems should be designed

not to serve reaching a single decision, but to help in organizing a decision process.

This essential feature of decision support systems was noted by many authors ­

see, e.g., Parker and Al-Utabi (1986). An early characterization of a decisions process

was given by Simon (1958). According to this definition, a decision process consists of

the following three steps: intelligence - searching the environment for opportunities

calling for a decision, design - defining the decision situation, inventing, developing

and analysing possible courses of action, finally choice - selecting a particular course of

action from those available. However, the experience in analysing decision processes and

constructing decision support systems since this time indicates that a decision process

might be much more complicated and contains more essential elements. Cooke and

Slack (1984) combine the decision making with problem solving process and define its

phases as observation, a formal recognition of a problem, interpretation and diagnosis,

the definition of a decision problem, the determination of options or alternatives, an

evaluation of options, and selection, implementation and monitoring. When including

implementation and monitoring phases in a decision process, a much more sophisticated

treatment of various types of uncertainty becomes possible - Wierzbicki (1983a).

The results of Dreyfus (1984) indicate that an essential distinction should be made

between familiar (even complex) decision situations and novel decision situations as well

as between various levels of expertize of the decision maker in a given field. A master

expert in a decision field is able to treat most of the decision situations as familiar

ones, recognize them immediately and select and implement a decision instantly with

great efficiency. The quality of his decisions might exceed considerably the quality of

decisions achieved by any computerized system; we still do not have adequate models

and interpretations of the parallel processing of information performed in human mind.

However, even master expert recognises (through certain feeling of uneasiness) situations

that are novel and deliberates about them. Again, the process of such deliberation is

not understood by us fully and is certainly not as ordered and linear as the models of

decision processes described above; it ends in a sudden recognition of a decision pattern

or in a deeper understanding of the decision problem. An expert of a lower level or a

novice in a decision field treats more decision situations as novel and thus needs more

logical or analytical decision support.

When seen from this perspective, every decision process is a part of a longer process

of learning in order to become a master expert. Thus, a decision process in all novel

situations is not necessarily linearly ordered, can have many recourses to earlier stages,

while as a decision situation becomes more familiar for a given decision maker, the

6

decision process becomes shorter and finally looses its distinctive phases. This is similar

to an adaptive treatment of uncertainty, to the old concept of Feldbaum (1962) of the

dual role of control - this of control and that of learning. This also indicates several

concepts of dynamics in a decision process. One is related to the fact that decisions

are concerned with future events and have dynamic consequences - even if we do use

sometimes static models of their consequences in more simple cases. The second reflects

the fact that even reaching a single decision is a process, possibly with many phases and

recourses and with a role of learning during this process. The third reflects the fact that

separate decision processes are embedded in a longer learning process of the decision

maker to become a master expert, with its much more complicated dynamics. We

can conclude also that the requirement of consistency of a decision maker, essential to

many classical approaches to decision analysis, has a fundamental drawback: a learning

decision maker can often gain by being inconsistent.

All this indicates that decision support systems can have multiple functions in a

decision process. Most important are two general functions: helping the decisions maker

to learn about the decision situation (to familiarise it by playing with the proxy of

reality provided by the decision support system) and filling in details to the outlines of

decision suggested by decision maker (even a master expert might need this function

in more complex decision situation and a learning decision maker needs it the more,

while striving to become a master expert). This suggests that the emphasis on the

phase of decision choice, typical for more classical approaches to decision processes and

decision support, is actually misplaced: if adequately supported, humans can make

(until now, and probably for a long time to come) much better decision than most

advanced computerized systems - and the problem is not how to replace, but how

to support human decision making. There certainly are decision problems of repetitive

type that might and should be automated - because of the necessary speed of decisions,

because of their tediousness for humans, because of the reliability of automata that do

not grow tired and do not have the human right to change their minds - but this

becomes then the field of automatic control, not of decision analysis and support.

Even as a tool for learning and filling in details, however, decision support systems

can perform many functions in various phases of a decision process. In the first phase

of intelligence and observation, main support can come from information processing

systems that, when considered alone, need not be decision support systems because

they do not necessarily contain a model of the decision situation. When interpreting

this information, however, in the phases of formal problem recognition, interpretation

and diagnosis, many tentative decision situation models might be tried. Thus the first

function of a decision support system is to help in model formalization, edition, simu­

lation, parametric analysis etc. Naturally, models used in decision support can be of

various types - very simple or more complex, of logical or analytical nature, etc. - and

contemporary decision support systems cannot work with all possible classes of models,

are necessarily specialized. Nevertheless, good decision support system should contain

a model edition and simulation interface and a directory of models together with a data

base of the results of experiments with these models.

The phase of problem definition typically results in an (explicit or implicit) selection

of one of possible models of the decision situation, or at least - of a class of such

7

models. Decision means and ends are also typically determined in this phase, while the

distinction between then is not necessarily sharp: resources allocated to a given problem

can be considered both decision outcomes (ends) and decision variables (means). There­

fore, it is useful to distinguish more precisely between decision variables in the sense of

input variables to a model and decision outcomes in the sense of the output variables,

although in some simplistic models this distinction is not sharp either and it is better

to speak about decision alternatives (options) and attributes (outcomes). Some of the

output variables might be chosen as objectives (or attributes, or criteria) of the decision.

In fact, a given model of a decision situation allows typically for various definitions of a

decision problem, since various variables of the model can be selected either as decision

variables or as decision outcomes. In this sense, a good decision support system should

have a directory of problems (related to given models) and a data base of experimental

analysis results for given problems.

The latter feature is necessary in the phase of generating and reviewing or evaluating

options and alternatives. If the decision situation is modelled as one with a discrete,

exogenously given number of options or alternatives, the generation of alternatives must

be done outside of a decision support system. However, in most cases the options or

alternatives are not exogenously given - even if discrete - and only limited by certain

constraints that must be represented in the model. In such a case, or in a case when the

number of exogenously given options is very large, the issue of selecting on option for

analysis is equivalent to alternative generation. If the decision variables have continuous

character (the number of alternatives is of continuum power), there is no difference at

all between alternative generation and selecting a decision option for analysis. Such

selected alternatives together with results of their analysis or evaluation need a data

base.

The phase of selection or choice of a decision can be variously represented in decision

support systems. If we insist on the sovereignty of a human decision maker and consider

the system as supporting mostly learning and filling in details, then each decision choice

proposed by the system must be only tentative and the user must have convenient means

of influencing this choice. In such a case, there is no need to make an essential distinction

between the phase of alternative generation, analysis and evaluation and the phase of

choice: in both of them, the decision support system should use some methodological

device for selecting and evaluating an alternative or option while being guided by the

general wishes of the user. Various methods of multiobjective decision analysis can be

used for this purpose, if the model has analytical form; for models of logical type, the

issue of appropriate methodological device for such a purpose is yet open.

It must be stressed here that the insistence on the user's sovereignty is a relatively

new feature of decision support systems developed in the last decade together with "high

tech - high touch" trend in modern societies (see Naisbit, 1984). Older approach to

decision support systems, while stressing that such a system should only help decision

makers in reaching decisions, was not quite consistent with this assumption in the

phase of decision choice. Typically, such systems (based either on utility maximization

or another - often logical - "inference engine") communicate the following message to

the user in the phase of choice: "if your answers to my questions have been consistent,

your best decision is as follows". This often helps the user, but not sufficiently: he

8

does not know which of his answers is responsible for this particular choice, nor how to

change general instructions to the system in order to influence the final decision if he

does not like it for some reason. Thus, there is a need for a further development of such

systems that would take into account the right of a human decision maker to change

his mind and the need for supporting him in learning.

Finally, it should be stressed that decision support systems could, in principle, help

also in the last phases of implementation and monitoring the results of a decision, by

providing a proxy of costly experiments in reality through post-optimal and sensitivity

analysis of models of a decision situation. This function can include even special ap­

proaches to sensitivity, uncertainty and robustness analysis as suggested by Wierzbicki

(1983a, 1984a). Not many functions of this type have been included, however, in the

decision systems developed until now.

3 The principle of reference point optimization in

decision support systems (DSS)

While leaving a more detailed review of various frameworks of rationality to another

paper (see next paper), we stress here firstly some essential facts related to such review.

Any mathematical formalization of rationality framework is typically concerned with

two preorderings of the spaces of decision outcomes (attributes, objectives) and decision

variables (alternative decisions):

- a partial preordering in the space of outcomes that is usually implied by the deci­

sion problem and usually has some obvious interpretation, such as maximization

of profit competing with the maximization of market share, etc.; a standard as­

sumption is that this preordering is transitive and can be expressed by a positive

cone D.

- a complete preordering in the spaces of outcomes and decisions or, at least, in the

set of attainable outcomes and decision alternatives, which is usually not given

in any precise mathematical form, but is contained in the mind of the decision

maker, such as how actually the preferences between the maximization of profit

and the maximization of market share should be distributed in a market analysis

case.

The main differences between various frameworks of rationality that lead to diverse

approaches to interactive decision support are concerned with the assumptions about

this complete preordering and the way of its utilization in the DSS. This issue is also

closely related with the way in which the DSS interacts with the decision maker; some

variants of DSS require that the user answers enough questions for an adequate estima­

tion of this complete preordering, some other variants need only general assumptions

about the preordering, still other variants admit a broad interpretation of this preorder­

ing and diverse frameworks of rationality that might be followed by the user.

The most strongly established rationality framework is based on the assumption of

maximization of a value function or an utility function. Under rather general assump­

tions, the complete preordering that represents the preferences of the decision maker

9

can be represented by an utility function such that by maximizing this function over

admissible decisions we can select the decision which is most preferable to the deci­

sion maker; the publications related to this framework are very numerous, but for a

constructive review see, for example, Keeney and Raiffa (1976).

There are many fundamental and technical difficulties related to the identification

of such utility function. Leaving aside various technical difficulties, we should stress

the fundamental ones. Firstly, a continuous utility function exists if there is no strict

hierarchy of values between decision outcomes, if all decision outcomes can be aggre­

gated into one value - say, of monetary nature; this does not mean that hierarchically

higher ethical considerations cannot be incorporated in this framework, but that they

must be treated as constraints, cannot be evaluated in the decision process. Thus, the

utility maximization framework - although it represents the behaviour of many human

decision makers - is by no means the universal case of human rationality - see, for

example, Rappoport (1984). Secondly, while the utility maximization framework might

be a good predictor of mass economic phenomena, it has many drawbacks as a predictor

of individual behaviour - see, for example, Fisher (1979), Erlandson (1981), Horsky

and Rao (1984). According to the results of research presented in these papers, the

utility function approach can be used in a rather simple, laboratory environment, but

can fail in more complex situations.

Thirdly - and most importantly for applications in decision support systems - an

experimental identification and estimation of an utility function requires many questions

and answers in the interaction with the decision maker. Users of decision support

systems are typically not prepared to answer that many questions, for several reasons.

They do not like to waste too much time and they do not like to disclose their preferences

in too much detail because they intuitively perceive that the decision system should

support them in learning about the decision situation and thus they should preserve

the right to change their minds and preferences. Therefore, if any approximation of an

utility function is used in a decision support system, it should be nonstationary in time

in order to account for the learning and adaptive nature of the decision making process.

Such an approximation cannot be very detailed, it must have a reasonably simple form

characterized by some adaptive parameters that can aggregate the effects of learning.

Another rationality framework, called satisficing decision making, was formulated

by Simon (1969) and further extended by many researchers, see for example Erland­

son (1981) for a formalization and review of this approach. Originally, this approach

assumed that human decision makers do not optimize, because of the difficulty of opti­

mization operations, because of uncertainty of typical decision environment, and because

of complexity of the decision situations in large organizations. Therefore, this approach

was sometimes termed bounded rationality, that is, somewhat less than perfect ratio­

nality; however, there are many indications that this approach represents not bounded,

but culturally different rationality. While the first two reasons for not optimizing have

lost today their validity (both in the calculative sense, with the development of com­

puter technology and optimization techniques, including issues of uncertainty, and in

the deliberative sense - expert decision makers can intuitively optimize in quite com­

plex situations), the third reason remains valid and has been reinforced by the results

of various studies.

10

For example, the studies of human behaviour in situation of social traps or games

with paradoxical outcomes - see Rappoport (1984) - and of evolutionary development

of behavioural rules that resolve such social traps - see Axelrod (1985) - indicate that

evolutionary experience forces humans to accept certain rules of ethical character that

stop maximizing behaviour. Any intelligent man after some quarrels with his wife learns

that maximization is not always the best norm of behaviour; children learn from conflicts

among themselves that cooperative behaviour is also individually advantageous for a

longer perspective. All these observations and studies might motivate in the future

the development of a new framework of evolutionary rationality, but certainly reinforce

the conclusions of the satisficing framework that there are rational reasons for stopping

maximization in complex situations.

A very important contribution of the satisficing framework is the observation that

decision makers often use aspiration levels for various outcomes of decisions; in classical

interpretations of the satisficing framework, these aspiration levels indicate when to stop

optimizing. While more modern interpretations might prefer other rules for stopping

optimization, the concept of aspiration levels is extremely useful for aggregating the

results of learning by the decision maker: aspiration levels represent values of decision

outcomes that can be accepted as reasonable or satisfactory by the decision maker and

thus are aggregated, adaptable parameters that are sufficient for a simple representation

of his accumulated experience.

There might be also other frameworks of rationality, such as the framework of goal­

and program oriented planning, see Glushkov (1972), Pospelov and Irikov (1976), Wierz­

bicki (1985), that corresponds to the culture of planning organizations. This framework

has some similarities, but also some differences to the utility maximization framework,

the satisficing framework and to the principle of reference point optimization developed

by Wierzbicki (1980) in multiobjective optimization and decision support.

In order first to include the principle of reference point optimization into the frame­

work of satisficing decisions and then to develop a broader framework that would be

useful for decision support for decision makers representing various perspectives of ra­

tionality, Wierzbicki (1982, 1984b, 1985, 1986) proposed the following principles of

quasisatisficing decision making - a quasisatisficing decision situation consists of (one

or several) decision makers or users that might represent any perspective of rationality

and have the right of changing their minds due to learning and of stopping optimiza­

tion for any reason (for example, in order to avoid social traps) as well as of a decision

support system that might be either fully computerized or include also human experts,

analysts, advisors. It is assumed that:

- The user evaluates possible decisions on the basis of a set (or vector) of attributes

or objective outcomes. These factors can be expressed in numerical scale (quan­

titatively) or in verbal scale (qualitatively), like "bad", "good" or "excellent".

Each factor can be additionally constrained by specifying special requirements on

it that must be satisfied. Beside this, objective outcomes can be characterized by

their type: maximized, minimized, stabilized - that is, kept close to a given level

(which corresponds to foregoing optimization), or floating - that is, included for

the purpose of additional information or for specifying constraints. The user has

the control over the specification of objective outcomes together with their types

11

and of possible aggregation of such factors.

- One of the basic means of communication of the user with the decision support

system is his specification of aspiration levels for each objective outcome; these

aspiration levels are interpreted as reasonable values of objective outcomes. In

more complex situations, the user can specify two levels for each objective outcome

- an aspiration level interpreted as above and a reservation level interpreted as

the lowest acceptable level for the given objective outcome.

- Given the information specified by the user - Le., the specification of objective

outcomes and their types, together with aspiration and possibly reservation levels

- the decision support system following the quasisatisficing principle should use

this guiding information, together with other information contained in the system,

in order to propose to the user one or several alternative decisions that are best

attuned to this guiding information. When preparing (generating or selecting)

such alternative decisions, the decision support system should not impose on the

user the optimizing or the satisficing or any other behaviour, but should follow the

behaviour that is indicated by the types of objective outcomes. This means that

the decision support system should optimize when at least one objective outcome

is specified as minimized or maximized and should satisfice (stop optimizing upon

reaching aspiration levels) when all objective outcomes are specified as stabilized.

The later case corresponds actually to the technique of goal programming, see e.g.

Ignizio (1978), hence the quasisatisficing decision support can be also considered

as a generalization of this technique. By using aspiration or reservation levels

for some objective outcomes as constraints, also the goal- and program oriented

behaviour can be supported by a quasisatisficing decision support system.

In order to illustrate possible responses of a quasisatisficing decision support system

to the guiding information given by the user, let us assume that all specified objective

outcomes are supposed to be maximized and have specified aspiration levels or reference

points. In this original formulation of the principle of reference point optimization we

can distinguish the following cases:

Case 1: the user has overestimated the possibilities implied by admissible decisions

(since their constraints express available resources) and there is no admissible

decision such that the values of all objective outcomes are exactly equal to their

aspiration levels. In this case, however, it is possible to propose a decision for

which the values of objective outcomes are as close as possible (while using some

uniform scaling, for example implied by the aspiration and reservation levels) to

their aspiration levels; the decision support system should tentatively propose at

least one or several of such decisions to the user.

Case f!: the user underestimated the possibilities implied by admissible decisions and

there exist a decision which results in the values of objective outcomes exactly

equal to the specified aspiration levels. In this case, it is possible to propose a

decision which improves all objective outcomes uniformly as much as possible. The

decision support system should inform the user about this case and tentatively

propose at least one or several of such decisions.

12

Case 9: the user, by a chance or as a result of a learning process, has specified aspira­

tion levels there are uniquely attainable by an admissible decision. The decision

support system should inform the user about this case and specify the details of

the decision that results in the attainment of aspiration levels

In the process of quasisatisficing decision support, all aspiration levels and the cor­

responding decisions proposed by the system have tentative character. If a decision

proposed by the system is not satisfactory to the user, he can modify the aspiration

levels and obtain new proposed decisions, or even modify the specification of objective

outcomes or constraints; the process is repeated until the user learns enough to make

the actual decision himself or to accept a decision proposed by the system.

The process of quasisatisficing decision making can be formalized mathematically ­

see, e.g., Wierzbicki (1986) - and the mathematical formalization can be interpreted

in various ways; let us consider an interpretation that corresponds to the framework

of utility maximization. We assume that the user has a nonstationary utility function

that changes in time due to his learning about a given decision situation. At each

time instant, however, he can intuitively and tentatively (possibly with errors concern­

ing various aspects of the decision situation) maximize his utility; let this tentative

maximization determine his aspiration levels.

When he communicates these aspiration levels to the decision support system, the

system should use this information, together with the specification of the decision sit­

uation, in order to construct an approximation of his utility function that is relatively

simple and easily adaptable to the changes of aspiration levels, treated as parameters

of this approximation. By maximizing such an approximative utility function while us­

ing more precise information about the attainability of alternative decisions and other

aspects of the decision situation - for example, expressed by a model of the decision

situation incorporated by expert advice into the decision support system - a tentative

decision can be proposed to the user.

Such a tentative approximation of the user's utility function, constructed in the deci­

sion support system only in order to propose a tentative decision to the learning decision

maker, is called here order-consistent achievement Junction or simply achievement Junc­

tion. It should be stressed that the concept of achievement function has been also used

in the context of goal programming, but without the requirement of order consistency

(achievement functions in goal programming are equivalent to norms and thus satisfy

the requirements of Cases 1 and 3 listed above but fail to satisfy the requirements of

Case 2).

There are many other interpretations of an order-consistent achievement function

(see Wierzbicki, 1986): penalty function related to aspirations treated as soft constrains,

a utility function not of the decision maker, but of the decision support system inter­

preted as an ideal staff trying to follow instructions given by it's boss, a device for

automatically switching from norm minimization to maximization in generalized goal

programming upon crossing the boundary of attainable outcomes, a mathematical tool

for closely approximating the positive cone D in the space of outcomes, an extension of

the concept of membership function in a fuzzy set approach to multiobjective optimiza­

tion, etc.

13

The general idea of reference point optimization has been independently devel­

oped or further used and extended by many researchers - Steuer and Cho (1983),

Nakayama and Savaragi (1985), Korhonen and Laakso (1986). The more specific use of

order-consistent achievement functions has been developed in many papers of IIASA­

see next paper and, specifically, in the contracted study agreement "Theory, Software

and Testing Examples for Decision Support Systems" between IIASA and the Polish

Academy of Sciences.

4 Recent research on decision support systems in

Poland

Under the contracted study agreement, various theoretical issues, special tools for de­

cision support systems mostly based on the quasisatisficing framework and reference

point optimization, decision support system prototypes for given classes of substantive

models of decision situation (that is, outlines for decision support systems that can be

further customized for a specific decision situation with a model of a given class), as

well as examples of decision support systems and their applications have been studied

and developed.

Between the theoretical issues studied, the following advances have been made:

- special types of simplex and non-simplex algorithms for large scale linear program­

ming problems of dynamic and stochastic type encountered when analysing multi­

objective linear programming type models for decision support, by A. Ruszczynski

and J. Gondzio, this also includes a new way of decomposing augmented La­

grangian functions for such problems;

- a study of theoretical issues related to a non-simplex algorithm based on aug­

mented Lagrangian regularization for multiobjective optimization of dynamic lin­

ear and quadratic programming type models in decision support, by J. Sosnowski

and M. Makowski;

- a study of methodological issues related to multiobjective trajectory optimization,

particularly for models of dynamic multiobjective linear programming type , by

T. Rogowski;

a study of uncertainty issues in multiobjective optimization through a special

interval approach developed by H. Gorecki and A. Skulimowski;

- a study of methodological issues, a c h i e v e m e n ~ function forms and robust nonlinear

programming algorithms for decision support systems using models of nonlinear

programming type, by T. Kreglewski, together with issues of using symbolic dif­

ferentiation for such models, by J. Paczynski;

- a study of nondifferentiable optimization techniques for applications in multiob­

jective optimization of nonlinear models, by K. Kiwiel and A. Stachurski;

14

- a study of mixed-integer multiobjective transhipment and facility location prob­

lems using the quasisatisficing framework, by W. Ogryczak, K. Studzinski and

K. Zorychta;

- methodological and game-theoretical research for the development of multi-person

decision support systems for bargaining and negotiations with multiple objectives,

by J. Bronisz, L. Krus and A. P. Wierzbicki.

The decision support tools and decision support system prototypes developed under

this research agreement include:

- a multiobjective mathematical programming system - based on reference point

optimization - HYBRID, using the mentioned above algorithms by J. Sosnowski

and M. Makowski; this system can be used as a core for a more customized decision

support systems;

- a decision support system prototype IAC-DIDAS-L (in two variants) for prob­

lems with linear programming type models, by T. Rogowski, J. Sobczyk and

A. P. Wierzbicki;

- a nonlinear model edition, generation and symbolic differentiation package as a

tool for supporting first phases of the decision process with nonlinear models, by

J. Paczynski and T. Kreglewski (only some methodological background aspects of

this package are described in this volume);

- a decision support system prototype IAC-DIDAS-N for problems with nonlinear

programming type models, by T. Kreglewski, J. Paczynski and A. P. Wierzbicki;

- a decision support system prototype DINAS for multiobjective transportation and

facility location problems with models of mixed-integer programming type, by

W. Ogryczak, K. Studzinski and K. Zorychta;

- a pilot version of a decision support system prototype DISCRET for multiob­

jective problems with a large number of explicitly given discrete alternatives, by

J. Majchrzak;

- a pilot version of a nondifferentiable nonlinear optimization package NOA-l with

possible applications in multiobjective decision support, by K. Kiwiel and A. Sta­

churski (only methodological background of this package is described in this vol­

ume);

- a pilot version of a multi-person decision support system prototype for multiob­

jective bargaining and negotiations, by J. Bronisz, L. Krus and B. Lopuch;

- a postoptimal analysis package POSTAN and a parametric programming package

PLP compatible with the optimization system MINOS and adapted for multiobjec­

tive optimization, by G. Dobrowolski, A. Golebiowski, K. Hajduk, A. Korytowski

and T. Rys.

15

Most of the software packages and system prototypes are developed to the level of

documented and tested, scientific transferable software; packages and system prototypes

include testing and demonstrative examples for their applications. The documentation

of these packages and system prototypes will be available from IIASA in autumn 1988.

A separate group concentrated on a range of applications of decision support sys­

tems using reference point optimization - in programming the development of industrial

structures in chemical industry. A specialized decision support system MIDA has been

developed for these purposes by J. Kopytowski, M. Zebrowski, G. Dobrowolski and

T. Rys, then widely tested in many applications in Poland and abroad as well as ex­

tended to handle hierarchical, spatial, dynamic and scheduling issues by its original

authors and M. Skocz, W. Ziembla. The experiences from this field of applications give

a strong testing ground for the general development of decision support methodology.

It is necessary to point out that this short review focuses mostly on activities within

the contracted study agreement between IIASA and Polish scientific institutions. This

research constitutes, however, only a part of research done within the System and Deci­

sion Sciences Program regarding problems of theory, implementation and applications

of Decision Support Systems. We will not discuss all these activities - they are pre­

sented in the recent issues of OPTIONS (1987). It is necessary to mention, however,

such important contributions of scientists cooperating with SDS and SDS staff members

like multiple criteria optimization aspects of uncertain dynamic systems (Kurzhanski,

1986), several theoretical aspects of multiple criteria optimization (Nakayama, 1986,

Tanino, 1986, Sawaragi at all., 1985, Valyi, 1986, 1987) problems of voting and util­

ity theory (Saari, 1987), stochastic programming aspects of DSS (Michalevich, 1986)

fuzzy set approach in DSS (Sakawa and Yano, 1987, Seo and Sakawa, 1987), DSS for

scheduling (Katoh, 1987) as well as new approaches in development of DSS (Larichev,

1987). Another activity not mentioned in this volume is the development of multi-user

cooperative decision support system (SCDAS) implemented in distributed computing

environment (Lewandowski and Wierzbicki, 1987, Lewandowski 1988). Finally, several

scientific activities coordinated by SDS are also contributing to further advancement of

theory and methodology of Decision Support Systems - such as the International Com­

parative Study in DSS (Anthonisse at all., 1987). Without this stimulating scientific

atmosphere and without scientific environment created in SDS it would be definitely

not possible to achieve the results presented in this volume.

5 References

Anthonisse, J.M., K.M. van Hee and J.K. Lenstra (1987). Resource constrained project

scheduling: an international exercise in DSS development. Centre for Mathematics

and Computer Science, Department of Operations research and System Theory,

Note OS-N9701, Amsterdam, The Netherlands.

Axelrod, R. (1985). The Evolution of Cooperation. Basic Books, New York.

Bonczek, R. H., Holsapple, C. W. and Whinston, A. B. (1981). Foundations of Decision

Support Systems. Academic Press, New York.

16

Cooke, S. and Slack, N. (1984). Making Management Decision. Prentice-Hall, Engle­

wood Cliffs.

Dinkelbach, W. (1982). Entscheidungsmodelle, Walter de Gruyter, Berlin, New York.

Dreyfus, R. E. (1984). Beyond rationality. In: Grauer, M., Thompson, M., Wierzbicki,

A. P. Eds: Plural Rationality and Interactive Decision Processes. Proceedings,

Sopron, Hungary, 1984. Lecture Notes in Economics and Mathematical Systems,

Vol. 248. Springer-Verlag, Berlin.

Erlandson, F. E. (1981). The satisficing process: A new look. IEEE Trans. on Systems,

Man and Cybernetics, Vol. SMC-ll, No. 11, November 1981.

Feldbaum, A. A. (1962). Foundations of the theory of optimal control systems (in

Russian: Osnovy teorii optimalnych avtomaticheskikh sistem). Nauka, Moscow.

Fisher, W. F. (1979). Utility models for multiple objective decisions: Do they accu­

rately represent human preferences? Decision Sciences, Vol. 10, pp. 451-477.

Ginzberg M. J. and Stohr E. A. (1982). Decision Support Systems: Issues and Per­

spectives. In: Ginzberg, M. J., Reitman, W. R. and Stohr, E. A. Eds.: Decision

Support Systems, Proceedings of the NYU Symposium on Decision Support Sys­

tems, New York, 21-22 May, 1981. North-Holland Publ. Co.

Glushkov, V. M. (1972). Basic principles of automation in organizational management

systems (in Russian). Upravlayushcheye Sistemy i Mashiny, 1.

Grauer, M., Lewandowski, A" and Wierzbicki, A. P. (1984). DIDAS - theory, imple­

mentation and experiences. In: Grauer, M. and Wierzbicki, A. P. Eds: Interactive

Decision Analysis, Proceedings, Laxenburg, Austria, 1983. Lecture Notes in Eco­

nomics and Mathematical Systems, Vol. 229. Springer Verlag, Berlin.

Gray, P. (1986). Group Decision Support Systems. In: McLean E. and Sol, H. G.

Eds: Decision Support Systems: A Decade in Perspective, Proceedings of the IFIP

WG 8.3 Working Conference on Decision Support Systems, Noordwijkerhout, The

Netherlands.

Horsky, D. (1984). Estimation of attribute weights from preference comparisons. Man­

agement Science, Vol. 30, No.7, July 1984.

Ignizio, J. P. (1978). Goal programming - a tool for multiobjective analysis. Journal

for Operational Research, 29, pp. 1109-1119.

Jacquet-Lagreze, E. and Shakun, M. F. (1984). Decision Support Systems for Semi­

Structured Buying Decisions. European Journal of Operational Research, Vol. 16,

pp.48-58.

17

Jarke, M. (1986). Group Decision Support through Office Systems: Developments in

Distributed DSS Technology. In: McLean, E. and Sol, H. G. Eds: Decision Sup­

port Systems: A Decade in Perspective, Proceedings of the IFIP WG 8.3 Working

Conference on Decision Support Systems, Noordwijkerhout, The Netherlands.

Katoh, N. (1987). An efficient algorithm for bicriteria minimum-cost circulation prob­

lem. Working Paper WP-87-98, International Institute for Applied Systems Anal­

ysis, Laxenburg, Austria.

Katoh, N. (1987). An efficient algorithm for a bicriteria single-machine scheduling

problem. Working Paper WP-87-100, International Institute for Applied Systems

Analysis, Laxenburg, Austria.

Keen, P. G. Wand Scott Morton, M. S. (1978). Decision Support Systems - An

Organizational Perspective. Addison-Wesley Series on Decision Support.

Keeney, R. 1. and Raiffa, H. (1976). Decisions with Multiple Objectives: Preferences

and Value Tradeoffs, Willey, New York, 1976.

Korhonen, P., and Laakso, J. (1986). Solving a generalized goal programming problem

using a visual interactive approach. European Journal of Operational Research,

26, pp. 355-363.

Kurzhanski, A. (1986). Inverse problems in multiobjective dynamic optimization. In:

Toward Interactive and Intelligent Decision Support Systems, Proceedings, Kyoto,

Japan, 1986, Y. Sawaragi, K. Inoue and H. Nakayama, Eds. Lecture Notes in

Economics and Mathematical Systems, Vol. 286, Springer-Verlag.

Larichev, O. (1987). New directions in multicriteria decision making research. Work­

ing Paper WP-87-67, International Institute for Applied Systems Analysis, Lax­

enburg, Austria.

Lewandowski, A., Rogowski, T. and Kreglewski T. (1985). A trajectory-oriented ex­

tension of DIDAS and its application. In: Grauer, M., Thompson, M., Wierzbi­

cki, A. P. Eds: Plural Rationality and Interactive Decision Processes. Proceedings,

Sopron, Hungary, 1984. Lecture Notes in Economics and Mathematical Systems,

Vol. 248. Springer-Verlag, Berlin.

Lewandowski, A., Johnson, S. and Wierzbicki, A. P. (1986). A prototype selection

committee decision analysis and support system, SCDAS: theoretical background

and computer implementation. Working Paper WP-86-27, International Institute

for Applied Systems Analysis, Laxenburg, Austria.

Lewandowski, A. and A.P. Wierzbicki (1987). Interactive decision support systems

- the case of discrete alternatives for committee decision making. Working Pa­

per WP-87-38, International Institute for Applied Systems Analysis, Laxenburg,

Austria.

18

Lewandowski, A. (1988). SCDAS - decision support system for group decision mak­

ing: information processing issues. Working Paper WP-88-48, International Insti­

tute for Applied Systems Analysis, Laxenburg, Austria.

Michalevich, M. V. (1986). Stochastic approaches to interactive multicriteria opti­

mization problems. Working Paper WP-86-10, International Institute for Applied

Systems Analysis, Laxenburg, Austria.

Naisbit, J. (1984). Megatrends. H. Mifflin, New York.

Nakayama, H. and Sawaragi, Y. (1983). Satisficing trade-off method for multiobjective

programming. In: Grauer, M. and Wierzbicki, A. P. Eds: Interactive Decision

Analysis, Springer-Verlag, Berlin-Heidelberg.

Nakayama, H. (1986). Geometrical approach to Iserman duality in linear vector op­

timization. Collaborative Paper CP-86-02, International Institute for Applied

Systems Analysis, Laxenburg, Austria.

OPTIONS (1987). Decision Support Systems, No. 3-4, 1987. International Institute

for Applied Systems Analysis, Laxenburg, Austria.

Parker, B. J. and Al-Utabi, G. A. (1986). Decision support systems: The reality that

seems to be hard to accept? OMEGA Int. Journal of Management Science, Vol.

14, No.2, 1986.

Pospelov, G. S. and Irikov, V. A. (1976). Program- and Goal Oriented Planning and

Management (in Russian). Sovietskoye Radio, Moscow.

Rappoport, A. (1984). The uses of experimental games. In: Grauer, M., Thomp­

son, M., Wierzbicki, A. P. Eds: Plural Rationality and Interactive Decision Pro­

cesses. Proceedings, Sopron, Hungary, 1984. Lecture Notes in Economics and

Mathematical Systems, Vol. 248. Springer-Verlag, Berlin.

Roy, B. (1971). Problems and methods with multiple objective functions, Math. Pro­

gramming, Vol. 1, pp. 233-236.

Saari, D. (1982). Inconsistencies of weighted Voting Systems. Math. of Operations

Res., Vol. 7.

Saari, D. (1987). Symmetry and extensions of Arrow's theorem. Working Paper WP­

87-109, International Institute for Applied Systems Analysis, Laxenburg, Austria.

Saaty, T. L. (1982). Decision Making for Leaders: The Analytical Hierarchy Process

for Decisions in a Complex World, Lifetime Learning Publ., Belmont.

Sage, A. P. (1981). Behavioural and organizational considerations in the design of

information systems and processes for planning and decision support. IEEE Trans.

Systems and Cybernetics, Vol. SMC-ll, No.9, September 1981.

19

Sakawa, M. and H. Yano (1987). An interactive fuzzy satisficing method using aug­

mented minimax problems and its application to environmental systems. Re­

search Report RR-87-14, International Institute for Applied Systems Analysis,

Laxenburg, Austria.

Sawaragi, Y., H. Nakayama and T. Tanino (1985). Theory of Multiobjective Opti­

mization. Academic Press.

Seo, F. and M. Sakawa (1987). Fuzzy multiattribute utility analysis for collective

choice. Research Report RR-87-13, International Institute for Applied Systems

Analysis, Laxenburg, Austria.

Simon, H. (1958). Administrative Behaviour, McMillan, New York.

Sprague, R. H. and Carlson, C. Eds. (1982). Building Effective Decision Support

Systems. Prentice Hall, Inc.

Stabel C. B. (1986). Decision Support Systems: Alternative Perspectives and Schools.

In: McLean, E. and Sol, H. G. Eds: Decision Support Systems: A Decade in

Perspective, Proceedings of the IFIP WG 8.3 Working Conference on Decision

Support Systems, Noordwijkerhout, The Netherlands.

Steuer, R., and Cho., E. V. (1983). An interactive weighted Chebyshev procedure for

multiple objective programming. Mathematical Programming 26, pp. 326-344.

Tanino, T. (1986). Sensitivity analysis in multiobjective optimization. Working Pa­

per WP-86-05, International Institute for Applied Systems Analysis, Laxenburg,

Austria.

Tanino, T. (1986). Stability and sensitivity analysis in convex vector optimization.

Working Paper WP-86-15, International Institute for Applied Systems Analysis,

Laxenburg, Austria.

Tversky, A., Kaheman, D. and Siovic, P. (1983). Judgement Under Uncertainty:

Heuristic and Biases, Cambridge University Press.

Valyi, I. (1986). On approximate vector optimization. Working Paper WP-86-07,

International Institute for Applied Systems Analysis, Laxenburg, Austria.

Valyi, I. (1987). Epsilon solution and duality in vector optimization. Working Pa­

per WP-87-43, International Institute for Applied Systems Analysis, Laxenburg,

Austria.

Vlacic, Lj., Matic, B. and Wierzbicki, A. P. (1986). Aggregation Procedures for Hierar­

chically Grouped Decision Attributes with Application to Control System Perfor­

mance Evaluation. International Conference on Vector Optimization, Darmstadt,

1986.

20

Wierzbicki, A. P. (1980). The use of reference objectives in multiobjective optimization.

In: Fandel, G. and Gal, T. Eds: Multiple Criteria Decision Making, Theory and

Applications. Springer Verlag, Heidelberg.

Wierzbicki, A. P. (1982). A mathematical basis for satisfying decision making. Math.

Modelling, Vol. 3, pp. 391-405.

Wierzbicki, A. P. (1983a). Negotiation and mediation in conflicts: The role of math­

ematical approaches and methods. In: Chestnut, H. et aI., Eds: Supplemental

Ways to Increase International Stability. Pergamon Press, Oxford, 1983.

Wierzbicki, A. P. (1983b). Critical essay on the methodology of multiobjective analysis.

Regional Science and Urban Economics, Vol. 13, pp. 5-29.

Wierzbicki, A. P. (1984a). Models and Sensitivity of Control Systems. Elsevier, Ams­

terdam, 1984.

Wierzbicki, A. P. (1984b). Interactive decision analysis and interpretative computer

intelligence. In: Grauer, M. and Wierzbicki, A. P. Eds: Interactive Decision

Analysis, Proceedings, Laxenburg, Austria, 1983. Lecture Notes in Economics

and Mathematical Systems, Vol. 229. Springer Verlag, Berlin.

Wierzbicki, A. P. (1985). Negotiation and mediation in conflicts: Plural rationality

and interactive decision processes. In: Grauer, M., Thompson M. and Wierzbicki

A. P., Eds: Plural Rationality and Interactive Decision Processes, Proceedings,

Sopron, 1984. Lecture Notes in Economics and Mathematical Systems, Vol. 248.

Springer Verlag, Berlin.

Wierzbicki, A. P. (1986). On the completeness and constructiveness of parametric

characterizations to vector optimization problems. OR-Speldrum, Vol. 8, pp. 73­

87.

Wynne, B. (1982). Decision support systems - a new plateau of opportunity or more

emperor's clothing? INTERFACES, Vol. 12, No.1, February 1982.

ii

Ii

Decision Support Systems of DIDAS Family

(Dynamic Interactive Decision

Analysis & Support)

Andrzej Lewandowski, Tomasz Kreglewski, Tadeusz Rogowski,

Andrzej P. Wierzbicki

Institute of Automatic Control, Warsaw University of Technology.

Abstract

This paper presents a review of methodological principles, mathematical theory,

variants of implementation and various applications of decision support systems of

DIDAS family, developed by the authors and many other cooperating researchers

during the years 1980-1986 in cooperation with the Systems and Decision Sciences

Program of the International Institute for Applied Systems Analysis. The purpose

of such systems is to support generation and evaluation of alternative decisions in

interaction with a decision maker that might change his preferences due to learning,

while examining a substantive model of a decision situation prepared by experts and

analysts. The systems of DIDAS family are based on the principle of reference point

optimization and the quasisatisficing framework of rational choice.

Introduction

The results reported in this paper are an outcome of a long cooperation between the

System and Decision Sciences Program of the International Institute for Applied Sys­

tems Analysis (IIASA) and the Institute of Automatic Control, Warsaw University of

Technology as well as many other institutions in Poland and in other countries. This

cooperation concentrated on applications of mathematical optimization techniques in

multiobjective decision analysis and on the development of decision support systems.

Although many articles in scientific journals and papers at international conferences

described specific results obtained during this cooperation (in fact, four international

workshops and several working meetings were organized during this cooperation), one

of the main results-the family of Dynamic Interactive Decision Analysis and Support

systems-has not been until now comprehensively described. Such a description is the

purpose of this paper.

22

1 Concepts of decision support and frameworks for

rational decisions

1.1 Concepts of decision support systems

The concept of a decision support system, though quite widely used and developed in

contemporary research, is by no means well defined. Without attempting to give a

restrictive definition (since such definition in an early stage of development might limit

it too strongly), we can review main functions and various types of decision support.

The main function of such systems is to support decisions made by humans, in

contrast to decision automation systems that replace humans in repetitive decisions

because these are either too tedious or require very fast reaction time or very high

precision. In this sense, every information processing system has some functions of

decision support. However, modern decision support systems concentrate on and stress

the functions of helping human decision makers in achieving better decisions, following

the high tech-high touch trend in the development of modern societies (Naisbitt, 1982).

We can list several types of systems that serve such purposes:

• simple managerial support systems, such as modern data bases, electronic spread­

sheet systems, etc;

• expert and knowledge base systems whose main functions relate to the help in

recognizing a pattern of decision situation; more advanced systems of this type

might involve considerable use of artificial intelligence techniques;

• alternative generation and evaluation systems whose main functions concentrate

on the processes of choice among various decision alternatives either specified a

priori or generated with help of the system, including issues of planning, of collec­

tive decision processes and issues of negotiations between many decision makers;

more advanced systems of this type might involve a considerable use of mathemat­

ical programming techniques, such as optimization, game theory, decision theory,

dynamic systems theory etc.

Some authors (Van Hee, 1986) restrict the definition of decision support systems only

to the third group while requiring that a decision support system should contain a model

of decision support. Although the systems described in this paper belong precisely to

this category, we would like to draw the attention of the reader that it is a narrow sense

of interpreting decision support systems. With this reservation, we will concentrate on

decision support systems in the narrow sense. These can be further subdivided along

various attributes into many classes:

• systems that support operational planning of repetitive type versus systems that

support strategic planning, confronting essentially novel decision situations;

• systems that concentrate on the choice between a number of discrete alternatives

versus systems that admit a continuum 0/ alternatives and help to generate inter­

esting or favorable alternatives among this continuum;

23

• systems that are essentially designed to be used by a single decision maker ("the

user") versus systems that are designed to help many decision makers simultane­

ously;

• specialized systems designed to help in a very specific decision situation versus

adaptable system shells that can be adapted to specific cases in a broader class of

decision situations;

• systems that use versus such that do not use explicitly mathematical programming

techniques, such as optimization, in the generation or review of alternatives;

• systems that assume (explicitly or implicitly) a specific framework of rationality of

decisions followed by the user versus systems that try to accommodate a broader

class of perceptions of rationality (Wierzbicki, 1984a).

This last distinction was an important issue in the development of decision support

systems described in this paper.

1.2 Frameworks for rational decisions

When trying to support a human decision maker by a computerized decision support

system, we must try to understand first how human decisions are made and how to help

in making rational decisions. However, the rationality concept followed by the designer

of the system might not be followed by the user; good decision support systems must be

thus flexible, should not impose too stringent definitions of rationality and must allow

for many possible perceptions of rationality by the user.

The first distinction we should make is between the calculative or analytical ratio­

nality and the deliberative or holistic rationality, the "hard" approach and the "soft"

approach. The most consistent argument for the "soft" or holistic approach was given

by Dreyfus (1984). He argues-and supports this argument by experimental evidence­

that a decision maker is a learning individual whose way of making decisions depends

on the level of expertise attained through learning. A novice needs calculative ratio­

nality; an experienced decision maker uses calculative rationality in the background,

while concentrating his attention on novel aspects of a decision situation. An expert

does not need calculative rationality: in a known decision situation, he arrives at best

decisions immediately, by absorbing and intuitively processing all pertinent information

(presumably in a parallel processing scheme, but in a way that is unknown until now).

A master expert, while subconsciously making best decisions, continuously searches

for "new angles"-for new aspects or perspectives, motivated by the disturbing feeling

that not everything is understood, the feeling that culminates and ends in the "aha"

or heureka effect of perceiving a new perspective. Thus, the holistic approach can be

understood as the rationality of the culture of experts.

However, even a master expert needs calculative decision support, either in order to

simulate and learn about novel decision situations, or to fill in details of the decision in

a repetitive situation; novice decision makers might need calculative decision support

in order to learn and become experts. These needs must be taken into account when

24

constructing decision support systems that incorporate many elements of calculative

rationality.

There are several frameworks for calculative or analytical rationality; most of these,

after deeper analysis, turn out to be culturally dependent (Wierzbicki, 1984a). The

utility maximization framework has been long considered as expressing an universal ra­

tionality, as the basis of decision analysis; every other framework would be termed "not

quite rational". The abstractive aspects of this framework are the most developed-see,

e.g., (Fishburn, 1964, Keeney and Raiffa, 1976)-and a monograph of several volumes

would be needed to summarize them. Without attempting to do so, three points should

be stressed here. Firstly, utility maximization framework is not universal, is culturally

dependent; it can be shown to express the rationality of a small entrepreneur or con­

sumer facing an infinite market (Wierzbicki, 1984a). Secondly, its descriptive powers

are rather limited; it is a good descriptive tool for representing mass economic behaviour

and a very poor tool for representing individual behaviour. Thirdly, it is difficult to

account for various levels of expertise and to support learning within this framework.

Many types of decision support systems attempt to approximate the utility function

of the user and then to suggest a decision alternative that maximizes this utility function.

Most users find such decision support systems not convenient: it takes many experiments

and questions to the decision maker to approximate his utility and, when the user finally

learns some new information from the support system, his utility might change and the

entire process must be repeated. Moreover, many users resent too detailed questions

about their utility or just refuse to think in terms of utility maximization. However, a

good decision support system should also support users that think in terms of utility

maximization. For this purpose, the following principle of interactive reference point

maximization and learning can be applied.

Suppose the user is an expert that can intuitively, holistically maximize his unstated

utility function; assume, however, that he has not full information about the available

decision alternatives, their constraints and consequences, only some approximate mental

model of them. By maximizing holistically his utility on this mental model, he can

specify desirable consequences of the decision; we shall call these desirable consequences

a reference point in the outcome or objective space. The function of a good decision

support system should be then not to outguess the user about his utility function, but

to take the reference point as a guideline and to use more detailed information about

the decision alternatives, their constraints and consequences in order to provide the user

with proposals of alternatives that came close to or are even better than the reference

point.

This more detailed information must be included in the decision support system

in the form of a substantive model of the decision situation, prepared beforehand by

a group of analysts (in a sense, such a model constitutes a knowledge base for the

system). Upon analysing the proposals generated in the system, the utility function of

the user might remain constant or change due to learning, but he certainly will know

more about available decision alternatives and their consequences. Thus, he is able to

specify a new reference point and to continue interaction with the system. Once he

has learned enough about available alternatives and their consequences, the interactive

process stops at the maximum of his unstated utility function. If the user is not a

25

master expert and might have difficulties with holistic optimization, the system should

support him first in learning about decision alternatives, then in the optimization of his

utility; but the latter is a secondary function of the system and can be performed also

without explicit models of utility function while using the concept of reference points.

The concept of reference point optimization has been proposed by Wierzbicki (1975,

1977,1980); following this concept, the principle of interactive reference point optimiza­

tion and learning was first applied by Kallio, Lewandowski and Orchard-Hays (1980)

and then lead to the development of an entire family of decision support systems called

DIDAS. However, before describing these systems in more detail, we must discuss shortly

other frameworks of calculative rationality.

A concept similar or practically equivalent to the reference point is that of aspira­

tion levels proposed over twenty years ago in the satisficing rationality framework by

Simon (1957, 1958) and by many others that followed the behavioural criticism of the

normative decision theory based on utility maximization. This framework started with

the empirical observation that people do form adaptive aspiration levels by learning

and use these aspirations to guide their decisions; very often, they cease to optimize

upon reaching outcomes consistent with aspirations and thus make satisficing deci­

sions. However, when building a rationale for such observed behaviour, this framework

postulated that people cannot maximize because of three reasons: the cost of comput­

ing optimal solutions in complex situations; the uncertainty of decision outcomes that

makes most complex optimization too difficult; and the complexity of decision situations

in large industrial and administrative organizations that induces the decision makers

to follow some well established decision rules that can be behaviourally observed and

often coincide with satisficing decision making. This discussion whether and in what

circumstances people could optimize substantiated the term bounded rationality (which

implies misleadingly that this is somewhat less than full rationality) applied to the sat­

isficing behaviour and drown attention away from the essential points of learning and

forming aspiration levels.

Meanwhile, two of the reasons for not optimizing quoted above have lost their rel­

evance. The development of computers and computational methods of optimization,

including stochastic optimization techniques, has considerably decreased the cost and

increased the possibilities of calculative optimization; moreover, the empirical research

on holistic rationality indicates that expert decision makers can easily determine best

solutions in very complex situations even if they do not use calculative optimization.

The third reason, supported by empirical observations, remains valid: the satisficing ra­

tionality is typical/or the culture 0/ big industrial and administrative organizations (see

also Galbraith, 1967). However, it can today be differently interpreted: the appropriate

question seems to be not whether people could, but whether they should maximize.

Any intelligent man, after some quarrels with his wife, learns that maximization

is not always the best norm of behaviour; children learn best from conflicts among

themselves that cooperative behaviour is socially desirable and that they must restrict

natural tendencies to maximization in certain situations. In any non-trivial game with

the number of participants less than infinity, a cooperative outcome is typically much

better for all participants than an outcome resulting from individual maximization.

This situation is called a social trap and motivated much research that recently gave re-

26

suits of paradigm-shifting importance (Rappoport, 1985, Axelrod, 1985): we can speak

about a perspective of evolutionary rationality, where people develop-through social

evolution-rules of cooperative behaviour that involve foregoing short-term maximiza­

tion of gains.

When trying to incorporate the lessons from the perspective of evolutionary rational­

ity into decision support systems, another question must be raised: in which situations

should we stop maximizing upon reaching aspiration levels? We should stop maximizing

for good additional reasons, such as avoiding social traps or conflict escalation, but if

these reasons are not incorporated into the substantive model of the decision situation,

the question about foregoing maximization should be answered by the decision maker,

not by the decision support system. This constitutes a drawback of many decision

support systems based on goal programming techniques (Charnes and Cooper, 1975,

Ignizio, 1978) that impose on the user the unmodified satisficing rationality and stop

optimization upon reaching given aspirations, called goals in this case.

When trying to modify goal programming techniques and strictly satisficing rational­

ity to account for above considerations, the principle of ideal organization (Wierzbicki,

1982) can be applied in construction of decision support systems. This principle states

that a good decision support system should be similar to an ideal organization consist­

ing of a boss (the user of the system) and the staff (the system), where the boss specifies

goals (aspirations, reference points) and the staff tries to work out detailed plans how

to reach these goals. If the goals are not attainable, the staff should inform the boss

about this fact, but also should propose a detailed plan how to approach these goals as

close as it is possible. If this goals are just attainable and cannot be improved, the staff

should propose a plan how to reach them, without trying to outguess the boss about

his utility function and proposing plans that lead to different goals than stated by the

boss.

If, however, the goals could be improved, the staff should inform the boss about this

fact and propose a plan that leads to some uniform improvement of all goals specified

by the boss; if the boss wishes that some goals should not be further improved, he

can always instruct the staff accordingly by stating that, for some selected objectives,

the goals correspond not to maximized (or minimized) but stabilized variables, that is,

the staff should try to keep close to the goals for stabilized objectives without trying

to exceed them. By specifying all objectives as stabilized, the boss imposes strictly

satisficing behaviour on the staff; but the responsibility for doing so remains with him,

not with the staff.

The above principle of ideal organization can be easily combined with the principle

of interactive reference point maximization and learning; jointly, they can be interpreted

as a broader framework for rationality, called quasisatisficing framework (Wierzbicki,

1984a, 1986), that incorporates lessons from the holistic and the evolutionary rationality

perspectives and can support decision makers adherence either to utility maximization

or satisficing. In fact, the quasisatisficing framework can also support decision makers

following other perspectives of rationality, such as the program- and goal-oriented plan­

ning and management framework. This framework, proposed by Glushkov (1972) and

Pospelov and Irikov (1976), represents the culture of planning, but has been indepen­

dently suggested later also by representatives of other cultures (Umpleby, 1983). In this

27

framework, rational action or program are obtained by specifying first primary objec­

tives, called goals, and examining later how to shift constraints on secondary objectives,

called means, in order to attain the goals. In distinction to the utility maximization

or satisficing frameworks, the stress here is laid on the hierarchical arrangement of

objectives; but the quasisatisficing framework can also handle hierarchical objectives.

2 Quasisatisficing and achievement functions

The main concepts of the quasisatisficing framework, beside the principle of interactive

reference point optimization and learning and the principle of ideal organization, are

the use of reference points (aspiration levels, goals) as parameters by which the user

specifies his requirements to the decision support system (controls the generation and

selection of alternatives in the system) as well as the maximization of an order-consistent

achievement function as the main mechanism by which the decision support system re­

sponds to the user requirements. Achievement functions have been used also in goal

programming (Ignizio, 1978), however, without the requirement of order-consistency

(Wierzbicki, 1986). When following the principle of interactive reference point opti­

mization and learning, an order-consistent achievement function can be interpreted as

an ad hoc approximation of the utility function of the user (Lewandowski et al., 1986);

if the user can holistically maximize his utility and interactively change reference points,

there is no need for any more precise approximation of his utility function. When follow­

ing the principle of ideal organization, an order-consistent achievement function can be

interpreted as a proxy for utility or achievement function of the ideal staff (the decision

support system) guided by aspirations specified by the boss (the user); this function is

maximized in order to obtain best response to the requirements of the boss.

Based upon above principles and starting with the system described in (Kallio et

al., 1980), many decision support systems have been developed with the participation

or cooperation of the authors of this paper (Lewandowski and Grauer, 1982, Grauer

et al., 1982, Kreglewski and Lewandowski, 1983, Lewandowski et al., 1984a, Lewan­

dowski et al., 1984b, Makowski and Sosnowski, 1984, Kaden and Kreglewski, 1986),

either in IIASA, or in several Polish institutions cooperating with IIASA. The name

DIDAS (Dynamic Interactive Decision Analysis and Support) has been first used by

Grauer, Lewandowski and Wierzbicki (1983). Other systems based upon such princi­

ples are now being developed for implementations on professional microcomputers; all

these systems we broadly call here "systems of DIDAS family". However, also other re­

searchers adopted or developed parallely some principles of quasisatisficing framework,

represented in the works of Nakayama and Sawaragi (1983), Sakawa (1983), Gorecki

et al. (1983), Steuer et al. (1983), Strubegger (1985), Messner (1985), Korhonen et al.

(1986) and others; decision support systems of such type belong to a broader family

using quasisatisficing principles of rationality or aspiration-led decision analysis and

support methods.

Since the maximization of an order-consistent achievement function is a specific

feature of systems of DIDAS family, we review here shortly the theory of such functions.

We consider first the basic case where the vector of decisions x E Rn, the vec-

28

tor of objectives or outcomes of decisions q E RP, and the substantive model of deci­

sion situation has the form of a set of admissible decisions Xo C Rn -assumed to be

compact-together with an outcome mapping, that is, a vector-valued objective func­

tion f : Xo -+ RP -assumed to be continuous, hence the set of attainable outcomes

Qo = f(Xo) be also compact; further modifications of this basic case will be considered
later. If the decision maker wants to maximize all outcomes, then the partial ordering

of the outcome space is implied by the positive cone D = R~ -which means that the

inequality q' ~ q" <=> q' - q" E D is understood in the sense of simple inequalities for

each component of vectors q', q".

However, the cone D = R~ has nonempty interior; a more general case is when the

decision maker would like to maximize only first p' outcomes, minimize next outcomes

from p' + 1 until p", while the last outcomes from p" + 1 until p are to be kept close to

some given aspiration levels, that is, maximized below these levels and minimized above

these levels; such objectives or outcomes are called (softly) stabilized. In this case, we

redefine the positive cone to the form

D = {q E RP: q, ~ O,i = 1, ... ,p';q,::; O,i = p'+I, ... ,p";q, = O,i = p"+I, ... ,p} (1)

This cone D does not have an interior if p" < p. Since the cone D is closed and the

set Qo is compact, there exist D-efficient (D-optimal) elements of Qo , see (Wierzbicki,

1982). These are such elements q E Qo that Qo n (q + D) = 0 where D = D \ {O};

if p' = p and D = R~, then D-efficient elements are called also Pareto-optimal (in

other words-such that no outcome can be improved without deteriorating some other

outcome). The corresponding decisions x E Xo such that q= f(x) are called D-efficient

or Pareto-optimal as well. Although the decision maker is usually interested both in

efficient decisions and outcomes, for theoretical considerations it is sufficient to analyse

only the set of all D-efficient outcomes

Qo = {q E Qo : Qo n (q + D) = 0}, D= D\ {O} (2)

Several other concepts of efficiency are also important. The weakly D-efficient ele­

ments belong to the set

Q ~ = {q E Qo : Qo n (q + intD) = 0} (3)

In other words, these are such elements that cannot be improved in all outcomes

jointly. Although important for theoretical considerations, weakly D-efficient elements

are not useful in practical decision support, since there might be too many of them: if

p" < p and the interior of D is empty, then all elements of Qo are weakly D-efficient.

Another concept is that of properly D-efficient elements; these are such D-efficient

elements that have bounded trade-off coefficients that indicate how much one of the

objectives must be deteriorated in order to improve another one by a unit (for various

almost equivalent definitions of such elements see Sawaragi et al., 1985). In applications,

it is more useful to further restrict the concept of proper efficiency and consider only

such outcomes that have trade-off coefficients bounded by some a priori number. This

corresponds to the concept of properly D-efficient elements with (a priori) bound f or

D,-efficient elements that belong to the set

Q ~ = {q E Qo : Qo n (q + D.) = 0}, (4)

29

b. = {q E RP : dist(q,D) ::; fllqll} \ {O}

where f > 0 is a given number (Wierzbicki, 1977). D.-efficient elements have trade­

off coefficients bounded approximately by f and 1/f. For computational and practical

purposes, an efficient outcome with trade-off coefficients very close to zero or to infinity

cannot be distinguished from weakly efficient outcomes; hence, we shall concentrate in

the sequel on properly efficient elements with bound f.

When trying to characterize mathematically various types of efficiency with help of

achievement functions, two basic concepts are needed: this of monotonicity, essential for

sufficient conditions of efficiency, and that of separation of sets, essential for necessary

conditions of efficiency. The role of monotonicity in vector optimization is explained by

the following basic theorem (Wierzbicki, 1986):

Theorem 1. Let a function r : Qo -+ R 1 be strongly monotone, that is, let q' > q"

(equivalent to q' E q"+b) imply r(q') > r(q"). Then each maximal point of this function

is efficient. Let this function be strictly monotone, that is, let q' > q" (equivalent

to q' E q" + int D) imply r(q') > r(q"). Then each maximal point of this function is

weakly efficient. Let this function be f-strongly monotone, that is, let q' E q" + b.
imply r(q') > r(q"). Then each maximal point of this function is properly efficient with

bound f.

The second concept, that of separation of sets, is often used when deriving necessary

conditions of scalar or vector optimality. We say that a function r : RP -+ R1 strongly

separates two disjoint sets Q1 and Q2 in RP, if there is such f3 E R 1 that r(q) ::; f3 for all

q E Q1 and r(q) > f3 for all q E Q2. Since the definition of efficiency (2) requires that

the sets Qo and q +b are disjoint (similarly for the definitions (3) or (4)), they could be

separated by a function. If Qo is convex, these sets can be separated by a linear function.

If Qo is not convex, the sets Qo and q+ b could be still separated at an efficient point

q, but we need for this a nonlinear function with level sets {q E RP : r(q) 2: f3} which

would closely approximate the cone q+ b. There might be many such functions; their

desirable properties are summarized in the definitions of order-consistent achievement

functions (Wierzbicki, 1986) of two types: order-representing functions (which, however,

characterize weak efficiency and will not be considered here) and order-approximating

functions. The latter type is defined as follows:

Let A denote a subset of RP, containing Qo but not otherwise restricted, and let q E A

denote reference points or aspiration levels that might be attainable or not (we assume

that the decision maker cannot a priori be certain whether q E Qo or q (/. Qo). Order­

approximating achievement functions are such continuous functions s : Qo x A -+ R1

that s(q,q) is strongly monotone (see Theorem 1) as a function of q E Qo for any q E A

and, moreover, possesses the following property of order approximation:

q + Dr C {q E RP : s(q, q) 2: O} C q + D. (5)

with some small f 2: l 2: 0; together with the continuity requirement, the requirement

(5) implies that s(q,q) = 0 for all q = q.

If p' = p and D = R~ , then a simple example of an order-approximating function

30

is:
p

s(q, q) = m,in O:i(qi - qi) + O:p+1 2: O:i(qi - qi) (6)
I$.$p i=1

with A = RP, some positive weighting coefficients O:i (typically, we take O:i = 1/Si, where

Si are some scaling units for objectives, either defined by the user or determined auto­

matically in the system, see further comments) and some O:p+1 > 0 that is sufficiently

small as compared to (and large as compared to ((typically, we take O:p+1 = (/p). This

function is not only strongly monotone, but also (-strongly monotone. For the more

complicated form (1) of the positive cone D, function (6) modifies to:

p

s(q,q) = min Zi(qi,qi) + O:p+I2:Zi(qi,qi)
I$.$p i=1

where the functions Zi(qi,qi) are defined by:

(7)

{

(qi - q;) / Si ,

Zi(qi,qi) = (qi - q;)/Si,

. (' ")min Zi' Zi ,

with

if 1:S i :s p',

if p' + 1 :s i :s p" ,

if p" + 1 :s i :s p,

(8)

(9)

The coefficients Si, s;, s;' are scaling units for all objectives, either defined by the user

(in which case s; = S;', the user does not need to define two scaling coefficients for a

stabilized objective outcome) or determined automatically in the system; again, we use

here O:p+1 = (/p.
Since the definition of an order-approximating achievement function requires that

only its zero-level set should closely approximate the positive cone, many other forms of

such functions are possible. For example, in some DIDAS systems the following function

has been used:

[
1 p] lOP

s(q,q) = min . ~ i n Zi(qi,qi),- 2:Zi(qi,qi) + - 2: Zi(qi,qi)
.$.$p PP i=1 P i=1

(10)

where the functions Zi(qi, q;) are defined as in (8), (9) and the coefficient P 2: 1 indicates

to what extent the minimal overachievement is substituted by the sum of overachieve­

ments in the level sets for positive values of this function.

At any point q that is properly efficient with bound (, an order-approximating func­

tion with q = qstrictly separates the sets q+ b. and Qo. This and related properties of

order-approximating functions result in the following characterization of D.-efficiency

(Wierzbicki, 1986):

Theorem 2. Let s(q, q) be an order-approximating function with (> (2: O. Then,

for any q E A, each point that maximizes s(q, q) over q E Qo is efficient; if q is properly

efficient with bound ((D.-optimal), then the maximum of s(q, q) with q = qover q E Qo

31

is attained at qand is equal zero. Let, in addition, s(q, q) be l-strongly monotone with

respect to q; then each point that maximizes s(q, q) over q E Qo is properly efficient

with bound l.

The essential difference between order-consistent achievement functions and other

types of achievement functions, used in goal programming and based on norms, is that

the aspiration or reference point q needs not to be unattainable in order to achieve

efficiency; this is because order-consistent achievement functions remain monotone, even

if the reference point crosses the efficient boundary of Qo. Somewhat simplifying, we

can say that an order-consistent achievement function switches automatically from norm

minimization to maximization when the aspiration point q crosses the efficient boundary

and becomes attainable. On the other hand, the characterization by Theorem 2 is

obtained without any convexity assumptions, because the order-approximating property

of achievement functions results in a constructive though nonlinear separation of sets Qo

and q+ iJ even in nonconvex cases. In fact, the set Qo needs not to be even connected and

the order-consistent achievement functions can be as well used to characterize solutions

of multiobjective discrete or mixed programming. Theorem 2 is valid even if the decision

outcomes are elements of infinite-dimensional complete normed (Banach) spaces, as in

many cases of multiobjective dynamic trajectory optimization-see (Wierzbicki, 1982).

Order-approximating achievement functions have several interpretations. From the

point of view of utility maximization, achievement function can be interpreted as an ad

hoc approximation of the utility function of the user, based on the information that he

conveyed to the decision support system: the partial preordering of the objective space

(which objectives are to be maximized, which minimized and which stabilized) and the

aspiration levels q for all objectives; if more information is already available, this ad hoc

approximation can be improved--see further comments. The coefficient € can be then

interpreted as the weight that the user attaches to correcting the underachievement in

the worst outcome by average overachievements in other outcomes. However, such an

ad hoc approximation is not a classical utility function, since it is context-dependent: it

explicitly depends on the aspiration levels q that summarize the experience of the user

and change due to his learning during interaction, thus changing the approximation of

the utility function. On the other hand, the achievement function (6) can have cardinal

form: if Q, = 1/s" then function (6) is independent on affine transformations of outcome

space; the same applies to function (7).

When following the principle of an ideal organization, an order-approximating achieve­

ment function can be interpreted as the utility function of the staff that is aware of

aspirations set by the boss; the maximum of the achievement function is then positive,

if the staff can propose a solution that exceeds the aspiration levels, it is negative, if the

staff cannot propose a solution that satisfies aspiration levels and only comes as closely

as possible to them, and it is zero (Theorem 2) if the staff finds an efficient solution

that produces outcomes strictly corresponding to the aspiration levels.

From the point of view of strictly satisficing rationality, one should take function (7)

and set p' = p" = 0, that is, let all outcomes be softly stabilized; this is actually done in

goal programming approaches. From the point of view of program- and goal oriented

planning, one should either assume that the primary objectives are constrained to be

32

equal to their corresponding aspiration levels, thereby modifying the set of admissible

decisions Xo (such objectives or outcomes are called guided or strictly stabilized), or

assign much greater weights to primary objectives than to secondary objectives. We see

that the quasisatisficing approach can be used by decision makers following either of

these three frameworks of rationality.

Further mathematical properties of order-approximating achievement functions have

been also investigated; for example, it can be shown that order-approximating functions

give the strongest characterization of efficient solutions for cases where the set Qo is

of an arbitrary, a priori unknown shape, which is a reasonable assumption in most

applied cases (Wierzbicki, 1982). Another important property of an order-approxi­

mating function of the form (6) or (7) is that its maximal point q depends Lipschitz­

continuously on the aspiration point ij in all cases when the maximum of this function

is unique and the set Qo is connected; thus, the user of the decision support system

can continuously influence his selection of efficient outcomes by suitably modifying the

aspiration or reference point.

Computationally, the maximization of an order-approximating achievement function

is either simple-if Qo is a convex polyhedral set, then the problem of maximizing (6),

(7) or (10) can be rewritten as a linear programming problem-or more complicated for

nonlinear or nonconvex problems. In such cases, we must either represent (6), (7) or (10)

by additional constraints, or apply nondifferentiable optimization techniques, since the

definition of order-approximating achievement functions imply their nondifferentiability

at q = ij. Often, it is advisable to use smooth order-approximating functions that give

weaker necessary conditions of efficiency than in Theorem 2, but are better suited for

computational applications-see further comments.

3 Phases of decision support in systems of DIDAS

family

A typical procedure of working with a system of DIDAS family consists of several phases:

A. The definition and edition of a substantive model of analysed process and decision

situation by analyst(s);

B. The definition of the multiobjective decision problem using the substantive model,

by the final user (the decision maker) together with analyst(s);

C. The initial analysis of the multiobjective decision problem, resulting in determin­

ing bounds on efficient outcomes and, possibly, a neutral efficient solution and

outcome, by the user helped by the system;

D. The main phase of interactive, learning review of efficient solutions and outcomes

for the multiobjective decision problem, by the user helped by the system;

E. An additional phase of sensitivity analysis (typically, helpful to the user) and/or

convergence to the most preferred solution (typically, helpful only to users that

adhere to utility maximization framework).

33

These phases have been implemented differently in various systems of DIDAS familYi

however, we describe them here comprehensively.

Phase A: Model definition and edition.
There are four basic classes of substantive models that have been used in various

systems of DIDAS family: multiobjective linear programming models, multiobjective

dynamic linear programming models, multiobjective nonlinear programming models

and multiobjective dynamic nonlinear programming models. First DIDAS systems have

not used any specific standards for these models; however, our accumulated experience

has shown that such standards are useful and that they differ from typical theoretical

formulations of such models (although they can be reformulated back to the typical

theoretical form, but such reformulation should not bother the user).

A substantive model of multiobjective linear programming type consists of the spec­

ification of vectors of n decision variables x E Rn and of m outcome variables y E Rm

together with linear model equations defining the relations between the decision vari­

ables and the outcome variables and with model bounds defining the lower and upper

bounds for all decision and outcome variables:

y = Ax; (11)

where A is a m x n matrix of coefficients (obviously, a more general form y = Ax + b

can be also considered; it sometimes useful to admit an implicit, recursive definition

of the model, see further comments on nonlinear models). Between outcome variables,

some might be chosen as guided outcomes, corresponding to equality constraints; denote

these variables by yO E Rm' c R m and the constraining value for them by bOto write

the additional constraints in the form:

yO = AOx = bO; (12)

where AO is the corresponding submatrix of A. Some other outcome variables can be

chosen as optimized objectives or objective outcomes; actually, this is done in the phase

B together with the specification whether they should be maximized, minimized or softly

stabilized, but we present them here for the completeness of the model description. Some

of the objective variables might be originally not represented as outcomes of the model,

but we can always add them by modifying this model; in any case, the corresponding

objective equations in linear models have the form:

q = Cx (13)

where C is another submatrix of A. Thus, the set of attainable objective outcomes is

Qo = C Xo and the set of admissible decisions Xo is defined by:

(14)

By introducing proxy variables and constraints, the problem of maximizing func­

tions (7) or (10) over outcomes (13) and admissible decisions (14) can be equivalently

rewritten to a parametric linear programming problem, with the leading parameter iji

34

thus, in phases C, D, E, a linear programming algorithm called solver is applied. In ini­

tial versions of DIDAS systems for linear programming models, the typical MPS format

for such models has been used when editing them in the computer; recent versions of

DIDAS systems include also a user-friendly format of a spreadsheet.

A useful standard of defining a substantive model of multiobjective linear dynamic
programming type is as follows. The model is defined on T + 1 discrete time periods

t, °~ t ~ T. The decision variable x, called in this case control trajectory, is an entire

sequence of decisions:

x = {x[O], ... ,x[t], ... ,x[T - I]} E RnT
, x[t] E Rn (15a)

and a special type of outcome variables, called state variables wit] E R m
' is also consid­

ered. The entire sequence of state variables or state trajectory:

w = {w[O], ... ,w[t], ... ,w[T -1],w[T]} E Rm
(T+l) (15b)

is actually one time period longer than Xj the initial state w[O] must be specified as

given data. The fundamental equations of a substantive dynamic model have the form

of state equations:

w[t + 1] = A[t]w[t] + B[t]x[t]; t = O, ... ,T -1, w[O]- given (16a)

The model outcome equations have then the form:

y[t] = C[t]w[t] + Dlt]x[t], t=O, ... ,T-l; (16b)

y[T] = C[T]w[T] E Rm
'

and define the sequence of outcome variables or outcome trajectory:

y = {y[O], ... , y[t], ... , y[T - 1], y[T]} E Rm'(T+l) (15c)

The decision, state and outcome variables can all have their corresponding lower and

upper bounds (each understood as an appropriate sequence of bounds):

(16c)

The matrices A[t], B[t], Crt], D[t] of appropriate dimensions can be dependent or

independent on time t; in the latter case, the model is called time-invariant. This

distinction is important in multiobjective analysis of such models only in the sense of

model edition: time-invariant models can be defined easier by automatic, repetitive

edition of model equations and bounds for subsequent time periods.

Between the outcomes, some might be chosen to be equality constrained or guided

along a given trajectory:

" ,
yO[t] = eO[t] E Rm c Rm

, t = O, ... ,Tj eO = {eO[O], ... ,eO[t], ... ,eO[T]} (17)

The optimized (maximized, minimized or stabilized) objective outcomes of such

model can be actually selected in phase B among both state variables and outcome

35

variables (or even decision variables) of this model; in any case, they form an entire

objective trajectory:

q = {q[Oj, ... ,qltj, ... ,q[T -lj,q[T]} E RP(T+11, q[tj E RP (18)

(20)

If we assume that the first components qi[t] for 1 ~ i ~ p' are to be maximized,

next for p' + 1 ~ i ~ pIt are to be minimized, last for p" + 1 ~ i ~ p are to be

stabilized (actually, the user in the phase B does not need to follow this order-he

simply defines what to do with subsequent objectives), then the achievement function

s(q, q)-for example, originally given by (lO)-in such a case takes the form:

s(q,q)=min[min m.inz[t], (T 1) ttzi[t j] + (T E) ttzi[tj (19)
O:5I:5T O:5.:5p P + 1 p 1=0 ;=1 + 1 p 1=0 i=1

where the functions z[t] = z(q[tj, q[t]) are defined by:

1

(q,[t] - qi[t])/Siltj, if 1 ~ i ~ p',

Zi[t] = (q,[tj- q;[t])/silt], if p' + 1 ~ i ~ p",

min(z;[tj,z;'[t]), if p + 1 ~ i ~ p

where

z;[tj = (qi[tj- q ; [t]) / s ~ [t j , z;'[tj = (qilt]- q i [t]) / S ~ ' [t] , (21)

The user does not need to define time-varying scaling units silt] nor two different

scaling units s; [t], s;' [t] for a stabilized objective: the time-dependence of scaling units

and separate definitions of s ~ [t] , S : ' [t] are needed only in the case of automatic scaling in

further phases.

A useful standard for a substantive model 0/ multiobjective nonlinear programming
type consists of the specification of vectors of n decision variables x E Rn and of m

outcome variables y E Rm together with nonlinear model equations defining the rela­

tions between the decision variables and the outcome variables and with model bounds

defining the lower and upper bounds for all decision and outcome variables:

y = g(x); (22)

where 9 : Rn ~ Rm is a (differentiable) function. In fact, the user or the analyst

does not have to define the function 9 explicitly; he can also define it recursively, that

is, determine some further components of this vector-valued function as functions of

formerly defined components. Between outcome variables, some might be chosen as

guided outcomes corresponding to equality constraints; denote these variables by yC E
I

Rm c Rm and the constraining value for them by bC to write the additional constraints

in the form:
yC = gC(x) = bC; yc,la ~ bC ~ yC,UP (23)

where gC is a function composed of corresponding components of g. In phase B, some

other outcome variables can be also chosen as optimized objectives or objective out­

comes. The corresponding objective equations have the form:

q = f(x) (24)

36

where f is also composed of corresponding components of g. Thus, the set of attainable

objective outcomes is Qo = f(Xo) where the set of admissible decisions Xo is defined

by:
Xo = {x E Rn

: x/o ~ x ~ xu,,; y/o ~ g(x) ~ yU,,; gC(x) = bC} (25)

In further phases of working with nonlinear models, an order-approximating achieve­

ment function must be maximized; for this purpose, a specially developed nonlinear

optimization algorithm called solver is used. Since this maximization is performed

repetitively, at least once for each interaction with the user that changes the parameter

if, there are special requirements for the solver that distinguish this algorithm from

typical nonlinear optimization algorithms: it should be robust, adaptable and efficient,

that is, it should compute reasonably fast an optimal solution for optimization problems

of a broad class (for various differentiable functions g(x) and f(x)) without requiring

from the user that he adjusts special parameters of the algorithm in order to obtain

a solution. The experience in applying nonlinear optimization algorithms in decision

support systems (Kreglewski and Lewandowski, 1983, Kaden and Kreglewski, 1986)

has led to the choice of an algorithm based on penalty shifting technique and projected

conjugate gradient method. Since a penalty shifting technique anyway approximates

nonlinear constraints by penalty terms, an appropriate form of an achievement function

that differentiably approximates function (7) has been also developed and is actually

used. This smooth order-approximating achievement function has the form:

{ [

"] } 1/",1 " ,,+1
s(q,if) = 1- - ~]w,)'" + L max((w;,w;'))'"

p ,=1 ,=,,"

h ,,, f . f
were w" w" w, are unctIons 0 q" ii, :

(26)

(
_) {(q"maz - q,)/s"w, q" q, =

(q, - q"m,n)/s"

w;(q"if,) = (q"maz - q,)/s; }

w;'(q"if,) = (q, - q"m,n)/S;' ,

if 1 ~ i ~ p'

if p' + 1 ~ i ~ p"

if p" + 1 ~ i ~ p,

(27a)

(27b)

and the dependence on ii, results from a special definition of the scaling units that are

determined by:

{

(q"maz - if,)' if 1 ~ i ~ p',
s, =

(if, - q"m,n), if p' + 1 ~ i ~ p",

s; = (q"maz - ii,) } "
" , if p + 1 ~ i ~ p

s, = (if, - q"m,n)

(28a)

(28b)

In the initial analysis phase, the values q"maz and q"m,n are set to the upper and lower

bounds specified by the user for the corresponding outcome variables; later, they are

37

modified, see further comments. The parameter a ~ 2 is responsible for the approxima­

tion of the function (7) by the function (26): if a --t 00 and E --t 0, then these functions

converge to each other (while taking into account the specific definition of scaling coeffi­

cients in (26-28)). However, the use of too large parameters results in badly conditioned

problems when maximizing function (26), hence a = 4, ... ,8 are suggested to be used.

The function (26) must be maximized with q = f(x) over x E Xo, while Xo is

determined by simple bounds x 'a ~ X ~ XU" as well as by inequality constraints yla ~

g(x) ~ yU" and equality constraints gO(x) = bOo In the shifted penalty technique, the

following function is minimized instead:
,

,,, ,,, -) 1 f-- '((() u" '))2P(x,€,€,€,u,u,v)=-s(f(x),q +-L.J€;maxO,g;x -y; +u; +
2 ;=1

1,,"+1 1,,+1

+ "2 ~, €;' (max(O, y!a - g;(x) + U;'))2 + "2 .~, €(gt(x) - b~ + V;))2 (29)

,=" ,="

where €" (, € are penalty coefficients and u', u", v are penalty shifts. This function is

minimized over x such that x 1a ~ X ~ XU" while applying conjugate gradient directions,

projected on these simple bounds if one of the bounds becomes active. When a minimum

of this penalty function with given penalty coefficients and given penalty shifts (the

latter are initially equal zero) is found, the violations of all outcome constraints are

computed, the penalty shifts and coefficients are modified according to the shifted­

increased penalty technique (Wierzbicki, 1984h) and the penalty function is minimized

again until the violations of outcome constraints are admissibly small. The results are

then equivalent to the outcomes obtained by maximizing the achievement function (26)

under all constraints. This technique is according to our experience one of the most

robust nonlinear optimization methods.

We omit here the description of the useful standard for defining substantive models

of dynamic nonlinear programming type that can be obtained by combining the previous

cases.

Phase B. The definition of the multiobjective decision analysis problem.

For a given substantive model, the user can define various problems of multiobjective

analysis by suitably choosing maximized, minimized, s ~ a b i l i z e d and guided outcomes.

In this phase, he can also define which outcomes and decisions should be displayed to

him additionally during interaction with the system (such additional variables are called

floating outcomes). Since the substantive model is typically prepared by an analyst(s)

in the phase A and further phases starting with the phase B must be performed by the

final user, an essential aspect of all systems of DIDAS family is the user-friendliness of

phase B and further phases; this issue has been variously resolved in consequent variants

of DIDAS systems. In all these variants, however, the formulation of the achievement

function and its optimization is prepared automatically by the system once phase B is

completed.

Before the initial analysis phase, the user should also define some reasonable lower

and upper bounds for each optimized (maximized, minimized or stabilized) variable,

which results in an automatic definition of reasonable scaling units s; for these variables.

38

In further phases of analysis, these scaling units Sj can be further adjusted; this, however,

requires an approximation of bounds on efficient solutions.

Phase C. Initial analysis of the multiobjective problem.

Once the multiobjective problem is defined, bounds on efficient solutions can be

approximated either automatically or on request of the user.

The 'upper' bound for efficient solutions could be theoretically obtained through

maximizing each objective separately (or minimizing, in case of minimized objectives;

in the case of stabilized objectives, the user should know their entire attainable range,

hence they should be both maximized and minimized). Jointly, the results of such

optimization form a point that approximates from 'above' the set of efficient outcomes

Q, but this point almost never (except in degenerate cases) is in itself an attainable

outcome; therefore, it is called the utopia point quto.
However, this way of computing the 'upper' bound for efficient outcomes is not

always practical; many systems of DIDAS family use a different way of estimating

the utopia point. This way consists in subsequent maximizations of the achievement

function s(q,q) with suitably selected reference points q. I[an objective shouid be

maximized and its maximal value must be estimated, then the corresponding component

of the reference point should be very high, while the components of this point for all other

maximized objectives should be very low (for minimized objectives, they should be very

high; stabilized objectives must be considered as floating in this case, that is, should not

enter the achievement function). If an objective should be minimized and its minimal

value must be estimated, the corresponding component of the reference point should

be very low, while other components of this point are treated as in the previous case.

I[an objective should be stabilized and both its maximal and minimal values must be

estimated, then the achievement function should be maximized twice, first time as if for

a maximized objective and the second time as if for a minimized one (while the obtained

maximal and minimal values will be denoted by qito and qiad , respectively, although it

is difficult to say which of them corresponds to the concept of utopia point). Thus, the

entire number of optimization runs in utopia point computations is p" + 2(p - p"). This

is especially important in dynamic cases, see further comments. It can be shown that

this procedure gives a very good approximation of the utopia point quto in static cases,

whereas the precise meaning of very high reference component should be interpreted as

the upper bound for the objective minus, say, 0.1% of the distance between the lower

and the upper bound, while the meaning of very low is the lower bound plus 0.1% of

the distance between the upper and the lower bound.

During all these computations, the 'lower' bound for efficient outcomes can be also

estimated, just by recording the lowest efficient outcomes that occur in subsequent

optimizations for maximized objectives and the highest ones for minimized objectives

(there is no need to record them for stabilized objectives, where the entire attainable

range is anyway estimated). However, such a procedure results in the accurate, tight

'lower' bound for efficient outcomes-called nadir point qnad_only if p" = 2; for larger

numbers of maximized and minimized objectives, this procedure can give misleading

results, while an accurate computation of the nadir point becomes a very cumbersome

computational task (see Isermann and Steuer, 1987).

39

Therefore, some systems of DIDAS family accept user-supplied estimates of "lower"

bounds for objectives and, at the same time, offer an option of improving the estimation

of the nadir point in such cases. This option consists in additional p" maximization runs

for achievement function s(q, q) with reference points q that are very low, if the objective

in question should be maximized, very high for other maximized objectives and very

low for other minimized objectives, while stabilized objectives should be considered as

floating; if the objective in question should be minimized, the corresponding reference

component should be very high, while other reference components should be treated as in

the previous case. By recording the lowest efficient outcomes that occur in subsequent

optimizations for maximized objectives (and are lower than the previous estimation

of nadir component) and the highest ones for minimized objectives (higher that the

previous estimation of nadir component), a better estimation qnad of the nadir point is

obtained.

For dynamic models, the number of objectives becomes formally very high which

would imply a very large number of optimization runs-(p" + 2(p - p"))(T + I)-when

estimating the utopia point; however, the user is confronted anyway with p objective

trajectories which he can evaluate by 'Gestalt'. Therefore, it is important to obtain

approximate bounds on entire trajectories. This can be obtained by p" + 2(p - p")

optimization runs organill;ed as in the static case, with correspondingly 'very high' and

'very low' reference or aspiration trajectories.

Once the approximate bounds quto and qnad are computed and known to the user,

they can be utilized in various ways. One way consists in computing a neutral efficient

solution, with outcomes situated approximately 'in the middle' of the efficient set. For

this purpose, the reference point q is situated at the utopia point quto (only for maximized

or minimized outcomes; for stabilized outcomes, the reference component qi must be set

in the middle of their range estimated earlier) and the scaling units are determined by:

(30)

for all outcomes, including stabilized ones, while the components of the utopia and

the nadir points are interpreted respectively as the maximal and the minimal value of

such an objective. By maximizing the achievement function s(q,q) with such data, the

neutral efficient solution is obtained and can be utilized by the user as a starting point

for further interactive analysis of efficient solutions.

Once the utopia and nadir point are estimated and, optionally, a neutral solution

computed and communicated to the user, he has enough information about the ranges

of outcomes in the problem to start the main interactive analysis phase.

Phase D. Interactive review of efficient solutions and outcomes.
In this phase, the user controls-by changing reference or aspiration points-the

efficient solutions and outcomes computed for him in the system. It is assumed that

the user is interested only in efficient solutions and outcomes; if he wants to analyse

outcomes that are not efficient for the given definition of the problem, he must change

this definition-for example, by putting more objectives in the stabilized or guided

category-which, however, necessitates a repetition of phases B, C.

40

In the interactive analysis phase, an important consideration is that the user should

be able to easily influence the selection of the efficient outcomes ij by changing the

reference point ii in the maximized achievement function s(q, ii). It can be shown (Wierz­

bicki, 1986) that best suited for the purpose is the choice of scaling units determined

by the difference between the slightly displaced utopia point and the current reference

point:

{

(ijr to
- iii + 0.01 (ijr to

- ijfad)) , if 1:::; i :::; p'
s· - (31a)
, - (iii - ijrto + 0.01 (ijr to - ijfad)) , if p' + 1 :::; i :::; p"

for maximized or minimized outcomes. For stabilized outcomes, the scaling units are

determined then:

(31b)

It is assumed now that the user selects the reference components in the range

ijfad :::; iii :::; ijrto for maximized and stabilized outcomes or ijrto
:::; iii :::; ijfad for minimized

outcomes (if he does not, the system automatically projects the reference component on

these ranges). In some DIDAS systems, there is also an option of user-defined weight­

ing coefficients, but the automatic definition of scaling units is sufficient for influencing

the selection of efficient outcomes. The interpretation of the above way of setting scal­

ing units is that the user attaches implicitly more importance to reaching a reference

component iii if he places it close to the known utopia component; in such a case, the

corresponding scaling unit becomes smaller and the corresponding objective component

is weighted stronger in the achievement function s(q,ii). Thus, this way of scaling rela­

tive to utopia-reference difference is taking into account the implicit information given

by the user in the relative position of the reference point. This way of scaling, used

also in (Nakayama and Sawaragi, 1983, Steuer and Choo, 1983), is implemented only in

recent versions of systems of DIDAS family, especially in versions for nonlinear models.

When the relative scaling is applied, the user can easily obtain-by suitably moving

reference points--efficient outcomes that are either situated close to the neutral solution,

in the middle of efficient outcome set Qo, or in some remote parts of the set Qo, say, close

to various extreme solutions. Typically, several experiments of computing such efficient

outcomes give enough information for the user to select an actual decision--either some

efficient decision suggested by the system, or even a different one, since even the best

substantive model cannot encompass all aspects of a decision situation. However, there

might be some cases in which the user would like to receive further support-either in

analysing the sensitivity of a selected efficient outcome, or in converging to some best

preferred solution and outcome.

Phase E. Sensitivity analysis and convergence.

For analysing the sensitivity of an efficient solution to changes in the proportions of

outcomes, a multidimensional scan of efficient solutions is implemented in some systems

of DIDAS family. This operation consists in selecting an efficient outcome, accepting it

41

as a base i/o. for reference points, and performing p" additional optimization runs with

the reference points determined by:

(32)

iji = iio
., i -I i, 1 ~ i ~ p",

where f3 is a coefficient determined by the user, -1 ~ f3 ~ 1; if the relative scaling is

used and the reference components determined by (32) are outside the range fj'rd
, fj'jto,

they are projected automatically on this range. The reference components for stabilized

outcomes are not perturbed in this operation (if the user wishes to perturb them, he

might include them, say, in the maximized category). The efficient outcomes resulting

from the maximization of the achievement function s(q, ij) with such perturbed reference

points are typically also perturbed mostly along their subsequent components, although

other their components might also change.

For analysing the sensitivity of an efficient solution when moving along a direction

in the outcome space-and also as a help in converging to a most preferred solution-a

directional scan of efficient outcomes can be implemented in systems of DIDAS family.

This operation consists again in selecting an efficient outcome, accepting it as a base i/o.
for reference points, selecting another reference point ij, and performing a user-specified

number K of additional optimizations with reference points determined by:

(33)

The efficient solutions fj(k) obtained through maximizing the achievement function

s(q,ij(k)) with such reference points constitute a cut through the efficient set Qo when

moving approximately in the direction ij - i/o•. If the user selects one of these efficient

solutions, accepts as a new i/o. and performs next directional scans along some new

directions of improvement, he can converge eventually to his most preferred solution­

see (Korhonen and Laakso, 1986). Even if he does not wish the help in such convergence,

directional scans can give him valuable information.

Another possible way of helping in convergence to the most preferred solution is

choosing reference points as in (33) but using a harmonically decreasing sequence of

coefficients (such as Iii, where i is the iteration number) instead of user-selected co­

efficients kjK. This results in convergence even if the user makes stochastic errors in

determining next directions of improvement of reference points, or even if he is not

sure about his preferences and learns about them during this analysis, see (Michalevich,

1986). Such a convergence is rather slow and, after initial experiments, has not been

yet implemented in systems of DIDAS family. Yet another approach for selecting suc­

cessive reference points which ensures convergence and is relevant to decision maker's

behaviour has been recently proposed by Bogetoft at all. (1988).

42

4 Review of various implementations of systems of

DIDAS family

There exist a number of various implementations of systems of DIDAS family. An

early, prototype linear version was developed by Kalio, Lewandowski and Orchard­

Hays (1980). This version utilized professional LP package SESAME available only

on the IBM-370 mainframe computers, therefore it was not transferable. The user

interface was rather poor and the usage of the system was limited to its authors and

their collaborators.

The second, also linear, version of DIDAS family systems was developed by Lewan­

dowski (1982). It was designed as pre- and postprocessor programs to a commercial

LP package with standard MPSX input and output. Due to such design, it was easily

transferable and many practical problems were solved using it on various computers.

The main drawback of this system was that the interface between pre- and postproces­

sor and a the LP solver was based on reading and writing disk files, which was very

time consuming for larger problems. An interaction with the user was very simple but

inconvenient because of long time responses of the system transferring large amount of

data.

The design goal of the next version of DIDAS was to eliminate, if possible, disk

transfers and changes of data structures inside the system. It was done by Kreglewski

and Lewandowski (1983) as a interactive multicriteria extension of MINOS linear pro­

gramming system (Murtagh and Saunders, 1977); the reference point concepts were

implemented accessing MINOS internal data structures. The user interface was re­

designed and many new options added. However, the portability problems arose again:

MINOS is not easily transferable.

The reference point approach was explored also by many others collaborating au­

thors. A DIDAS/N system developed by Grauer and Kaden (1984) was the first pub­

lished nonlinear version of such a system. It was based on MINOS/ Augmented (Murtagh

and Saunders, 1980) nonlinear programming system, an extended version of linear MI­

NOS. Unfortunately, this solver is not robust and efficient enough for realistic nonlinear

programming problems. Moreover, the user interface in the DIDAS/N system was

rather complicated, hence applications of this system were rather limited. Later, Kaden

and Kreglewski (1986) developed another version of nonlinear DIDAS system. Earlier

versions of DIDAS were also adapted for special purposes by Strubegger and Messner

(Strubegger, 1985, Messner, 1985).

Lewandowski and Kreglewski (1985) developed another, general purpose nonlinear

version of DIDAS system. It was based on a solver from Modular System for Nonlinear

Programming (Kreglewski et aI., 1984) and written completely in FORTRAN, hence

easily transferable to arbitrary computer. The user interface was reasonably simple,

but preparation of data for the system was not quite straightforward.

The experiences of these developments led in 1985 to two new linear versions:

DIDAS-MM and DIDAS-MZ. DIDAS-MM was a further development of the version

with MINOS solver, with extended interactive features, special editor for dynamic lin­

ear models and graphic features. DIDAS-MZ is based on a linear programming solver

43

from IMSL library which is widely accessible; therefore, DIDAS-MZ is much easier

transferable.

In 1986, a new generation of DIDAS family systems was initiated, designed for work

on IBM-PC-XT and compatible computers. These are: IAC-DIDAS-L1 and -L2 as well

as IAC-DIDAS-N, described in other papers of this volume.

5 Applications of systems of DIDAS family

The first implementation (Kallio et aI., 1980) of systems of DIDAS family was devoted

to the application in forecasting and planning of the development of Finish forestry and

forest industry sectors, based on a substantive model of linear dynamic type. Later,

another version of DIDAS systems was applied (Grauer et aI., 1982) to planning of

energy supply strategies, which led to other applications in the analysis of future energy­

economy relations in Austria (Strubegger, 1985) and of future gas trade in Europe

(Messner, 1985).

Parallely, applications to forecasting and planning agricultural production in Poland

(Makowski and Sosnowski, 1984), to regional investment allocation in Hungary (Ma­

jchrzak, 1982), to chemical industry planning (Gorecki et aI., 1983) have been initiated.

A special version of linear dynamic DIDAS was adapted to flood control problems (Le­

wandowski et aI., 1984b). A nonlinear version of DIDAS was first applied to issues of

macroeconomic planning (Grauer and Zalai, 1982); later applications of other nonlinear

versions include problems of environmental protection of ground water quality (Kaden

and Kreglewski, 1986).

Further applications of DIDAS family systems are reported in other papers in this

volume.

6 References

Axelrod, R. (1985). The Evolution of Cooperation. Basic Books, New York, 1985.

Bogetoft, P., A. Hallefjord and M. Kok (1988). On the convergence of reference point

methods in multiobjective programming. European Journal of Operational Re­

search, Vol. 34, pp. 56-58.

Charnes and Cooper (1975). Goal programming and multiple objective optimization,

J. Oper. Res. Soc. 1, pp. 39-54, 1975.

Dreyfus, S.E. (1984). Beyond rationality. In M. Grauer, M. Thompson, A.P. Wierzbi­

cki, editors: Plural Rationality and Interactive Decision Processes, Proceedings,

Sopron 1984, Springer Verlag, Berlin.

Fishburn, P.C. (1964). Decision and Value Theory. Wiley, New York, 1964.

Galbraith, J.K. (1967). The New Industrial State, Houghton-Mifflin, Boston, 1967.

44

Glushkov, V.M. (1972). Basic principles of automation in organizational management

systems (in Russian), Upravlayushcheye Sistemy i Mashiny, 1, 1972.

Gorecki, H., J. Kopytowski, T. Rys and M. Zebrowski (1983). A multiobjective proce­

dure for project formulation-design of a chemical installation. In M. Grauer and

A.P. Wierzbicki, editors: Interactive Decision Analysis, Springer Verlag, Berlin,

1983.

Grauer, M. and S. Kaden (1984). A Nonlinear Dynamic Interactive Decision Analysis

and Support System (DIDAS/N) Users Guide, WP-84-23, International Institute

for Applied Systems Analysis, Laxenburg, Austria, 1984.

Grauer, M., A. Lewandowski and L. Schrattenholzer (1982). Use of the reference

level approach for the generation of efficient energy supply strategies. WP-82-19,

International Institute for Applied Systems Analysis, Laxenburg, Austria, 1982.

Grauer, M., A. Lewandowski and A.P. Wierzbicki (1983). DIDAS-theory, implemen­

tation and experience. In M. Grauer and A.P. Wierzbicki, editors: Interactive

Decision Analysis, Springer Verlag, Berlin, 1983.

Grauer, M. and E. Zalai (1982). A Reference Point Approach to Nonlinear Macroeco­

nomic Planning, WP-82-134, International Institute for Applied Systems Analysis,

Laxenburg, Austria, 1982.

Ignizio, J.P. (1978). Goal programming-a tool for multiobjective analysis. Journal

for Operational Research, 29, pp. 1109-1119, 1978.

Isermann, H. and R. E. Steuer (1987). Computational experience concerning payoff

tables and minimum criterion values over the efficient set. European Journal of

Operational Research, Vol. 33, pp. 91-97.

Kaden, S. and T. Kreglewski (1986). Decision support system MINE-problem solver

for nonlinear multi-criteria analysis. CP-86-5, International Institute for Applied

Systems Analysis, Laxenburg, Austria, 1986.

Kallio, M., A. Lewandowski and W. Orchard-Hays (1980). An implementation of the

reference point approach for multiobjective optimization. WP-8D-35, International

Institute for Applied Systems Analysis, Laxenburg, Austria, 1980.

Keeney, R.L. and H. Raiffa (1976). Decisions with Multiple Objectives: Preferences

and Value Trade-offs. Wiley, New York, 1976.

Korhonen, P. and J. Laakso (1986). Solving a generalized goal programming ap­

proaches using a visual interactive approach. European Journal of Operational

Research, 26, pp. 355-363, 1986.

Kreglewski, T. and A. Lewandowski (1983). MM-MINOS-an integrated interactive

decision support system. CP-83-63, International Institute for Applied Systems

Analysis, Laxenburg, Austria, 1983.

45

Kreglewski, T., T. Rogowski, A. Ruszczynski, J. Szymanowski (1984). Optimization

methods in FORTRAN, PWN, Warsaw, 1984 (in Polish).

Lewandowski, A. (1982). A Program Package for Linear Multiple Criteria Reference

Point Optimization-Short User Manual, WP-82-80, International Institute for

Applied Systems Analysis, Laxenburg, Austria, 1982.

Lewandowski, A. and M. Grauer (1982). The reference point approach-methods of

efficient implementation. WP-82-26, International Institute for Applied Systems

Analysis, Laxenburg, Austria, 1982.

Lewandowski, A., S. Johnson and A.P. Wierzbicki (1986). A Selection Committee

Decision Support System: Implementation, Tutorial Example and Users Manual.

International Institute for Applied Systems Analysis, Laxenburg, Austria, 1986;

presented also at the MCDM Conference in Kyoto, Japan, August 1986.

Lewandowski, A. and T. Kreglewski (1985). A nonlinear version of DIDAS system,

Collaborative volume: Theory, Software and Test Examples for Decision Sup­

port Systems, International Institute for Applied Systems Analysis, Laxenburg,

Austria, 1985.

Lewandowski, A., T. Rogowski and T. Kreglewski (1984a). A trajectory-oriented ex­

tension of DIDAS and its applications. In M. Grauer, M. Thompson, A.P. Wierz­

bicki, editors: Plural Rationality and Interactive Decision Processes, Proceedings,

Sopron 1984, Springer Verlag, Berlin.

Lewandowski, A., T. Rogowski and T. Kreglewski (1984b). Application of DIDAS

methodology to flood control problems-numerical experiments. In M. Grauer,

M. Thompson, A.P. Wierzbicki, editors: Plural Rationality and Interactive Deci­

sion Processes, Proceedings, Sopron 1984, Springer Verlag, Berlin.

Majchrzak, J. (1982). The implementation of the multicriteria reference point opti­

mization approach to the Hungarian regional investment allocation model, WP­

81-154, International Institute for Applied Systems Analysis, Laxenburg, Austria,

1982.

Makowski, M. and J. Sosnowski (1984). A decision support system for planning and

controlling agricultural production with a decentralized management structure.

In M. Grauer, M. Thompson, A.P. Wierzbicki, editors:· Plural Rationality and

Interactive Decision Processes, Proceedings, Sopron 1984, Springer Verlag, Berlin.

Messner, S. (1985). Natural gas trade in Europe and interactive decision analysis, In

G. Fandel, M. Grauer, A. Kurzanski and A.P. Wierzbicki, eds., Large-Scale Mod­

elling and Interactive Decision Analysis, Proceedings Eisenach, Springer Verlag,

Berlin, 1985.

Michalevich, M.V. (1986). Stochastic approaches to interactive multicriteria optimiza­

tion problems, WP-86-1O, International Institute for Applied Systems Analysis,

Laxenburg, Austria, 1986.

46

Murtagh, B.A. and M.A. Saunders (1977). MINOS User's Guide, Technical Report,

SOL-77-9, Systems Optimization Laboratory, Stanford University, 1977.

Murtagh, B.A. and M.A. Saunders (1980). MINOS/Augmented, Technical Report,

SOI-80-14, Systems Optimization Laboratory, Stanford University, 1980.

Naisbitt, J. (1982). Megatrends: Ten New Directions Transforming our Lives. Warner

Books, New York, 1982.

Nakayama, H. and Y. Sawaragi (1983). Satisficing trade-off method for multiobjective

programming. In M. Grauer and A.P. Wierzbicki, editors: Interactive Decision

Analysis, Springer Verlag, Berlin, 1983.

Pospelov, G.S. and V.A. Irikov (1976). Program- and Goal-Oriented Planning and

Management (in Russian), Sovietskoye Radio, Moscow, 1976.

Rappoport, A. (1985). Uses of experimental games. In M. Grauer, M. Thompson and

A.P. Wierzbicki, editors: Plural Rationality and Interactive Decision Analysis,

Springer Verlag, Berlin, 1985.

Sakawa, M. (1983). Interactive fuzzy decision making for multiobjective nonlinear

programming problems. In M. Grauer and A.P. Wierzbicki, editors: Interactive

Decision Analysis, Springer Verlag, Berlin, 1983.

Sawaragi, Y., H. Nakayama and T. Tanino (1985). Theory of Multiobjective Opti­

mization, Academic Press, New York, 1985.

Simon, H.A. (1957). Models of Man. Macmillan, New York, 1957.

Simon, H.A. (1958). Administrative Behaviour. MacMillan, New York, 1958.

Steuer, R. and E.V. Choo (1983). An interactive weighted Chebyshev procedure for

multiple objective programming. Mathematical Programming, 26, pp. 326-344,

1983.

Strubegger, M. (1985). An approach for integrated energy-economy decision analysis:

the case of Austria. In G. Fandel, M. Grauer, A. Kurzanski and A.P. Wierzbi­

cki, eds., Large-Scale Modelling and Interactive Decision Analysis, Proceedings

Eisenach, Springer Verlag, Berlin, 1985.

Umpleby, S.A. (1983). A group process approach to organizational change. In H. Wedde,

ed., Adequate Modelling of Systems, Springer Verlag, Berlin, 1983.

Van Hee, K. (1986). Operations research and artificial intelligence approaches to deci­

sion support systems. International Seminar: New Advances in Decision Support

Systems, International Institute for Applied Systems Analysis, Laxenburg, Aus­

tria, 1986.

Wierzbicki, A.P. (1975). Penalty methods in solving optimization problems with vector

performance criteria. VI Congress of IFAC, Boston 1975.

47

Wierzbicki, A.P. (1977). Basic properties of scalarizing functionals for multiobjective

optimization. Mathematische Operationsforschung und Statistik, Ser. Optimiza­

tion 8, Nr 1, 1977.

Wierzbicki, A.P. (1980). The use of reference objectives in multiobjective optimization.

In G. Fandel and T. Gal, eds., Multiple Criteria Decision Making, Theory and

Applications, Springer Verlag, Heidelberg 1980.

Wierzbicki, A.P. (1982). A mathematical basis for satisficing decision making. Math­

ematical Modelling, 3, pp. 391-405, 1982.

Wierzbicki, A.P. (1984a). Negotiation and mediation in conflicts, II: Plural rationality

and interactive decision processes. In M. Grauer, M. Thompson, A.P. Wierzbi­

cki, editors: Plural Rationality and Interactive Decision Processes, Proceedings,

Sopron 1984, Springer Verlag, Berlin. .

Wierzbicki, A.P. (1984b). Models and Sensitivity of Control Systems, Elsevier, Ams­

terdam, 1984.

Wierzbicki, A.P. (1986). On the completeness and constructiveness of parametric

characterizations to vector optimization problems. OR-Spektrum, 8, pp. 73-87,

1986.

Modern Techniques for Linear Dynamic

and Stochastic Programs

Andrzej Ruszczynski

Institute of Automatic Control, Warsaw University of Technology.

Abstract

We discuss methods for specializing general linear programming techniques to

dynamic and stochastic problems: data structures, basis management and pricing
strategies. Next we present two nonstandard techniques: regularized decomposition

and feasible direction methods.

1 Introduction

In the last three decades, the theory and computational methods of linear program­

ming developed into a powerful tool for analysing linear models of economic planning

and control. Modern linear programming packages (see, e.g., Marsten, 1981, Murtagh

and Saunders, 1984) are capable of solving problems with thousands of variables and

constraints. Still, linear programming as the area of research is far from being closed.

On the one hand, the practice poses new large and complex problems which result from

the tendency to describe more and more complex objects of decision making by math­

ematical models. On the other hand, the trends in modern computer and information

technology create a demand for user-friendly decision support systems with an intimate

interaction between the decision maker and the computer. The computer is often just

a personal computer and this implies very specific requirements from the optimization

software involved in such systems: it should be capable of solving large models, fast,

use computer resources in an economic way, and it should allow for easy changes in the

model.

A detailed discussion of all these issues goes far beyond the scope of this paper. We

shall focus our attention here on two main sources of large scale linear models arising

in decision making: dynamic structure and stochasticity. We shall discuss the ways

in which general linear programming techniques can be specialized for these models

to meet some of the computational goals pointed out above. Next, we shall present

two nonstandard techniques which appear to be particularly useful for the problems in

question.

49

2 Dynamic structure and stochasticity as sources of

large linear models

It is well known that every linear optimization problem can be equivalently expressed

in the following form

subject to

Ax = b, xmin ~ X ~ Xm<u', (1)

where x is the vector of activities (including slack/surplus variables), c is a vector of

cost coefficients associated with these activities, A is a technology matrix, and b is a

vector of resources or demands, which impose conditions on the admissible activities x.

In real-life large scale models, the dimension of x (the number of columns of A) and the

dimension of b (the number of rows of A) may go into thousands. On the other hand,

it is typical that each resource or demand condition (a row of Ax = b) involves only

few activities and each activity appears in only a relatively small number of conditions.

As a result, the constraint matrix A in (1) is usually sparse: most of its entries are

zeros. In fact, all modern linear programming codes make use of this feature and

contain very sophisticated techniques for storing and factorizing sparse matrices, solving

equations with them, and updating the factorization when the data change (see Forrest

and Tomlin, 1972, Reid, 1982).

However, there exist important classes of problems in which sparsity alone is not the

only feature of the constraint matrix. One of these classes are linear dynamic-structured

problems, in other words-linear control problems. In the simplest formulation of such

a problem the variables (activities) are related to time stages t = 0,1,2, ... , T. At each

stage t, we deal with two groups of variables: state variables St and control variables Ut.

The variables from the neighboring periods are related through the state equation

t =0,1,2, ... ,T-l, (2)

(3)

where G and K are some matrices of appropriate dimensions and bt are some known

vectors. Let the initial state So be fixed and let the objective function be defined by

T-l

f(u,s) = 'L(q; Ut + C;+I S t+I).
t=O

Assuming that the only additional constraints on the state and control variables are

simple lower and upper bounds

t = 1,2, ... ,T,

U
min < U < u

maz t = 1,2, ... ,T-l,t _ t_ t ,

we can easily write our problem in form (1) with

x= (uo,St,Ut,S2, ... ,UT-t,ST),

c = (qo, Ct, ql, C2,"" qT-l, CT),

(4)

(5)

(6)

50

and

A=

-K I

-G -K I

-G -K I

-G -K I

(7)

We see that the numbers of rows and columns of A increase proportionally to the

number of periods T, and even for relatively small dimensions of the activities related to

a single period the whole problem may have a remarkable size. On the other hand, the

matrix (7) is not only sparse, but has a very regular staircase structure with multiple

occurrence of the same (usually also sparse) matrices G, K and I. We have to take

advantage of this if we aim at solving dynamic problems of realistic dimensions.

Let us now pass on to the second class of problems which are of special interest for

us. Let us assume that some of the entries of the technology matrix A and the right­

hand side b in the linear model (1) are uncertain and that this uncertainty is crucial

for the decision making. One of possible modelling approaches to such a situation (see,

e.g., Kall et al., 1979) is to assume that A and b are random and may attain one of

finite many realizations with some known probabilities:

with probability

with probability

with probability

PI> 0,

P2 > 0,

PL > 0,

(8)

where Ef=I PI = 1. Under these circumstances, however, it is in general no longer possi­

ble that the decision x satisfies the constraints A,x = b, for all realizations 1 = 1,2, ... ,L.

Therefore, we have to extend our model by introducing some corrective activities y/ as­

sociated with the realizations 1 = 1,2, ... ,L, which compensate the discrepancy b/- A,x.

If we describe our capabilities of correction by a matrix Wand assign to y, the cost

vector q and the bounds yrnin and yrnaz, the correction problem will take the form

mtntmtze qTY

subject to

Wy, = bl - A,x, (9)

Our aim is now to find such a decision x that makes the correction always possible

and minimizes the sum of the direct cost cT x and the expected future correction cost

Ef=I PlqT y,. The whole problem can be again written as a large scale linear model:

51

subject to

x
min

::; X ::; xmaz

ymin ::; YI ::; ymaz ,

The constraint matrix of (10),

= bI

= b2

+WYL = bL
(10)

I=I,2, ... ,L

(11)

has the size proportional to the number L of realizations taken into account, which

leads to very large problems already for underlying deterministic models of medium

size. Still, similarly "to the dynamic case, A is not only sparse but has a very regular

(so-called dual angular) structure, with multiple occurrence of the correction matrix W

and some similarities of the realizations AI, A2 , ••• , AL • It is intuitively clear that we

have to take advantage of this feature in a method for solving such problems.

3 Specialized versions of the simplex method

When dealing with special classes of problems for which general efficient techniques

already exist, it is a natural direction of research to investigate the possibility of ex­

ploiting the features of these special problems within the general approach. So, we shall

discuss here some most promising specializations of the acknowledged method of linear

programming, the primal simplex method, for the two classes in question: dynamic and

stochastic problems.

In the primal simplex method the constraint matrix A in (1) is split into a square

nonsingular basis matrix B and a matrix N containing all the remaining columns of A,

not included into B. This implies division of the activities x into basic variables XB and

nonbasic variables XN. At each iteration of the method the nonbasic variables are fixed

on their lower or upper bounds, and the values of the basic variables are given by

(12)

We always choose basis matrices B so that

(13)

where x'B
in and x'Baz are subvectors of x

min and xmaz implied by the splitting of x into

XB and XN. Such an x is called a basic feasible solution, and at each iteration we try to

find a better basic feasible solution by performing the following steps.

52

Step 1. Find the price vector 11" by solving

(14)

where CB is the subvector of C associated with XB .

Step e. Price out the nonbasic columns aj of A (i.e. columns of N) by calculating

T
Zj = Cj - 11" aj (15)

until a column a. is found for which z. < 0 and x. = x;'in, or z. > 0 and x. = x;,a"'.

Step 9. Find the direction of changes of basic variables dB by solving

BdB = a•. (16)

Step ,l. Determine from x'Bin , xjr"', XB and dB the basic variable XBr which first achieves

its bound when x. changes. If x. hits its opposite bound earlier, change x. and go

to Step 2.

Step 5. Replace the r-th column of B with a. and XBr by x. and calculate values of the

new basic variables from (12).

This general strategy can be deeply specialized to account for the features of prob­

lems under consideration. These improvements can be divided into three groups:

a) representation of the problem data, i.e. the way in which the matrix A is stored

and its columns aj recovered for the purpose of Step 2;

b) techniques for solving equations (12), (14) and (16), which includes special meth­

ods for factorizing the basis matrix B and updating this factorization;

c) pricing strategies, i.e. methods for selecting nonbasic columns aj at Step 2 to

be priced out for testing whether they could be included into B at the current

iteration.

Let us discuss these issues in more detail.

Problem data structures

The repeated occurrence of the matrices G, K and I in the constraint matrix (7) of

the dynamic model suggests a generalization of the concept of supersparsity employed in

large linear programming systems (Bisschop and Meeraus, 1980). It is sufficient to store

the matrices G and K as files of packed columns (G and K may be sparse themselves).

Any time a specific column aj of A is needed, we can easily calculate from its number i
and from the dimensions of activities related to a single period which column of - K

or of [!a] and on which position will appear in aj. Thus the problem data can be

compressed in this case to the size of one period and easily stored in the operating

memory of the computer, even for very large problems. In a nonstationary problem,

where some of the entries of K and G depend on t, we can still store in this way all the

53

stationary data, and keep an additional file of time-dependent entries. The recovery of

a column of A would then be slightly more complicated, with a correction to account

for the nonstationary entries, but still relatively easy to accomplish. Storage savings

would be still significant, because we have grounds to expect that only some entries of A

change in time.

The same argument applies to the constraint matrix (11) of the stochastic problem.

It is sufficient to store the realizations AI, A 2 , ••• , A L and W to reconstruct columns

of A, if necessary. But we can go here a little deeper, noting that in practical problems

it is unlikely that all the entries of the technology matrix are random. If only some of

them are stochastic, many entries of AI, A 2 , ••• ,AL will have identical values and our

problem data structure will still suffer from a considerable redundancy. Thus, we can

further compress the structure, as it was done in (Ruszczynski, 1985): we represent

each A as

A, = AO + ~,

where AO contains as nonzeros only the deterministic entries of A, , and ~ , contains

as only nonzeros the l-th realization of the random entries. Therefore it is sufficient to

store the nonzeros of AO together with its sparsity pattern, the sparsity pattern of the

random entries (which is common for all ~ I) , and the nonzeros o f ~ " 1 = 1,2, ... , L.

This structure will only slightly exceed the storage requirements of the underlying de­

terministic model.

(17)Bo =

Representation of the basis inverse

It is clear that for constraint matrices ofform (7) or (11) the basis matrices B inherit

their structure. Although general techniques for factorizing sparse matrices (see, e.g.,

Forrest and Tomlin, 1972, Reid, 1982, Toczylowski, 1984) are in principle able to cope

with such bases, there is still room to exploit their structure within the factorization

and updating algorithms.

Let us at first discuss this matter on the simple control problem with the constraint

matrix (7). Assuming that all the state vectors 810 82, ••. ,8T are basic, we obtain the

following form of the basis matrix

I

-G I

-G I

I

-G I

B o is lower triangular and the equations involving B o or B'{; can be simply solved

by substitution. To solve Bod = a, we partition d into (dh d2 , • •• , dT) and a into

(ao, a1,···, aT-tl according to the periods, and solve the state equations

t = O,I, ... ,T-l (18)

with do = O. Noting that in (15) we have at = 0 for t < T we can start simulation in (18)

from T. To solve 7fT B o = c we need only to back-substitute in the adjoint equations

7ft = GT7ft+l +ct, t=T,T-l, ... ,1 (19)

54

with 7l"T+l = O. Again, noting that CB in (14) changes only on one position from iteration

to iteration, we can start the simulation in (19) from the position at which the change

occurred.

In general, the basis matrix is not so simple as (17) and some controls are basic, while

some state variables are nonbasic. The basis matrix is still staircase, but the blocks on

the diagonal (which in (17) are all I) are not necessarily square and invertible:

Bo =

-GT-l -KT JT

(20)

where J.. J2, • •• ,JT are some submatrices of I; K .. K2 , • .• , K T are submatrices of K and

G.. G2 , ••• , GT - 1 are submatrices of G. A factorization of B is necessary to represent

it in a form suitable for solving equations with Band BT and for corrections when a

column of B is exchanged.

We can of course specialize the elimination procedures of (Forrest and Tomlin, 1972)

or (Reid, 1982), because we exactly know where to look for nonzeros in particular rows

and columns of B. This idea of blockwise elimination has been analysed in (Kallio and

Porteus, 1977, Propoi and Krivonozhko, 1978, Wets, 1986). There is, however, a more

promising global approach which aims at exploiting features similar to those that led

from (17) to equations (18) and (19). Namely, we would like to transform somehow B

to a staircase matrix

Bll

B 21 B 22

B = B32 B33 (21)

BT-1,T BT •T

having the diagonal blocks Btt square and nonsingular. Solving equations with Bwould

be almost as simple as with Bo and would require only inversion of Btt , t = 1,2, ... ,T.

In (Perold and Dantzig, 1979) the pass from B to B is achieved by representing

B=BF (22)

with F chosen in such a way that B inherits as many columns of B as possible. In

particular, all the state columns of B will appear in B, so that the diagonal blocks Btt

will have large parts common with the identity and will be easy to invert. Moreover, F

has also a very special structure

(23)

with D square, invertible, and of relatively low size. Solving the equations with B or B T

resolves now itself to the factorization of Btt (which is easy) and factorization of D (see

Perold and Dantzig, 1979). Updating the factors is rather involved, unfortunately.

55

Another approach has been suggested in (Bisschop and Meeraus, 1980). Since Bo is

particularly easy to invert, we aim at using Bo as B. We do not construct factors as

in (22) but rather add new rows and columns to Bo and work with a larger matrix

(24)

Here U contains columns which are in B but not in Bo, and V contains units in

columns which are in Bo but not in B, to explicitly nullify the variables corresponding

to these columns. The solution to

can be now computed by

UB = (VBolUtlVBola,

s = Bol(a - UUB).

(25)

(26)

(27)

Thus we need only to solve equations with Bo, which is particularly simple, and to

factorize the matrix V BOIU, which is of much smaller size than B. Similar formulae

can be derived for the backward transformation (14). Application of this approach

to dynamic and stochastic programs is discussed in detail in (Gondzio and Ruszczyn­

ski, 1988).

Let us now pass to the stochastic problem (10). Supposing that the basis contains

only the correction activities, its form is particularly simple

(28)

where WI, 1= 1,2, ... , L are square nonsingular submatrices of W. The inversion of Bo
resolves now itself to the inversion of WI> W 2 , ••• , WL , which can be done independently.

We can also exploit here some similarities between the W's (common columns) to further

simplify their inversion (see the bunching procedure discussed for other purposes in

Wets, 1986).

In general, however, the basis matrix will be of the form

[

AI WI- -
B ~ i: ... IV~ ... (29)

with the blocks WI, 1 = 1,2, ... ,L, not necessarily square and nonsingular. Again, we

would like to transform B into a form more suitable for inversion. At the first sight,

since B is lower block triangular, both approaches discussed for the dynamic problem

are applicable here. We can aim at obtaining factors as in (22) with a B of dual angular

56

structure having invertible diagonal blocks. We can also apply a method based on the

formulae (26)-(27) and work with a matrix of form (24).
The relation with the dynamic model, however, follows from rather superficial al­

gebraic similarity of the problem matrices (lower block triangular structure). In fact,

in the dynamic model we deal with a phenomenon that evolves in time, whereas the

stochastic model describes a phenomenon spread in space. Thus, while we had grounds

to assume that many state variables will be basic in the dynamic model (which implied

the choice of Bo), we cannot claim the same with respect to the correction activities

in the stochastic model and specify in advance some of them to be included into W.

Therefore, the approach of (Bisschop and Meeraus, 1980) must be slightly modified

here. Instead of working with B, we would prefer to operate on a larger matrix

W Al

J I

W A 2

J2

B= W A L (30)

h
VI

V2

VL

in which some of the rows of the matrix V, which are used to nullify the nonbasic correc­

tion activities, are added to W to make the diagonal blocks [~] square and invertible.

Under these circumstances, however, the block diagonal part of B is no longer constant,

contrary to the matrix Bo in the form (24) for dynamic problems. The representa­

tion (30) and the resulting updating schemes were analysed in the dual (transposed)

form in (Kall, 1979), and (Strazicky, 1980). The resulting formulae, however, are so in­

volved and far from the essence of the underlying problem, that it is not clear whether

this particular direction can bring a significant progress.

The approach (22) might be more prospective here, but we should be aware of the

fact that it is natural to expect that many first stage activities x will be basic, because

corrections are usually more expensive. Hence, the blocks W, in (29) will be far from

square and adding to them columns to achieve the block diagonal iJ will inevitably

increase D in (23).

Summing up this part of our discussion, we can conclude that implementations of

the simplex method for large dynamic and stochastic problems lead to very detailed

linear algebraic techniques that try to exploit the structure of basis matrices to develop

improved inversion methods. Although there is still a lot to be done in this direction,

one can hardly expect a qualitative progress here.

Pricing strategies

Let us now pass to the problem of selecting nonbasic columns to be priced out at

a given iteration for testing whether they could be brought into the basis. Since the

57

selection of a variable to enter the basis largely determines the variable to leave, pricing

strategies have a considerable influence on iteration paths of the simplex method and this

influence grows with the size of the problem. There are two acknowledged techniques

for general large scale linear programs (cr., e.g., Murtagh, 1981):

a) partial pricing, where at each iteration a certain subset of nonbasic columns are

priced out to select the one to enter;

b) multiple pricing, where a list of prospective candidates is stored, and they are

priced out again at the next iteration.

These general ideas can be further specialized for the two classes of problems in

question. The lower block triangular structure of A in (7) and (11) suggests a natural

division of the set of columns into subsets treated together by partial pricing strategies.

These subsets correspond to periods in (7) and to the first stage decision x and the

realizations in (11). This idea was thoroughly investigated experimentally in (Fourer,

1983) and the conclusions can be summarized as follows:

- rank the blocks (periods, realizations) equally and use them in a cyclic fashion;

- within each block (if it is still large enough) rank the columns equally and also

use them in a cyclic fashion.

Again, pure linear algebraic concepts seem to be insufficient to fully specialize the

pricing strategies. We should somehow exploit our knowledge of the essence of the

underlying model to gain further improvements.

Noting that the dynamic model describes a phenomenon that evolves in time, we

have grounds to expect that similar sets of activities will appear in the basis in the

neighboring periods. This suggests a simple modification of the partial pricing strategy

described above: if a prospective column has been found in period k, price out the

corresponding columns from the next periods and bring them to the basis, as long as

possible. The initial experiments reported in (Gondzio and Ruszczynski, 1986) indicate

that this simple modification may improve the performance significantly (by 20-30% on

problems of size 1000 by 2000 on IBM PC/XT).

In the stochastic case the situation is only slightly more complicated. If a correc­

tion variable is basic for the realization (A" bl), we have grounds to expect that the

corresponding variables will be basic for some neighboring realizations (A j , bj). How­

ever, contrary to the dynamic model, the notion of 'neighboring realizations' is not

so clear and is difficult to implement. Nevertheless, this possibility should at least be

investigated experimentally.

4 Feasible direction methods

The main disadvantage of the simplex method when applied to dynamic or stochastic

models is that it changes only one nonbasic activity at a time. We have already observed

that periods in the dynamic model and realizations in the stochastic model exhibit

close similarities. This results in very long iteration paths of the simplex method with

58

some subsequences of iterations used to realize similar changes for many periods or

realizations. It would be much more convenient to perform these changes simultaneously.

The feasible direction methods (see Gabasov and Kirillova, 1977, Murty and Fathi,

1984) may help us to implement this idea (the simplex method is a feasible direction

method, too, but with particularly simple directions). The main difference between

these methods and the simplex method is that we change many nonbasic variables at a

time and allow XN to have values between their bounds at intermediate steps. We still

preserve the division of x into XB and XN and still keep the conditions (12) and (13).

However, steps 2, 3 and 4 of the simplex method are modified as follows.

Step !!a. Price out nonbasic columns aj of A by calculating

T
Zj = Cj - 71" aj (31)

and select a subset S of columns aj such that Zj < 0 for Xj = xjin, Zj > 0 for

Xj = xjGZ, Zj i- 0 for xjin < Xj < xjGZ, (a subset of prospective candidates).

Step Sa. Determine a direction dN of change of the nonbasic variables XN such that

djZj < 0

dj = 0

for j E S,

for j rt. s,

(32)

(33)

(in the simplex method dN has only one nonzero component). Determine the

direction of change of the basic variables by solving

(34)

where A. is a submatrix of N formed from the columns selected in Step !!a, and d.

is the nonzero subvector of dN •

Step .la. Determine from x'Bin, x'BGZ , XB , dB and x;'in, x;'GZ, X. and d. the variable

which as first achieves its bound, when x. moves in the direction d•.

At first we note that when one of the variables which change their values (a basic

from XB or a nonbasic from x.) will hit its bound, some nonbasic variables will be

out of their bounds. So, we should either accept the fact that nonbasics can have

arbitrary values in the course of calculation, or construct a basic solution from the

current one without increasing the objective value. The second idea has been analysed

in (Murty and Fathi, 1984), where a detailed auxiliary algorithm has been described to

pass to such a basic solution. This, however, involves many additional steps which may

considerably diminish the advantages of changing many nonbasics in a major step. The

radical solution of (Gabasov and Kirillova, 1977) seems to be more promising: we allow

nonbasics to have values between their bounds. Under this assumption the division

of x into basics and nonbasics is no longer determined uniquely by the algorithm. If

the previous basics are still between their bounds, we can maintain the division to

save on updating. When one of the basics hits its bound we can choose among x. the

variable to replace it. In general, as discussed in (Gabasov and Kirillova, 1977), we

59

should aim at constructing such a basis that allows for an efficient next iteration. This

may e.g. be accomplished by selecting a nonbasic which is possibly far away from its

bounds. However, there is a need for a more theoretically grounded approach, which

could perhaps be based on the analysis of the dual problem.

Since the algebra of the feasible direction method is close to that of the simplex

method, we can of course use here all the tricks developed for compact inversion of

basis matrices discussed in the previous section.

Leaving aside these technical points, let us now focus our attention on the special­

ization of the strategy of the feasible direction method to problems having dynamic or

stochastic structure. The crucial question here is the choice of the direction of change of

nonbasic variables. Although in theory the only limitations are the conditions (32), (33),

in practice we have to use more restrictive conditions to limit the number of columns

of N to be priced out. Again, as it was in the case of the primal simplex method, we

can take advantage of the structure of the constraint matrix and of the similarities of

the blocks. Thus, we can try to select to x, at a given iteration similar activities from

different periods/realizations and then make one major step of the method. The only

difference is that previously we performed sequences of similar steps bringing to the

basis corresponding activities from different blocks, while here we at first select a group

of related candidates and then change them simultaneously.

An important feature of the feasible direction approach is the freedom for specify­

ing the starting point. Indeed, once we abandoned the requirement that all nonbasic

variables are on their bounds, we are free to start the calculation from a solution which

need not be basic. This may help solving practical problems, where reasonable nonbasic

solutions can be specified by the user.

Summing up, the feasible direction approach appears to be a promising idea for large

scale problems having a dynamic or stochastic structure. It retains the algebraic ad­

vantages of the simplex method and provides more freedom for exploiting the structure

to shorten iteration paths. The potential of this approach is far from being exploited.

5 The regularized decomposition method

The idea of applying decomposition methods to linear programs of dynamic or stochastic

structure has been known since 25 years (Dantzig, 1963), but it is still attractive and

provides a framework for new ideas. We shall focus our attention here on the stochastic

problem (10), whose structure directly suggests the application of decomposition, and

we shall discuss the application of the new regularized decomposition method suggested

in (Ruszczynski, 1986). As for dynamic problems, the approaches suggested in the

literature so far are entirely different and still of rather theoretical importance (see,

e.g., Forrest and Tomlin, 1972, Fourer, 1982, Ho and Loute, 1981, Ho and Manne,

1974).

By formulating the dual to (10) we obtain a problem of primal angular structure, to

which the Dantzig- Wolfe decomposition method can be applied (Dantzig and Madansky,

1961). Since applying the Dantzig- Wolfe method to the dual is equivalent to applying the

Benders decomposition to the primal (Lasdon, 1970), we shall discuss our basic ideas in

60

primal terms. See (Ruszczynski, 1988) for the analysis of the regularized decomposition

method in dual form.

It can be readily seen that if x is fixed in (10) the minimization with respect to

Yb Y2,' .. ,YL can be carried out separately by solving for 1 = 1,2, ... ,L the second-stage

subproblems

minimize qTY

subject to

Wy = b, - A,x, (35)

Let us denote the optimal value of (35) by f,(x), and take the convention that

f,(x) = +00, if (35) is unsolvable. Then our problem (10) can be equivalently formulated

as follows:

where

minImIze F(x) == c
T

X + ~f=1 pdl(x)

subject to

l=I,2, ... ,L,

X, = {x: j,(x) < +00 }.

(36)

(37)

(38)

(39)

We introduce condition (38) to the problem formulation, because we are going to

use separate approximations for I, and for their domains X,.

Much is known about the functions I, and the sets X, (see, e.g., Wets, 1983). In

particular, each X, is a convex closed polyhedron and each I, is convex and piecewise

linear on X,. Although the pieces of II and the facets of j, are not given explicitly, for

each x we can determine a piece of II active at X, or a linear constraint defining X"
which is violated at x.

Indeed, let (35) be solvable at x = x and let 11" denote the vector of simplex multi­

pliers associated with the solution. Then it follows from the duality relations in linear

programming that for every x

(40)

(41)

and the equality holds for x = x. If (35) is not solvable for x = x, then phase I of

the simplex method or the dual simplex method will stop at a certain iteration, at

which it will not be possible to move a basic variable YBr towards its feasibility interval

[YB':n, YB:"'j. If 11" is the r-th row of the basis inverse (if the dual method is used and

YBr > YB: Z
), then

Similar formulae hold for the case of YBr < Y'B:n and for the phase I of the primal

simplex method.

61

We shall call the linear inequalities following from (40) objective cuts, and the in­

equalities following from (41) feasibility cuts. Each objective cut can be written as

a/ + g; x ~ fl(x)

with gl = - AT7f. Each feasibility cut can be expressed in a similar fashion:

0/ + g;x ~ 0

(42)

(43)

with g/ = -AT7f and an appropriately defined 01. Functions Ii and sets XI are polyhedral

and there can be only finite many (although usually quite a few) such cuts.

Next, if we have objective cuts (42) for all I = 1,2, ... , L we can construct an

aggregate cut
L

LPlf,(x) ~ a + gT x,
1=1

where (a,g) is computed from (az,gl) by means of averaging

(44)

(45)

(46)
L

g= LP,g"
1=1

We can now describe the version of the Benders decomposition method for stochastic

programs, known as L-shaped algorithm (Van Slyke and Wets, 1969).

Let (ai,gi), j E J, be the set of aggregate cuts (43) known so far, and let (oi,gi),
j E J, be the set of feasibility cuts generated previously. At each iteration of the method

we perform the following operations.

Step 1. Solve the master problem:

minimize F(x) == cT
X + v

subject to

(47)

ai + (gi)T x ~ v,

oi + (gi)Tx ~ 0,

j E J,

jE J,

(48)

(49)

(50)

Let x be the solution to (47)-(50).

Step ~ . Solve for I = 1,2, ... , L the subproblems (35) at x = X. If any of them is

infeasible, generate the corresponding feasibility cut (43), append it to (49) and

go to Step 1. If all subproblems are feasible, check whether Ef=1 P,fI(X) = v. If
this condition is satisfied, then stop; otherwise generate objective cuts (42), the

aggregate cut (43), append it to (48) and go to Step 1.

62

It is not difficult to observe that this method exactly corresponds to the Dantzig­

Wolfe method applied to the dual of (10): the cuts passed to the master (47)-(49) are

the proposals passed to the master in the Dantzig-Wolfe method.

The attractiveness of this approach follows from the fact that the solution procedure

closely reflects the structure of the original problem. It also allows for some parallelism

in subproblem solution. It has, however, inherent drawbacks common for all purely

linear cutting plane methods (cf., e.g., Topkis, 1982), and for the Dantzig-Wolfe method

(which is in fact their dual counterpart):

- the number of cuts (48), (49) increases in the course of calculation;

- the master problem is unstable: new cuts may imply rapid changes of x;

- convergence is slow.

These drawbacks led to the idea of the regularized decomposition method (Ruszczyn­

ski, 1986), which combines the Benders decomposition with modern stable techniques

of nonsmooth optimization (Kiwiel, 1985). The main idea of the method is to change

the master program, which generates successive points x k at which the subproblems are

solved. We aim at constructing such a master which would be able to use the informa­

tion gained in the past not only in the form of cuts, but also in the form of the best

point x found so far.

The method uses objective and feasibility cuts (42) and (43) as before. It does not,

however, average them to form aggregate cuts (43), but rather maintains separate sets

of cuts for each component f,:

. . T
at + (gf) x::; Mx), j E JI, 1=1,2, ... ,L.

Next, the master problem, although quite similar to (47)-(50), is augmented with a

quadratic penalty term for the distance of x to the best point x k found so far:

mmlmlze Fk(x) == lllx-XkI12+cTx+Ef=lPIV/

subject to

(51)

i (i)T . TQ, + g/ x::; v" J E JI,

iii + (gif x ::; 0,

1=1,2, ... ,L,

j E J,

(52)

(53)

(54)

The existence of this quadratic term stabilizes the master problem, i.e. makes it less

sensitive to the changes in the set of cuts (52)-(53). It also allows for skipping outdated

cuts and keeping the total size of the master limited.

The logic of the regularized decomposition method can be summarized as follows.

Step 1. Solve the regularized master (51)-(54), getting a trial point x and objective

estimates VI, 1 = 1,2, ... ,L.

Step 2. Solve for 1 = 1,2, ... , L the subproblems (35) at x = x.

63

a) If (35) is infeasible, then append the feasibility cut (43) to (53).

b) If (35) is feasible, but Mx) > V" then append the objective cut (42) to the

set of cuts J1 in (52).

Step 9. Change the regularizing point x k according to the following rules.

a) If there were infeasible subproblems (35), set Xk+l = x k
•

b) If F(x) = cT X+ Lf=l PIV" then set Xk+l = X.

c) If F(x) :S ,F(xk
) + (1 -,)(cTx + Lf=l PIVI) and exactly n + L constraints

were active in (51)-(54), then also set Xk+l = Xj otherwise set Xk+l = x k .

Step 4. Delete from the cuts (52)-(53) some of those which were not active at the last

solution x to the master, and go to Step 1.

It is easy to observe that the number of active cuts (Le. linearly independent con­

straints with positive Lagrange multipliers) never exceeds n+L, where n is the dimension

of x and L is the number of blocks (realizations). Since at Step 2 at most L new cuts

may enter (either a feasibility cut or an objective cut for each 1), the total number of

cuts need not exceed n + 2L. In fact, it is usually much smaller, if many bounds (54)
are active.

It has been proved in (Ruszczynski, 1986) (for the general case of minimization of

a sum of polyhedral functions) that the rules for changing the regularizing point x k

at Step 3 guarantee that the sequence x k is convergent in finitely many iterations to the

solution of our problem. This result obviously applies also to the particular problem we

are interested in.

It is easy to observe that the use of the quadratic term in (51) implies that the

regularizing point x k has a great influence on the solution of the master problem. In

particular, the starting point XO influences considerably the whole iteration path, which

is obviously not true for the linear decomposition method. This may significantly re­

duce the effort required for solving practical problems, where a good starting point is

available.

These important theoretical features have been obtained at the expense of replac­

ing a purely linear master problem (47)-(50) by the quadratic problem (51)-(54). To

make the regularized decomposition method really competitive, we need an efficient

computational technique for solving the regularized master.

Such a technique can be based on the active set strategy. It consists in selecting

a subset of the constraints (52)-(54) to be satisfied as equalities, solving the resulting

equality constrained subproblem, changing the active set, solving the new subproblem,

etc. The active set is increased, when a cut not included in it is violated, and it

is decreased, when a cut in the active set has a negative Lagrange multiplier in the

subproblem.

The equality constraints defined by an active set can be compactly written in the

form

a + GT x - E T
V = 0, (55)

where a is composed of the constant terms ai, oJ corresponding to the active cuts, G has

columns gi, gi, and E is a zenrone matrix whose j-th column is the unit vector el if the

64

j-th cut is an objective cut for II> and is a zero column otherwise. Active bounds (54)

can also be put into (55) with particularly simple columns of G (unit vectors). Thus each

equality constrained subproblem has the form: minimize (51) subject to (55). Denoting

by >. the vector of Lagrange multipliers corresponding to the active cuts (55), we can

formulate the following necessary and sufficient conditions of optimality:

E>. = P, (56)

ETv + GTG>' = GT(x
k

- c) + a, (57)

where P = (Ph P2, •. . , PL) is the vector of probabilities. The primal solution is defined

by

(58)

(59)

The number of active cuts does not exceed n + L and so does the size of the system

(56)-(57). However, the specific structure of E (unit or zero columns and full row rank)

makes it possible to further reduce the dimension by representing

E = (I,N),

G = (GB,GN),

a = (aB,aN),

>. = (>'B,>'N)'

After eliminating analytically v and >'B from (56)-(57) we obtain the equivalent

system

where

eN = GN -GBN,

aN = aN - NTaB'

YN = GBP·

The system (59) has dimension not exceeding the dimension of x, independently of

the number of blocks L, and can be solved by stable numerical techniques for least­

squares problems (see Daniel et aI., 1976, Ruszczynski, 1986). In the implementation

(Ruszczynski, 1985) additional advantages have been drawn from the activity of simple

bounds, which further reduces the dimension of (59).

Summing up, not only the regularized master (51)-(54) has a smaller number of

cuts than (47)-(50), but the effort for solving it is comparable with the effort for solv­

ing linear problems of the same size. These observations have been confirmed by the

initial experiments with the regularized decomposition method for large scale stochastic

programs, which we report in an extended form elsewhere (Ruszczynski, 1987). They

indicate that the method solves medium-size problems (200 by 500) much faster than

purely linear techniques, is capable of solving very large problems and the growth of

costs is sublinear when the number of realizations L increases.

65

Conclusions

We discussed some modern computational approaches to large scale linear programs

arising from dynamic and stochastic models. In our opinion, two directions deserve

more attention as promising tools for decision support systems:

- feasible direction methods with special compact inverse techniques borrowed from

implementations of the simplex method and with specialized direction-finding pro­

cedures;

- the regularized decomposition method with decentralized or parallel subproblem

solution.

The common feature of these methods is the freedom in specifying the starting point

and its strong influence on the cost of calculations, which is crucial for decision support

systems, where we usually solve repeatedly similar models. The methods are also more

flexible than simplex-based approaches and provide a potential for an interactive control

of calculations and for some parallelism. On the other hand, they both can use computer

resources at least so economically as the simplex methods and are capable of solving

large models.

References

Bisschop, J. and A. Meeraus (1980). Matrix augmentation and structure preservation

in linearly constrained control problems. Mathematical Programming, 18(1980),

pp. 7-15.

Daniel, J.W. et al. (1976). Reorthogonalization and stable algorithms for updating

the Gram-Schmidt QR factorization. Mathematics of Computation, 30(1976),

pp. 772-795.

Dantzig, G. (1963). Linear Programming and Extensions, Princeton.

Dantzig, G. and A. Madansky (1961). On the solution of two-stage linear programs

under uncertainty. In: Proceedings of the 4th Berkeley Symposium on Mathe­

matical Statistics and Probability, Vol. 1, University of California Press, Berkeley

1961, pp. 165-176.

Forrest, J.J.H. and J.A. Tomlin (1972). Updated triangular factors of the basis to

maintain sparsity in the product form simplex method. Mathematical Program­

ming, 2(1972), pp. 263-278.

Fourer, R. (1982). Solving staircase linear programs by the simplex method, 1: inver­

sion. Mathematical Programming, 23(1982), pp. 274-313.

Fourer, R. (1983). Solving staircase linear programs by the simplex method, 2: pricing.

Mathematical Programming, 25(1983), pp. 251-292.

66

Gabasov, R. and F.M. Kirillova (1977). Linear Programming Methods, Isdatelstvo

BGU, Minsk. (in Russian)

Gondzio, J. and A. Ruszczynski (1986). A package for solving dynamic linear programs,

Institute of Automatic Control, Warsaw University of Technology.

Gondzio, J. and A. Ruszczynski (1988). A sensitivity method for solving linear stochas­

tic control problems, this volume.

Ho, J. and E. Loute (1981). A set of staircase linear programming test problems.

Mathematical Programming, 20(1981), pp. 245-250.

Ho, J. and A. Manne (1974). Nested decomposition for dynamic models. Mathematical

Programming, 6(1974), pp. 121-140.

Kall, P. (1979). Computational methods for solving two-stage stochastic linear pro­

gramming problems. ZAMT, 30(1979), pp. 261-271.

Kall, P., K. Frauendorfer and A. Ruszczynski (1986). Approximation techniques in

stochastic programming. In Y. Ermoliev and R. Wets (eds): Numerical Methods

in Stochastic Programming, Springer Verlag, Berlin (to appear).

Kallio, M. and E. Porteus (1977). Triangular factorization and generalized upper

bounding techniques. Operations Research, 25(1977), pp. 89-99.

Kiwiel, K.C. (1985). Methods of Descent for Nondifferentiable Optimization, Springer

Verlag.

Lasdon, L.S. (1970). Optimization Theory for Large Systems, Macmillan, New York.

Marsten, R. (1981). The design of the XMP linear programming library. ACM Trans­

actions of Mathematical Software, 7(1981), pp. 481-497.

Murtagh, B. (1981). Advanced Linear Programming, McGraw-Hill.

Murtagh, B. and M. Saunders (1984). MINOS 5.0. User's guide. System Optimization

Laboratory, Stanford University.

Murty, K.G. and Y. Fathi (1984). A feasible direction method for linear programming.

Operations Research Letters, 3(1984), pp. 121-127.

Perold, A. and G. Dantzig (1979). A basis factorization method for block triangular

linear programs. In I. Duff and G. Stewart (eds): Sparse Matrix Proceedings,

SIAM, Philadelphia, pp. 283-313.

Propoi, A. and V. Krivonozhko (1978). The simplex method for dynamic linear pro­

grams, RR-78-14, IIASA.

Reid, J. (1982). A sparsity-exploiting variant of the Bartels-Golub decomposition for

linear programming bases. Mathematical Programming, 24(1982), pp. 55-69.

67

Ruszczynski, A. (1985). QDECOM: The regularized decomposition method. User's

manual. Institute of Operations Research, University Zurich.

Ruszczynski, A. (1986). A regularized decomposition method for minimizing a sum of

polyhedral functions. Mathematical Programming, 35(1986), pp. 309-333.

Ruszczynski, A. (1987). Regularized decomposition of stochastic programs: algorith­

mic techniques and numerical results, technical report, Institute of Automatic

Control, Warsaw University of Technology.

Ruszczynski, A. (1988). Regularized decomposition and augmented Lagrangian de­

composition for angular linear programming problems, this volume.

Strazicky, B. (1980). Some results concerning an algorithm for the discrete recourse

problem. In M. Dempster (ed.): Stochastic Programming, Academic Press, Lon­

don, pp. 263-274.

Toczylowski, E. (1984). A hierarchical representation of the inverse of sparse matrices.

SIAM J. Alg. Disc. Math. 5(1984), pp. 43-56.

Topkis, J .M. (1982). A cutting plane algorithm with linear and geometric rates of

convergence. JOTA, 36(1982), pp. 1-22.

Van Slyke, R. and R.J.-B. Wets (1969). L-shaped linear programs with applications to

optimal control and stochastic programming. SIAM J. on Applied Mathematics,

17(1969), pp. 638-663.

Wets, R.J .-B. (1983). Stochastic programming: solution techniques and approximation

schemes. In A. Bachem et al. (eds): Mathematical Programming: The State of

the Art, Springer Verlag, Berlin, pp. 507-603.

Wets, R.J.-B. (1986). Large scale linear programming techniques in stochastic pro­

gramming. In Y. Ermoliev and R. Wets (eds): Numerical Methods in Stochastic

Programming, Springer Verlag, Berlin, (to appear).

A Sensitivity Method for Solving Multistage

Stochastic Linear Programming Problems

Jacek Gondzio

Systems Research Institute, Polish Academy of Sciences, Warsaw,

Andrzej Ruszczynski

Institute of Automatic Control, Warsaw University of Technology.

Abstract

A version of the simplex method for solving stochastic linear control problems is

presented. The method takes advantage of the structure of the problem to achieve

utmost memory economy in both data representation and basis inverse manage­

ment.

1 Introduction

The main purpose of this paper is to present a highly specialized version of the simplex

method for solving linear stochastic control problems defined as follows.

Let n be a finite probability space, and let

t=I,2, ... ,T (1)

be the state equation describing the evolution of a linear dynamic system with state

variables xw(t), control variables uw(t) and disturbances zw(t). The problem is to find

such a policy uw(t) , t = 1,2, ... , T, wEn, that the following conditions are satisfied:

a) for each t the random variable u(t) is measurable with respect to {z(1) , ... , z(t) }
(nonanticipativity),

b) ~(t) ~ uw(t) ~ u(t), t = 1,2, ... ,T, wEn,

c) !(t) ~ xw(t) ~ x(t), t = 1,2, ... ,T, wEn,

(2)

(3)

69

d) the linear functional

is minimized.

T

L: Pw L: [q; (t) Xw(t) + q~ (t) Uw(t)]
wEn 1=1

(4)

Although in principle (1)-(4) is a linear programming problem, its size may be too

large for standard LP approaches (see, e.g., Murtagh, 1981; Murtagh and Saunders,

1984; Reid, 1982). For this reason a variety of specialized methods have been suggested

for some important special cases of (1)-(4) (d. Fourer, 1982; Fourer, 1983; Perold and

Dantzig, 1979; Wets, 1986 and the references therein).

Our aim is to go a step further in this direction to exploit all special features of (1)­

(4) within the classical simplex method to achieve utmost memory economy allowing

for solution of very large problems on microcomputers.

When considering the simplex method for (1)-(4) three groups of problems arise:

a) representation of the problem constraint matrix;

b) representation of the inverse of the basis matrix and its updating;

c) pricing strategies.

Clearly, crucial for the memory requirements are issues a) and b), so we shall focus

on them our attention. We can mention here that pricing strategies were discussed in

detail in Fourer (1983), Gondzio and Ruszczynski (1986), Gondzio (1988b) and in the

previous paper.

2 The tree formulation

It is convenient to reformulate multistage stochastic programs in a tree-like form (Rock­

afellar and Wets, 1987). With the set of disturbance realizations (scenarios) zw(t) , t =
1,2, ... ,T we can associate a tree T with node set J defined as follows. There is one root

node io at level o. At level 1 there are as many nodes i E J1 , as many different realiza­

tions of zw(l) may occur. They all have io as their father (predecessor). Generally, each

node i E J, at level t corresponds to a different realization of {z(l) , z(2) , ... , z(t) }.
Nodes j E J,+1 are joined with i E J, if the realization corresponding to j is a continu­

ation of the realization associated with i.

Each node at level t corresponds to the information available at time t. The require­

ment of nonanticipativity of controls (which implies nonanticipativity of state trajecto­

ries) makes it possible to associate decisions with nodes and reformulate our problem

as follows:

find u(i) and x(i) , i E J, so as to minimize

L:[q;(i)x(i) + q~(i)u(i)]
iEJ

subject to the constraints

(5)

70

x(i) = Gx(J(i)) + Ku(i) + z(i) , i E J , (6)

~(i)~x(i)~x(i), iEJ, (7)

~(i)~u(i)~u(i), iEJ. (8)

Here f(i) denotes the father of node i, x(io) = 0, and ~ (i) , x(i) , ~(i) , u(i) , q.,(i) , qu (i)
follow directly from (2)-(4).

Thus the problem is fully defined by the structure of T, vectors z(i), ~ (i) , x(i), ~ (i) ,

u(i), q.,(i), qu(i) associated with nodes of T, and two matrices: G and K. The storage

requirements necessary to represent the problem in this form are very modest.

From the theoretical point of view, we can consider (5)-(8) as a linear programming

problem in standard form

minImIze c;x + c~ u , (9)

.subject to Box + Nou = b , (10)

~ ~ x ~ X , (11)

~ ~ u ~ U , (12)

where x = x(J), u = u(J), Box = x(J) - Gx(f(J)), Nou = Ku(J), b = z(J), ~ = ~(J),

x = x(J), ~ = ~(J), u = u(J).
The constraint matrix of (10),

(13)

may be of enormous size, but has a very special structure, with multiple occurrence of

matrices G, K and I. It is clear that any column of A can be easily reconstructed from

(5)-(8) and a very efficient technique of double addressing to columns of G and K can

be used to avoid excessive storage requirements.

3 The fundamental basis

Inverting the basis matrix is the crucial computational problem in any implementation

of the simplex method. The matrix (13) is very sparse, so each basis is very sparse,

too, and a good factorization technique (ef., e.g., Murtagh and Saunders, 1984; Reid,

1982) can handle stochastic dynamic problems of remarkable size. However, there is one

important feature which is not used by general basis management packages: the block

tree structure and the multiple occurrence of columns of G, K and I in the basis. We

have to take advantage of that if we want to go beyond the size admitted by standard

factorization methods.

There exists a special basis in (9)-(12) for which inversion is trivial: the matrix Bo .
Indeed, suppose that all state variables x(i), i E J, are basic variables and the controls

u(i), i E J are nonbasic variables. Then it is trivial to observe that the equation

Bod = a, (14)

71

can be solved by direct simulation of the state equations (6) starting at the root and

ending at leaves:

d(i) = Gd(J(i)) + a(i) , i E J ,

where d(io) = O.

Similarly, the transpose system

TB T
1r 0 = c", ,

(15)

(16)

can be solved by simulating in the opposite direction (from the leaves to the root) the

adjoint equations

1rT (i) = L 1rT (j) G + c;(i) ,
;EN(i)

where N(i) is the set of sons of node i,

N(i) = {j : i = f(j) } .

i E J , (17)

(18)

To see the latter formula, let us consider the scalar product 1rT B od for any d. Setting

a = Bod, from (15) we get

1rT Bod =L1rT (i)a(i) =
iEJ

= L 1rT (i) [d(i) - Gd(f(i))] =
iEJ

=L 1rT (i)d(i) - L 1rT (i) Gd(J(i)) =
iEJ iEJ

=L 1rT (i)d(i) - L L 1rT (j)Gd(i) =
iEJ iEJ ;EN(i)

=L[1rT (i)- L 1rT (j)G]d(i).
;EJ ;EN(i)

Since d was arbitrary, the above scalar product is equal to c;d if and only if (17) is

satisfied.

4 Modified bases

In the previous section we saw that for a basis Bo containing only state variables,

equations with Bo and B'l can be solved by substitution. In general, however, we shall

have to deal with bases having columns corresponding to both types of variables, states

and controls. Each such basis matrix can be expressed in the form

where B 01 is a certain submatrix of B o, and U is a submatrix of No. The equation

Bd=a,

(19)

(20)

72

can be rewritten as

B 01 dzl + UduB = a ,

with d = (dzl , duB). Setting dz = (dzl , dz2) we can reformulate (21) as follows:

find duB such that the solution dz to

Bodz = a - UduB ,

has dZ2 = 0 .

Defining a 0-1 matrix V such that dZ2 = V dz , we see that

so

with

S = VBo1U .

This gives us the following sequence of equations producing the solution to (21):

SduB = vdz ,

Bodz = a - UduB ,

(21)

(22)

(23)

(24)

(25)

(26)

Thus, we have to solve two equations with Bo , which can be carried out by simula­

tion, and one equation with the sensitivity matrix S, whose dimension is equal to the

number of new columns in B.

Let us now pass on to the dual equation

Let c = (Czl, CUB). Then
TB T

~ 01 = Cz1 ,

TU T
~ = CuB'

Define
T TB Tv = ~ 02 - Cz2 •

Then the system (28)-(29) can be reformulated as follows:

find v such that the solution ~ to

~ T Bo = c; + vTV

satisfies (29).

(27)

(28)

(29)

(30)

73

7fTBo = c; , (31)

vT S = C~B - 7fT
U , (32)

7fTBo = C; + VTV . (33)

Consequently, (27) has been replaced by two equations with Bl and an equation

with the sensitivity matrix (23). In fact (31) does not depend on B at all and need be

solved only once.

Summing up, equations with modified bases and their transposes can be solved

by solving equations with the fundamental basis and with the sensitivity matrix S.

Equations with the fundamental basis resolve themselves to simple substitution, so the

main difficulty constitute the equations (25) and (32).

Redefinition of the fundamental basis is needed to preserve S from growing to a

large dimension. Problem's structure implies that every basis can be transformed by

row and column permutations to a nearly triangular form with a small number of spikes

(see: Gondzio, 1988a for more detail). After replacing the spikes by the appropriate

unit columns we obtain new fundamental basis.

Simple calculations lead to the following sequence of equations producing the solution

to (21):

5 The sensitivity matrix

Let us look closer at the matrix S defined by (23) and used in (25) and (32). It's

elements are of form
TB- 1

Sij = Vi 0 Uj , (34)

where Vi = (0, ... ,0, 1 , 0, ... 0) is the i-th row of the matrix V and Uj is the j-th

column of U, i.e. a certain column of No appearing in the basis. The vector Vi has a

one at the p-th position if the p-th column of Bo does not appear in B. Consequently,

Sit is the sensitivity of the state variable corresponding to the p-th column of Bo with

respect to the control variable corresponding to the j-th column of U. Thus, S is a

square nonsingular submatrix of the full sensitivity matrix

(35)

but we assume that the size of S is much smaller than the size of Q (which is enormous)

and we shall rather compute elements of S only when necessary, instead of calculating

Q in advance. That S is nonsingular follows directly from the nonsingularity of the

corresponding basis B. Indeed, each solution to (24)-(26) satisfies (20). With a singular

S we would have a non-unique dUB from (25), so (20) would have many solutions, a

contradiction.

We can easily find the general form of entries of S using the tree model (6) and their

interpretation as sensitivities. Let the i-th row of S correspond to Xt(n) and the j-th

column of S correspond to u/(m)' where nand m are some nodes of T. If m is on the

path from n to the root, then

(36)

74

where T is the number of stages between nand m. If the path from n to the root does

not include m, we have Si; = O.

Another important feature of our approach are specific transformations of 8 in

successive iterations of the simplex method. The following cases may occur.

Case 1: a column a; from No replaces in B the column ai from B o.

We have

U' = [U a;] ,

V' ~ [;] ,

,_[8 s]8 - ,
rT

(J

with

(37)

S = VBola;,

rT = e;Bo1U ,

TB- I
(J = ei a a; .

The vector Bola; has already been computed to determine the leaving column (see

(24)) so the main cost of this update is the pricing 1fTU with 1fT = e[B o
1 to find r.

Case 2: a column a; from No replaces in B the column ai from No.

Assume that ai was on the p-th position in U. We then have

U' = U + (a; - ai) e; ,

V'=V,

8' = 8 + de; ,
where d = V B O

I
(a; - ai), Le. the p-th column of 8 is changed to

Case 9: a column a; of B o replaces in B the column ai from B o.

Similarly to Case 2 we have

U'= U,

V' = V + e,,(ei - e;)T ,

8' = 8 + e"r
T

,

where p is the index of the row corresponding to ai, and

Le. a row of 8 is exchanged.

(38)

(39)

I

I

II

I'i,[

75

Case 4: a column ai of B o replaces in B a column a; from No.

Let p be the row number in V corresponding to ai and let q be the column index in

U corresponding to a;. It is easy to observe that V'is then equal to V with the p-th

row deleted, U' equals U without the q-th column, and 8' can be obtained by deleting

the p-th row and the q-th column of 8.

6 LU factorization of the sensitivity matrix

The necessity to solve equations (25) and (32) at each iteration of the simplex method

creates a need for a factorization of the sensitivity matrix 8. There are two issues that

should be taken into account in this respect: numerical stability and the possibility of

updating the factors when 8 is modified.

We suggest to use a dense LV factorization

8 = PLRQ, (40)

where P and Q are row and column permutations, L is lower triangular with ones on the

diagonal and R is upper triangular. That Land R should be treated as dense matrices

is obvious: 8 is a computed matrix with upper block triangular structure. However,

the fact that 8 is a computed matrix with potential ill-conditioning suggests rather

the use of the highly stable QR factorization approach (see, e.g., Daniel et al., 1976).

This particular choice is suggested in Bisschop and Meeraus (1977). LV factorization

is clearly more economical, but we need here carefully designed updating procedures to

avoid excessive propagation of round-off errors. Two efficient methods of LV factoriza­

tion of Bartels and Golub (1969) and of Fletcher and Matthews (1984) are proved to

be stable enough for practical applications, although counter examples for their good

behaviour are given in Powell (1987). Their highly specialized implementations (see:

Reid, 1982 and Fletcher and Matthews, 1984, respectively) do not offer the possibility

of updating the factorization in all four cases analysed in section 5. Such possibility

exists in a method described in Gill et al. (1987), where sparse LV decomposition is

analysed. However, for the reason stated before we need dense LV factorization.

Let us discuss in more detail the method of updating the factors of (40) for the

second modification considered in section 5.

Exchange of a column in U implies exchange of a column in 8, as in (38). From (40)

we see that

S = PLRQ,

where R differs from R by one column

c = L-1pTd.

(41)

(42)

By changing Q in such a way that c is moved in R to the position equal to its

length q, we can make R upper Hessenberg with subdiagonal appearing in columns

p, p + 1, ... , q. Our aim is to annihilate them. Generally, this can be done by certain

permutations P and Qand a nonsingular operator M such that

L = PLM- 1 (43)

76

is lower triangular with l's on the diagonal, and

R=MRQ (44)

is upper triangular. Indeed, from (41), (43) and (44) we then get

§ = PpTLifif- 1RQTQ = PLRQ

with P = ppT and Q = QTQ.
There are many operators satisfying (43) and (44). To save on calculations and

make the modifications easier to implement we suggest to compose P, Qand if from

sequences of elementary transformations Pi, Qi and Mi annihilating successive s u b d ~
agonals of R. It is then sufficient to consider for each i 2 x 2 submatrices of Land R
formed from elements having row and column indices equal i and i + 1:

L;~[: ,]

14~[: :]
Our aim is now to choose P, Q and M such that

- - -1 [1]Pi LiMi =
Z' 1

[
a' dC"]Mi~Qi =

(45)

(46)

Let us at first consider the case with i + 1 ~ q. Then there is a subdiagonal element

in the (i + 1)-st column of R (below d), so we must have Qi = I. Two possibilities

remain now, depending on the use of row permutation. In the simplest case Pi = I we

obtain from (45)-(46)

The second possibility arises for

M; ~ [_~/. ,]

M;-' ~ [b;. ,]

(47)

(48)

(49)

77

which implies an additional exchange of rows of L. From (45)-(46) we then obtain

_ [z 1]
M; = b/J.L -a/J.L

- -1 _ [a/J.L 1]M; -
b/J.L -z

(50)

(51)

with J.L = az + b.
So, we have two possibilities to choose among: the simple elimination operators (47)­

(48) and the more sophisticated (49)-(51). We choose the one for which the condition

index of M;, defined as the ratio of the eigenvalues of MtM;, is minimum: a simple

test can be developed to determine the smaller index without calculating it. We can

mention here that this particular update of dense LU factors was analysed for different

purposes by Fletcher and Matthews (1984) with a simple rule of choosing the operator

having smaller entries.

When i = q we have four possibilities, because the exchange of the columns of R

becomes admissible. Again, it is a matter of simple transformations to determine the

form of M; in each case and to choose the one that has the minimum condition index.

The remaining cases discussed in section 5 can be analysed similarly (see: Gondzio,

1988a). Case 1 is trivial: a new row is added to L and a new column is added to R.
Case 3 is almost symmetric to Case 2 analysed above and Case 4 is a combination of

Cases 2 and 3.

7 Conclusions

We have presented here main ideas of a new linear programming method that is a

specialization of the simplex method for multistage stochastic problems. The method

requires storage only for the LU factorization of the sensitivity matrix because the fun­

damental basis which is a submatrix of the constraint matrix need no additional memory

(only pointers to the appropriate columns have to be stored). This gives substantial

savings in comparison with any classical or specialized versions of the simplex method

(see: Reid, 1982; Gill et al., 1987; Fourer, 1982; Bisschop and Meeraus, 1980). The

method is then especially attractive for implementing it on a small memory computer.

A numerically stable procedure of updating LU decomposition of the sensitivity

matrix assures good accuracy of the whole method.

8 References

Bartels, R. H. and Golub, G. H. (1969). The simplex method of linear programming

using LU decomposition. Communication on ACM 12, pp. 266-268.

Bisschop, J. and Meeraus, A. (1977). Matrix augmentation and the partitioning in the

updating of the basis inverse. Mathematical Programming 13, pp. 241-254.

78

Bisschop, J. and Meeraus, A. (1980). Matrix augmentation and structure preservation

in linearly constrained control problems. Mathematical Programming 18, pp. 7-15.

Daniel, J. W., Gragg, W. B., Kaufman, L. and Stewart, G. W. (1976). Reorthogonal­

ization and stable algorithms for updating the Gram-Schmidt QR factorization.

Mathematics of Computation 30, pp. 772-795.

Fletcher, R. and Matthews, F. P. J. (1984). Stable modification of explicit LU factors

for simplex updates. Mathematical Programming 30, pp. 267-284.

Fourer, R. (1982). Solving staircase linear programs by the simplex method, 1: inver­

sion. Mathematical Programming 23, pp. 274-313.

Fourer, R. (1983). Solving staircase linear programs by the simplex method, 2: pricing.

Mathematical Programming 25, pp. 251-292.

Gill, P. E., Murray, W., Saunders, M. A. and Wright, M. H. (1987). Maintaining LU

factors of a general sparse matrix. Linear Algebra and its Applications 88/89,

pp. 239-270.

Gondzio, J. (1988a). Stable variant of the simplex method for solving supersparse lin­

ear programs. 3rd International Symposium on Systems Analysis and Simulation,

Berlin 1988.

Gondzio, J. (1988b). Simplex modifications exploiting special features of dynamic and

stochastic dynamic linear programming problems. Control and Cybernetics, 1988

(to appear).

Gondzio, J. and Ruszczynski, A. (1986). A package for solving dynamic linear pro­

grams. Institute of Automatic Control, Warsaw University of Technology, 1986

(in Polish).

Murtagh, B. (1981). Advanced Linear Programming. McGraw-Hill, 1981.

Murtagh, B. and Saunders, M. (1983). MINOS 5.0. User's guide. System Optimization

Laboratory, Stanford University, 1983.

Powell, M. J. D. (1987). An error growth in the Bartels-Golub and Fletcher-Matthews

algorithms for updating matrix factorizations. Linear Algebra and its Applications

88/89, pp. 597-621.

Perold, A. F. and Dantzig, G. B. (1979). A basis factorization method for block

triangular linear programs. in: Duff, I. S. and Stewart G. W. eds., Sparse Matrix

Proceedings 1978, SIAM, Philadelphia, pp. 283-312.

Reid, J. (1982). A sparsity-exploiting variant of the Bartels-Golub decomposition for

linear programming bases. Mathematical Programming 24, pp. 55-69.

Rockafellar, R. T. and Wets, R. J.-B. (1987). Scenarios and policy aggregation in

optimization under uncertainty. WP-87-119, IIASA, Laxenburg 1987.

79

Wets, R. J.-B. (1986). Large scale linear programming techniques in stochastic pro­

gramming. in: Ermoliev, Y. and Wets R. J.-B. (eds), Numerical Methods in

Stochastic Programming, Springer-Verlag, Berlin 1986.

Regularized Decomposition

and Augmented Lagrangian Decomposition

for Angular Linear Programming Problems

Andrzej Ruszczynski

Institute of Automatic Control, Warsaw University of Technology.

Abstract

We present two new decomposition methods for large linear programming prob­

lems of angular structure. The first one is a special version of the regularized decom­

position method and the second one is a decomposable version of the augmented

Lagrangian method. For both methods we prove finite termination theorems and

establish their duality.

1 Introduction

The main purpose of this paper is to present and compare two decomposition methods

for the problem

mlmmlze CiXl+ cfX2+ ... + c~xn

8ubjectto

AlXl+ A2X2 ... + Anxn = b,

DlXl = dl ,
(1)

D 2X2 = d2 ,

Dnxn = dn ,

Xl ~ 0, X2 ~ 0, ... , Xn ~ O.

First of them is a special version of the regularized decomposition method of Ruszczyn­

ski (1986) applied to the dual of (1). Its main feature, as compared with the decom­

position principle of (Dantzig and Wolfe, 1960) is that it uses quadratic regularizing

terms in the master problem. This stabilizes the master and eliminates difficulties with

81

starting the method while retaining the finite convergence property of the purely linear

approach.

In section 3 we present a new decomposable version of the augmented Lagrange

function method. While it is well known that the augmented Lagrangian method is

finitely convergent for linear problems (cf. Bertsekas, 1982; Poljak and Trietiakov, 1972),

its application to decomposable problems of form (1) encountered difficulties due to the

existence of non-separable quadratic terms in the augmented Lagrange function (cr.
Stoilow, 1977; Tatjewski, 1986; Watanabe et al. 1978). We overcome these difficulties

for (1), develop a fully decomposable method based on augmented Lagrangians and

prove its finite convergence.

In section 4 we compare both methods and establish their duality. This result is

closely related to the connections between augmented Lagrange function methods and

proximal point methods discovered by Rockafellar (1976). The duality suggests new

modifications and improvements in both methods.

2 Regularized decomposition of the dual problem

Let us formulate the dual of (1):

maxImIze bTu +d[7I"1 +dr7l"2 + ... + d ~ 7 I " n

subiect to

A[u + D[7I"1 ::; Cl ,

Aru +D'i7l"2 ::; C2 ,

Defining the functions

ji(U) = max{df7l"i I Df7l"i::; Ci - Afu} =

= min { (c - Afu)Txi I DiXi = di , Xi 2: o}

we can rewrite (2) as

(2)

(3)

maxtmtze

n

F(u) == bTu + L/;(u) .
i=1

(4)

Since ji(U) are concave and piecewise linear, (4) is a problem of maximizing a sum

of polyhedral functions, the form to which the regularized decomposition method of

Ruszczynski (1986) can be applied directly. To simplify our considerations we shall

assume throughout this paper that the sets

Xi = {Xi : Dixi = d;, Xi 2: o}, i = 1, 2, ... , n . (5)

82

are nonempty and bounded, which implies that Ii (u) are finite for all u.
The main idea of the regularized decomposition method is to solve at each iteration

the regularized master problem

maxzmzze

subject to

(6)

Vi :S (Xii - glu, j E Ji , i = 1,2, ... ,n . (7)

Here ak is a certain regularizing point, and ((Xii, gii) describe so-called obJ'ective

cuts for /;(u) :

/;(u) :S (Xii - glu for all u .

These cuts are collected at some previous trial points u i , j < k, so that

. . T

-gii E 8/i(u') , (Xii = li(u') + giiui .

It is not difficult to see that for Ii defined by (3) relations (8) are satisfied by

gii = AiXii ,

_ T
(Xii - ci xii'

(8)

(9)

(10)

where xii is the solution of the linear programming problem in (3) at ui .

The logic of the regularized decomposition method for (2) can be now summarized

as follows.

Algorithm 1.

1. Solve the master (6)-(7) at ak getting a trial point uk and objective estimates

vt, i = 1,2, ... , n, and calculate Fk = bT uk + ~?=l vt. If Fk = F(a k) then stop

(optimal solution found); otherwise continue.

2. Delete from (7) some cuts inactive at (uk, vk) so that no more than n + m

members remain.

3. For i = 1,2, ... , n calculate Ii (uk) finding a vertex Xik of Xi which solves the

problem in (3). If Ii (Uk) < vt then append the cut defined by (9)-(10) to (7).

4. If F(uk) = Fk or F(uk) ~ _yi'k + (1-1)F(ak) and exactly m + n cuts were active

at (Uk, vk) then set aHI = uk (serious step); otherwise set aHl = ak (null step).

5. Increase k by one and go to 1.

By active cuts we mean here linearly independent cuts having positive Lagrange

multipliers at the solution to (6)-(7),
The method can be started from any aD with the cuts (7) defined by (9)-(10) at the

solutions X;o to (3) with u = aD. This is a significant difference from the Dantzig-Wolfe

83

method, where finding the first multiplier vector may be difficult, and is due to the fact

that the regularized decomposition method goes through nonbasic points, in general.

Nevertheless, the method is still finitely convergent.

Theorem 1. Assume that the sets Xi, i = 1,2, ... , n, are nonempty and bounded

and that (1) has a feasible solution. Then Algorithm 1 after finitely many iterations

stops at a point uk = uk which solves (2). The corresponding optimal solution x k to (1)
is then defined by

x ~ = L >'~iXii' i = 1, 2, ... ,n ,
iEJ;

(11)

where >'~i ' j E J i , are the values of Lagrange multipliers at the solution to (6)-(7), and

xii, j E J i , are the vertices of Xi defining the final active cuts. The optimal objective

value satisfies the relation
n n

L c; X~ = b
T

uk +L v; .
i=1 i=1

(12)

Proof. Since all the sets Xi given by (5) are nonempty and bounded and the con­

straints of (1) are consistent, both problems (1) and (2) have optimal solutions. Then (4)

is bounded from above and finite convergence of the regularized decomposition method

follows directly from the theory of Ruszczynski (1986). It remains to prove (11). Let

J i+ = {j E J i : >'~i > O}. Since uk = uk, from the optimality conditions for (6)-(7)
we get

n

b - L L >';igii = 0 ,
i=1 i EJ;+

L >'~i = 1, i = 1,2, ... , n ,

iEJt

,k 0 . J+ .
""ii ~ ,J E i , 1= 1,2, ... , n ,

and

fi(U
k

) = v; = 0ii - gluk
, j E J i+ .

Using (9), (10) and (11) we can rewrite (13) as

n

LAiX~ = b.
i=1

(13)

(14)

(15)

(16)

(17)

By (14)-(15), x~ E Xi. This combined with (17) implies that x k = (x~ , x~ , ... , x~)

satisfies all constraints of (1).

Next, from (9), (10) and (16) we get

84

Using (11) and (17) we obtain the following expression for the optimal value of the

dual problem

n

F(uk) = bTuk+ Lfi(Uk
)

i=1
n

bT
U

k+ L L A~; (cTXi; - (ukf Aixi;)
i=1 jot

n n

= bTuk+ L(cT - (ukf Ai) X ~ = LcT X~ •

i=1 i=1

Consequently, the objective value in (1) at x k is equal to the optimal value of the

dual problem, which combined with the feasibility of x k implies its optimality. The

proof is complete.

3 The augmented Lagrangian decomposition

Let us now return to (1) and consider for it the augmented Lagrange function

The augmented Lagrangian method (cf. e.g. Bertsekas, 1982) applied to (1) can be

now stated as follows.

Algorithm 2.

1. For fixed multipliers uk solve the problem

(19)

subject to

XiEXi={Xi: DiXi=di, xi2:0}, i=1,2, ... ,n. (20)

Let x k = (x~, x~, ... , x~) be the solution to (19)-(20).

2. If
n

LAix~ = b
i=1

then stop (optimal solution found); otherwise set

n

U
H1 = uk + b - L Aix~ ,

i=1

increase k by one and go to 1.

(21)

(22)

85

It is well known that the above method is finitely convergent in our case, because

(1) is a linear program (see Bertsekas, 1982; Poljak and Trietiakov, 1972). On the other

hand, it is sometimes asserted that the augmented Lagrangian method is not suitable

for decomposable problems of form (1), because (18) is not separable and thus (19)­

(20) cannot be split into independent problems. Various attempts have been made to

approximate (18) by a separable function and update the approximation in the course

of calculation, but the resulting algorithms are rather involved and no longer finitely

convergent for linear problems (cf. e.g. Stoilow, 1977; Tatjewski, 1986; Watanabe et

al. 1978; Rockafellar and Wets, 1987). We shall show that these difficulties can be

overcome in the linear case and a finitely convergent decomposition method can be

developed on the basis of Algorithm 2. The key to this result is that we are going to

decompose the method, not the function.

Since Xi is a bounded convex polyhedron, proceeding as in the development of the

Dantzig-Wolfe method (Dantzig and Wolfe, 1960) we can express each Xi E Xi as

with

Xi = L AijXij, i = 1,2, ... , n

JEJ:

L Aij = 1, i = 1,2, ... ,n,
jEJ:

(23)

(24)

Aij ~ 0, j E J;*, i = 1,2, ... ,n, (25)

where Xij , j E J;* , are all vertices of Xi • With this notation one can rewrite (18) as

n n

LaP, u) = L L cr.ijAij + u
T

(b - L L Aijgij) +
i=1 jEJ: i=1 JEJ:

1 n

+-llb-LL AijgijI12,

2 °-1 °EJ*t_, i

where
_ T

cr.ij - Ci Xij ,

gij = AiXij

Problem (19)-(20) can be now equivalently stated as follows

mtmmize La (A, Uk)

subject to (24) - (25).

(26)

(27)

(28)

(29)

One could also obtain (29) by applying the augmented Lagrange function method

to the full master problem in the Dantzig-Wolfe method, resulting from substituting

(23) in (1).

The crucial observation concerning (29) is the following.

Lemma 1. Problem reg} has a solution Ak with at most n + m positive components.

86

Proof. Problem (29) has always a solution X, since (24)-(25) define a compact set.

Let
n

b= L L Xijgij .

i=1 jO;

Consider the linear program

n

mInImIze L L Ctij).,i;

i=1 jO;

subject to
n

L L).,ijgij = b.
i=1 jO;

L).,ij = 1,).,ij 2: 0, j E Jt, i = 1,2, ... ,n .
jO;

(30)

(31)

(32)

Since (31) implies that the second and the third term in (26) are constant, each

solution to (30)-(32) solves (29). Problem (30)-(32) is linear and thus has an optimal

basic solution).,k , which may have no more than n + m positive components. The proof

is complete.

Corollary. With no loss 0/ generality we can assume that the columns (9:{) corre­

sponding to) . , ~ ; > 0, where ei is the i -th unit vector in Rn, are linearly independent.

Lemma 1 suggests replacing (29) by a restricted master

n n

mmlmlze L L Ctij).,ij + u
T

(b - L L).,ijgij) +
~l~~ ~l~~

subject to

L).,ij = 1, i = 1, 2, ... ,n ,
jEJ;

).,ij 2: 0, j E Ji , i = 1,2, ... ,n ,

for some subsets Ji ~ Ji, i = 1,2, ... , n .

The relation between (29) and (33)-(35) is as follows.

Lemma 2. A solution).,k 0/ the restricted master is a solution 0/ (eY) if/or

n

uk = uk + b - L L).,~jgij
i=1 jEJ;

(33)

(34)

(35)

(36)

87

and

one has

/;(u le)2vt, i=I,2, ... ,n,

where v:, i = 1,2, ... ,n, are Lagrange multipliers corresponding to (94).

(37)

(38)

Proof. The necessary and sufficient conditions of optimality for (29) are of the form:

there exist Lagrange multipliers Vi , i = 1,2, ... ,n, such that

n

(X" - (u le + b - " " >.~.g")Tg.. > v· for all J' E J."!' ,
'J L.J L.J 'J'J 'J - •

i=1 jEJ;

n

(Xij - (ule + b - L L >'~jgij f gij = Vi if >'ij > 0 ,
i=1 jEJ;

(39)

(40)

and (24)-(25) hold.

We shall prove that >.Ie and vie satisfy these conditions. Since >':j = 0 for j ~ Ji by

(34)-(35), condition (40) follows from optimality conditions for (33)-(35). Next, with a

view to (36), (39) is equivalent to

and the left side of the above inequality, owing to (27)-(28), can be expressed in form

(37). The proof is complete.

The next question that should be clarified is the way of updating the sets Ji , if we

fail to satisfy (38). With a view to Lemmas 1 and 2, we can suggest the following rules:

(i) delete from Ji all indices j for which >':j = 0;

(ii) add to the restricted master the columns

gile = Aixile ,

for these i, for which (38) is violated, Le. for which

(AT Ie)T Ie
Ci - i U Xile < vi •

(41)

(42)

Lemma 3. If the sets J i in (99)-(95) are updated according to the rules (i) and

(ii), then after finitely many iterations we shall find an optimal solution to (29).

Proof. The minimum value of (33)-(35) does not change, when columns correspond­

ing to >':j = 0 are deleted. If the algorithm does not stop, then for at least one i, a new

88

column is added by rule (ii). We shall show that the minimum value of (33)-(35) must

decrease in this case. Indeed, denoting by J,+ = {i E J, : >'~i > o} we have

a (II: -II:) Til:· +a' .. La >. , u = a'i - g'i u = v" J E J, ,
1\.,

a L (' II: -II:) T II:a>',11: a 1\ , U = a,II: - g,II:U < V, •

Let us consider the direction d;, with components d;,i = ->'~i ' i E J,+ , d;,II: = 1. It is

a feasible direction by (34) and the definition of J,+ . The directional derivative of La

in d;, is negative, which proves the possibility of decreasing the value of (33) below the

previous minimum. Since the number of possible sets J, ~ J: is finite and the optimal

value of the restricted master decreases, only finitely many exchanges in J; are possible,

which proves the result.

Using these ideas at Step 1 of Algorithm 2 we finally obtain the following decompo­

sition method based on augmented Lagrangians.

Algorithm 9.

1. Solve the restricted master (33)-(35) at all:, getting a solution >.11: with at most

n + m positive components and Lagrange multipliers vII: corresponding to (34).

Calculate ull: by (36).

2. Delete from J; indices corresponding to > ' ~ i = O.

3. For i = 1,2, ... , n solve (37) finding a vertex X,II: of X,. If /; (ull:) < vf, then

append the column defined by (41)-(42) to (33)-(35).

4. If /;(ull:) ~ vf for i = 1,2, ... , n (minimum of (29) found) and ull: = all: then stop;

else if /;(ull:) ~ vf for i = 1,2, ... ,n but ull: =1= all: then set ak+1 = ull: (serious step);

otherwise set ak+1 = all: (null step).

5. Increase k by one and go to 1.

Our earlier observations can be summarized as follows.

Theorem 2. After finitely many iterations Algorithm 2 stops at Step 4 at >.11: , vII:

and ull: such that the convex combinations

X ~ = L > ' ~ i x ' i ' i=I,2, ... ,n
iEJ;

form an optimal solution to (I), ull: is a vector of Lagrange multipliers corresponding to

the linking constraint in (I), and

n n

'" C'! x~ = b
T

ull: + '" v ~ .L..J • • L...J I

;=1 ,=1

89

Proof. Every sequence of null steps is finite by Lemma 3. Any time a serious step is

executed, Ak solves (29), Le. Xik solve (19)-(20). Since each serious step is identical with

(22), the sequence of serious steps is identical with the sequence generated by Algorithm

2 and finite, owing to the finite convergence property of the augmented Lagrangian

method for linear problems (cf. Bertsekas, 1982; Poljak and Trietiakov, 1972). The

proof is complete.

4 Relation of the two methods

Let us now compare Algorithms 1 and 3. The crucial question here is the relation of

the master problems (6)-(7) and (33)-(34).

Lemma 4. Problems (6)-(7) and (99)-(95) are dual to each other.

Proof. Let us derive the dual to (6)-(7). Denoting by Ai; multipliers corresponding

to (7) we obtain the following form of the dual problem

... L*(' k)mInImIze >'<':0 A, u ,

where

n

+ 2: 2: Ai; ((li; - g[;u - Vi) } .
i=1 ;EJ;

By noting that L* (A, uk) < 00 if and only if L.;EJ; Ai; = 1, after elementary

transformations we arrive to (33)-(35).

With the two master problems equivalent there is no difficulty in coming to the

following conclusion.

Theorem 3. Algorithm 1 with '"Y = 0 and Algorithm 9 are equivalent in the sense

that if they are started from the same point uO and the same sets J i , i = 1,2, ... , n ,

and use the same subalgorithm for solving master problems (6)-(7) and (99)-(95), then

they generate identical sequences {uk}, {uk}, {v k } and {A k }.

This result provides a new insight into both methods and suggests some obvious

modifications and improvements.

First, the regularized decomposition with 0 < '"Y < 1 provides new rules for changing

multipliers uk in the augmented Lagrangian method. Namely, we could change uk at

Step 4 of Algorithm 3 also when

n

F(u k) = bT uk + 2:/;(u
k
)

i=1
n

> '"Y(b
T

u
k
+2:vn+(I-'"Y)F(u

k
)

i=1

90

where
n

F(u k
) = bTuk + L /;(U k

) •

•=1

In fact, a more simple test F(u k
) > F(uk

) would do as well (see Ruszczynski, 1986).

Next, we can also observe that for each k

n

Fk = bTu k + Lvf ~ F(u k
)

.=1

and equality occurs if and only if uk is optimal (cf. Step 1 of Algorithm 1). Including

these rules into Algorithm 3 shows that Step 1 of the prototype Algorithm 2 can be

replaced by a rather special approximate minimization. As a result, we obtain a finitely

convergent version of the augmented Lagrangian method with approximate minimiza­

tion of the Lagrange function. We believe that this observation may be interesting in

its own right, apart from the decomposability properties.

Finally, the relation that we discovered here may provide a new insight into non­

smooth optimization methods (see Kiwiel, 1985) which motivated the development of

the regularized decomposition method. Namely, we can regard them as dual to the aug­

mented Lagrange function method applied to problems with infinitely many constraints.

5 References

Bertsekas, D. P. (1982). Constrained Optimization and Lagrange Multiplier Methods.

Academic Press, New York, 1982.

Dantzig, G. B. and Wolfe, P. (1960). Decomposition principle for linear programs.

Operations Research, no. 8, 1960, pp. 101-111.

Kiwiel, K. C. (1985). Methods of Descent for Nondifferentiable Optimization. Springer­

Verlag, 1985.

Poljak, B. T. and Tretiakov, N. V. (1972). An iterative method for linear programming

and its economic interpretation. Matecon, no. 10, 1974, pp. 81-100, (Ekonomika

i Matematicheskiie Metody, no. VII, 1972, pp. 740-751).

Rockafellar, R. T. (1976). Augmented Lagrangians and applications of the proximal

algorithm in convex programming. Mathematics of Operations Research, no 1,

1976, pp. 97-116.

Rockafellar, R. T. and Wets, R. J. B. (1987). Scenarios and policy aggregation in

optimization under uncertainty. WP-87-119, IIASA, Laxenburg, 1987.

Ruszczynski, A. (1986). A regularized decomposition method for minimizing a sum of

polyhedral functions. Mathematical Programming, no. 35, 1986, pp. 309-333.

Stoilow, E. (1977). The augmented Lagrangian method in two-level static optimiza­

tion. Archiwum Automatyki i Telemechaniki, no. 22,1977, pp. 219-237.

91

Tatjewski, P. (1986). New dual decomposition algorithms for nonconvex separable op­

timization problems. Preprints of the 4th IFAC Symposium "Large Scale Systems

- Theory and Applications", Zurich 1986, pp. 296-303.

Watanabe, N., Nishimura Y. and Matsubara, M. (1978). Decomposition in large sys­

tem optimization using the method of multipliers. Journal of Optimization Theory

and Applications, no. 22, 1978, pp. 135-194.

Dynamic Aspects of Multiobjective

Trajectory Optimization

in Decision Support Systems

Tadeusz Rogowski

Institute of Automatic Control, Warsaw University of Technology.

Abstract

This paper presents some remarks about dynamic aspects of multiobjective tra­

jectory optimization in decision support systems. It starts with a short theoretical

reminder of general principles of decision support systems based on reference point

optimization and the quasisatisficing framework of rational choice, for the case of

linear models as it is implemented in decision support systems IAC-DIDAS-Ll and

-L2. It proceeds then to the basic discrete-time dynamic extension of this case and

to various continuous-time extensions of multiobjective dynamic optimization. The

importance of the concept of multiobjective trajectory optimization is stressed in

the paper.

1 Linear multiobjective decision analysis problem ­

A standard case

The standard form of a multiobjective linear programming problem is defined as follows:

maximize (q = C x) ; X = {x E R n
: Ax = b ,x 2: 0 } (1)

where x ERn, bE RP, A is a m x n matrix, C is a p x n matrix and tne maximization

of the vector q of p objectives is understood in the Pareto sense: X, q are solutions of

(1) if q = Cx, x E X and there are no such x, q, with q = Cx, x E X that q 2: q, q =I- q.
Such solutions, x and q, of (1) are called an efficient decision x and the corresponding

efficient outcome q, respectively. If, in the above definition, it were only required that

there would be no x and q, with q = Cx, x E X, such that q > q, then the solutions x,

q would be called weakly efficient. Equivalently, if the set of all attainable outcomes is

denoted by

Q = { q E RP : q = C x , x EX} (2)

and so called positive cones D = R~, iJ = R~ \ {O} and iJ = int R ~ are introduced

(thus, q 2: q can be written as q - qED, q 2: q, q =I- q as q - q E iJ, and q > q as

93

q - Ii ED), then the sets of efficient outcomes Q and of weakly efficient outcomes QUI
can be written as:

Q={qEQ: (Ii+D)nQ=0}

QUI = {Ii E Q : (Ii + D) n Q = 0}

(3)

(4)

The set of weakly efficient outcomes is larger and contains the set of efficient out­

comes; in many practical applications, however, the set of weakly efficient outcomes

is decisively too large. For multiobjective linear programming problems, the efficient

outcomes are always properly efficient, that is, they have bounded tradeoff coefficients

that indicate how much an objective outcome should be deteriorated in order to improve

another objective outcome by a unit.

The abstract problem of multiobjective linear programming consists in determining

the entire sets Qor QUI, or at least all vertices or basic solutions of the linear program­

ming problem that corresponds to efficient decisions and outcomes.

The practical problem of multiobjective decision support, using linear programming

models, is different and consists in computing and displaying for the decision maker (or,

generally, for the user of the decision support system) some selected efficient decisions

and outcomes. This selection of efficient decisions and outcomes should be easily con­

trolled by the user and should result in any efficient outcome in the set Q he might wish

to attain, in particular, also in efficient outcomes that are not necessarily basic solutions

of the original linear programming problem; moreover, weakly efficient outcomes are not

of practical interest for the user.

Before turning to some theoretical problems resulting from these practical require­

ments, observe first that the standard formulation of multiobjective linear program­

ming is not the most convenient for the user. Although many other formulations can

be rewritten to the standard form by introducing proxy variables, such reformulations

should not bother the user and should be automatically performed in the decision sup­

port system. Therefore, we present here another basic formulation of the multiobjective

linear programming problem, more convenient for typical applications.

A substantive model of multiobjective linear programming type consists of the spec­

ification of vectors of n decision variables x E RR and of m outcome variables y E Rm,

together with linear model equations defining the relations between the decision vari­

ables and the outcome variables and with model bounds defining the lower and upper

bounds for all decision and outcome variables:

y = Ax; (5)

where A is a m X n matrix of coefficients. Among the outcome variables, some might

be chosen as corresponding to equality constraints; let us denote these variables by

yC E Rm' c Rm and the constraining value for them - by bC and let us write the

additional constraints in the form:

yC = ACx = bC; yc,lo S; bCS; yC, up (6)

where AC is the corresponding submatrix of A. The outcome variables corresponding to

equality constraints will be called guided outcomes here. Some other outcome variables

94

can be also chosen as optimized objectives or objective outcomes. Denote the vector ofp

objective outcomes by q E R" c Rm (some of the objective variables might be originally

not represented as outcomes of the model, but we can always add them by modifying

this model) to write the corresponding objective equations in the form:

q = Cx (7)

where C is another submatrix of A. Thus, the set of attainable objective outcomes is

again Q = C X, but the set of admissible decisions X is defiiJ.ed by:

(8)

Moreover, the objective outcomes are not necessarily minimized; some of them might

be minimized, some maximized, some stabilized or kept close to given aspiration levels

(that is, minimized if their value is above aspiration level and maximized if their value

is below aspiration level). All these possibilities can be summarized by introducing a

different definition of the positive cone D:

D = {q E RP: qi 2: 0 ,

qi ::; 0 ,

qi = 0,

i=l, ... ,p'j

i=p'+l, ... ,p";

." }l=p +l, ... ,p

(9)

where the first p' objectives are to be maximized, the next, from p' + 1 to p", are to

be minimized, and the last, from p" + 1 to p, are to be stabilized. Actually, the user

needs only to define what to do with subsequent objectives; the concept of the positive

cone D is used here only in order to define comprehensively what are efficient outcomes

for the multiobjective problem. Given some aspiration levels for stabilized objectives

and the requirement that these objectives should be minimized above and maximized

below aspiration levels, the set of efficient outcomes can be defined only relative to the

aspiration levels.

However, since the user can define aspiration levels arbitrarily, of interest here is the

union of such relative sets of efficient outcomes. Let iJ = D \ {0}; then the outcomes

that might be efficient for arbitrary aspiration levels for stabilized objectives can be

defined, as before, by the relation (3). The weakly efficient out'..:Omes are of no practical

interest in this case, since the cone D, typically, has empty interior which implies that

weakly efficient outcomes coincide with all attainable outcomes.

The stabilized outcomes in the above definition of efficiency are, in a sense, similar

to the guided outcomes; however, there is an important distinction between these two

concepts. Equality constraints must be satisfied; if not, then there are no admissible

solutions for the model. Stabilized objective outcomes should be kept close to aspiration

levels, but they can differ from those levels if, through this difference, other objectives

can be improved. The user of a decision support system should keep this distinction in

mind and can modify the definition of the multiobjective analysis problem by taking,

for example, some outcomes out of the guided outcome category and putting them into

the stabilized objective category.

95

By adding a number of proxy variables and changing the interpretation of matrix

A, the substantive model formulation (5), (6), (7), (8) together with its positive cone

(9) and the related concept of efficiency could be equivalently rewritten to the standard

form of multiobjective linear programming (1); this, however, does not concern the

user. More important is the way of user-controlled selection of an efficient decision

and outcome from the set (3). For stabilized objective outcomes, the user can change

the related aspiration levels in order to influence this selection; it is assumed here that

he will use, for all objective outcomes, the corresponding aspiration levels in order to

influence the selection of efficient decisions. The aspiration levels are denoted here ifi

or, as a vector, if and called also, equivalently, reference points.

A special way of parametric scalarization of the multiobjective analysis problem

is utilized for the purpose of influencing the selection of efficient outcomes by chang­

ing reference points. This parametric scalarization is obtained through maximizing

the following order-approximating achievement function (see Lewandowski et al. 1983;

Wierzbicki, 1986):

s (q , if) = min [min Zi (qi , ifi) ,
l:'S.:'Sp

1 P E: P

(-)L Zi (qi , if;)] + (-) L Zi (qi , if;)
pp i=l p i=l

(10)

where the parameter E: should be positive, even if very small; if this parameter would

be equal to zero, then the above function would not be order-approximating any more,

but order-representing, and its maximal points could correspond to weakly efficient

outcomes. The parameter p should be p ~ 1; the interpretation of both these parameters

is given later.

The functions Zi (qi , ifi) are defined as follows:

where

{

(qi - iii) / Si, if

Zi (qi , ii;) = (ifi - q;) / Si, if

min (z: , z:'), if

l::;i::;p',

p'+I::;i::;p",

p"+I::;i::;p,

(11)

Z; = (qi - ifi)/s:, z;' = (iii - qi)/s:' (12)

The coefficients Si, s ~ and s ~ ' are scaling units for all objectives, either defined by the

user (in which case s ~ = s~', the user does not need to define two scaling coefficients for

a stabilized objective outcome) or determined automatically in the system (see further

comments).

The achievement function s(q, ii) is maximized with q = Cx over x E X; its maxi­

mization in the system is converted automatically to an equivalent linear programming

problem, different than the original one, and having more basic solutions that depend

on the parameter if. If the coefficient E: > 0, then the achievement function has the

following properties (see Wierzbicki, 1986):

a) For an arbitrary aspiration level or reference point if, not necessarily restricted to

be attainable or not attainable, each maximal point ij of the achievement function

s(q, if) with q = Cx over x E X is a D.-efficient solution, that is, a properly

efficient solution with tradeoff coefficients bounded approximately by E: and 1/E:.

96

b) For any properly efficient outcome ii with trade-off coefficients bounded by E: and

1/E:, there exist such reference points q that the maximum of the achievement

function s(q, q) is attained at the properly efficient outcome ij. In particular, if

the user (either by chance or as a result of a learning process) specifies a reference

point q that in itself is such properly efficient outcome, q = ii, then the maximum

of the achievement function s(q, q), equal zero, is attained precisely at this point.

c) If the reference point q is 'too high' (for maximized outcomes; 'too low' for

minimized outcomes), then the maximum of the achievement function, smaller

than zero, is attained at an efficient outcome that approximates the reference

point uniformly best, in the sense of scaling units Si. If the reference point q is

'too low' (for maximized outcomes; 'too high' for minimized outcomes and it

can happen only if there are no stabilized outcomes), then the maximum of the

achievement function, larger than zero, is attained at an efficient outcome that is

uniformly 'higher' than the reference point, in the sense of scaling units Si.

d) By changing his reference point q, the user can continuously influence the selection

of the corresponding efficient outcomes ii that maximize the achievement function.

The parameter E: in the achievement function sets bounds on trade-off coefficients: if

an efficient solution has trade-off coefficients that are too large or too small (say, lower

than 10-6 or higher than 106
) then it does not differ, for the decision maker, from weakly

efficient outcomes - some of its components could be improved without practically

deteriorating other components. Another interpretation of this parameter is that it

indicates how much an average overachievement (or underachievement) of aspiration

levels should correct the minimal overachievement (or maximal underachievement) in

the function (10).

The parameter p 2: 1 can influence the shape of this achievement function only if

p > 1. If p = 1, then the middle term of this function can be omitted since it is never

active in this case. If p > 1, then this term becomes active only if the achievement

function is positive (that is, if the reference point q is 'too low' for maximized outcomes,

'too high' for minimized outcomes and there are nostabilized outcomes). In such a case,

the piece-wise linear achievement function (10) has a piece on its positive level-sets

that corresponds to the sum of overachievements (qi - qi) / Si and not to the minimal

overachievement (for maximized outcomes, with corresponding changes for minimized

outcomes). This modification becomes stronger for larger p, but always occurs only for

positive values of the achievement function; it is useful when the user wants to select

efficient outcomes that maximize the sum of positive overachievements.

The maximization of the achievement function is a convenient way of organizing

interaction between the model and the user. Before the interactive-analysis phase,

however, the user must firstly define the substantive model, then define the multiob­

jective analysis problem by specifying outcome variables that should be maximized,

minimized, stabilized, guided or floating (that is, displayed for the users' information

only, but not included as optimized or guided objectives; various decision variables of

interest to the user can be also included into one of these categories). Before the initial

analysis phase, the user should also define some reasonable lower and upper bounds

97

for each optimized (maximized, minimized or stabilized) variable, and some reasonable

scaling units Si for these variables. In further phases of analysis, a special automatic

way of setting scaling units Si can be also applied; this, however, requires an approx­

imation of bounds on efficient solutions. Such an approximation is performed in the

initial analysis phase.

The 'upper' bound for efficient solutions could be theoretically obtained through

maximizing each objective separately (or minimizing, in case of minimized objectives;

in the case of stabilized objectives, the user should know their entire attainable range,

hence they should be both maximized and minimized). Jointly, the results of such

optimization form a point that approximates from 'above' the set of efficient outcomes

¢, but this point almost never (except in degenerate cases) is in itself an attainable

outcome; therefore, it is called the utopia point.

However, this way of computing the 'upper' bound for efficient outcomes is not al­

ways practical, particularly for problems of dynamic structure (see further comments);

thus, IAC-DIDAS-L1 and -L2 use a different way of estimating the utopia point (see

Rogowski et al., 1987). This way consists in subsequent maximizations of the achieve­

ment function s(q, q) with suitably selected reference points. If an objective should be

maximized and its maximal value must be estimated, then the corresponding component

of the reference point should be very high, while the components of this point for all

other maximized objectives should be very low (for minimized objectives - very high;

stabilized objectives must be considered as floating in this case that is, should not enter

the achievement function). If an objective should be minimized and its minimal value

must be estimated, then the corresponding component of the reference point should be

very low, while other components of this point are treated as in the previous case. If

an objective should be stabilized and both its maximal and minimal values must be

estimated, then the achievement function should be maximized twice, first time as if

for a maximized objective and the second time as if for minimized one. Thus the entire

number of optimization runs in utopia point computations is p" + 2(p - p"). It can be

shown that, for problems with static structure (no trajectory objectives), this procedure

gives a very good approximation of the utopia point guto, whereas the precise meaning

of 'very high' reference should be interpreted as the upper bound for the objective plus,

say, twice the distance between the lower and the upper bound, while the meaning of

'very low' is the lower bound minus twice the distance between the upper and the lower

bound.

During all these computations, the lower bound for efficient outcomes can be also

estimated, just by recording the lowest efficient outcomes that occur in subsequent op­

timizations for maximized objectives and the highest efficient outcomes for minimized

objectives (there is no need to record them for stabilized objectives, where the entire

attainable range is estimated anyway). However, such a procedure results in the ac­

curate, tight 'lower' bound for efficient outcomes - called nadir point goad - only if

p" = 2; for larger numbers of maximized and minimized objectives, this procedure can

give misleading results, while an accurate computation of the nadir point becomes a

very cumbersome computational task.

98

2 Discrete-time dynamic extension of multiobjec­

tive linear problems

There are many examples of decision problems that can be analysed by means of sub­

stantive model of multiobjective linear programming type; however, many of them have

actually a dynamic structure. DIDAS - type systems with multiobjective, dynamic

linear programming models have been used in planning energy policies (see Strubeg­

ger, 1985; Messner, 1985), agricultural policies (see Makowski and Sosnowski, 1984) as

well as in analysing various environmental or technological problems (see Kaden, 1985;

Gorecki et aL, 1983), another example might be a dynamic multiobjective linear pro­

gramming model for flood control, where the decision are time sequences trajectories ­

of outflows of reservoirs and the outcomes are trajectories of flows in various points on

the river (Lewandowski et aL, 1984a, 1984b).

Discrete multiobjective dynamic programming problem given by state equations (lin­

ear model):

x(t + 1) = A(t)x(t) + B(t)u(t) ,

outcome equations:

t = 0,1, ... , T - 1, x(O) - given, (13)

y(t) = C(t)x(t) + D(t)u(t) ,

and corresponding bounds, where:

t = 0,1, ... , T - 1 , (14)

t

u(t) E Rn

x(t) E Rm

- is the discrete time variable,

- control trajectory or decision trajectory,

- state trajectory,

q(t) = y(t) E RP - outcome trajectory, objective trajectory.

In this case, it is possible to use the following order-approximating achievement
Junction:

T P

s(q, q, 0) = min min Oi(t) (qi(t) - qi(t)) + 0p+1 L L Oi(t) (qi(t) - qi(t)) (15)
1<.<T 1<.<p 1=0 i=1

DIDAS methodology can be successfully applied for this purpose.

A computation of an utopia trajectory and an approximation of a nadir trajectory
as in static problem would require in this case p * (T + 1) scalar optimization. However,

precise upper bound and lower bound trajectories are not needed in most cases of

decision support - their approximate values often suffice.

A convenient way: optimize p times with p different reference trajectories:

q(j) = { q(j) (0) , q(j) (1) , ... , q(j) (T)} , j = 1,2, ... ,p, (16)

where the components qlil (t) are chosen to be very high if i = j and very low if i =I- j

(see e.g.. Lewandowski et aL, 1984; Lewandowski and Wierzbicki, 1988).

99

Approximate upper bound trajectories:

and lower bound for trajectories:

r/i'. (t) = min q(jl(t)
',mIn l<i<p t ,

t = O,l, ... ,T,

t=O,l, ... ,T,

i=1,2, ... ,p;

i=l,2, ... ,p; (17)

are obtained this way; later on, we assume that such bounds are determinated and used

for determining scaling coefficients.

In similar way, other order-approximating achievement functions or even smooth

order-approximating functions, can be rewritten for the case of multiobjective trajectory

optimization.

From theoretical and numerical point of view, the solution of a problem of dynamic

structure is difficult even in its classical formulation (with single objective function).

These problems are discussed in literature elsewhere and there exist many computational

methods for solving dynamic optimization problems. However, if we add the problem of

analysing trajectories as decision outcomes, beside theoretical and numerical problems,

arising from this complication, we face the difficulty that the decision-maker (user)

might be batHed in the interpretation of objectives when their number grows. It is a

known psychological fact that the human decision-maker cannot compare or evaluate

in this mind more than five to ten objects, depending on their complexity; however, this

does not mean that these objects should be characterized by only scalar attributes. If the

outcomes of decision are represented by a solution of dynamical model, there is a natural

way of aggregating them into trajectories: we combine the values of the same outcome for

consecutive instants of time, and the number of these instants can grow rather large, but

we still deal with same kind trajectory. Once the meaning of a trajectory of outcomes is

well understood the specification and/or interpretation of a related reference, aspiration

or reservation trajectory becomes easy. Thus, the conclusion that no more than five to

ten scalar attributes should be compared is over-simplified: in decision support systems

based on substantive models, we can as well compare five to ten trajectories containing

a large amount of information (see Lewandowski and Wierzbicki, 1988).

3 General forms of multiobjective dynamic prob­

lems

Now, a special question in multiobjective decision analysis and support arises: how gen­

eral is the class of substantive models of discrete-time dynamic linear nature? Linearity

is here an obvious restriction. However, in decision problems of dynamic structure we

can distinguish at least the following types of models:

A. continuous-time models given by differential equation (linear or nonlinear, partial

or ordinary) and their trajectories interpreted as decision outcomes, that is, with

infinite - dimensional outcome spaces;

100

B. continuous-time models given as above, but with a finite - dimensional outcome

space, while outcomes or objectives are defined by a given number of objective

functionalsj

C. discrete-time models (given a'priori) or discrete-time approximations of continuous­

time models which reduces the outcome space to finite dimensions, as discussed

in the previous paragraphj however, in the case analogous to A these dimensions

will be very large, hence it is useful to distinguish, as above, the case of trajectory

optimization, versus traditional multiobjective optimization.

Dynamic models with continuous time can have rather diverse mathematical char­

acter, we shall consider here only a relatively simple but widely applied class of such

models, described by ordinary differential or difference equations. We shall consider

first examples of the case B or its analog within the case C.

EXAMPLE 1. Let us now consider a multiobjective continuous control problem, with

finite-dimensional outcomes space, as described by Szidarovszky et al., 1987a,b.

The model consist of a state equations:

x(t) = f (t , x(t) , u(t)) ,

and of a multiobjective functional:

qi = i tl

9i(t, x(t), u(t)) dt
to

x(to) = Xo

(i=I,2, ... ,n),

(18)

(19)

that should be maximized in each component. Introduce the following notation:

iii = i tl

cI>;(t) dt ,
to

D i = {I [cI>;(r) - 9i(r, x(r), u(r))] dr ,

Observe that:

Di(td = cI>;(t) - 9i(t, x(t), u(t)) ,

i=I,2, ... ,n.

Di(tO) = 0 ,

(20)

(21)

and Di(td ~ iii - 9;, where 9; ~ Itto
l gi (t, x(t) , u(t)) dt, i = 1,2, ... , n.

A scalarizing function for these objectives can be chosen in various way, for example

in way similar to this described in the preceding paragraphs, or more generally see

Lewandowski et al., 1988. However, Szidarovszky et al., 1987a, use the weighted lp

norm and show that this problem is equivalent to optimizing the function:

s(q,ii,o:) ='to:iVi(Di(td)=
i=1

= 1;; O:i {I v:(Di(t)) [:Ii; - gi(t, x, u)] dt =

= l:I1;;O:iV:(Di(t)) [cI>;-9i(t,X,U)] dt,

(22)

101

where Vi - is a differentiable monotonous function, e.g. Vi(t) = t4
•

Introducing the function:

G(t, x(t), Ddt), ... , Dn(t), u(t)) = ~ C>:iV:(Di(t)) [4>i(t) - gi(t, x(t), u(t))]

we have a continuous control problem described by the state equations:

x(t) = f(t, x(t), u(t)) ,

D(t) = 4>;(t) - gi (t , x(t) , u(t)) ,

x(to) = Xo ,

Di(tO) = 0 , i = 1,2, ... , n
(23)

with final constraints:

i= 1,2, ... ,n (24)

and a goal function to be minimized:

1
tl

G(t, x(t), u(t), D1(t) , ... , Dn(t), u(t)) dt ,
to

(25)

where:

u(t) - control trajectory functions (decision functions),

x(t),D1(t), ... ,Dn(t) - state trajectory functions,

- reference point (vector).

Thus - by increasing the dimensionality of the state space - the multiobjective con­

tinuous control problem (18)-(19) of the class B is reformulated as a classical dynamic

problem with single objective function (23)-(25) (Szidarovszky et aI., 1987a).

EXAMPLE 2. Consider a discrete multiobjective dynamic programming problem

having the general form:

Xj = !;(Xj-l, Uj) , Xo given, j = 1,2, ... ,m , (26)

(27)i = 1,2, ... , n .
m

L gji(Xj , Uj) * maximize,
j=1

As above, define the discrete functions D ji , 4>;i' G j , then new state transitions functions

and constraints are:

Xj = !;(Xj-l, Uj) , Xo - given, j = 1,2, ... ,m, (28)

D j;=Dj- 1,i+4>ji-gji(!;(Xj-l,Uj)), DOi=O, i=1,2, ,n,

D ji :S iii - 9i ' i = 1,2, , n ;
(29)

102

and a goal function to be minimized:

m

F=LG;
;=1

(30)

More detailed examples were discussed by Szidarovszky et al., 1987a,b, in applica­

tions first to regional natural resources management. Second example is a multiobjective

optimization model for wine production. In both examples, the model is given by differ­

ential or difference equations (continuous-time in the first, discrete-time in the second

example) and objective functions are defined by functionals, as is multiobjective opti­

mization of static type. In wine production - two objective functions are defined: the

net profit (which is maximized) and maximal manpower demand during growing sea­

son (which is minimized). In the scalarizing function, weighting coefficient are utilized

for the purpose of influencing the selection of efficient outcomes. Possible, this way of

influencing that the selection is not good as by changing aspiration levels in an order­

consistent achievement function, but this is not the main point of these examples. The

main point is that the dynamic aspects of the models in these examples are of secondary

importance: they contribute to the complexity of the model, but do not much influence

the complexity of decision problem. If the model in the second example was linear,

we could as will rewrite the corresponding decision problem in the standard static way

presented in the first paragraph. Truly dynamic aspects of multiobjective choice arise

in case A or its analog in case C, when the objectives form dynamic trajectories.

EXAMPLE 3. Consider the question of approximating a continuous-time dynamic

linear model, described by ordinary differential equations and with selected trajectories

as decision outcomes, by a discrete-time model of the standard form described in the

second paragraph of this paper.

Continuous-time dynamic linear problem is given by the following linear state equa­

tions:

x(t) = Ax(t) + Bu(t), t E [to, til, x(to) - given, (31)

some outcome equations, which are assumed here in a very simplified form just for

illustration purposes as:

q(t) = x(t),

and by some constraints, which shall not be considered in this simplified example.

Here we use the following notation:

u(t) - control trajectory or decision trajectory, a vector function of time;

x(t) - state trajectory, a vector function of time;

q(t) - outcome trajectory, also a vector function of time;

(32)

A, B - matrices of suitable dimensions, in this example for simplicity assumed to

be constant.

103

Introduce the following approximation function:

m

Xi = L ~;{3j(t),
j=1

i = 1, ... ,n, (33)

where {3j(t) are basis function from a spline space (the spaces 8 1,82 and 8 3 of piecewise

linear, 2-nd or 3-rd order polynomial functions with appropriate smoothness condi­

tions are useful for approximating the state trajectories; the control trajectories could

be approximated in the space 8 0 of piecewise constant functions, but we omit here

the discussion of know aspects of approximating control system equations by a spline

function system). The ~ ; are approximating coefficients and n is the state dimension.

If we consider now outcome trajectories as infinitely dimensional objectives, we have

to define consequently reference trajectories as functions of approximating coefficient ~ :

m

qi(t) = L ~{3j(t).
;=1

(34)

An achievement scalarizing function Zi (qi, q;) given by form (11), depends on term qi - qi
or (qi - qi). A natural way of generalizing this function to this specific case is based

the following observation:

qi - q; = t1(q;(t) - qi(t))dt = t, f ({ 3 j (t) (~ ; - ~)dt
ltD ltD ;=1

(35)

where: {3j = Jt~1 {3j(t)dt it is known value.

In this case is a possible to use the achievement function (10) while interpreting

s(q,q) as s (~ , () . However, there might be many other approaches to interpreting a ref­

erence trajectory in a spline approximation. Generally, the following problem arises: the

user of decision system might be not accustomed to spline approximations, and might

therefore interpret the coefficients ~ ; not quite easily. In such a case, a special reference

trajectory interface is required: the user might define the reference trajectory by numer­

ical or graphical means, say, using a mouse, and the interface should convert it into a

spline approximation. Once the meaning of the function s (~ , () is defined, we can mini­

mize this function, obtain an approximating coefficient ~ ; , j = 1, ... , m; i = 1, ... , n,

and next define the control from the state equation, say, by the simple transformation

(assuming that B is convertible in this simplified example):

m

u(t) = B- 1(L ~ ; (J ; (t) - A{3;(t))
;=1

(36)

or by more advanced approximation methods in the more general case. This very

simplified example suggests a number of further questions: how to choose the space

depending on particular properties of the model, how to deal with nonlinear models,

etc.

104

4 Technical and implementation issues in multiob­

jective trajectory optimization

We have seen that various technical problems arise in the manipulation of the reference

trajectories. The same applies to other trajectory-type data, such as bounds etc. Other

problems arise in the necessary elements of a decision support system that are an user

friendly-interface and a data base for results.

The user-friendly interface in the case of trajectory optimization should perform the

following functions:

create trajectories,

select trajectories,

modify trajectories (e.g. references) and other data (e.g. scaling factors),

delete trajectories,

display trajectories using graphics terminals.

Another special feature of user-computer interface of a trajectory-oriented extension

of DIDAS are special trajectory definition and trajectory interpretation modules (see

Lewandowski et aI., 1984a,b). The data base for results, in the case of trajectory op­

timization has functions similar to the static case, with the obvious difference that it

should record trajectories.

5 References

Gorecki, H., Kopytowski, J., Rys, T. and Zebrowski M. (1983). A multiobjective

procedure for project formulation - design of chemical installation. In Grauer, M.

and Wierzbicki, A. P. eds.: Interactive Decision Analysis. Springer Verlag, Berlin.

Kaden, S. (1985). Decision support system for long-term water management in open­

pit lignite mining areas. In Fandel, G., Grauer, M., Kurzanski A. and Wierzbi­

cki, A. P. eds.: Large-Scale Modelling and Interactive Decision Analysis. Pro­

ceedings Eisenach, Springer Verlag, Berlin.

Lewandowski, A., Grauer, M., Wierzbicki A. P. (1983). DIDAS - theory, implementa­

tion and experiences. In Grauer, M., Wierzbicki, A. P. eds.: Interactive Decision

Analysis. Proceedings Laxenburg. Springer Verlag, Berlin.

Lewandowski, A., Rogowski, T. and Kreglewski, T. (1984a). A trajectory-oriented ex­

tension of DIDAS and its application. In Grauer, M., Thompson, M., Wierzbicki,

A. P. eds.: Plural Rationality and Interactive Decision Processes. Proceedings,

Sopron. Springer Verlag, Berlin.

105

Lewandowski, A., Rogowski, T. and Kreglewski, T. (1984b). Application of DIDAS

methodology to flood control problems - numerical experiments. In Grauer, M.,

Thompson, M., Wierzbicki, A. P. eds.: Plural Rationality and Interactive Decision

Processes. Proceedings, Sopron. Springer Verlag, Berlin.

Lewandowski, A., Wierzbicki, A. P. (1988a). Aspiration Based Decision Analysis

and Support. Part I: Theoretical and Methodological Backgrounds. WP-88-G3,

nASA, Laxenburg.

Lewandowski, A., Kreglewski, T., Rogowski, T., Wierzbicki, A. P. (1988b). Decision

Support Systems of DIDAS Family. Second paper of this volume.

Makowski, M., Sosnowski, J. (1984). A decision support system for planning and

controlling agricultural production with a decentralized management structure.

In Grauer, M., Thompson, M., Wierzbicki, A. P. eds.: Plural Rationality and

Interactive Decision Processes. Proceedings, Sopron. Springer Verlag, Berlin.

Messner, S. (1985). Natural gas trade in Europe and interactive decision analysis.

In Fandel, G., Grauer, M., Kurzanski, A. and Wierzbicki, A.P. eds.: Large-Scale

Modelling and Interactive Decision Analysis. Proceedings, Eisenach. Springer

Verlag, Berlin.

Rogowski, T., Sobczyk, J., Wierzbicki A. P. (1987). IAC-DIDAS-L, A Dynamic Inter­

active Decision Analysis and Support System for Multicriteria Analysis of Linear

and Dynamic Linear Models on Professional Microcomputers. In Lewandowski, A.,

Wierzbicki, A. P. eds.: Theory, Software and Testing Examples for Decision Sup­

port Systems. WP-87-26, nASA, Laxenburg.

Steuer, R. (1986). Multiple Criteria Optimization: Theory, Computation and Appli­

cation. John Wiley & Sons, New York.

Strubegger, M. (1985). An approach for integrated energy-economy decision analy­

sis: the case of Austria. In Fandel, G., Grauer, M., Kurzanski, A. and Wierz­

bicki, A. P. eds.: Large-Scale Modelling and Interactive Decision Analysis. Pro­

ceedings, Eisenach. Springer Verlag, Berlin.

Szidarovszky, F., Gershon, M. Bardossy, A. (1987a). Application of Multiobjective Dy­

namic Programming to Regional Natural Resource Management. Applied Mathe­

matics and Computation, 24:281-30l.

Szidarovszky, F., Szenteleki, K. (1987b). A Multiobjective Optimization Model for

Wine Production. Applied Mathematics and Computation, 22:255-275.

Wierzbicki, A. P. (1980). Multiobjective trajectory optimization and model semiregu­

larization. WP-8G-181, nASA, Laxenburg.

Wierzbicki, A. P. (1986). On the completeness and constructiveness of parametric

characterizations to vector optimization problems. OR Spektrum 8, 73-87.

Mathematical Programming Package HYBRID

Marek Makowski

IIASA, Laxenburg, Austria"

Janusz S. Sosnowski

Systems Research Institute, Polish Academy of Sciences, Warsaw.

Abstract

HYBRID is a mathematical programming package which includes all the func­

tions necessary for the solution of multicriteria LP problems and single-criteria

linear-quadratic problems. HYBRID is specially useful for dynamic problems since

the applied algorithm exploits the structure of a dynamic problem and the user

has the advantage of handling a problem as a dynamic one which results in an

easy way of formulation of criteria and of interpretation of results. HYBRID is ori­

ented towards an interactive mode of operation in which a sequence of problems is

to be solved under varying conditions (e.g., different objective functions, reference

points, values of constraints or bounds). Criteria for muitiobjective problems may

be easily defined and updated with the help of the package. Besides that HYBRID

offers many options useful for diagnostic and verification of a problem being solved.

HYBRID is available in two versions: one for VAX 6210 (running under Ultrix-32)

and one for a PC compatible with PC IBM!AT!XT.

1 Introduction

The purpose of this report is to provide a sufficient understanding of mathematical,

methodological and theoretical foundations of the HYBRID package. Section 1 con­

tains executive summary, short program description and general remarks on solution

techniques and package implementation. Section 2 contains mathematical formulation

of various types of problems that can be solved by HYBRID. Section 3 presents method­

ological problems related to solution techniques. Section 4 presents foundations of the

chosen solution technique and documents the computational algorithm. Section 5 con­

tains short discussion of testing examples. Last two sections contain conclusions and

references.

'on leave from the Systems Research Institute of the Polish Academy of Sciences, Warsaw.

107

This paper does not include information necessary for using the package. A reader

who is interested in usage of the package should consult a User Guide to HYBRID

(Makowski and Sosnowski, 1988b). In the User Guide the following topics are discussed:

• the way of choosing various options provided by the package.

• guidelines for formulation and modification of a problem which is to be solved or

at least processed by HYBRID.

• the way in which HYBRID provides diagnostics and results.

• a short tutorial example.

• the specification of the MPS standard for input data and an example of the MPS

format input file.

1.1 Executive summary

HYBRID is a mathematical programming package which includes all the functions

necessary for the solution of linear programming problems. The current version of

HYBRID, called HYBRID 3.1, may be used for solving both static and dynamic LP

problems (in fact also for problems with a more general structure then the classical for­

mulation of dynamic linear problems). HYBRID 3.1 may be used for both single- and

multi-criteria LP problems as well as for single-criteria linear-quadratic problems. Since

HYBRID is designed for real-life problems, it offers many options useful for diagnostic

and verification of a problem being solved.

HYBRID is a member of the DIDAS family decision analysis and support sys­

tems since it is designed to support usage of multicriteria reference point optimization.

HYBRID can be used by an analyst or by a team composed of a decision maker and

an analyst or-on last stage of application-by a decision maker alone. In any case, we

will speak further on about a user of HYBRID package.

HYBRID can serve as a tool which helps to choose a decision in a complex situation

in which many options may and should be examined. Such problems occur in many

situations, such as problems of economic planning and analysis, many technological or

engineering design problems, problems of environmental control. To illustrate possi­

ble range of applications, let us list problems for which the proposed approach either

has been or may be applied: planning of agriculture production policy in a decentral­

ized economy (both for governmental agency and for production units, Makowski and

Sosnowski, 1985a), flood control in a watershed (Kreglewski et aI., 1985), planning for­

mation and utilization of water resources in an agricultural region, scheduling irrigation,

planning and design of purification plant system for water or air pollution.

To avoid a possible misleading conclusion that the usage of HYBRID may replace

a real decision maker, we should stress that HYBRID is designed to help the decision

maker to concentrate on his actual decision tasks while HYBRID takes care on cumber­

some computations and provides information that serves for analysis of consequences

of different options or alternatives. A user is expected to define various alternatives or

108

scenarios, changing his preferences and priorities When learning about consequences of

possible decisions.

HYBRID could be used for that purpose as a "stand alone" package, however­

after a possible modification of a problem in an interactive way---one can also output

the MPS-format file from HYBRID to be used in other packages. The later approach

can be used also for a transformation of a multicriteria problem to an equivalent single­

criteria LP. HYBRID includes also some diagnostic functions that are not performed

by many other linear programming packages, e.g., by MINOS (it is interesting to note

that the authors of MINOS actually advise the user to debug and verify the problem

with another package before using MINOS).

HYBRID can be used for solving any linear programming problem but it is spe­

cially useful for dynamic problems; this covers a wide area of applications of operation

researches. Many optimization problems in economic planning over time, production

scheduling, inventory, transportation, control dynamic systems can be formulated as

linear dynamic problems (Propoi, 1976). Such problems are also called multistage or

staircase linear programming problems (Fourer, 1982, Ho and Hanne, 1974). A dynamic

problem can be formulated as an equivalent large static LP and any commercial LP code

may be used for solving it, if the problem corresponds to single objective optimization.

For multicriteria problems, a preprocessor may be used for transformation of that prob­

lem to an equivalent LP one. One of the first versions of the system DIDAS was a

package composed of a preprocessor and a postprocessor for handling transformation

of multicriteria problem and processing results respectively (Lewandowski and Grauer,

1982). Those pre- and postprocesors were linked with an LP package. HYBRID 3.1 has

generally a similar structure. The main difference is that-instead of an LP package-­

another non-simplex algorithm is applied, which exploits the dynamics of a problem

and that HYBRID is integrated package with user-friendly interface. Similarly as some

other systems of DIDAS family, HYBRID has the advantage of handling a problem as

a dynamic one which results in an easy way of formulation of criteria and of interpre­

tation of results, since one may refer to one variable trajectory contrary to a "static"

formulation of dynamic problems which involves separate variables for each time period.

HYBRID has been designed more for real-world problems that require scenario anal­

ysis than for academic (e.g., randomly generated) problems. Thus HYBRID is oriented

towards an interactive mode of operation in which a sequence of problems is to be solved

under varying conditions (e.g., different objective functions, reference points, values of

constraints or bounds). Criteria for multiobjective problems may be easily defined and

updated with the help of the package.

The binary files with HYBRID 3.1 are available from IIASA in two versions: one

for VAX 6210 (running under Ultrix-32 ver. 3.0) and one for a PC compatible with

IBM/AT/XT.

1.2 Short program description

1.2.1 Preparation of a problem formulation

A problem to be solved should be defined as a mathematical programming model.

Formulation of a mathematical programming model is a complex task and this paper

109

is not devoted to discuss this question in detail. Therefore this section is aimed at

providing only a short summary of a recommended approach.

Firstly, a set of variables that sufficiently describe the problem-for the sake of the

desired analysis-should be selected. It is desired-however not necessary-to define

the model in such a way as to possibly exploit the problem structure (further on referred

to as a dynamic problem). Secondly, a set of constraints which defines a set of admissible

(i.e. acceptable or recognized as feasible by a decision maker) solutions should be defined.

Finally a set of criteria which could serve for a selection of a solution should be defined.

The formal definition of criteria can be performed in HYBRID in an easy way.

However, it should be stressed that any definition of a complex model usually requires

cooperation of a specialist-who knows the nature and background of the problem to be

solved-with a system analyst who can advise on a suitable way of formal definition. It

should be clearly pointed out that a proper definition can substantially improve the use

of any computational technique. For small problems used for illustration of the method,

it is fairly easy to define a model. But for real life problems, this stage requires a close

cooperation between a decision maker and a team of analysts as well as a substantial

amount of time and resources.

For real life problems, the following steps are recommended:

1. Mathematical formulation of the problem being solved should be defined.

2. A data base for the problem should be created. This may be done on PC with

a help of a suitable commercial product (such as Framework, dBase, Paradox,

Oracle or Symphony). Original data should be placed in this data base. A user

need not worry about possible range of quantities (which usually has an impact

on computational problems) because HYBRID provides automatic scaling of the

model.

3. Verification of the data base and of the model formal definition should be per­

formed.

4. The corresponding MPS standard file should be created. This may be done by a

specialized model generator (easily written by a system analyst), or an universal

generator such as GEMINI (developed at IIASA), or GAMMA (part of FMPS

package on UNIVAC), or LPL (cf Hurlimann, 1988), or by any appropriate utility

program of data base software. We strongly discourage the user from creating the

MPS file with help of a standard text editor.

1.2.2 Model verification

This stage serves for the verification of model definition which is crucial for real appli­

cation of any mathematical programming approach.

First stage consists of preprocessing the MPS file by HYBRID, which offers many

options helpful for that task. HYBRID points to possible sources of inconsistency in

model definition. Since this information is self-explaining, details are not discussed

here. It is also advisable to examine the model printout by rows and by columns, which

110

helps to verify model specification and may help in tracing possible errors in MPS file

generation.

Second stage consist of solving optimization problems for selected criteria which

helps in the analysis of consistency of solutions. For larger problems, the design and

application of a problem oriented report writer is recommended. HYBRID generates a

"userJile" for that purpose which contains all information necessary for the analysis of

a solution.

After an analysis of a solution, a user may change any of the following parameters:

values of coefficients, values of constraints and also any parameters discussed in next

section. This may be done with help of the interactive procedure which instead of

MPS file uses "communication region" that contains problem formulation processed by

HYBRID. Therefore, a user needs no longer to care about original MPS file which has

the backup function only.

1.2.3 Multiobjective problem analysis

For a given model, the user can define various multiobjective problems to be analyzed.

Problem analysis consist of consecutive stages:

• analysis of obtained solution

• modification of the problem

• solution of modified problem.

Analysis of a solution consists of following steps (some of which are optional):

1. The user should examine of values of selected criteria. Since the solution obtained

in HYBRID is Pareto optimal, the user should not expect improvement in any

criteria without worsening some other criteria. But values of each criterion can

be mutually compared. It is also possible to compute the best solutions for each

criterion separately. A point (in criteria space) composed of best solutions is

called the "utopia" point (since usually it is not attainable). HYBRID provides

also a point composed of worst values for each criterion. This point is called

"nadir" point. Such information help to define a reference point (desired values of

criteria) because it is reasonable to expect values of each criterion to lie between

utopia and nadir point.

2. The user may also make at this stage modifications to the original problem without

involving the MPS file.

3. For dynamic problems, HYBRID allows also for easy examination of trajectories

(referred to by so called generic name of a variable).

Modification of the problem may be done in two ways:

111

1. At this stage, the user can modify the formulation of the original model. But

main activity in this stage is expected after the model is well defined and verified

and no longer requires changes in parameters that define the set of admissible

(acceptable) solutions. It should be stressed, that each change of this set usually

results in change of the set of Pareto-optimal solutions and both utopia and nadir

points should be computed again.

2. If the values of all constraints and coefficients that define the admissible set of

solutions are accepted, the user should start with computations of utopia point.

This can be easily done in an interactive way. After utopia and corresponding

nadir points are obtained (which requires n solutions of the problem, where n is

the number of criteria defined) the user can also interactively change any number

of the following parameters that define the selection of an efficient solution to the

multicriteria problem:

- Reference point (Le. desired values for each criterion) might be changed. This

point may be attainable or non-attainable (cf sect. 2.4).

- Weights attached to each criterion can be modified.

Reference trajectories in dynamic case can be changed as reference points.

- Regularization parameters in selection function can be adjusted.

3. Additionally, the user can temporarily remove a criterion (or a number of criteria)

from analysis. This option results in the computation of a Pareto optimal point

in respect to remaining "active" criteria, but values of criteria that are not active

are also available for review.

Solution 0/ a problem. The multiobjective analysis problem defined by a user (after

possible modification) is transformed by HYBRID to an equivalent LP problem which

is solved without interaction of a user (an experienced user may however have an access

to the information that characterizes the optimization run).

1.2.4 Remarks relevant to dynamic problems

HYBRID allows for solving both static and dynamic LP models. Static models can

be interpreted as models for which a specific structure is not recognized nor exploited.

But many real life problems have specific structure which-if exploited-can result not

only in much faster execution of optimization runs but also remarkably help in problem

definition and interpretation of results.

Numerous problems have dynamic nature and it is natural to take advantage of its

proper definition. HYBRID offers many options for dynamic models, such as:

1. In many situations, the user may deal with generic names of variables. A generic

name consists of 6 first characters of a name while 2 last characters corresponds

to the period of time. Therefore, the user may for example refer to the entire

trajectory (by generic name) or to value of a variable for a specific time period

(by full name). Such approach corresponds to a widely used practice of generating

trajectories for dynamic models.

112

2. The user may select any of 4 types of criteria that correspond to practical ap­

plications. Those can be defined for each time period (together with additional

"global" conditions), but this requires rather large effort. Therefore, for dynamic

problems, criteria are specified just by the type of criterion and the generic name

of the corresponding variable. Types of criteria are discussed in detail later.

3. A model can be declared as a dynamic one by the definition of periods of time.

For a dynamic model, additional rules must be observed. These rules correspond

to the way in which the MPS file has to be sorted and to the way in which names

for rows and columns are selected. These rules follow a widely accepted standard

of generation of dynamic models. The formulation of a dynamic model, which is

accepted by HYBRID, is actually an extension of the classical formulation of a

dynamic model (cf Section 2.2.). In our formulation, a model may contain also a

group of constraints that do not follow the standard of state equations.

1.2.5 General description of the software package and data structure

The package is constructed in modules to provide a reasonably high level of flexibility

and efficiency. This is crucial for a rational use of computer resources and for planned

extensions of the package and possible modification of the algorithm.

The package consists of five subpackages:

• Two preprocessors that serve to process data, enable a modification of the model,

perform diagnostics and may supply information useful for the verification of a

model. The first preprocessor is used for processing of initial formulation and di­

agnostics of the model. It also transforms a multicriteria problem to a parametric

single criteria optimization problem. The second preprocessor allows for analysis

of a solution and for the interactive change of various parameters that may corre­

spond to choice of some option, change of parameters in definition of multicriteria

problem, change of matrix coefficients, right hand sides of constraints etc.

• Optimization package called solver of a relevant optimization problem (either

static or dynamic).

• Postprocessor that provides results in the standard MPS format and generates

the "user file" which contains all information needed for the analysis of a solution;

the later option makes it easier to link HYBRID to a specialized report-writer or

a graphic package.

• Driver, which eases the usage of all subpackages. The PC version of driver provides

a context sensitive help which helps an inexperienced user in efficient usage of the

package.

All five subpackages use a binary file that contains all data defining the problem

being solved. A second binary file contains a solution obtained by last run of the solver.

From the user point of view, HYBRID 3.1 is still one package that may be easily used

for different purposes chosen via specification file.

113

The chosen method of allocating storage in the memory takes maximal advantage of

the available computer memory and of the features of typical real-world problems. In

general, the matrix of constraints is large and sparse, while the number of all non-zero

coefficients that take different numerical values is much smaller than the number of all

non-zero coefficients. A super-sparse-matrix technique is therefore applied to store the

data that define the problem to be solved. This involves the construction of a table of

coefficients which take different numerical values. The memory management is handled

by a flexible way. HYBRID is coded partly in C and partly in an extension of Fortran

(the latter part is processed by a preprocessor to generate a code which conforms to

Fortran 77 standard). Such approach results in a faster (much faster for PC version

running under DOS) execution and in a decrease of memory requirements.

Special commands of HYBRID support model verification and problem modification.

This is necessary to facilitate scenario analysis and to reduce the problems caused by

inappropriate scaling (cf sect. 4.7).

The data format for the input of MPS file and the output of LP results follows

standards adopted by most commercial mathematical programming systems (cf e.g.

Murtagh, 1981, Makowski and Sosnowski, 1988b).

1.2.6 Outline of the solution technique

HYBRID uses a non-simplex algorithm - a particular implementation of the augmented

Lagrangian (or Lagrange multiplier) method - for solving linear programming prob­

lems. General linear constraints are included within an augmented Lagrangian function.

The LP problem is solved by minimizing a sequence of quadratic functions subject to

simple constraints (lower and upper bounds). This minimization is achieved by the use

of a method which combines the conjugate gradient method and an active constraints

strategy.

In recent years many methods oriented for solving dynamic linear problems (DLP)

have been developed. Most of those methods consists of adaptation of the simplex

method for problems with a special structure of constraints. In HYBRID, a different

approach is applied. A DLP, which should be defined together with a state equation,

is solved through the use of adjoint equations and by reduction of gradients to control

subspaces (more exactly, to a subspace of independent variables). The method exploits

the sparseness of the matrix structure. The simple constraints (lower and upper bounds

for non-slack variables) for control variables are not violated during optimization and

the resulting sequence of multipliers is feasible for the dual problem. The global con­

straints (i.e. constraints other then those defined as simple constraints) may be violated,

however, and therefore the algorithm can be started from any point that satisfies the

simple constraints.

The solution technique can be also used to solve single-criteria quadratic problems

with virtually no changes in the algorithm. However, a routine to input and handle the

relevant data and a corresponding standard for data input have yet to be designed and

implemented. So far only single criteria linear-quadratic problems in the form discussed

in Section 2.5 may be solved. The solution method for multi-criteria quadratic problems

requires modification of the algorithm. However the necessary modifications will be

114

based on HYBRID 3.1.

1.2.7 General description of options provided by the package

In order to provide general information about capabilities of HYBRID, the main options

are listed below. HYBRID offers the following features:

• Input of data and the formulation of an LP problem follow the MPS standard.

Additional rules (that concern only sequencing of some rows and columns) should

be observed in order to take advantage of the structure of a dynamic problem. An

experienced user may speed up computations by setting certain options and/or

parameters (cf the HYBRID User Manual).

• The problem can be modified at any stage of its solution (i.e., by changing the

matrix of coefficients, introducing or altering right-hand sides, ranges or bounds).

• The multicriteria problem is formulated and solved as a sequence of paramet­

ric optimization problems modified in interactive way upon analysis of previous

results.

• The solution technique can be chosen. First choice is done by definition of a static

or a dynamic problem. Some specialized techniques may be used for badly con­

ditioned problems that usually cause numerical problems. This includes one of

two regularization techniques (see Section 4.5) and/or possibility of using precon­

ditioned conjugate gradient method (cf Section 4.6). For a badly scaled problem,

an implementation of scaling algorithm is available (as described by Makowski

and Sosnowski (1981) and briefly discussed in Section 4.7).

• Comprehensive diagnostics is implemented, including the checking of parallel rows,

the detection of columns and rows which are empty or contain only one entry, the

splitting of columns, the recognition of inconsistencies in right-hand sides, ranges

and bounds, and various other features that are useful in debugging the problem

formulation. The package supports a display of a matrix by rows (printing the

nonzero elements and names of the corresponding columns, right-hand sides and

ranges), as well as a display of a matrix by columns (analogous to displaying by

rows). A check of the feasibility of a problem prior to its optimization is optionally

performed. More detailed information for an infeasible or unbounded problem is

optionally provided by the package.

• All data that correspond to the formulation of the problem being solved are stored

in a binary file. An other binary file contains all other information corresponding

to a current run. The latter file is stored on disk in certain situations to allow

continuation of computations from failed (or interrupted) runs or to run a mod­

ified problem while using previously obtained information. Therefore the MPS

input file is read and processed only by first preprocessor, which serves for ini­

tial formulation of the problem. Such approach allows also for efficient storing

of many solutions that may be later used for more detailed analysis, comparisons

and modifications.

115

• Any solution is available in the standard MPS format and in a binary file which

contains all data that might be useful for postoptimal analysis and reports.

1.3 Remarks on implementation

HYBRID 3.1 is an extended version of HYBRID 3.03 documented in (Makowski and

Sosnowski, 1988a, 1988b). Therefore there are only small changes in the methodolog­

ical guide in comparison to the methodology presented in (Makowski and Sosnowski,

1988a), because the solution techniques are basically the same. However, there are some

important methodological innovations. The main differences are the following:

• The code has been modified as to allow for solution of single criteria linear­

quadratic problems.

• The preconditioned conjugate gradient technique for minimizing augmented La­

grangian has been implemented.

• The second regularization option which allows for finding the optimal solution

with minimum distance from a given reference point has been made operational.

• The optimization algorithm has been improved by an automatic evaluation of

some parameters, a different technical implementation of scaling, some changes in

control flow, which results in its faster execution.

• The user interface (for PC version of the code) has been improved. A new approach

to usage of the package and to data handling provides for easier use of the package.

• Diagnostics have been improved and several observed bugs have been removed.

• Part of the code has been rewritten in C language. This allows for more efficient

memory management and usage. Change in the way of internal data handling

resulted in remarkable improvement of execution speed.

2 Statement of optimization problems

2.1 Formulation of an LP problem

We will consider a linear programming problem (P) in the following standard form (see,

e.g., Murtagh and Sanders, 1977):

min ex

b - r ~ Ax ~ b

l~x~u

(1)

(2)

(3)

where x,e,l,u E R", b,r E Rffl and A is an m x n matrix.

The constraints are divided into two groups: general constraints (2) and simple

constraints (3). In the input data file (MPS file) the vectors b is called RHS and the

vector r -RANGES. The vector land u are called LOWER and UPPER BOUNDS,

116

respectively. Obviously, some of bounds and/or ranges may have an infinite value.

Therefore HYBRID may be used for solving any LP problem formulated in the way

accepted by most of commercial packages.

2.2 Classical formulation of a dynamic LP problem (CDLP)

Before discussing a formulation of a dynamic problem that can be solved by HYBRID

3.1, let us first consider a classical formulation of a dynamic linear programming problem

(CDLP) (cf Propoi, 1976) in the following form:

Find a control trajectory

U=(U ,UT)

and a state trajectory

x = (Xl, ... , XT)

satisfying the state equations with initial condition Xo

and constraints

(4)

FTxT :s dT

which minimize the performance index

t=l, ... ,T

t = 1, ... ,T (5)

(6)

(7)

T

l]atxt + btUt)
t=1

where:

- t = 1, ... , T denote periods of time

(8)

- state variables Xt, control variables Ue, both for each period, are elements of Eu­

clidian spaces of appropriate dimensions;

- matrices At, B t , D t , Ft are assumed to be given,

- RHS vectors Ct and de, as well as range vector rt and bounds for control variables

et and It are given,

- initial condition Xo is given.

The above given formulation has been chosen for the purpose of simplification of

presentation only. Actually, the following modifications are accepted:

1. Instead of inequality (5), equality constraints can be used;

117

2. Since no constraints of bounds type (6) are allowed for state variables x, such

constraints may be specified in columns section of MPS file, thus formally are

handled as inequality constraints of type (5);

3. Performance index (goal function) can either be specified as single objective or

will be replaced by a dummy goal function that is defined by the transformation

of a multicriteria problem to a parametric LP problem;

The structure of an CDLP problem (formulated above as in Propoi, 1976) may

be illustrated by the following diagram (example for T = 3, Uh U2, U3, XO, XI, X2, X3 are

vectors, slack variables are not shown):

Ul U2 U3 Xo Xl X2 X3 rhs var.

B l 0 0 Ao -1 0 0 Cl state eq.

0 B 2 0 0 Al -1 0 C2 state eq.

0 0 B 3 0 0 A2 -1 C3 state eq.

Dl 0 0 Fo 0 0 0 do constr.

0 D2 0 0 Fl 0 0 dl constr.

0 0 D3 0 0 F2 0 d2 constr.

0 0 0 0 0 0 F3 d3 final state

bl b2 b3 0 al a2 a3 - goal

where 1 is identity matrix and 0 is a matrix composed of zero elements.

2.3 Formulation of a dynamic problem (DLP)

The formulation of CDLP has been chosen for the purpose of simplification of presen­

tation only. Actually HYBRID 3.1 is capable to solve problems of more general class,

which will be referred to as Dynamic Linear Programming problems (DLP). Namely, the

matrices B = diag(B,), D = diag(D,}, F = diag(F,) need no longer be block diagonal

matrices. Also matrices below identity matrices need no longer have any specific struc­

ture. Therefore the CDLP is a specific example of DLP. One of main generalizations­

from a practical point of view-is that a problem with delays for control variables (which

is not CDLP-class problem) may be solved by HYBRID. In fact, HYBRID accepts also

problems with delays for both state and control variables, provided that state variables

for periods "before" initial state do not enter state equations. A choice of criteria for

CDLP-class problem is also limited in comparison with that for DLP (ef sect. 4.3).

All variables are divided into two groups: decision variables U and state variables Xt,

the latter are specified for each period of time.

A single criteria DLP problem may be formulated as follows:

Find a trajectory Xt and decision variables U such that both:

state equations:

t-l

-Htxt + L At-l"x, + BtU = et,
,=0

t = 1, ... ,T (9)

118

with given initial condition Xo

and constraints:
T

d - r ~ L Ftxt + Du ~ d
t=o

e~u~f

are satisfied and the following function is minimized:

(10)

(11)

(12)

Components of vector u are called decision variables for historical reasons. Actually

a vector u may be composed of any variables, some of them may be specified for each

time period and enter criteria defined for a dynamic case. But some components of

vector u may not be specified for any time period (cf sect. 7.3.1). An example of such

variable is "..dummy.", a variable generated by HYBRID for a multicriteria problem.

A user may also specify variables independent of time. For the sake of keeping the

formulation of the problem as simple as possible we have not introduced a separate

name for such variables.

The following two symbols can be used in the specification file for definition of DLP:

NT - number of periods (stands for T in the above formulation)

NSTV - number of state variables in each period (the dimension of vectors Xt)

The user can define state inequalities instead of state equations (9). The slack

variables for such inequalities are generated by HYBRID. Therefore, for the sake of the

presentation simplicity, only the state equation will be considered further on.

The structure of an DLP problem may be illustrated by the following diagram:

(corresponding to an example analogous to the above example for CDLP)

u Xo Xl X2 X3 rhs var.

B I Aoo -HI 0 0 CI state eq.

B 2 AlO All -H2 0 C2 state eq.

B3 A 20 A 21 A 22 -H3 C3 state eq.

D Fa FI F2 F3 d constr.

b 0 al a2 a3 - goal

where H t is diagonal matrix and 0 is a matrix composed of zero elements.

2.4 Multicriteria optimization

2.4.1 General remarks

The specification of a single-objective function, which adequately reflects preferences

of a model user is perhaps the major unresolved difficulty in solving many practical

119

problems as a relevant optimization problem. This issue is even more difficult in the

case of collective decision making. Multiobjective optimization approaches make this

problem less difficult, particularly if they allow for an interactive redefinition of the

problem.

The method adopted in HYBRID 3.1 is the reference point approach introduced by

Wierzbicki (1980). Since the method has been described in a series of papers and reports

and has been applied to DIDAS (ef Kallio et aI., 1980, Lewandowski and Grauer, 1982),

we give only general outline of the approach applied. This approach may be summarized

in form of following stages:

1. The user of the model (referred to further as the decision maker-DM) specifies

a number of criteria (objectives). For static LP problem a criterion is a linear

combination of variables. For DLP problems one may also use other types of

criteria (cf sect. 2.4.2). The definition of criteria in HYBRID can be performed in

an easy way described in the User Manual.

2. The DM specifies an aspiration level ii = {iil" .. ,iiNC}, where iii are desired values

for each criterion and NC is a number of criteria. Aspiration level is called also a

reference point.

3. The problem is transformed into an auxiliary parametric LP (or DLP) problem.

Its solution gives a Pareto-optimal point. If specified aspiration level ii is not at­

tainable, then the Pareto-optimal point is the nearest (in the sense of a Chebyshev

weighted norm) to the aspiration level. If the aspiration level is attainable, then

the Pareto-optimal point is uniformly better then ii. Properties of the Pareto­

optimal point depend on the localization of the reference point (aspiration level)

and on weights associated with criteria.

4. The DM explores various Pareto-optimal points by changing either the aspiration

level ii or/and weights attached to criteria or/and other parameters related to the

definition of the multicriteria problem.

5. The procedure described in points 3 and 4 is repeated until satisfactory solution

is found.

To give more formal presentation, let us introduce following notation:

N C is the number of criteria

qi is the i-th criterion

iii is the aspiration level for i-th criterion

Wi is a weight associated with i-th criterion (whereas the user specifies its

absolute value which is internally changed to negative depending on the type

of criteria--ef sect. 2.4.3).

em is a given non-negative parameter.

120

A Pareto-optimal solution can be found by the minimization of the achievement

scalarizing function in the form

NC

. max (Wi(qi - iii)) + ~m L Wiqi -+ min
.=I,... ,NC i=1

This form of achievement function is a slight modification of a form suggested by

A. Lewandowski (1982) and by A. Wierzbicki (1978). Note that for ~ m = 0 only weakly

Pareto-optimal points can be guaranteed as minimal points of this function. Therefore,

the use of a very small ~ m results (except of situations in which reference point has

some specific properties) in properly Pareto-optimal solution with trade-off coefficients

bounded approximately by ~ m N C and 1 / ~ m N C . If ~ m is very small, these properly

efficient solutions might practically not differ from weakly efficient (Pareto optimal).

On the other hand, too big values of ~ m could drastically change properties associated

with the first part of the scalarizing function.

2.4.2 Types of criteria

A user may define any number of criteria. To facilitate the definition 6 types of criteria

are available and a user is requested to declare chosen types of criteria before their actual

definition. Two types of criteria are simple linear combination of variables and those

criteria may be used for both static and dynamic problems. Four other types of criteria

correspond to various possible performance indices often used for dynamic problems.

Since the latter criteria implicitly relate to the dynamic nature of the problem, they

may be used only for variables that are defined for each time period. The only exception

is the type DER of criteria, which may be defined by state variables only.

For the sake of simplicity, only the variables of the type Xi (which otherwise is used

in this paper to distinguish a state variable in DLP) are used in the following formulae.

Note that Xi = {XiI}' t = 1, ... ,T.

An k-th criterion qk is defined in one of following ways, for static and dynamic LP:

Type MIN
T n

qk = L L ail XiI -+ min
1=1 i=1

where n is number of (state and control) variables, T is number of periods; T = 1 is

assumed for static LP.

Type MAX
T n

qk = L L ailXil -+ max
1=1 i=1

The following four criteria types are exclusively for dynamic LP:

Type SUP

qk = max (XiI - :tie) -+ min
1=1,... ,T

121

where Xi is a selected state or control variable, Xi -its reference trajectory

Type INF

q/< = min (Xit - Xie) ----. max
l=lT

Type FOL

q/< = max (abs(xi/ - XiI)) ----. min
l=l, ... ,T

Type DER (which applies only to state variables)

q/< = max (abs(xil - xiI-d) ----. min
l=lT

2.4.3 Transformation of multicriteria problem to an auxiliary LP

The transformation is done by HYBRID 3.1, therefore its description here has only

informative purpose. This description may be useful in case of using the MPS file

(optionally created after modifications and transformation of a problem) as input for

another LP package.

Following notation is used throughout this subsection:

v - name of the auxiliary variable v

Wi - optional weight coefficient for i-th criterion (default value equal to 1.),

eni - name of i-th criterion,

chI - string (2-characters) which identifies t-th period of time,

iii - reference point (aspiration level) for i-th criterion,

qi - linear combination of variables that defines a criterion of the type MAX or MIN,

, , - delimiters of a string,

T - number of time periods,

Xj = {Xjl}' t = 1, ... ,T is a variable that enters a criterion of a type SUP, INF,

FOL or DER.

Transformation will be discussed for each type of criteria:

Type: MIN

additional row (with name which is concatenation of following three strings:

, < ',eni, , ... ') is generated in form:

-v + wiqi S wiiii

Type: MAX

is transformed in the way similar to type MIN, with additional (internal, for

computations only) change of the signs of Wi to negative.

122

Type: SUP

additional T rows (with names which are concatenations of strings' < ',eni, '.'eht,

where t = 1, ... ,T) are generated in forms:

-v + WiXjl ~ WiXjl + Wiiji

Type: INF

is transformed in the way similar to type SUP, with additional (internal, for com­

putations only) change of the signs of Wi to negative.

Type: FOL

• additional T columns (with names which are concatenations of strings' + "
eni, '.', chI, where t = 1, ... ,T) are generated; in the following formulae this

name is replaced by e ~

• additional T columns (with names which are concatenations of strings' - "

eni, '.', chI, where t = 1, ... ,T) are generated; in the following formulae this

name is replaced by ei;

• additional T rows (with names which are concatenation of strings' = " eni,

'.', chI, where t = 1, ... ,T) are generated in form:

e ~ - ei; - Xjl = -Xjl

• additional T rows (with names which are concatenations of strings' < ',eni,

,.', chI, where t = 1, ... ,T) are generated in the form:

-v + wi(e~ + ei;) ~ Wiiji

Type: DER

• additional 2 X T columns are generated in the same way as described for a

criterion of the type FOLj

• additional T rows (with names with are concatenations of strings' = " eni,

'.', chI, where t = 1, ... ,T) are generated in form:

e ~ - e;; - Xj,l + Xj,l-l = O.

• additional T rows (with names which are concatenations of strings' < ',eni,

'.', chI) are generated in form:

-v + wi(e~ + ei;) ~ Wiijj

Auxiliary goal function, which is to be minimized, is generated in the following form:

v + ~m (2.: Wiqi + 2.:(2.: WjXjl + 2.: WI; (etl + ekl)))
i t j I;

where summation is done over corresponding sets of respective criteria, Le. indices

i,j, k correspond to criteria of type: MIN or MAX, SUP or INF and FOL or DER,

respectively; ~ m is given parameter.

The name of auxiliary variable v is ' ..dummy.', whereas the name of auxiliary goal

function is '.dummy..'.

Value of ~ m may be changed by the command MEPS in a routine for modification

of multicriteria parameters.

123

2.5 Formulation of single criteria linear-quadratic problems

HYBRID 3.1 allows for solution of a single-criterion linear-quadratic problem with a

simple quadratic term. For a problem which does not have recognized structure (as

discussed in sect. 2.3) the formulation takes the following form:

min ex + b/2)llx - xl1 2

subject (2) and (3), where x is a given point in the solution space and 1 > 0 is a given

parameter.

Similarly, for a dynamic problem one may formulate the problem in the following

way:
T

min Latxt + bu + b/2)llu - ul1 2

t=]

subject (9) and (11), where u is a given point in the space of independent variables.

3 Theoretical foundations and problems

3.1 General remarks

The most popular methods for solving linear programming problems are based on the

simplex algorithm. However, a number of other iterative non-simplex approaches have

recently been developed (Mangasarian, 1981, Polyak and Tretiyakov, 1972, Sosnowski,

1981). HYBRID belongs to this group of non-simplex methods. The solution technique

is based on the minimization of an augmented Lagrangian penalty function using a

modification of the conjugate gradient method. The Lagrange multipliers are updated

using a modified version of the multiplier method (Bertsekas, 1976) (see Sections 4.2

and 4.4).

This method is useful not only for linear programming problems but also for other

purposes, as described in Section 1.2. In addition, the method may be used to solve

problems with non-unique solutions (as a result of regularization-see Section 4.5).

The following notation will be used:

ai - denotes the i-th row of matrix A

Xi - denotes the j-th component of vector x

II xii - denotes the Euclidian norm of vector x

(u)+ - denotes the vector composed of the non-negative elements of vector u (where

negative elements are replaced by zeros)

AT - denotes the transposition of matrix A.

3.2 The multiplier method

We shall first explain how the multiplier method may be applied directly to LP problems.

124

Consider the problem (PO), which is equivalent to the problem (P) defined in Sec­

tion 2.1:

min ex

B x ~ d (PO)

where d E RP, B is a p X n matrix, and m ~ p ~ 2(m + n). To apply the multiplier

method to this problem we proceed as follows:

Select initial multipliers yO (e.g., yO = 0) and pER, p > O. Then for k = 0,1, ...

determine successive values of Xk+l, yk+l where

and

where

L(x, ylc) = ex + (II (ylc + p(Bx - d)) + 11
2

- Ily1c 112) / (2p)

until a stopping criterion is satisfied.

The method has the following basic properties:

(13)

(14)

1. A piecewise quadratic differentiable convex function is minimized at each iteration.

2. The algorithm terminates in a finite number of iterations for any positive p.

3. There exists a constant 15 such that for any p ~ 15 the algorithm terminates in the

second iteration.

Note that it is assumed above that the function L(·, ylc) is minimized exactly and that the

value of the penalty parameter p is fixed. Less accurate minimization may be performed

provided that certain conditions are fulfilled (see, e.g., Sosnowski, 1981, Bertsekas,

1976). For numerical reasons, a non-decreasing sequence of penalty parameters {pic}
is generally used instead of a fixed p.

3.3 The conjugate gradient method for the minimization of an

augmented Lagrangian penalty function

The augmented Lagrangian function for a given vector of multipliers y will be called

the augmented Lagrangian penalty function (Flecher, 1981). For minimization of that

function the conjugate gradient method has been modified to take advantage of the

formulation of the problem. The method may be understood as an modification of

the techniques developed by Polyak (1969), O'Leary (1980) and Hestenes (1980) for

minimization of a quadratic function on an interval using the conjugate gradient method.

The problem (P) may be reformulated as follows:

mmex

Ax + z = b

125

(PS)

where z E Rm are slack variables.

Formulation (PS) has a number of advantages over the initial formulation (PO):

1. The dimension of matrix A in (PS) is usually much smaller than that of matrix B

in (PO).

2. The augmented Lagrangian problem is one of minimization of a quadratic function

in (PS), and of minimization of a piecewise quadratic in (PO).

3. Some computations only have to be performed for subsets of variables. Note that

slack variables are introduced only for ease of interpretation and do not have to

be computed.

In (PS) the augmented Lagrangian is defined by

L(x,z,U) = ex + (Ilu + p(Ax + z - b)11 2-lluI12) I (2p). (15)

We shall first discuss the problem of minimizing L(x, z, U) for given U, p > 0, subject

to lower and upper bounds for x and z. Let us consider the following augmented

Lagrangian penalty function

F(x, z) = (el p)x + (Ilulp + Ax - b + zl12 - Ilulp112) 12.

The gradient of F is defined by

aF
ax =elp+AT(z-g)

aF
-=z-g
az

where

(16)

g = - uIp - Ax + b.

From the Kuhn-Tucker optimality condition, the following relations hold for the

minimum point (x·, z·):

ar
if xi = I;,

ar
if xi = u;,->0 -<0

ax; - ax; -

ar
if

aF·
if->0 z;" = 0, -<0 z; == Ti,

aZi - aZi -

and
aF·
-- = 0 if I; < xi < u;
ax;

aF·
-- = 0 if 0 < z;" < ri.
aZi

126

For any given point such that I ~ x ~ U it is possible to determine slack variables

o ~ Z ~ r in such a way that the optimality conditions with respect to z are obeyed.

Variables z are defined by

Zi = 1~i
gi

if gi ~ 0 (aFjaz; > 0)

if gi;::: ri (aFjaz; < 0)

if ri > gi > 0 (aFjaz; = 0).

(17)

AI AI
J J

Al Al
J J

We shall use the following notation and definitions. The vector of variables x with

indices that belong to a set J will be denoted by x J
, and analogous notation will be

used for variables g. Let q denote minus the gradient of the Lagrangian penalty function

reduced to x-space (q = - (aF j ax)). The following sets of indices are defined for a given

point x:

The set of indices I of violated constraints, i.e.,

1= { i : gi ;::: ri} U { i : gi ~ O}.

1 is the complement of I, i.e.,

1= {1,2, ... ,rn}\I.

The set of indices I can be also interpreted as a set of active simple constraints for z.

The set of indices J of variables that should be equal to either the upper or the lower

bound, Le.,

J = {j : Xj = Ij and qj ~ O} U {j : Xj = Uj and qj;::: O}.

J is the complement of J, i.e.,

J = {l,2, ... ,n}\ J.

For the sake of illustration the matrix A may be schematically split up in the follow­

ing three ways (see the Figure below): first according to active rows, second according

to basic columns and third with illustrate the part of the matrix A for which augmented

Lagrangian penalty function is computed. The contents of the matrix A ~ (for which the

augmented Lagrangian penalty function is computed) changes along with computations.

J J

EE
In essence, the augmented Lagrangian penalty function is minimized using the con­

jugate gradient method with the following modifications:

127

1. During the minimization process x and z satisfy simple constraints and z enters

the augmented Lagrangian in the form defined by (17).

2. The conjugate gradient routine is run until no new constraint becomes active, Le.,

neither set I nor set J increases in size. If this occurs, the computed step length is

shortened to reach the next constraint, the corresponding set (lor J) is enlarged

and the conjugate gradient routine is re-entered with the direction set equal to

minus the gradient.

3. Sets J and I are defined before entering the procedure discussed in point 2 and

may be only enlarged before the minimum is found. When the minimum with

respect to the variables with indices in sets J and I has been found, sets J and I

are redefined.

4. Minimization is performed subject only to those components of variables x whose

indices belong to set J, i.e., variables that are not currently equal to a bound

value.

5. Minimization is performed subject only to those components of variables z whose

indices do not belong to set I, i.e., slack variables that correspond to non-active

simple constraints for z. Note that, formally, this requires only the use of different

formulae for z. In actual fact it is sufficient to know only the set I, which defines

the minimized quadratic function.

4 Solution technique

4.1 Algorithm for minimization of augmented Lagrangian

We may now present the algorithm for minimization of the augmented Lagrangian

penalty function in a more formal way. The algorithm consists of the following steps:

1. For given y and p > a choose a point x such that l ~ x ~ u

2. Compute g = -.Y/p - Ax + b

3. Determine sets I and I

1= { i : gi > Ti } U { i : gi < a},

1={l, ... ,m}\I

4. Define Y as follows:

gi - Ti

Yi = {
gi

5. Compute the minus gradient:

if gi - Ti > a
otherwise

128

6. Determine sets J and J

J = {j : Xj = Ij and qj :S o} U {j : Xj = Uj and qj ~ 0 }

J={I, ... ,n}\J

7. If qj = 0 for all j E J then x is a minimum point of the augmented Lagrangian

penalty function

8. Set pJ = qJ

9. Compute

S = AJpJ

h= IIll1 2

d = IIsI 1I 2

a(l) = hid

Note that a(l) is the conjugate gradient step length in direction pJ

10. Find the step length that would violate the nearest non-active constraint, Le., for

i E 1,
a(2) = ~W{gds;}, K = {i: i E 1,si > o}

a(3) = ~W{(gi - Ti)ls;}, K = {i: i E 1,si < o}

11. Find the step length that would enable a variable to reach a bound, i.e.,

a(4) = min (I· - x·)lp·
jEK J J J'

a(5) = min(u· - x·)lp·
jEK J J J'

K = {j : j E J,Pj < o}

K = {j : j E J, Pj > 0 }

12. Determine step length a = min;=l, ... ,s(a(i)). If a = min(a(2),a(3)) add the row

index for which this condition holds to set I and remove that index from set 1.
If a = min(a(4), a(5)) add the column index for which this condition holds to

set J and remove that index from set J.

13. Compute the new point xJ := xJ + apJ and the minus gradient at that point:

gi := gi - aSi

14. If qJ = O. go to step 2

15. If a = .a(l) continue with the conjugate gradient step, i.e.

{J = IIqJ I1 2Ih

pJ := l + {JpJ

and go to step 9

16. Go to step 8

Note that the condition qJ

gradient tolerance.

129

o is in practice replaced by IlqJ11 ~ E:, where E: is a

4.2 Steps of the multiplier method

Let the violation of i-th constraint in a point x k be defined in the following way:

vt = max {aixk - bi , -a;x
k + bi - Ti'O}

and Ilvkll oo denotes the 100 norm of violated constraints. The multiplier method will be

presented in algorithmic form.

1. Compute an initial vector of multipliers on the basis of the particular option

chosen (Le., either yO = 0 or yO corresponding to the constraints violated at

starting point x)

2. Find xHl which minimizes the augmented Lagrangian penalty function (see Sec­

tion 3.3) with accuracy E:k • It is assumed that

where the sequence E:
k

---+ o. In addition, E:mi :::: E:
k

:::: E:m:>:, where E:mi. E:m:>: is the

assumed minimum and maximum accuracy, respectively.

3. Compute new multipliers

if yk + pk(aixHl - b;) :::: 0

if yk + l(a;xHl
- b; + T;) ~ 0

otherwise

4. If IlyHl-yk II > E:d then set pk+1 = min (pk P"Pm:>:) , P. > 1., Pm:>: is a given maximal

value of the penalty parameter.

Set E:
H 1 = E:

k
E: •• where E:. < 1. is an assumed parameter.

Set k := k + 1 and go to step 2

5. Set k := k + 1 and find X
H1 which minimizes the augmented Lagrangian. If X

H1

is feasible (Ilvkll ~ F EAS) then assume it as a solution and stop.

Otherwise set pHI = min (pk p" Pm:>:), and E:
k
+

1 = E:kE:. and go to step 2.

130

4.3 Solution technique for DLP

We will not repeat reasoning given in the first part of sect. 2.3. Instead, let us point

out basic differences between the algorithms for static LP and DLP:

1. Minimization is reduced to a subspace of decision variables. Gradient of La­

grangian penalty function is computed for variables that belong to a subspace

of decision variables. This (together with arguments already presented in sect.

3.3) shows advantages due to the use of dynamic structure of DLP problem in

comparison with presentation of such a problem as a large LP.

2. The structure of matrices B I , ••• , BT and Fa, ... ,FT has no impact for the algo­

rithm nor affects the technique of storage of data, because super-sparse technique

is applied (cf sect. 1.4). It should be also pointed out that the method of trans­

forming a multicriteria problem to a parametric LP one introduces constraints (cf
sect. 2.4.3) that-for the proposed (cf sect. 2.4.2) types of criteria-do not fit to

the staircase structure of CDLP (cf Propoi, 1976). Therefore, any technique that

would exploit the staircase structure of DLP would also imply a reduction of a

number of criteria types. The alternative is then to treat a problem as a large

LP static one or to apply a technique that does not exploit the classical DLP

structure.

3. State equations are solved (for given decision variables u) by forward substitution.

Therefore any single constraints for state variables have to be treated as general

constraints and included into the matrix. Gradient need not to be computed

for those variables, but state equation is solved twice (for state variables and

variations) .

4. A conjugate trajectory 'l1 is computed from conjugate equation by backward sub­

stitution and has an interpretation of dual variables for state equations. No other

variables associated with those rows (defined in sect. 3.3, i.e. Lagrange multipliers,

shifted constraints g) are computed for state equations rows.

5. The general structure of the algorithm for DLP is similar to that presented in

sect. 3.4. To sum up basic differences one may observe that:

we consider a problem that is equivalent to a static LP but reduced to the

subspace of decision variables and is solved in the way similar to that de­

scribed in sect. 3.3 and 3.4,

state equations are solved for control variables and for variations,

a conjugate trajectory 'l1 is computed.

4.4 Algorithm for minimization of augmented Lagrangian for

DLP

Now we may present the algorithm for minimization of the augmented Lagrangian

function for DLP in a more formal way. In each iteration of multiplier method, the

131

following optimization problem is solved: minimize the augmented Lagrangian penalty

function
T

F(x, u, z) = 2:(al/P)XI + (b/ p)u+
1=1

subject to
I-I

-Hlxl + 2: AI-I,iXi + Blu = CI

;=0

with a given initial condition Xo and

t = 1, ... ,T

O ~ Z ~ T

where z is a vector of slack variables, which-as discussed in sect. 3.3-are not used in

the algorithm. The algorithm consists of the following steps:

1. For given y and p choose a point u such that e ~ u ~ f

2. Solve the state equation

I-I

Hlxl = 2: AI-I,iXi + Blu - CI

i=O

with given initial condition Xo

3. Compute shifted constraints for constraints (10)

t = 1, ... ,T

T

g = -y/p - 2: Flxl - Du + d
1=0

and determine sets I, j

I = {i : gj > Ti} U { i : gi < 0 }

while j is the complement of I.

gi - Tj

4. Define g as follows :

gi = {
gi

if gi > Ti

otherwise

5. Find the conjugate trajectory by solving backwards the conjugate equations

T-I

HTw I = 2: ATtWt+! + (F/)TgI - at/p,
i=1

with boundary condition

t=T-l, ... ,1

132

6. Compute the minus gradient reduced to subspace of decision variables

T

q = -b/p + (D1f g1 + L B'{W t

t=l

7. Determine sets J and J

J = {j : u; = f; and q; ~ 0 } U {j : u; = /; and q; ~ 0 }

while J is the complement of J

8. If q; = 0 for all j E J then u is a minimum point of the augmented Lagrangian

penalty function

10. Solve state equation in variations

t = 1, ... ,T

with boundary condition ao = 0

11. Compute
T

S = D J
pJ + L Fiat

t=o

h= IIll1 2

V = IIs1 11 2

a(l) = h/v

Note that a(l) is the conjugate gradient step length in direction pJ

12. Find the step length that would violate the nearest non-violated constraint, i.e.,

a(2) = ~W {gd s;}, K = {i : i Eland Si > o}

a(3) = rp.iKn{(gi - Ti)/S;}, K = {i: i Eland Si < o}
.E

13. Find the step length that would enable a variable to reach a bound, i.e.,

a(5) = ~W{(/; - u;)/p;},

K = {j : j E J and p; < 0 }

K = {j : j E J and p; > o}

133

14. Determine step length

a = .min (0: (i))
1=1 •... ,5

If a = min(0:(2),0:(3)) add the row index for which this condition holds to set I

and remove that index from set 1. If a = min(0:(4), 0:(5)) add the column index

for which this condition holds to set J and remove that index from set J.

15. Compute:

u/:= uJ + apJ

Xl := Xl + aO"I

gi := g; - as;

16. For the new gl solve the conjugate equation (as in step 5)

17. Compute the minus gradient:

T

l = _bJjp+ (D ~ f g l + L(BdjWl
1=1

18. If qJ = 0, then go to 2

19. If a = 0:(1) continue with the conjugate gradient step, i.e.

{3 = IIll1 2
jh

and go to step 10

20. Go to step 9

Note that the condition qJ = 0 is in practice replaced by IlqJ11 ~ c. The value

of c may be quite large in the first few iterations; it then decreases as the number of

iterations increases.

4.5 Regularization

It is possible that a linear programming problem may have nonunique optimal solutions.

Although this is theoretically rare, in practice many problems actually have a large set of

widely varying basic solutions for which the objective values differ very little (Sosnowski,

1981). In some cases, the simplex algorithm will stop when a basic solution is recognized

as optimal for a given set of tolerances. For problems with a nonunique optimum, the

first optimal solution found is accepted, so that one may not even be aware of the

non-uniqueness of the solution reported as optimal.

Thus we are faced with the problem of choosing an optimal (or, in most cases, to

be more accurate, a suboptimal) solution that possesses certain additional properties

required by the user. This problem may be overcome by applying an approach called

134

regularization. Regularization (Tikhonov's type) is a way of finding the optimal solu­

tion with either minimum Euclidian norm or minimum distance from a given reference

point. The first of these options may be activated by a REG ZERO statement in the

specification file. The second may be chosen by REGREF statement. For the latter case

the non-zero values of x (see the following formulae) are defined in additional section

(called reference) in the MPS input file.

The minimum norm solution is obtained by carrying out a sequence of minimiza­

tions of regularized augmented Lagrangians rather than one minimization of an "or­

dinary" augmented Lagrangian (Sosnowski, 1978). Thus minimization of L(., y1:) in

problem (PO) is replaced by

x1:+l = argmin L(x,y1:) + Ilx - xI1 2 /(2Tl1:)
z

where x is given and

"11: ~ 00,

00

L(l/Tl1:))1/2 < 00,

.=1

In the computer implementation of the algorithm the following rule is assumed
for "11:+1:

"11:+1 = min ("11:"1 .. Tlm)

"1 0
, "1. and Tlm are given parameters.

4.6 Preconditioned conjugate gradient for minimization of

augmented Lagrangian

The algorithm for minimization of the augmented Lagrangian (ef sect. 4.1) theoret­

ically guarantees that the exact solution of a problem will be found after finite number

of iterations. However, during the actual computations the rounding errors often cause

numerical problems. For accelerating the convergence, the augmented Lagrangian can

be minimized by using the preconditioned conjugate gradient method. This method is

discussed in details for linear problems in (Golub and Van Loan, 1983) and for least

squares problems in (Heath, 1984). Therefore we present only brief summary of the

applied approach.

Let us consider again the algorithm for minimization of the augmented Lagrangian

penalty function. Assume that the steps 8 - 15 of the algorithm are executed for

fixed sets of indices I, J. In other words, the conjugate gradient algorithm is used for

minimization of a quadratic function which has the following Hessian matrix:

H = (A~f(A~)

A matrix M which approximates the Hessian matrix H and for which it is easy to solve

the the linear system:
MpJ = qJ

will be referred to as the preconditioning (or scaling) matrix.

For a given preconditioning matrix M and under assumption that the sets of indices

I, J do not change, we can use the following modification of the steps 8 - 15 of the

135

algorithm 4.1. This modified algorithm will be called preconditioned conjugate gradient

algorithm for minimization of the augmented Lagrangian penalty function. Note that

steps 10., 11., 12. are void since the sets of indices I, J do not change.

8. Set pJ = M-1qJ

9. Compute

s = AJpJ

h = (qJf M-1qJ

d = IIs1W

a = hid

13. Compute the new point x J := x J + apJ and the minus gradient at that point:

gi := gi - aS i

14. If qJ = O. then STOP

15. Continue with the preconditioned conjugate gradient steps:

go to step 9.

There is no general rule for a choice of a scaling matrix. Therefore we will discuss

briefly possible preconditioned matrix selection options for general formulation of LP

problems and for dynamic LP problems.

4.6.1 Scaling matrix for LP problems

For LP problems that do not have a special structure of the matrix A, a scaling matrix

M should be an approximation of H = (A~)T(A~).

Diagonal scaling: A very simple method of scaling which requires only n elements

to be stored results in a matrix M which is the diagonal of H.

Let the matrix M be equal to a matrix W] which is defined (for given sets of indices

1,1) as follows:

W] = diag(wi) j E J

where Wi = EiEl ali' The matrix W] can be easily updated if the indices sets I, J are

changed. If a new index k is added to the set I then the respective element should be

updated in the following way: wi := wi + a~i' If an index is removed from the set J a

column and a row should be discarded from the matrix Wj.

136

Cholesky factorization of the scaling matrix Let nJ be dimension of a sub­

space in which we minimize the quadratic function, and nd be an integer number.

Assume that after nJ + nd steps of the ordinary or diagonal scaling conjugate gradient

algorithm a minimum is not found. In such a case we can use as the scaling matrix the

Hessian:

M = (A~Y(Aj)

and apply Cholesky factorization for obtaining an inverse of the scaling matrix (M =
RTR, where R is upper triangular matrix). Application of such scaling matrix usually

results in minimimization of the function in one step of the algorithm.

4.6.2 Scaling matrix for dynamic LP problems

The main advantage of the conjugate gradient algorithm for dynamic LP problems is

due to the reduction of a dimension of working space to a dimension of a subspace of

independent variables. Therefore an implementation of the preconditioned conjugate

algorithm should use as a scaling matrix a matrix which approximates the reduced

Hessian. For a general structure of the dynamic problem, the form of the reduced

Hessian is rather complicated, thus we suggest a different method for selection of a

scaling matrix.

Let us consider the algorithm for minimization of the augmented Lagrangian penalty

function - section 4.4. with the assumption that the steps 9 - 20 of the algorithm are

executed for fixed sets of indices I, J.

Matrix scaling: Let p{, k = 1, ... , nJ be conjugate directions obtained during nJ

steps of the ordinary conjugate gradient algorithm, where nJ is also dimension of the

working space. Then an inverse of the reduced Hessian matrix Q may be calculated as:

nJ

Q = LP{(p{l/dk

k=l

where dk = Ils~ 11 2
• The preconditioned conjugate gradient algorithm can be used with

M-1 = Q. The matrix M-1 may be obtained in the following way:

Qo =0

Qk = Qk-l + p{(p{)T /dk

M- 1
= QnJ

k=l, ... ,nJ

Diagonal scaling: Instead of using the matrix Q defined above one can use only

its diagonal. In such a case if after nJ steps of the conjugate gradient algorithm a

minimum is not found, the preconditioned conjugate gradient algorithm is initiated

with the scaling matrix M- 1 = diag(Q).

137

4.7 Scaling

It is generally agreed that the choice of an appropriate scaling of a problem being solved

can be a critical issue for numerical stability. There are obviously two approaches to

deal with that problem. First, suggested by Tomlin (1972), assume that an experienced

model builder, who uses sensible units may avoid unnecessarily large or small matrix

elements. This is true, but requires a lot of time consuming preparations, which are

reliable source of frustrating bugs. Therefore, we have followed the second approach,

suggested by Curtis and Reid (1972) for solving the scaling problem.

Our approach is discussed in details in (Makowski and Sosnowski, 1981), therefore

only short description follows. For the sake of simplicity we consider a problem of scaling

on an example of a problem in a form:

Ax= b

where A E Rmxn.

According to Curtis and Reid (1972) matrix A is considered as well-scaled if

m 2

L L (log(abs(aij))) :::; v
;=1 jEJ,

(18)

for some acceptable v. J; are sets of indices of columns with non-zero elements in i-th

row.

Therefore, instead of solving the original problem (18), one can solve an equivalent

problem in form

(RAC)y = Rb

C- 1d :::; y :::; C- 1q

X = Cy

Here R = diag(r1, ... ,rm) and C = diag(c1""'C n) are two diagonal matrices with

positive components. In other words, an equivalent problem is formed by multiplying

i-th row by r; and j-th column by Cj.

The problem of scaling boils down to finding coefficients r; and Cj such that

m 2

L L (log(r;cjabs(a;j))) -t min
;=1 jEJi

It is easy to observe that the above stated problem has no unique solution (although

the optimally scaled matrix may be unique). Therefore we minimize the following

performance index:

m 2 2

L L (log(r;cjabs(a;j))) + f3 L (log(abs(r;rhs;))) +
;=1 jEJ; ;EK

1 L(log(abs(cjbnd;))f -t min
;EL

138

where rhs and bnd are non-zero elements of RHS and bounds, respectively, sets of

indices K and L contain indices of rows with non-zero rhs and columns with non-zero

bounds, respectively.

For numerical reasons the base of logarithms is 2 and obtained coefficients are

rounded to nearest integer number.

For this formulation of the scaling problem, it was possible to design a specialized

algorithm based on conjugate gradient method. Since an excessive accuracy is not

required, the scaling algorithm is very efficient (usually it takes less then 10 iterations

regardless of dimension of a problem). Therefore, the scaling option (which is the

default) should not be suppressed except if special requirements apply. The values

of performance indices (3.7) and (3.8) are displayed both before and (if active) after

scaling.

Usually there is no need to change default parameters. Should a change of parame­

ters be desired, it may be done by entering respective values in specification file (SBETA

stands for f3 and SETA stands for ,). Two stopping criteria are used, which may be

controlled by parameters SEPS and SEPl. Let v'" be a value of the performance in­

dex (3.8). The scaling routine is ended, if v'" /v"'-l 2: SEPS or if the norm of gradient is

less then SEPl. In addition the number of scaling iterations in constrained by ITSCAL

(cf the User Manual).

Scaling coefficients are displayed as additional column in MPS-type output of results.

This has only informative purpose, since all results are rescaled internally.

5 Testing examples

HYBRID has been tested on number of examples. For the sake of illustration of the

package capabilities several known examples that cover different types of problems have

been selected.

5.1 Economic growth model (Manne)

This model is a linear multicriteria version of Manne's model described in (Murtagh

and Sanders, 1982).

The variables have the following meaning:

t - time period, t = 1,2, ... , T

Ct - consumption

1t - investment,

k t - capital in time period t.

The following criteria have been selected for illustration of multicriteria optimization:

(of the type MAX)

139

max kT

min max ICt - etl
t=1.2 •...•T

The state equations have the following form:

(of the type MAX)

(of the type FOL)

t=I,2, ... ,T

with ko given.

Linear constraints are defined for t = 1,2, ... , T

k t ~ ko+ io

Bounds are given for both control variables (for each variable a constraint is specified

for each time period t = 1,2, ... , T):

it ~ (1.04)tio

The following parameters (where a = (co + io)/ko) have been assumed:

Pt = 0.95
t, b = 0.25, g = 0.03, Co = 0.65,

i o = 0.16, ko = 3.0, at = a(1 + g){1-b)t

In the following table the test examples which refers to the modified Manne problem

are denoted by ManneT, where T corresponds to a number of periods.

5.2 Flood control problem

The problem is a model (cf Kreglewski et aI., 1985) of the water system which consists

of three general purpose reservoirs supplying water to the main river reach. The goal

of the system dispatcher is to operate the reservoirs in such a way that the flood peak

on the main river do not coincide. It is assumed that inflow forecast for each reservoir

is known.

The model consists of water balance equations for selected points and for each time

period. The capacities of reservoirs are also constraint. Various types of criteria are

examined:

FOL - corresponds to following given trajectories of water flow in selected points,

DER - corresponds to minimization water flow changes (in consecutive time periods)

in selected points,

MAX - corresponds to minimization of maximal (over time) flow in selected points.

In the following table the test examples which refers to the multicriteria flood control

problems are denoted by FloodT, where T corresponds to a number of periods.

140

5.3 Full dense LP problem

This problem is a modification of the Mangasarian example (Mangasarian, 1981) and

has been generated for verification of the package for fully dense LP problems. Com­

putations are performed for one criterion and elements of matrix are equal to 1.0 with

exception of diagonal elements for which values of a;i = i are selected.

In the following table the test examples which refers to the modified Mangasarian

example are denoted by MangT, where T corresponds to a dimension of LP matrix.

5.4 Linear programming test problems

Four examples from a widely used set of test problems (ef e.g. Gay 1986), namely: Afiro,

Adlittle, Share2b and Israel have been also used as testing examples. The last three

problems result in badly conditioned Hessian matrices of the augmented Lagrangian.

5.5 Discussion of test results

Testing problems have been solved on a PC compatible with IBM/AT (running at

8 MHz) with 80287 coprocessor (running effectively at 5.3 MHz). The algorithm was

implemented with double precision arithmetic (the machine precision about 2.22e-16).

The default values of all parameters (this includes initial multipliers equal to zero) were

assumed in all runs.

The results of some tests are summarized in the following table. Numbers of rows

and columns correspond to a single criterion LP problem, which were obtained by

transformation of relevant multicriteria problems. The numbers of gradient iterations

correspond to execution of step 8 of the algorithm (ef sect. 4.1).

Problem Number Rows Cols Dens. Time Mult. Grad

of crit. [%] (min.) iter. iter.

Manne05 3 29 27 12 0.08 2 21

MannelO 3 54 52 7 0.18 2 45

Manne20 2 103 102 3 0.25 2 51

Manne30 2 153 152 2 0.52 2 159

Fiood03 3 37 37 6 0.37 2 13

Fiood05 3 59 59 4 1.50 3 63

Mang20 1 20 20 100 0.33 2 8

Mang30 1 30 30 100 0.98 2 8

Afiro 1 28 32 10 0.17 2 68

Adlittle 1 57 97 8 17.75 10 476

Share2b 1 97 79 10 37.51 24 807

Israel 1 175 142 10 128.63 5 974

Due to super sparse matrix technique applied for storing data, rather long compu­

tation time is required for fully dense matrix problems. For dynamic sparse problems

141

better performance of the algorithm was observed. HYBRID is usually slower in com­

parison to packages which are based on the simplex method but requires less computer

memory. On the other hand HYBRID performs detailed diagnostic of a problem being

solved and offers a possibility of definition and modification of a multicriteria problem,

its conversion to an equivalent single criterion problem, as well as the possibility of

effectively solving badly conditioned problems that might be difficult for other systems.

As an illustration of HYBRID performance on a mainframe computer, a modification

of the Manne problem (for the sake of creating a larger problem we have introduced

10 sectors instead of one given in formulation in sect. 5.1) for 20 time periods has been

solved by both MINOS ver. 5.0 (Murtagh and Saunders, 1983) and HYBRID ver. 3.1.

The test has been performed on VAX 780/11 under Berkeley UNIX 4.2. A multicriteria

problem with criteria presented in sect. 5.1 has been generated and has been converted

by HYBRID to a corresponding single criteria problem and the MPS format input file

for MINOS has been generated. The resulting problem has 464 rows, 471 columns and

1463 elements (density 0.7%). MINOS has used 2.9 min. (the sum of user and system

time) to solve the above mentioned problem. HYBRID has used 2.28 min. for processing

and diagnostic of the problem (which includes interactive definition of initial reference

trajectory, conversion of multicriteria problem to the equivalent single criterion problem

and generation of MPS format file for the latter problem) and 2.35 min. for solving

the problem. On the other hand HYBRID has used less then half of computer memory

required by MINOS to solve the problem.

6 Conclusions

First version of HYBRID was made operational on VAX 780/11 and is documented in

(Makowski and Sosnowski, 1984). Then we had improved and extended the package

for dynamic linear programming models (DLP) and for multicriteria problems (both

static and dynamic). The later version is documented in (Makowski and Sosnowski,

1985b). The next version, HYBRID 3.03 (described in Makowski and Sosnowski, 1988b)

allowed for more general formulation of problems with recognized structure. The code

of HYBRID 3.03 has been improved with taking into account robustness of its usage.

Last major revision of the algorithm and code which resulted in HYBRID version 3.1 is

summarized in Section 1.3.

HYBRID 3.1 is still a prototype software that requires more testing. It is true

that for some problems HYBRID 3.1 performs worse than the commercial packages

FMPS and MINOS. If HYBRID is used not only for one run but for scenario analysis

(solving the problem with change of multicriteria parameters, matrix elements, RHS

etc.) its performance is much better. This is not only due to the fact that MPS file is

processed only once in a first run but mainly because in consecutive runs only updates

of affected coefficients are made (the problem is generated only for the first run) and

because a solution is usually obtained much faster then for the first run. On the other

hand HYBRID offers the possibility of formulation, solution and analysis of a linear

programming multicriteria problems and of single criteria linear-quadratic problems.

HYBRID provides very useful diagnostics for any LP model and therefore is also

142

useful for a model verification. It could be used for that purpose as "stand alone"

package, and-also after possible modification of a problem in interactive way-one

may output MPS-format file to be used by other packages. The same approach may be

used for transformation of multicriteria problem to equivalent single-criteria LP.

The further development of HYBRID will proceed in following directions:

1. Further modification of the way in which the user communicates with the pack­

age. The modification will exploit capabilities of PC and will ease the use of the

package.

2. Extensions of capabilities of HYBRID by introduction of new options for definition

and handling of multicriteria problem (new types and more flexible definition

of criteria, introduction of both aspiration and reservation levels, data base for

previous runs etc). Another new option will allow for easy formulation of piece­

wise linear goal function for an LP problem.

3. Further improvement of the algorithm and its computer code (automatic evalua­

tion of some parameters, experiments with possible modification of the algorithm)

that will result in a faster execution.

We hope that, despite the reservations outlined above, HYBRID 3.1 will eventually

be a useful tool with many practical applications. We would be grateful for any criticisms

and comments that would help us to improve the package.

7 References

Bertsekas, D.P. (1976). Multiplier methods: a survey. Automatica, 12: 133-145.

Curtis, A.R. and J.K. Reid (1972). On the automatic scaling of matrices for Gaussian

elimination. Journal of Mathematics and its applications, No. 10, pp. 118-124.

Flecher, R. (1981). Practical methods of optimization, vol II, Constrained optimiza­

tion, Wiley, New York.

Fourer, R. (1982). Solving staircase linear programs by the simplex method. Mathe­

matical Programming, 23(1982) 274-313,25(1983) 251-292.

Gay, D.M. (1986). Electronic Mail Distribution of Linear Programming Test Problems.

Numerical Analysis Manuscript, 86-0(1986), AT&T Laboratories, Murray Hill,

New Jersey.

Golub, G.H. and C.F. Van Loan (1983). Matrix Computations, Johns Hopkins Uni­

versity Press, Baltimore, Maryland.

Heath, M.T. (1984). Numerical Methods for Large Sparse Linear Least Squares Prob­

lems. SIAM J. Sci. Stat. Comput., Vol. 5, No.3, 1984.

Hestenes, M.R. (1980). Conjugate Gradient Methods in Optimization. Springer Ver­

lag, Berlin.

143

Hurlimann, T. (1988). Reference manual for the LPL Modeling Language. Research

Report, University of Fribourg, Fribourg, Switzerland.

Ho, J.K. and A.S. Hanne (1974). Nested decomposition for dynamic models. Mathe­

matical Programming, 6(1974) 121-140

Kallio, M., A. Lewandowski and W. Orchard-Hays (1980). An implementation of the

reference point approach for muItiobjective optimization. WP-80-35, International

Institute for Applied Systems Analysis, Laxenburg, Austria.

Kreglewski, T., Lewandowski, A. and T. Rogowski (1985). Dynamic Extension of the

DIDAS system and its Application in Flood Control. In M. Grauer, M. Thompson,

A.P. Wierzbicki, editors: Plural Rationality and Interactive Decision Processes,

Springer Verlag.

Lewandowski, A. and M. Grauer (1982). The reference point optimization approach­

methods of efficient implementation. CP-8-S12, nASA Collaborative Proceedings

Series: Multiobjective and Stochastic Optimization Proceedings of an nASA Task

Force Meeting.

Makowski, M. and J. Sosnowski (1981). Implementation of an algorithm for scaling

matrices and other programs useful in linear programming, CP-81-37, Interna­

tional Institute for Applied Systems Analysis, Laxenburg, Austria.

Makowski, M. and J. Sosnowski (1984). Hybrid: A mathematical programming pack­

age, nASA, CP-84-9.

Makowski, M. and J. Sosnowski (1985a). A decision support system for planning and

controlling agricultural production with a decentralized management structure.

In M. Grauer, M. Thompson, A.P. Wierzbicki, editors: Plural Rationality and

Interactive Decision Processes, Springer Verlag.

Makowski, M. and J. Sosnowski (1985b). HYBRID 2.1: A mathematical programming

package for multicriteria dynamic problems. In A. Lewandowski, A. Wierzbicki,

editors: Theory Software and Testing Examples for Decision Support Systems,

nASA, Laxenburg, September 1985.

Makowski, M. and J. Sosnowski (1987). Methodological Guide to HYBRID 3.01: a

mathematical programming package for multicriteria dynamic problems. In A. Le­

wandowski, A. Wierzbicki, editors: Theory Software and Testing Examples for

Decision Support Systems, WP-87-26, nASA, Laxenburg, April 1987.

Makowski, M. and J. Sosnowski (1988a). A Mathematical Programming Package for

Multicriteria Dynamic Linear Problems HYBRID. Methodological and User Guide

to Version 3.03, WP-88-002, nASA, Laxenburg, January 1988.

Makowski, M. and J. Sosnowski (1988b). User Guide to a Mathematical Program­

ming Package for Multicriteria Dynamic Linear Problems HYBRID Version 3.1,

WP-88-111, nASA, Laxenburg, December 1988.

144

Mangasarian, O.L. (1981). Iterative solution of linear programs. SIAM Journal/or

Numerical Analysis, 18(4): 606-614.

Murtagh, B.A. (1981). Advanced Linear Programming: Computation and Practice,

Me Graw-Hill, New York.

Murtagh, B.A. and M.A. Sanders (1977). MINOS - A large-scale nonlinear program­

ming system (for problems with linear constraints). User guide. Technical Report,

Systems Optimization Laboratory, Stanford University.

Murtagh, B.A. and M.A. Sanders (1982). A projected Lagrangian algorithm and

its implementation for sparse nonlinear constraints. Mathematical Programming

Study, 16(1982),84-117.

Murtagh, B.A. and M.A. Saunders (1983). MINOS 5.0 User's Guide, Technical Re­

port SOL 83-20, Systems Optimization Laboratory, Department of Operations

Research, Stanford University, Stanford, December 1983.

O'Leary, D.P. (1980). A generalized conjugate gradient algorithm for solving a class

of quadratic problems. Linear Algebra and its Applications, 34: 371-399.

Polyak, B.T. (1969). The conjugate gradient method in extremal problems. Compu­

tational Mathematics and Mathematical Physics, 9: 94-112.

Polyak, B.T. and N.V. Tretiyakov (1972). An iterative method for linear programming

and its economic interpretation. Economic and Mathematical Methods, 8: 740­

751, (in Russian).

Propoi, A. (1976). Problems of Dynamic Linear Programming, nASA, RM-76-78.

Sosnowski, J.S. (1978). Dynamic optimization of multisectorial linear production

model. Systems Research Institute, Warsaw, Ph.D. Thesis, (in Polish).

Sosnowski, J.S. (1981). Linear programming via augmented Lagrangian and conju­

gate gradient methods. In S. Walukiewicz and A.P. Wierzbicki, editors: Methods

0/ Mathematical Programming, Proceedings of a 1977 Conference in Zakopane.

Polish Scientific Publishers, Warsaw.

Tomlin, J.A. (1972). On scaling linear programming problems. Mathematical Pro­

gramming Study 4, North Holland Publishing Company, Amsterdam.

Wierzbicki, A. (1978). On the use of penalty functions in multiobjective optimization,

Institute of Automatics, Technical University of Warsaw.

Wierzbicki, A.P. (1979). A methodological guide to multiobjective decision making,

WP-79-122, nASA.

Wierzbicki, A. (1980).

WP-80-90, nASA.

A mathematical basis for satisficing decision making.

Safety Principle in Multiobjective

Decision Support in the Decision Space

Defined by Availability of Resources

Henryk Gorecki, Andrzej M.J. Skulimowski

Institute of Automatic Control

Academy of Mining and Metallurgy, Cracow.

Abstract

We consider the situation where a decision-maker in a multicriteria optimization

problem must follow additional constraints in the criteria space defined by avail­

ability of resources. The set defined by such constraints - called demanded set - is

assumed to be uncertain as a result of a priori experts estimations. The analysis of

numerous real-life situations showed that a method of looking for a non-dominated

solution on the so-called skeleton allows to find a solution maximally safe with re­

spect to the random perturbations of the demanded set. We formulate a maximal

safety principle as a requirement that the expected value of distance from the so­

lution chosen to the boundary of the demanded set were maximal. Then we prove

that the search executed on the skeleton curve satisfies this principle for a class of

demanded sets defined by aspiration levels.

1 Introduction

The choice of a compromise solution fulfilling additional conditions with regard to its

location in the criteria space is essential in numerous real-life multiple criteria optimiza­

tion problems. For instance, the choice of a technological process from many variants

proposed by experts, taking into account the total cost of investment and the minimal

necessary time to start the production, is often based on the analysis of upper and lower

bounds for values of the above criteria, (Gorecki, 1981). Such bounds are usually not

strict; they are called aspiration levels and are assumed to be imposed independently

by experts or the decision-maker after the formulation of the problem, therefore serving

as an additional information for selecting the compromise solution.

T h ~ nature of aspiration levels is often uncertain and the arising set of demanded

values of criteria may be represented as random or fuzzy set. When selecting a com­

promise solution, the decision-maker is obliged to take into account the possibility of

unexpected change of aspiration levels using an uncertainty handling technique. For

the case where the demanded set is defined by two aspiration levels such a method

has been proposed by Gorecki (1981). In his approach the search for a non-dominated

146

solution has been executed on a line which joins the aspiration levels, and lies inside of

so-called skeleton of the demanded set. An outline of the skeleton method may be found

in Gorecki (1981) and Wiecek (1984). The numerical implementation of this method

has then been developed by Gorecki et al. (1982, 1985). Here, we will present some of

its theoretical foundations.

Throughout this paper we will assume that the set defined by the lower and upper

aspiration levels, called demanded set, and the attainable set of the criteria values have a

non-empty intersection. Then we will analyse the problem of selecting a non-dominated

compromise solution from this intersection which is - in some sense - most reliable to

the changes of the demanded set. Namely, we look for a problem solution on a specific

class of lines called the ordinal skeleton curves of the demanded set. The solution

thus obtained will possess the property that the expected value of the distance from

the boundary of the demanded set is maximal, or equivalently, that the probability

of remaining within the demanded set - whose boundary changes according to some

random rules - is maximal.

In this paper we will concentrate our attention on the particular case of the criteria

space constraints, namely on the sets defined by aspiration levels of the form

(1)

where: q1 and q2 are the aspiration levels for criteria, denoting the minimal admissible,

and the most desired values of the criteria, respectively, and e is the positive cone of

the partial order in the criteria space. Usually e = R':, and

N

Q = II[qlijq2;]
i=1

(2)

where q1 = (ql1, ... ,q1N) and q2 = (q21, ... ,q2N), qli 2: qu for 1 ~ i ~ N and the product

of intervals is understood in the Cartesian sense.

2 Problem formulation

Let us consider multicriteria minimization problem /MMP /

(3)

where F = (F1 ,F2 , ... ,FN) is the vector objective continuous function, U is a closed

subset of the decision space, and e is a closed, convex and pointed cone defining the

partial order ~ 8 in the criteria space RN. We assume that the set U and the function

F are convex, therefore the attainable set F(U) is also convex.

The solution u to the problem will be called non-dominated if

(F(u) - e) n F(U) = {F(u)} (4)

The set of non-dominated decisions P(U, F, e) will be called the Pareto set while the

corresponding set of non-dominated valuations

FP(U, e) := F(P(U, F, e)) (5)

147

will be called the compromise set. We will also use the notation P(V, 8) := P(V, idE, 8)

whenever VeE.

Moreover, we assume that in the criteria space two points are distinguished, ql :=

(qU, ... ,qlN) and q2:= (q21lq22, ... ,q2N) such that q2::;9 ql. The points ql and q2 will be

called the upper, and the lower aspiration levels for the problem (3), respectively.

The aspiration levels are set up by experts independently from the base problem for­

mulation and define so-called demanded set Q for the values of the criteria (cf. formula

(1)). We will assume that ql is attainable and that

P((ql - 8) n F(U),8) = (ql - 8) n FP(U,8) (6)

On the contrary, q2 is assumed to be unattainable strictly dominating point for the

attainable set F(U), Le.

and

FP(U,8) n (q2+8) =I 0 (7)

P(ql - 8) n F(U),8) = (ql - 8) n F P(U, 8) (8)

(cf. Skulimowski (1986a)).

Another additional assumption which will be used at this stage of problem solution

is that there exist reasonable estimates of the scale coefficients for each scalar criteria

F1, ... , FN . This will enable us to measure the distance of the criteria inside the demanded

set basing on locally comparable units of the coordinates of the criterion function. A

method of deriving locally comparable units has been proposed by Gorecki (1981) who

used the differences between the coordinates of the barycenter of Q and ql as the relative

units of criteria.

Since this kind of information imposes certain knowledge of the trade-offs between

criteria which in our model are uncertain, in the real-life applications we will repeat

the execution of the algorithm described in the following section interactively, with the

slightly varying values of the scale coefficients.

The demanded set Q plays the role of additional constraints imposed on the solution

to the MMP. At this stage we will assume that every non-dominated solution found

inside Q is admissible for the decision maker. However, the estimates of ql and q2 are

usually uncertain and the satisfactory solution to the problem is the one which lies

inside of the actual demanded set Q'7 perturbed by a random factor '7. To maximize

the probability of Uopl E Q'7 we will define a special class of algorithms of the line-search

for a non-dominated solution to MMP inside of Q.

3 The search for a non-dominated solution on a

curve

The idea of the algorithm of finding a compromise non-dominated solution presented

below consists in replacing the original MMP (3) by a search for a non-dominated

solution belonging to a curve g which lies inside the demanded set Q. If Q is defined by

(1), g begins at an attainable reference point ql and ends at an unattainable dominating

one, q2 Le. g(O) = ql and g(l) = q2. The solution thus found belongs to the intersection

148

of FP(U,8) and g*:= g([O;l]), and is non-dominated provided that the set FP(U,8)

divides the demanded set into two parts. The latter condition is fulfilled e.g. when

F(U) is convex and (6) is satisfied.

The algorithm of the search

The choice of the curve 9 is based on the analysis of the specific properties of ele­

ments of g*. Consequently we will consider the curves which satisfy the maximal safety

principle, Le. those for which the probability that the compromise solution chosen will

remain within the randomly perturbed demanded set is maximal.

This may be achieved by selecting the curve maximizing the mean value of distance

from the boundary of the demanded set. Considering moreover the fact that some

criteria may turn out to be redundant leads us to choosing the so-called ordinal skeleton

curve (Gorecki (1981), Wiecek (1984)) as the curve the search should be expected on.

The general algorithm of the search on a curve 9 may be sketched as follows:

Step 0 : selection of g, the choice of the algorithm A of detection of a non-dominated

point p on g*,

10 := q2, i:= 1, To := 1

Step 1 :

Ii = A(Ji-l,Ti-d,

Step 2 : check whether Ii is attainable; set Ti := 1 if Ii is attainable,

otheTwise Ti := 0,

Step 9 :

ei .- II Ii - li-l II
il Ti ~ Ti-l and ei < eo

then
Ii + li-l

p'-.- 2

stop

else i := i + 1, go to 1.

The result of an execution of the algorithm is a non-dominated solution p. The Pareto­

optimality of p is an immediate consequence of the assumption that ql and q2 are

separated by the non-dominated surface FP(U,8). The uniqueness is assured if 9 is a

linearly ordered subset of Q which will be assumed further on. The maximal safety of

p will be discussed in the following section.

In selecting a curve 9 so that safety principle is satisfied, a crucial role is played

by the norm in the criteria space since it determines the value of the distance of the

solution chosen from the exterior (or, equivalently, boundary) of Q. On the other hand,

choice of distance influences the properties of the probability distribution of finding a

non-dominated point along a curve. The justification of the choice of the norms /1 or

/00 in the criteria space is contained in the following subsection.

The algorithm is assumed to possess the following properties

149

a) AU, r) E g* whenever f E g*

b) II fi+1 - /; II < Ilfi -/;-111 for i > 1

c) the assumed number of iterations of A depends only on the value of \Iql - Q211, not

on the shape of g*.

To check whether a point Fi belonging to g* is attainable one should examine the

existence of solutions to the equation

Ii = F(u)

In convex cases this may be done as proposed by Wiecek (1984).

The value of eo must be sufficiently small to assure the accuracy of the method. The

recommended value which proved to be adequate in numerical experiments is

eo := 1O-4min{Pi(Q)i 1 ~ i ~ N}

where Pi (Q) is the diameter of the projection of Q on the i-th axis in the criteria space.

The choice of a distance in the criteria space

We will start this section from the following definition:

Definition 1 : A curve g : [0,1] -+ E is linearly ordered iff

(9)

where ~ 9 is the partial order in E. The set of all linearly ordered curves linking the

points x and y will be denoted by L(x,y).
Further on we will require that the following property of the line-search for a non­

dominated solution, imposed by the choice of the class searching algorithms, is satisfied.

Assumption 1 . Let x and y be two elements of the demanded set Q such that x ~9 y.

Then the probability of finding a non-dominated point on a linearly ordered curve

connecting x and y is constant and does not depend on the choice of this curve.

On the other hand we may require that the search on a curve gives better results

when the curve is longer which can be formalized as

Assumption 2. The probability of detecting a non-dominated point on a curve linking

two points is proportional to the length of this curve.

Consequently, the Assumptions 1 and 2 imply that all linearly ordered curves linking

two fixed points in the criteria space should have the same length. The above require­

ments imply the limitations in the choice of the distance and the derived differential

form (element of distance) which defines the length of the curve.

It is easy to see that the following statement is true.

Proposition 1 : The Assumptions 1 and 2 are fulfilled by the length of the curve gener­

ated by the II or leo norm, Le. by

-Xdg) := 1dx(lt} = i d: Igi(t)l)dt
9 [0,1] i=1

(10)

150

where 9 = (gl' ... ,gN) is the curve considered, and x(ld is the element of length associ­

ated to the L I norm. The length of 9 for 100 norm is defined similarly to (10).

Proof of the Proposition 1 is given in Gorecki and Skulimowski (1986b), i.e. we

prove that

for each x, y E Q, a, bE L(x, y): >'1 (a) = >'1 (b) (11)

Observe that only certain distances in R N satisfy the above requirement (11), e.g.

it is not fulfilled by the Euclidean distance.

The Assumptions 1 and 2, and the subsequent distance in the criteria space are in

compliance with the assumption about the class of algorithms applied for looking for a

non-dominated point on a curve, namely we will assume that these algorithms satisfy:

Assumption 9. The a priori imposed maximal number of steps of an algorithm of

detecting a non-dominated point on a curve 9 connecting the elements x and y of

the criteria space does not depend on the choice of 9 but on the differences between

coordinates of x and y. In particular, it may be defined as

{
y--x- }

max E n t (~) : 1:S; i:S; N ,

where Ent(r), r E R, is the smallest integer exceeding r, and Si, 1 :s; i :s; N, are desired

steps of quantification of criteria.

4 The safety principle

We will start this section with some basic definitions and properties. Let us recall that

the demanded set Q is a closed and connected subset of the criteria space such that

FP(U,e) n Q -I 0 (12)

Remark 1 : When (12) is not satisfied but Q contains some dominating points for the

attainable set then Q may be regarded as a target set and a distance scalarization

technique may be applied (Skulimowski, 1985a).

Further on we will restrict our consideration to the case where the demanded set

appears as a result of upper and lower estimates for the values of the criteria.

Definition 2 . The interval demanded set for the problem (3) is given by the formula

Q I : = (ql - e) n (q2 + e)

where:

ql :s; q2, ql ~ F(U)' q2 E F(U)

Interval demanded set in the case e := R': may be represented as

N

QI=Illq;;q;]
i=1

where ql, q; are lower and upper estimates of the i-th criterion demanded values respec­

tively.

151

Definition 9 . The subset 51 of the interval demanded set Ql defined by the formula

51 := {x E Ql: 3Gi , G j , i i- j - facets of Ql, such that (13)

d(X,aQl) = d(x,G i) = d(x,G j)}

where aQl - the boundary of Ql - will be called the skeleton of Ql.

Now, let C(Q) be the subset of Q consisting of points maximally distant from the

boundary of Q, Le.

C(Q) := {x E Q: 'V y E Q,d(y,aQ:::; d(x,aQ)} (14)

and let ql and q2 be two distinct elements of aQ such that q2 :::;9 ql. If Q is convex then

for each element q of the boundary of Q there exist a unique half-line v(q) starting in

q and such that the function d(e,aQ) grows fastest on v(q) in a neighborhood of each

point belonging to v(q). It is easy to see that v(q) links q and C(Q) and it is linearly

ordered. Thus we may formulate the following

Definition -I . The ordinal skeleton of Q is the set

It is evident that if Q = Ql then 50 C 51.

Observe that the narrower are the experts' estimations concerning a criterion F; the

smaller scope of decision is left to the decision-maker. Consequently, in some extreme

cases certain criteria can be regarded rather as the constraint functions. Moreover, when

the estimates are relatively narrow, one may expect that they are also more accurate

than those which allow the decision maker for the broad range of decision.

Thus in some cases the decision-maker can neglect the uncertainty in the estimations

concerning one or more coordinates of the objective functions. In such a situation the

consideration of the original demanded set Q should be replaced by taking into account

the set Q'

Q' := pr(il, ... , ik)Q

where pr(i 1 , ... ,ik) denotes the projection from RN to RN
-

k parallel to the axes il, ... ,ik
of the criteria space.

However, taking an arbitrary linearly ordered curve g contained in 50 C RN its

projection pr(il, ... , ik)(g) may not necessarily be contained in a lower-dimensional 5 ~ C

RN-k. To ensure that the skeleton curve in R N is also a skeleton curve in each lower

dimensional space we will define the skeleton curve in the following manner.

Definition 5. The linearly ordered broken line joining ql and q2 defined by the con­

struction below and contained in 50 will be called the skeleton curve of Ql and denoted

by 5.

Construction of the skeleton curve 5 is as follows:

1. Define
a 10

di = u i
; i; 1:::; i :::; k;

152

2. Reorder the set d; so that a new index j increases along with increasing values of

dj : 1 ~ j ~ k ;

3. Compute new pairs of opposite breaking points of 8D according to the formulae:

for i < j i 0 ~ j ~ k - 2

for i > j;

We now can to the issue of safety principle.

Proposition 2 (a maximal safety principle). Let L(qI, q2) be the set of all curves joining

ql and q2 inside Qr and being linearly ordered. Then for every g E L(qI, q2) and every

c such that c· C 80

l d(x,BQr)dP ~ l d(x,BQr)dP (15)

where P is a uniform probability distribution on g or c, and d is the 11 or 100 distance

in the criteria space. In particular, (15) holds for the skeleton curve 8. Proof of the

Proposition 2 has been presented in Gorecki and Skulimowski (1986b).

Corollary 1. In the situation where there is no information about the location of the

Pareto set, the search along the skeleton curve 8 results in finding a non-dominated

solution maximally distant to the boundaries of Qr.

Remark 2: The property (15) of the curve 8 can serve as a definition of the ordinal

skeleton curve in the case when the demanded set is different from Qr. The proved

property (15) of the skeleton curve is closely related to another definition of the safety

of the solution admitted.

Definition 6. A non-dominated y solution to the problem (3) will be called maximally

safe with respect to the change of bounds of Q if for each x E F P(U, e)

(16)

where '7 is a probability distribution in the space of closed and convex subsets of the

criteria space.

Now let us observe that Proposition 3 implies the following result concerning the

safety of the solution to MMP chosen on the skeleton curve 8.

Theorem 1. Let X be an arbitrary subset of Qr. The probability distribution '7 defining

the changes of BQ is assumed uniform. Then the maximally safe element of X with

respect to the changes of Q belongs to 8 whenever 8 n X =I- O.

Corollary 2 : A maximal safe non-dominated point belongs to 8 or is closest to 8 in

F(U) n Q.

5 An application to a design problem

Let us consider the problem of designing a construction lift taking into account the set of

parameters which decide about the commercial success of the product. These criteria in­

clude the time of evaluation of the project Fl1 the lifting capacity F2 , the maximal range

153

of the arm Fs. We assume that may exist other criteria such as reliability coefficient F"

or the production price per unit F6 which should be simply optimized, without paying

attention to the constraints in the criteria space and are not included in the model of

preferences here presented. The total cost of design and investment may be regarded as

a constraint, together with the employment, materials and technology limitations. We

assume that all constraints form a set U of admissible design strategies. The annual

net income anticipated I may serve as an aggregated utility function which, however,

depends on the above listed criteria in an unknown way. We can only assume that I

is monotonically depending on the measure of fulfillment of the m ~ r k e t ' s expectations

which are expressed by the set Q.

According to the preference model presented in the preceding subsections U is de­

fined by upper and lower limitations for the values of criteria. These parameters can

have the following practical interpretation:

F1l the minimal time necessary to distribute an announcement about the new

product to the potential customers, also - if all or a prevailing part of lifts

is to be sold to one company - the minimal supply time required by this

company;

F1u estimated upper limit of period warranting a sufficient market's demand,

or the maximal supply time required by the commissioning company, or the

estimated time a similar lift will be designed and offered by other producers;

F2 l minimal lifting capacity admissible for lifts of this type;

F2 u maximal reasonable lifting capacity estimated basing on the knowledge of

potential scope of applications of lifts;

Fsl , Fgu similarly as above - the minimal admissible, and maximal reasonable values

of the range of arm.

Each criterion should be optimized inside of the bounds F,lo F,u, 1::; i::; 3, whereas

F1 should be minimized, the other criteria - maximized. To treat the functions F, in an

uniform way we will instead maximize the function (-Fd.
The demanded set Q can be expressed in the form

3

Q = II [Fil , F,u]
.=1

The bounds of Q are uncertain as the values of Fil and F.u , 1 ::; i ::; 3 are only

estimates of the real user's needs. By Theorem 1 the strategy chosen on the skeleton

set S ensures that the probability of remaining within a perturbed set Q'1 maximal, TJ

being a random perturbation coefficient of Q. Roughly speaking, the better the solution

chosen fits into the set Q'1' the higher is the income I, on the other hand I should be

monotonic with respect to the criteria Flo F2 , ... , FN • Thus we can conclude that I should

be monotonically proportional to the utility function defined by the formula

G(u) = d(F(u), BQ)IdF(u)) + IdF(u)) (17)

154

where d(e,8Q) is the distance to the boundary of Q, F = (Ft,F2 ,Fs)' F = (Ft ,F5)

and II and 12 are certain order representing functions defined so that the maximum

of G were non-dominated and situated within Q x R 2 (ef. also formula in the final

subsection]. Let AUS note that the values of II and 12 are entirely independent if the

values of F and F are not depending on each other.

Hence it follows that the maximal safety with respect to F of a compromise solution

chosen is not conflicting with the goal of optimizing F in Q x R 2
• According to the

results of the preceding subsection such a compromise value of F should be found on

the skeleton curve S.

Since we do not impose any decision choice rule for the remaining criteria F t and F5

we might consider two subcases:

1. F and F are independent - then we get a family of solutions of form

where Fe is the compromise value of F found on the skeleton curve S.

2. the values of F are uniquely determined by F - then we get a unique solution

A simple numerical example is presented below.

A numerical example

In the above described decision model suppose that:

Fl/ 2 months,

Flu 12 months,

F21 5000 kilograms,

F2u 25000 kilograms,

FSI 10 meters,

Fsu 50 meters.

Then we get
s

Q = II [Fil, Fiu],
i=1

q1 := (2; 5000; 10), q2:= (12; 25000; 50).

The decision space is defined as the intersection of Q and

where U is the set of available design strategies connected with the employment, invest­

ment of financial strategies which are not considered here.

155

The distance in R3 which serves to define the safety coefficients inside Q is given by

Since F1 is the only minimized objective function, the criteria F2 and F3 can be

equivalently taken into account in the minimization problem

(F { , F ~ , F ~) ~ mm

after the following transformation:

Simultaneously,

F{ := Flo

3

Q' .- IT [FII' FIu],
.=1

and

(26)

(27)

q~ := (2; -25000; -50), q ~ : = (12; -5000; -10).

Having found the skeleton curve S and the compromise solution Ie for the trans­

formed problem (26)-(27), one should perform the transformation reverse to (27) to

obtain the numerical values interpretable for the decision-maker.

There exist 4 breaking points in the skeleton curve S which can be found according

to the construction algorithm given in Def.5 and amount to :

ql = (7,10,15); q2 = (7,15,20); q3 = (7,15,40); q4

The core C(Q) is the rectangle

(7,20,45);

The compromise solution 1e can be found on the interval [q3, q4] and amounts to (7;

15.58; 40.58). One can observe that in the above case 1e E C(Q).

6 Final remarks

The algorithm of solving the MMP basing on the search on the skeleton curve has

been implemented in FORTRAN and applied to solve real-life problems. The reader is

referred to Gorecki et al. (1982, 1985) for a detailed study of decision making in the

development analysis in the chemical industry.

The applications presented there show the adequacy of the decisions made via the

skeleton method. Some properties of the MMP solution choice algorithm based on

applying the skeleton curve have also been discussed by Wiecek (1984). The main idea

of this algorithm is the same as in the general algorithm with the curve g replaced by

156

the skeleton curve S. This algorithm can be repeated interactively, with the modified

scale coefficients and the lower, and upper experts' estimations, q2 and ql, respectively.

The method turned out to be useful as well in case where the existence of the inter­

section of S and the set of non-dominated points could not been taken for granted basing

on the assumptions concerning the objective F and the feasible set U. In particular, a

heuristic version of the method could be applied to select a compromise solution in the

case of non-convex attainable set F(U) provided the decision-maker is modifying the

upper and lower estimates ql and q2 in accordance with the initial information about the

location of F P (U, e) he is assumed to posses. The theoretical analysis of such a class

of methods, applying the search on the skeleton curve as a single step of the procedure,

with the demanded set systematically modified during and interactive decision-making

process challenges the perspectives of the further development of the method.

Another possibility of investigating the theoretical fundamentals of the method con­

sists in interpreting the search for a non-dominated solution on S as maximizing certain

utility function tp which admits its local maxima on S. In this approach tp can be taken

as the membership function of certain fuzzy set which describes the uncertainty of the

demanded set Q. This function can have the form

It follows immediately from the above formula that tpQ has the desired property men­

tioned above, i.e.

o ~ tpQ(x) ~ 1

tpQ(x) = 1 {:} x = q2,

argmax{tpQ(x) : x ~9 qd E S

and, moreover, tpQ is order representing (Wierzbicki, 1980).

These properties could provide for a combination of fuzzy set theory and the skeleton

method.

References

Gorecki, H., (1981). Problem of choice of an optimal solution in a multicriteria space.

Proceedings of the 8th [FAC World Congress. Kyoto 1981; Pergamon Press, Lon­

don, Vol. 10, pp 106-110.

Gorecki, H., A.M. Skulimowski (1986a). A joint consideration of multiple reference

points in multicriteria decision-making. Found. Contr. Engrg. 11; No.2.

Gorecki, H., A.M. Skulimowski (1986b). Group decision-making maximally safe with

respectto the change of aspiration levels. (to appear).

Gorecki, H., G. Dobrowolski, J. Kopytowski, M. Zebrowski (1982). The quest for

a concordance between technologies and resources as a multiobjective decision

process. M. Grauer, A. Lewandowski, and A.P. Wierzbicki Eds. Multiobjective

157

and Stochastic Optimization, IIASA Collaborative Paper CP-82-S12, Laxenburg,

Austria, pp 463-476.

Gorecki, H., G. Dobrowolski, T. Rys, M. Wiecek, M. Zebrowski (1985). Decision

support system based on the skeleton method - the HG package. Interactive

Decision Making, Proc. Sopron 1984 , pp 269-280.

Skulimowski, A.M. (1985a). Solving vector optimization problems via multilevel anal­

ysis of foreseen consequences. Found. of Control Engrg., 10; No.1.

Skulimowski, A.M. (1985b). Generalized distance scalarization in Banach spaces, Rev.

Beige de Stat., In/. Rech. Operationel/e, 25, No.1, pp 3-14.

Skulimowski, A.M. (1986). A sufficient condition for 8-optimality of distance scalar­

izing procedures. Proc. of the Int. Conference on Vector Optimization J.Jahn,

W.Krabs (Eds.), Darmstadt, 5-8 August 1986.

Wierzbicki, A.P. (1980). On the use of reference objectives in multicriteria optimiza­

tion. G.Fandel, T.Gal (Eds.) Multiple Criteria Decision Making - Theory and

Application.

Wiecek, M. (1984). The skeleton method in multicriteria problems. Found. Contr.

Engrg., 9, No.4, pp 193-200.

Nonlinear Optimization Techniques
.
In

Decision Support Systems

Tomasz Kreglewski

Institute of Automatic Control, Warsaw University of Technology.

Abstract

Various aspects of the use of nonlinear models and nonlinear optimization algo­

rithms in model-based decision support systems are discussed. Differences between

linear and nonlinear cases are examined. A standard formulation for some class

of nonlinear models is proposed. Special forms for the scalar-valued achievement

functions especially developed for nonlinear optimization are proposed for sealariz­

ing multiple criteria nonlinear optimization problems in the case of two reference

(reservation and aspiration) levels specified by the user. A method of an automatic

creation of derivatives for model equations together with a way of speeding-up their

calculations is presented. Most of the concepts presented in this paper are imple­

mented in the IAC-DIDAS-N system (see Kreglewski et al., 1988) developed by

the author and his collaborators during their cooperative research with the System

and Decision Sciences Program of the International Institute for Applied Systems

Analysis.

1 Introduction

The decision analysis and support systems of DIDAS family (Dynamic Interactive Deci­

sion Analysis and Support - see second paper of this volume) are designed to support

interactive work with a model of the decision problem, formalized mathematically and

computerized. The work with such models is supported by multicriteria optimization

tools used for a selection of data presented to the user. The learning aspects of the

work with the model are also taken into account. Often there are two kinds of users

of such decision support systems: analysts and decision makers. The former prepare

the model and formalize the multicriteria decision problem, whereas the latter use the

system either as a tool for on-line decision making or as a training and case-study tool.

A model-based decision support system, regardless of the type of models and prob­

lems considered, consists of some standard parts: the model itself, the solver (optimiza­

tion code for selecting optimal decisions in the sense of current problem formulation)

and the interfaces between the model, the solver and the user of the system. The degree

159

of complexity of these interfaces depends on the type of a model (linear or nonlinear,

static or dynamic etc.), on the type of a decision situation (single or multiple criteria,

deterministic or with some uncertainty etc.) and on the requirements for the level of

user-friendliness of the system. The interface between the user (mostly the analyst)

and the model is called model generator. It is a tool for preparing the model, for its

edition and simulation as well as verification of the model when learning about the

model behaviour.

2 The model definition

We propose here a specific format for the definition of a nonlinear model; this format

has been proved to be useful for multicriteria analysis of such models. The definition

of a nonlinear model includes the specification of vectors representing input variables

x E R n
, parameters z E R l and outcome variables y E R m

, nonlinear model equations

defining the relations between inputs, parameters and outputs of the model and model

bounds defining lower and upper bounds for inputs and outputs:

y=f(x,z,y), (1)

where function f : R n x Rl X R m -----+ R m , f = [It] , i = 1, ... , m , should define the

outcomes y in an explicit way. If some outcomes Yi depend on some other outcomes Yi,

then it influences only the necessary order of calculations of functions fi, f; for given

inputs x and parameters z. However, this dependence should be explicitly recursive,

without loops and thus without need for internal iterative calculations.

The edition of the model described by (1) is the edition of numbers - elements of

vectors x1o
, xUP , ylo, yUP, Z and initial values of x, and the edition of formulae fi (x, z, y).

The edition of numbers is a standard operation in all number-crunching software and

can be easily performed using e.g. standard or specialized spreadsheet. The formulae

edition should be performed in a way as close as possible to the standard mathemat­

ical notation. A full-screen or window editor with some special options for formula

validation can be used for this purpose. The necessity of formulae edition makes the

preparation of nonlinear models different from a preparation of linear ones.

Another difference appears when the edition of a model is finished. A linear model

is then ready, whereas a nonlinear model requires validation by many simulation runs,

often resulting in updates of its formulation. In many cases standard mathematical

notation is not sufficient and some additional logical structures like If.• then.. else .. must

be used to avoid illegal mathematical computations like square root of negative argument

etc. Moreover, formulae editor should be equipped with some debugging tools to help

the user looking for the formula (and the exact place in the formula) with such illegal

operations. Sometimes other tools like step-by-step calculations are necessary.

During interactive analysis of optimal model characteristics nonlinear programming

algorithms are used. Experience shows that gradient-type algorithms are more robust

and efficient than non-gradient ones (see e.g. Kreglewski at aI., 1984); thus, all gradients

of model equations must be calculated. Numerical estimation of gradients is not accurate

enough and is very time consuming, therefore it should not be used in decision support

160

systems. Although analytical formulae for derivatives could be supplied by the user,

this approach is not recommended for at least two reasons. Firstly, the creation of

such formulae is a very cumbersome and time consuming task. Secondly, mistakes in

user-supplied formulae for derivatives are found to be the main reason of unsuccessful

applications of nonlinear optimization tools.

Thus, formulae for derivatives of model equations should be processed symbolically

inside the model preparation part of a decision support system. This function of the

system could be even invisible to the user except the cases when some numerical errors

occur in calculation of derivatives during simulations of the model. It implies some

additional functions of formulae editor.

The class of models (1) for decision support systems with efficient optimization in­

cluded is therefore restricted to models with differentiable model equations. Moreover,

logical structures used in formulae should be used with great care, in order not to

include nondifferentiabilities or even discontinuities. Implementation of automatic ver­

ification algorithms to check differentiability is very difficult and may eliminate even

some admissible types of functions.

3 Formalization of a decision problem

The model outcomes Yi, i = 1, ... , m, may be of different types. Some of them may be

only intermediate, internal in their essence, results inside the model. Others may form

various kinds of model constraints. Finally, some of outcomes are quality measures of

the model behaviour or ob}ective outcomes. In particular decision situations objective

outcomes have to be minimized, maximized or stabilized (i.e. kept close to a given level).

In a multicriteria decision problem separate outcomes can be each of a different type.

In optimization-based decision support systems it is assumed that the user is inter­

ested only in efficient solutions (that is, such that no objective can be improved without

deteriorating some other objective). If, at some stage of the work, the user finds that

this assumption is no longer valid, he can redefine the decision problem formalization

by adding new objectives.

An important part of a definition of a decision problem based on the nonlinear

model is a classification of constraints into three classes. The first class contains linear

constraints; these are all bounds on variables x and bounds on outcomes that depend

linearly on variables x. Linear constraints are always satisfied during any optimization

process. The two other classes contain nonlinear constraints formed by bounds on out­

comes that depend on variables x in a nonlinear way. In the second class there are so

called 'hard' constraints (e.g. technological balances). These constraints should be sat­

isfied exactly (within given accuracy), at least at each calculated optimal point, because

other model outcomes can have meaningless values if this constraints are not satisfied.

The existence of such constraints is the main difficulty for optimization algorithms and

may lead to its inefficiency. The last class of constraints is a class of so called 'soft'

constraints, mostly of some economical nature. The reason for distinguishing this class

is that there are some measurable costs of violation of these constraints. Thus in many

cases these constraint outcomes can be treated as additional objective outcomes with

161

some trade-offs between other objective values and violations of these 'soft' constraints.

4 Initial analysis of a decision situation

Before an interactive analysis of the decision problem, the user should first learn about

ranges of changes of efficient objective outcomes. The most important information

concerns the best attainable values of particular objectives calculated independently.

These values are practically never attainable jointly, hence the name utopia point is

given for the point in the objective space composed of them. The point in the objective

space composed of the worst efficient values is called nadir point, however its exact

calculation is a very difficult computational task - for nonlinear models there is even

no constructive method for such calculation. A rough estimation of the nadir point can

be obtained just by recording the worst values received during calculations of utopia

point components.

The ranges of efficient values of objectives are used as scaling factors for objectives

while constructing the scalar-valued achievement function that is next used for calcu­

lating efficient solutions (other than utopia point components). This function will be

discussed in detail in the next section.

Additionally, another efficient point may be calculated. So called neutral solution

is an efficient solution situated 'in the middle' of the range of efficient outcomes. It is

obtained by minimization of the distance to the utopia point, using differences between

utopia and nadir components as scaling factors. The important feature of such scaling

method is that relative achievement of each objective (the ratio of the distance from

the solution to the utopia point and the distance from the nadir point to the utopia

point) is exactly the same (except some non-convex and rather degenerate problems

with discontinuous set of efficient solutions). The relative achievement factor can have

a value in the range from zero (if the neutral solution is at the utopia point) to one (if

the neutral solution is at the nadir point). Both extreme values represent degenerate,

ill-defined multiple criteria problems. The interpretation of the values inside the range

depends on dimensionality of the decision problem (the number of objectives), however,

using a simple transformation one can calculate so called conflict coefficient:

r [2 2]C = -- (n - 2) - (n - 2n)r
n-l

(2)

where n is the number of objectives and r is the relative achievement factor. The

conflict coefficient is equal to zero if the neutral solution is just at the utopia point.

It means that there are no conflicts among objectives. On the other hand, the conflict

coefficient is equal to two if the neutral solution is just at the nadir point. It means

that objectives are totally in conflict, however, such situation cannot exactly occur in

the case of continuous models.

The essential feature of the conflict coefficient defined by (2) is that it is equal to one

if there is an exact linear substitution between objectives. Moreover, all values above

one represent non-convex problems.

The conflict coefficient is a very useful way of an initial classification of the decision

problem. If it is rather close to zero, then the selection process of efficient solutions can

162

be expected to be fast, but if it is greater than one, then the selection process may be

difficult and time-consuming.

5 Parametric scalarization of a multiobjective

problem

The parametric scalarization is achieved by a scalar-valued achievement function. How­

ever, before the presentation of this function, a formal mathematical notation of the

decision problem must be introduced. In further analysis it is assumed that parame­

ters z have known, fixed values zoo To simplify the notation, an explicit input-output

relation is used:

y = F(x) = f(x,Zo, y) (3)

According to the model definition (1), the set of admissible decisions X is defined

by:

(4)

There are p objectives that form the objective space RP being the subspace of the

outcome space R m
• Some of objective outcomes can be minimized, some maximized

and some stabilized (that is, minimized if their values are above stabilization levels and

maximized if their values are below stabilization levels). All these possibilities can be

summarized by defining the order in the objective space by introducing a positive cone

D:

D = {q E RP: qi 2: 0 ,

qi ~ 0,

qi = 0 ,

l~i~p';

p'+1~i~p";

pIt + 1 ~ i ~ p}

(5)

where the first p' objectives are to be maximized, the next from p' + 1 until pIt ­

minimized, and the last from pIt + 1 until p - stabilized. Let q = Fq(x) be the vector

of all objectives selected among all outcomes defined by (3) and Q = Fq(X) be the

set of attainable objective outcomes. Fq is composed of corresponding components of

F. The multiobjective nonlinear programming problem is to maximize q., i = 1, ... ,p',
minimize qi, i = p' +1, ... , p", and stabilize q., i = pIt +1, ... , p over the set of admissible

decisions (4). Thus q E Q is an efficient solution (Pareto optimal) iff there is no such

q E Q that q - qE b, where b = D \ {0}. The set of all efficient outcomes (the Pareto

set) can be written as:

(6)

If in the above definitions the set b is replaced by the set b = int D, then such so­

lutions will be only u:,eakly efficient. However as there are stabilized objectives (i.e.

pIt < p), then the set b is empty and thus all attainable objectives are weakly efficient.

Therefore, weakly efficient solutions are of no practical interest to the user. Moreover,

some efficient solutions for multiobjective nonlinear programming problems may have

163

unbounded trade-off coefficients that indicate how much an objective should be dete­

riorated in order to improve another objective by a unit; therefore it is important to

distinguish also a subset QP C Q called the set of properly efficient solutions, such that

the corresponding trade-off coefficients are bounded. A properly efficient solution with

trade-off coefficients that are very high or very low does not practically differ from a

weakly efficient solution. Thus, some a priori bound on trade-off coefficients should

be defined and properly efficient solutions that do not satisfy this bound should be

excluded. This can be done by defining a slightly broader cone:

D. = { q E RP : dist (q, D) :::; e IIqll } (7)

where any norm in RP is used, also to define the distance between q and D. The

corresponding modified definition of the set of all D.-efficient solutions has the form:

QP' = { ij E Q : (ij + iJ.)n Q = 0} ; iJ. = D. \ {0} (8)

Solutions belonging to the set QP' are properly efficient with trade-off coefficients a

priori bounded by approximately c: and l/e; such solutions are also called properly

efficient with (a priori) bound.

The selection of properly efficient solutions with bound and the corresponding deci­

sions (values of variables x) should be easily controlled by the user and should result in

any objective values in the set QP' he may wish to attain. The way of user-controlled

selection of a properly efficient solution is based on the reference point concept (see

Wierzbicki, 1982; Lewandowski and Wierzbicki, 1988). The selection method proposed

here uses two user-selectable reference levels. This method can be used also in de­

cision support systems with linear models, however, in the case of nonlinear models

with possible nonconvexities, the use of this two reference levels approach is especially

recommended.

For minimized and maximized objectives the user can specify two kinds of reference

levels: aspiration levels denoted here iii or ii as a vector called aspiration point and

reservation levels denoted qi or q as a vector called reservation point. The aspiration

levels represent the levels that the user would like to attain (although the aspiration

point as whole is not attainable in most cases), whereas the reservation levels could be

interpreted as 'soft' lower limits for objectives (for maximized objectives; upper limits

for minimized objectives). Reservation levels qi for maximized objectives should be

'below' the aspiration levels iii (qi < iii, i = 1, ... , p'), whereas reservation levels

qi for minimized objectives should be 'above' the aspiration levels iii (qi > iii, i =

p' + 1, .. . ,p").
For each stabilized objective qi the user can specify the lower reservation level de­

noted ~ and the upper reservation level denoted q ~ . It is assumed that the stabilization

level qi is given implicitly as a mean value of two reservation levels qi = (~+qn/2 ,thus

the user defines the reservation range around the stabilization level. Moreover the lower

aspiration level ~ = qi-6(q ~ - ~)/2 and the upper aspiration level iIi = qi+6(q~ -~)/2

are additionally defined, thus the aspiration range is 6 times narrower than the reser­

vation range with qi being the center of both ranges. The coefficient 6 can have some

default value, but it can be changed by the user.

164

The aspiration and reservation points, called jointly reference points, are both user­

selectable parameters (for minimized and maximized objectives; for stabilized objectives

two reservation levels are user-selectable). A special way of parametric scalarization

of the multiobjective analysis problem is utilized for the purpose of influencing the

selection of efficient solutions by changing reference points. This parametric scalariza­

tion is obtained through maximizing an order-approximating achievement function (see

Wierzbicki, 1983, 1986). There are several forms of such functions; properly efficient

outcomes with approximate bound c, 1/c are obtained when maximizing a function of

the following form:

s (q, ij, q) = min (min Zi (qi , ifi , iii) , min z; (qi , ii/ , iii U)) +
1:5':5p" p"+I:5i:5p

p" p

+ c (L Zi (qi , ifi , ii;) + L Zi (qi , ii/ , iii U))

i=1 i=p"+1

(9)

where the parameter c should be positive, even if very small; if this parameter is equal

to zero, then the above function will not be order-approximating any more, but ordGr­

representing, and its maximal points can correspond to weakly efficient outcomes.

The functions Zi (qi , ifi , iii) for maximized objectives (i = 1, ... , pi) are defined by:

(10)

and the functions Zi (qi , ifi' if;) for minimized objectives (i = pi + 1, ... , p") are defined

by:

z;(qi , ifi , ii;) = min ((iii - qi) / s: , 1 + (ifi - qi) / s:') (11)

while the functions z; (qi , iii1 I iii U) for stabilized objectives (i = p" +1, ... ,p) are defined

by:

(=1 =U) . (I U)Zi qi, qi , qi = mIll zi' zi

where

I . ((=/)/,zi = mIll qi - qi Si,

U . ((=u)/'zi = mIll qi - qi Si,

1 + (qi - if;')/sn
1 + (ifi U - q;) / sn

(12)

(13)

• (=u =1)/qi = qi - qi 2.

The coefficients s: > 0 , s? > 0 in (10), (11) and (12) are scaling units for all

objectives and are determined automatically to obtain the following common absolute

achievement measure for all individual criterion achievement functions z;(qi , " .) :

if qi = q,/to (qi for stabilized objectives)

if qi = ifi

if qi = ifi

(
- Iqi

(
=1
qi

or ifi u for stabilized objectives)

or iii U for stabilized objectives)

(14)

165

where qito is the utopia point component for objective qi , i = 1, ... ,p", and TJ > 0 is

an arbitrary coefficient.

For minimized or maximized objectives (i = 1, .. . ,p"), scaling coefficients s ~ and s?
depend on relations between aspiration level ifi, reservation level if; and limit qito of all

attainable efficient values of objective qi :

s~ = ifi - qi I

s~=qi-ifi,

s~' = (qi to
- ifi) / TJ, if

s? = (ifi - qito
) / TJ, if p' + 1 :s i :s p" •

(15)

For stabilized objectives (i = p" + 1, ... ,p), scaling coefficients s ~ and s ~ ' depend

on the distance between qi1 and if; U (i.e. reservation range) and on the user defined

coefficient 0 (i.e. on relations between aspiration and reservation ranges):

(16)

Parameter TJ in (15) and (16) is selected according to current relations between ifi'

qi, qito
, and the value of coefficient 0 :

qito
- ifi . ifi - qito 0)

TJ = min (min ,mm , --
lip' ifi - ifi p'+lip" ifi - if; 1 - 0

Three sets of conditions must hold for this selection of s ~ and s:' :

(17)

qi < ifi < qito
, if 1::; i::; p' ,

qito < ifi < qi I if p'+I:Si:Sp", (18)

=1 =u if p"+I:Si:Sp.qi < qi ,

The achievement function s(q, ij, q) can be maximized with q = Fq(x) over x E X

i however, the function (9) is nondifferentiable (for example, if q = if). On the other

hand, if the function F(x) (and thus also Fq(x)) is differentiable, then the maximization

of function (9) can be converted automatically to an equivalent differentiable nonlinear

programming problem by introducing proxy variables and substituting the min oper­

ation in (9) by a number of additional inequalities. If the coefficient € > 0, then the

achievement function has the following properties (see Wierzbicki, 1986):

a) For any arbitrary aspiration and reservation points satisfying conditions (18), but

not necessarily restricted to be attainable (if E Q , q E Q) or not attainable

(ij (/. Q ,q (/. Q), each maximal point q of the achievement function s(q, if, q)
with q = Fq(x) over x E X is a D.-efficient solution, that is, a properly efficient

solution with trade-off coefficients bounded approximately by € and 1/€.

b) For any properly efficient outcome qwith trade-off coefficients bounded by € and

1/€, there exist such aspiration ij and reservation q points that the maximum of

166

the achievement function s(q, ij, q) is attained at the properly efficient outcome

q. In particular, if the user (either by chance or as a result of a learning process)

specifies some attainable but not efficient reservation point q and an aspiration

point ij that in itself is such properly efficient outcome, ij = q, and if conditions (18)

are satisfied, then the maximum of the achievement function s(q, ij, q), equal to

one, is attained precisely at this point.

c) If the aspiration point ij is 'too high' (for maximized outcomes; 'too low' for

minimized outcomes), then the maximum of the achievement function, smaller

than one, is attained at an efficient outcome q that best approximates uniformly,

in the sense of scaling units s ~ , the aspiration point. If the aspiration point ij is

'too low' (for maximized outcomes; 'too high' for minimized outcomes), then the

maximum of the achievement function, larger than one, is attained at an efficient

outcome q that is uniformly, in the sense of scaling units s:', 'higher' than the

aspiration point.

d) By changing his aspiration ij and reservation q points, the user can continuously

influence the selection of the corresponding efficient outcomes q that maximize

the achievement function.

The parameter € in the achievement function determines bounds on trade-off coef­

ficients: if an efficient solution has trade-off coefficients that are too large or too small

(say, lower than 10-6 or higher than 106
), then it does not differ for the decision maker

from weakly efficient solutions - some of its components can be improved practically

without deteriorating other components. Another interpretation of this parameter is

that it indicates how much an average overachievement (or underachievement) of aspi­

ration levels can correct the minimal overachievement (or maximal underachievement)

in the function (9).

The achievement function (9) can be transformed to an equivalent form if taking

into account the scaling coefficients determined by (15) and (16) and assuming that the

parameter € = 0 :

s (q , ij , q) = 1 + 77 - max (max z; (qi , Q; , qi), max z; (qi , q/ , qi U)) (19)
lS'Sp" p"+lSiSp

with

where

Z; (qi , Qi , q;)

-(=1 =U)Zi qi, qi , qi

(' II)max Wi , Wi ,

(
-/ -II +11 +/)

max Wi , Wi , Wi ,wi

l ~ i ~ p " ,

p " + l ~ i ~ p ,

(20)

{
Qi - qi

if l ~ i ~ p / ,7 7 + ~ ,

w;= qi - qi

qi - iji
77 + =--=- , if p'+I~i~p",

qi - qi

(21)

"wi =

-/
wi

-II
Wi

+"
Wi

W7'
I

167

j
qito - qi if

'1 uto -,
qi - qi

qi - qi
to

if
'1 - uto'qi - qi

q;' - qi
'1+_ 1 =1

qi - qi
•2 qi - qi

'1 -u -I
qi - qi

2 qi - qi
'1 -u -I

qi - qi
qi - qi U

'1 + _U U

qi - qi

p'+l~i~p",

if p" + 1 ~ i ~ p ,

(22)

(23)

with q; , q/ and qi U given by (13).

The maximization of an achievement function is performed by a nonlinear optimiza­

tion algorithm. Since this maximization is performed repetitively, at least once for each

interaction with the user that changes the parameters q or q , this optimization algo­

rithm must be very robust and efficient; therefore, according to our experience, only

gradient type algorithms should be used to perform this task. However, the functions

(9) or (19) are nondifferentiable and cannot be used as scalarizing functions if gradient

optimization algorithms are used. Therefore an appropriate form of an achievement

function that differentiably approximates function (9) has been developed. This smooth

order-approximating achievement junction has the form:

{

p"

s (q , ij, q) = 1 + '1 - E[(max (0, w:))a+ (w:')a] +

p }l/a
+ i=~+l [(max (0, Wi-I)r + (max (Wi-II , wi")r + (max (0, wt) r]

(24)

where w: , w:' , wi-' ,Wi-II, wi" and wt are given by (21), (22) and (23).

The parameter Q 2: 2 is responsible for the approximation of the function (9) or (19)

by the function (24): if Q --> 00 and c --> 0, then these functions converge to each other

(if taking into account the specific definition of scaling coefficients in (9)). However, the

use of too large parameters Q results in badly conditioned problems when maximizing

function (24), hence Q = 4 7 10 is suggested to be used. During numerical computations

a slightly simpler scalarizing junction may be used and minimized:

p"

s(q , ij, q) = E[(max (0, w:))a+ (w:') a] +

+ t [(max (0, Wi-') r + (max (Wi-II , wi")r + (max (0 , wt)r]
i=p"+l

(25)

The function (25) must be minimized with q = Fq(x) over x EX, while X is

determined by simple bounds x 10 ~ x ~ x up as well as by constraints ylo ~ F(x) ~ yUP •

168

6 Creation and calculation of derivatives

Model equations are functions of general, even very complicated, form with addition,

subtraction, multiplication, division and power operators, subexpressions in parenthe­

ses and standard mathematical functions (like sin or arctan). Moreover if.. then.. else ..

logical structures can be used as case selectors for alternate parts of expressions. Values

of these functions and values of their derivatives are required during simulation and

optimization processes.

Values of partial or total derivatives are useful as sensitivity indices during simulation

of a model at user-supplied points. If the simulation point is the end-point of an

optimization process, then values of derivatives can be used for post-optimal analysis.

Values of derivatives are necessary during the optimization process, since practically

only gradient-type nonlinear programming algorithms are efficient and robust enough

to be applied in interactive decision support systems.

For accuracy and efficiency reasons, derivatives should be calculated analytically

rather than numerically using more or less advanced concepts of finite difference inter­

vals. A user-friendly decision support system designed to work with nonlinear models

must be therefore equipped with a symbolic differentiation tool for an automatic cre­

ation of derivatives.

Symbolic transformations are much more time-consuming than numerical calcula­

tions. Although the generation of derivatives must be done only once after each change

of the formula, a full symbolic transformation from a source formula of functions to

source formulae of its derivatives is a time-consuming task even for mainframe com­

puters. On the other hand, calculations of functions and derivative values are repeated

many times during optimization process, thus code used for their calculation should be

compact and efficient.

Any method calculating automatically all derivatives (like table method proposed

and exploited by Kalaba, 1983) is not acceptable. The Jacobian matrix of model equa­

tions is often sparse, therefore adequate structural analysis should be performed for

a selection of derivatives to be created and calculated. Integrated formulae compiler

should then be used to generate a code for calculating values of functions and values of

all necessary non-constant derivatives.

Such a compiler may consist of the one-pass but recursive top-down parser which

converts the source formula into a sequence of commands of a stack machine (Wirth,

1976). These commands can be then either interpreted by a hypothetical stack machine

or executed as a binary code using hardware stack. The latter method can be applied

for example on IBM PC type microcomputer with a numerical coprocessor using a

hardware register stack of the coprocessor.

The top-down parsing must be performed several times for each formula; once in

order to create code (or commands) for calculating a function value and next some

number of times (according to results of the structural analysis) in order to create

codes for calculating derivative values. However, parsing and extracting subsequent

syntactical items from a source formula is found to be much more time-consuming task

than the generation of a code. Hence, it is reasonable to implement a two-pass compiler

for this purpose.

,I

,I
I

Ii~

169

In the first pass, performed only once jointly for function and derivatives, an interme­

diate code is created as a result of parsing of source formula with encoding subsequent

syntactical elements. All semantical and syntactical errors in formula are detected in

this pass. Moreover, structural analysis can be done and graph of logical dependences

can be created. This graph is used later for organising calculations of the whole model.

Functions must be calculated in the proper order because some outcomes may depend

on others. Furthermore, total derivatives are calculated numerically combining partial

derivatives in the appropriate order.

The second compilation pass is performed independently for a function and all deriva­

tives required, according to the results of structural analysis. The intermediate code

is processed now and either binary codes or sequences of commands are created. This

action can be done very fast because it is based on binary data and doesn't need error

checking (it is only done following successful termination of the first pass, therefore,

intermediate code is always correct).

The comparison of formulae for a function and its derivatives leads to the observation

that very often they have many similar subexpressions. Thus, substantial speed-up

of calculations is possible due to appropriate arrangement of computations avoiding

multiple calculations of these common subexpressions. Basic theoretical results of the

structural analysis of model equations and its derivatives can be found in Wierzbicki

(1977, 1985). In the computer implementation, some partial results obtained during

calculations of the function value are stored in a buffer and then used during calculations

of derivative values. Although it is conceptually simple, the computer implementation

was rather difficult.

These general ideas will be explained here using a very simple example. If outcome

Yl depends on variable Xl as a product of two nonlinear functions:

Yl (xd = a(xd * b(xd ,

then its derivative is:

Values of a(xd and b(xd are obtained and stored in the buffer during calculations of

yt{xd·
Thus, for the calculation of the derivative IJ ~.dzd only partial derivatives IJIJ,,(zd and

u %1 %1

IJ~(:ld are calculated but values of a(xd and b(xd are taken from the buffer.

Similar procedures can be used for division and power operations as well as for calcu­

lations of standard function derivatives. If, additionally, logical structures if.. then.. else ..

are used in a formula, then values of logical expressions following if are calculated only

once during calculation of the function value. The boolean values (transferred through

adequate buffer) are then consistently used during calculations of derivative values.

Another important way of speeding-up computations of derivatives consists in an

appropriate simplification of derivatives. This can be done again as a result of structural

analysis. Very often, not all parts of a complicated function depend on all variables. If

in the above example outcome YI depends on two variables Xl and X2 again as a product

170

of two nonlinear functions but with different arguments:

then its derivative is:
aYI(XI, X2) _ aa(xd b()
---=c..::....:.,.......::--=---...::....:... _ * X 2 ,

aXl aXl

therefore, only aaG(z.) must be calculated.
ZI

During implementation of both methods of speeding-up the calculations of deriva-

tives some trade-off must be taken into account. Detailed structural analysis and perfect

simplification may be much more time consuming than many calculations of only par­

tially simplified derivatives. However, the transfer of some partial results and even a

rough simplification of derivatives give substantial decrease of calculation time, espe­

cially in the case of a large number of variables.

The proposed method of creation of a code for derivative calculations is not exactly

a method of symbolic calculations. Only binary codes are generated instead of a source

text of derivative formulae. It may be an important disadvantage while the model is

developed and tested, especially if numerical difficulties occur during derivative calcu­

lations. However, the generation of a source derivative formula from the binary code

for visualisation and debugging purposes is a very cumbersome task. Moreover, par­

tial results and boolean value transfers make rather difficult the presentation of these

formulae in a reasonable way.

Some other possibilities of an automatic generation of derivatives in decision support

systems with nonlinear models are discussed by Lewandowski (1986).

7 References

Kalaba, R., Rasakhoo, N. and Tishler, R. (1983). Nonlinear Least Squares via Auto­

matic Derivative Evaluation. Applied Mathematics and Computation, 12, pp. 119­

137.

Kreglewski, T., Rogowski, T., Ruszczynski, A. and Szymanowski, J. (1984). Optimiza­

tion Methods in FORTRAN (in Polish), PWN, Warsaw.

Kreglewski, T., Paczynski, J., Granat, J. and Wierzbicki A. P. (1988). IAC-DIDAS-N

A Dynamic Interactive Decision Analysis and Support System for Multicriteria

Analysis of Nonlinear Models with Nonlinear Model Generator supporting model

analysis. WP-88-112, International Institute for Applied Systems Analysis, Lax­

enburg, Austria.

Lewandowski, A. (1986). Problem Interface for Nonlinear DIDAS. WP-86-50, Inter­

national Institute for Applied Systems Analysis, Laxenburg, Austria.

Lewandowski, A., Wierzbicki A. P. (1988). Aspiration Based Decision Analysis and

Support, Part I: Theoretical and Methodological Backgrounds. WP-88-3, Inter­

national Institute for Applied Systems Analysis, Laxenburg, Austria.

I

I'
:1

i
II

~
!I

IiII

171

Wierzbicki, A. P. (1977). Models and Sensitivity of Control Systems (in Polish), WNT,

Warsaw (English edition - Elsevier, Amsterdam 1985).

Wierzbicki, A. P. (1982). A Mathematical Basis for Satisficing Decision Making.

Mathematical Modelling 3, pp. 391-405.

Wierzbicki, A. P. (1986). On the Completeness and Constructiveness of Parametric

Characterizations to Vector Optimization Problems. OR Spektrum 8, pp. 73-87.

Wirth, N. (1976). Algorithms + Data Structures = Programs. Prentice Hall, Engle­

wood Cliffs.

Nonlinear Computer Models ­

Issues of Generation and Differentiation

Jerzy Paczynski

Institute of Automatic Control, Warsaw University of Technology.

Abstract

This paper presents remarks on the methodology of generation of computer mod­

els for nonlinear problems. The automatic differentiation of the model is discussed

and implementation hints are given. The presentation is based on the experience

gained during implementations of a nonlinear model generator, the IAC-DIDAS-N

system and observations of other software produced under the contracted study

agreement with IIASA.

1 From abstract model formulation to the genera­

tion of a computerized model

A fairly abstract formulation of the equation of a model (or process bounds) has the

form

P(x,u,z,a) = 0 E Bz.

where x E Bz. denotes internal variables, u E Bu denotes control variables, z E B z

denotes disturbances and a E B a denotes parameters. P: Bz. x Bu x B z x B a --+ Bz. is

a nonlinear mapping of bounds. Bz. is the space of bounds, usually isomorphic to Bz..
The above equation is accompanied by the output equation in an explicit form

y = V(x,u,z,a)

where V : Bz. x Bu x B z x Ba --+ By is the output mapping. A wide spectrum of models

- including dynamic, distributed, etc. formulations - can be described in this general

form by suitable choice of spaces and operators.

It is difficult to draw more detailed conclusions from the general form of the equation

of bounds. Therefore the concept of a resolving mapping R is introduced; it is an

operator which determines x while given u, z, a. In most cases the resolving operator is

realized in a feedback system, so the notation

x = R(P(x,u,z,a))

173

will be used. The existence and properties of this operator usually are investigated by

using the contraction mapping theorem. Details depend very strongly on the spaces

assumed, often it can be a numerical iterative process. In special but very important

for applications cases the bounds equation has an explicit form

x = Q(u,z,a).

Structural properties of the model can be visualized in the form of a generalized

directed graph (Wierzbicki, 1984). The nodes of this graph can be of three sorts:

i) a node denoted by a circle corresponds to a variable,

ii) a node denoted by a double circle corresponds to the ordered n-tuple of variables

and is labelled with it,

iii) a node denoted by a square corresponds to a value which is stabilized.

The arcs of the graph are labelled with operators; to improve readability the identity

operators I can be omitted.

Typical examples are presented in Fig. 1 for the equations: a) P(x, u) = 0 b) x = R(x, u)

a)

I

c)

p o
c\)_....:I~.~~ __:_j

U IUS I a·
O.....-....;;.........-@~O~.......:::.....---OoO-.....;;...~. @t-------O

Figure 1.

The arc labelled with a non-identity operator must start from a node of the "double

circle" sort. Thus in case of a composite operator an additional node must be inserted.

E.g. the equation

x = Q(S(u))

corresponds to the graph presented in Fig. lc.

From the implementation point of view a computer model can have one of the

following forms:

174

- a program in a simulation language,

- a procedure (or a collection of them) in an universal programming language,

- a program in a declarative language,

- a set of entries in a spreadsheet.

This list is by no means exhaustive, it is rather the indication of the wide spectrum

of possible solutions. However, to build a computer model on the base of a "bare"

language or programming system requires specialized knowledge of the relevant aspects

of the computer science and techniques, in addition to the specific science determined by

the modeled problem. Proficiency in this specific science is not necessarily accompanied

by the proficiency in using software tools. Therefore the whole process can be time­

consuming and frustrating the user.

Therefore, a modern software must be equipped with a user-friendly interface, which

will hide most technical details from the user. In the described context it should support

the following three main functions:

i) Edition. It should be done in terms of the corresponding problem science only,

ii) Verification. A safe environment for model verification (performing partial or

complete calculations, simulations etc.) should be provided,

iii) Modification. Easy transfer between two previous phases is necessary for efficient

construction of a model.

Many examples of the need and development of such interfaces can be found in this book

(see e.g. DIDAS, DINAS, HYBRID, DISCRET). More detailed references to papers on

interfaces for nonlinear models are given in (Paczynski and Kreglewski, 1987).

2 The user interface

The general class of nonlinear models ("a nonlinear model is a model, which is not

linear") cannot be effectively handled and in any programming system the scope of

interest must be sufficiently limited, e.g. DIDAS-N handles static models expressed by

explicit formulae. The goal of an editor is to allow the user to formulate his problem as

close as possible to "natural mathematical notation". Details of the implementation of

the editor will differ strongly depending on the particular class of input problems and

the form of desired output; however in every case it is desirable to protect the user from

direct contact with the language in which the implementation is written.

The means by which the user expresses himself form another language - the input

language of the editor. Users do not need to be aware of that fact, but the implementers

can use the theory of formal languages and compiler design. In the process of designing

of an editor most problems arise from the lack of precise meaning of: "natural math­

ematical notation". The problem is whether the implementer and a user have similar

understanding of that phrase. Intuitively it means "near to one's notational habits".

175

c. ..)
[...]

{. .. }

IIII

These habits are created by mathematical education and by experience in programming

languages. However, a closer look revels that those sources are completely inconsistent.

Typical problems will be illustrated below on the example of expressions, which are an

indispensable part of any input language.

Expressions are composed of constants, names (e.g. variables), parenthesis, some

set of standard functions and operators (e.g. denoted by the characters +, -, *, /, -).
The operator properties are usually described by their precedence and associativity. It

seems however that school mathematics establishes accepted conventions only for binary

operators (excluding the power operator). Further patterns can be sought in popular

programming languages and tools. Such review depicts only the total lack of approved

conventions. The most exotic rules are used in APL. All operators have the same

precedence level and are right-associative, e.g. 2*3+4 evaluates to 14. This contradicts

even the "school" rules. Similar properties have the operators (messages) in Smalltalk­

80, they have the same precedence but are left-associative, e.g. 2+3*4 evaluates to 20.

Leaving these cases out of considerations, most problems arise from the treatment of

unary minus. Aho and Ullman (1977) give a dramatic warning: "Beware the treatment

of unary minus!". Three different syntaxes can be considered as eligible candidates

for the input language. They will be presented below using the notation of Modified

Backus-Naur Form. The meaning of meta-symbols is as follows:

denotes the definition,

separates alternative options within the clause,

terminal symbols are quoted,

exactly one of the enclosed alternatives must be selected,

denotes zero or one occurrence of the enclosed subclause,

denotes zero or any number of occurrence of the enclosed subclause.

Syntax Sl

expression = [11+11] simple_expression { (11+" I II_II) simple_expression }

simple_expression = term { ("*" I "/") term}

term = signed_factor { 11-" signed_factor }

signed_factor = ["_"] factor

Syntax S2

expression = ["+"] simple_expression { ("+" I "_") simple_expression }

simple_expression = signed_term { ("*" I "/") signed_term }

signed_term = ["_"] term

term = factor { II-II factor }

Syntax S3

expression = ["+" I II_II] simple_expression

{ ("+" I "_") simple_expression }

simple_expression = term { ("*" I "/") term}
term = factor { II-II factor }

176

The Sl syntax is used e.g. in ALGOL 68 and SNOBOL. It has the following operator

precedences:

- (unary) > > *, / > +, - (binary).

The S2 syntax is used e.g. in FORTRAN, BASIC, PL/I, Lotus 1-2-3 by Lotus

(1983), MUSIMP (the implementation language for MUMATH symbolic computation

system by Microsoft (1983)). It has the following precedences:

> - (unary) > *, / > +, - (binary).

The S3 syntax is that of PASCAL extended with the power operator. Its precedences

are:

> *, / > +, - (unary and binary).

Each syntax has its peculiarities, e.g.

in Sl:

in S2, S3:

- 2"2 = 4, but 4 - 2
A

2 = 0;

- 2
A

2 = -4.

The syntax rules must be supplemented by associativity rules. In our context

they are essential only for the power operator. The problem is whether it is right­

associative, i.e. a ~ b ~ c evaluates as a A (b-c), or left-associative: (a ~ b) ~ c , as typically

tacitly assumed in elementary schools. Both cases lead to completely different values,

e.g. 2 ~ (2 ~ 3) =256 while (2-2) ~ 3 = 6 4 . Thus the semantics of a formula depends on the

chosen rule. Associativity affects not only the process of formula evaluation, but even

the process of computation of derivatives. For the right-associative power operator

(e denotes here the base of natural logarithms), while for the left-associative one

It seems that courses in differential calculus do not explicitly declare associativity

but tacitly use the first variant, see e.g. examples in the classical russian textbook

(Fichtenholz, 1966), vol. I, par. 99. MUMATH assumes right associativity (under normal

setting, properties of all operators can be freely modified by the user). Similarly does

MACSYMA, perhaps the world's largest computer algebra system.

Associativity rules used in programming languages are not unique. Aho and Ullman

(1977) state on p. 47: "ALGOL evaluates all binary operators left-associatively. FOR­

TRAN lets the compiler designer choose the associativity, and PL/I evaluates all binary

operators left-associatively, except for exponentiation, which is right-associative". In the

implementations of BASIC used by the author the power operator was left-associative,

and in implementations of FORTRAN - right-associative. In hand calculators it is

left-associative, perhaps due to hardware and software limitations.

The examples above do not form a complete syntax of expressions, the remaining

part is not free of problems too although they are less drastic. Of course any syntax

convention will do as long a user is aware of its properties; the simplicity of expressions

is especially deceiving.

177

The presence of an editor forces the user to master another 'language'. This effort

must be justified by benefits. An interactive, problem-oriented support must be assured

during edition and the language must be sufficiently simple.

Properties of all but 'academic' nonlinear models can contain many 'mysteries'. One

cannot hope that the first variant of the model will allow for the solution of the prob­

lem. Most likely the 'solver' (e.g. an optimization algorithm) will encounter numerical

problems. Creation of a safe environment (Le. own error handling, perhaps with the

indication of suspected place and suggestions of improvement) for model verification is

equally important as an easy edition. Creation of a model may need many iterations of

both phases. Easy and fast transfer between them is necessary for general efficiency of

the system.

3 Automatic differentiation of the model - General

concepts and implementation hints

Differentiation of a model arises in several contexts, e.g.

- series expansion,

- solution of implicit equations based on the implicit function theorem,

- sensitivity analysis,

- optimization.

In any specific formulation of the abstract model class described above, it is necessary

to check the existence and properties of the derivatives (Gateaux or Frechet) of the

model. In the implementation practice the classical differential calculus is often used,

but nevertheless a manual differentiation presents considerable problems in the case of

large and complicated models. This process is very prone to analytical errors which

can make the model inconsistent. The existence of such errors is, as a rule, very hard

to detect. Awareness of this situation leads often to the practical abandonment of

theoretically promising methods, e.g. using sensitivity models in simulation languages

or calculating Hessians matrices in optimization. Implementation of the automatic

differentiation plays therefore an important role in various problems of system analysis.

It will be assumed in the following that all necessary conditions of differentiability

and of the applicability of the implicit function theorem etc. are fulfilled. The rules of

differentiation of a model can be easily formulated in terms of its graph representation

(Wierzbicki, 1984):

i) the graph of the total derivative retains the structure of the model,

ii) all non-identity arc labels are advanced one arc backwards and are replaced by

the operators of appropriate derivatives,

iii) vacant labels are filled with the identity operators.

178

a) b)

p. I 0 u Ru

'l
I I

0 0

'JPu R.

u

c)

u Su -@ I y Oy
-@

I

0 .0 .0

Figure 2.

Total derivatives of the graphs presented in Fig. 1 are presented in Fig. 2.

In every finite graph, it is possible to distinguish a finite number of closed feedback

loops corresponding to implicit operations and a finite number of feedforward connec­

tions corresponding to composite operations. Thus the subsequent applications of the

above rules gives the desired result.

It should be stressed that in some cases the graph may be rather a conceptual device

than an element of implementation. In the creation of a sensitivity model it may be used

explicitly, while in other cases it may be used implicitly by the application of recursive

procedures.

Many problems of automatic differentiation (in more narrow context) have been

discussed by Rail (1981) but computer implementations presented there are rather ob­

solete. From the computational point of view the differentiation of the model strongly

resembles the process of compilation. General information about compilers can be found

e.g. in (Aho and Ullman, 1977). The model equations must be described in a form suit­

able for computer analysis. Thus the first step is the creation of the input language

(the problem language). This language must assure an easy interface with the user and

an easy interface with the differentiating program. In practice some iterations are often

needed until a mature form of the language is obtained.

The plocess of the automatic differentiation usually can be divided into some phases.

The first one is the lexical analysis, i.e. the division of characters of the input language

into groups that logically belong together - into symbols as e.g. identifiers of variables,

symbols of operators. The output of the lexical analyzer is a stream of symbols, which

is passed to the next phase, to the syntax analyzer (parser). The parser checks whether

the symbols appearing at its input form a legal sequence of the input language (defined

179

by its syntax rules) and produces an intermediate code. This code can be of very

diverse nature, according both to the details of the problems and to the details of the

particular implementation. A graph, a tree or a stack structure are typical examples.

This intermediate form of the model is actually differentiated and thus another structure

in the intermediate form, representing the derivative, is produced.

Usually the derivative must be simplified to an acceptable form. This phase is one

of the hardest to implement due to its internal complication and nonexistence of the

"simplest" canonical forms. The goal of simplification depends heavily on details of the

particular problem. In the case of a simulation program it can be the number and the

interconnection pattern of the modeling blocks, in the case of the evaluation of values ­

the computation efficiency measured as time, when the output has the form of symbolic

formulae - similarity to the analogous result obtained by a mathematician.

In the final step this code is transferred into the form of the output language. Oc­

casionally it can coincide with the input language, however many different forms are

possible e.g. files with a simulation program or with a numerical procedure, a code for

the calculations on a virtual computer or just formulae.

Under the contract with IIASA two differentiation packages were implemented for

applications in differentiable optimization packages and decision analysis and support

system. The first package, used in the IAC-DIDAS-N system, is oriented towards effi­

cient calculation of values of derivatives; the second, used in a nonlinear model generator,

is oriented on symbolic presentation of formulae of derivatives.

References

Aho A.V. and D. Ullman (1977). Principles of Compiler Design. Addison Wesley.

Fichtenholz G.M. (1966). Handbook of Differential and Integral Calculus. Nauka. (in

russian).

Paczynski J. and T. Kreglewski (1987). Nonlinear Model Generator. In: Theory,

Software and Testing Examples for Decision Support Systems. WP-87-26, IIASA,

Laxenburg, Austria.

Rail L.B. (1981). Automatic Differentiation: Techniques and Applications. Springer.

Wierzbicki A. (1984). Models and Sensitivity of Control Systems. Elsevier.

Issues of Effectiveness Arising

in the Design of a System of

Nondifferentiable Optimization Algorithms

Krzysztof C. Kiwiel, Andrzej Stachurski

Systems Research Institute, Polish Academy of Sciences, Warsaw.

Abstract

This paper describes NOA, a package of Fortran subroutines for minimizing a

locally Lipschitz continuous function subject to locally Lipschitzian inequality and

equality constraints, general linear constraints and simple upper and lower bounds.

The package implements several descent methods that accumulate subgradients of

the problem functions and use quadratic programming for search direction finding.

We discuss some choices made in the implementation and indicate their potential

merits and drawbacks.

1 Introduction

NOA is a collection of Fortran subroutines designed to solve nondifferentiable optimiza­

tion (NDO) problems of the following form

minimize

subject to

I(x) : = max { Ii (x) i = 1, ... , rna} , (Ia)

.F;(x)~O for i=I, ,rnI' (Ib)

Fi(x)=O for i=rnI+I, ,rnI+rnE, (Ie)

Ax ~ band xf ~ Xi ~ xf for i = 1, ... , n , (Id)

where the vector x = (Xl,'" , xn)T has n components (superscript T denotes trans­

position), Ii and Fi are locally Lipschitz continuous functions, and where the rnA X n
matrix A , the rnA-vector b and the n-vectors xL and xU are constant; vector inequalities

apply to all components.

The user has to provide a Fortran subroutine for evaluating the problem functions

and their single subgradients (called generalized gradients by Clarke (1983)) at each x

181

in SL = {x E Rn : Ax::; b, xL::; X ::; xU}. For instance, if F; is smooth then its

subgradient gF;(X) equals the gradient V'F;(x) , whereas for the max function

F;(x) = max { ~ (x i z) : z E Z} (2)

with ~ smooth and Z compact, gF;(X) may be computed as the gradient V' z~(x, z(x))
(with respect to x), where z(x) is an arbitrary maximizer in (2). (Surveys of subgradient

calculus may be found in Clarke (1983) and Kiwiel (1985d).)

The nonlinear functions f, and F; should be upper semidifferentiable (see (18)). This

property is likely to hold in most applications (see Bihain, 1984; Mifflin, 1977). Thus the

potential application area of general purpose NDO methods is vast. We note, however,

that particular classes of NDO problems (e.g. minimax problems) can be solved more

efficiently by specialized methods (see, e.g. Fletcher, 1981; Kiwiel, 1988c).

For unconstrained problems NOA implements the descent methods of Kiwiel (1985a,

1985d, 1986c), which stem from the works of Lemarechal (1978) and Mifflin (1982). Lin­

early constrained problems are solved by the methods of Kiwiel (1985b, 1986b, 1987b).

Problems with nonlinear constraints are solved by the feasible point methods of Kiwiel

(1985d, 1988b) (which follow the approach of Mifflin (1982)), the constraint lineariza­

tion method of Kiwiel (1987a), or the exact penalty function methods of Kiwiel (1985c,

1988a) (see also Polak, Mayne and Wardi, 1983).

NOA seems to be the first implementation of descent methods for nonlinearly con­

strained NDO problems. (The system of Lemarechal, which implements an E: - steepest

descent method of Lemarechal, Strodiot and Bihain (1981), is restricted to problems

with simple bounds.) Thus in developing NOA we have been faced with a number of

implementation issues, and some of our choices may not be the best ones. It seems

worthwhile, therefore, to discuss their possible merits and drawbacks. This may help

both the potential users and the developers of NDO algorithms.

Our exposition will be rather informal, but we shall try to address some questions

that are usually ignored in papers that analyse particular methods. Our judgements

may seem subjective, and we refrain from supporting them by numerical examples,

which would take up too much space and could always be deemed inconclusive.

We refer the reader to Lemarechal (1986) for a recent review of other NDO methods.

NOA may be used for solving multiobjective (vector) minimization problems with

m> 1 objective functions { ~ ' } ~ 1 and a feasible set S (defined, e.g., by the constraints

of (1)). To this end, one may choose a "good" point qmin E Rm in the objective space

and a "bad" point qmax E Rm (qiin < qiax for all i) that define the scalarizing function

() min m () min
S (x· min max) _ max ~ , x - q, + E: '" ~ , X - q,

I q , q - 0<0< max min L..J max min',_,_m q, - q, ,=1 q, - q,

where E: ~ 0 is a parameter. Then the problem

minimize s(x; qmin , qmax) over all xES

is a scalarized version of the vector one, and its (local) solutions are (locally) efficient

(taking E: > 0 prevents them from being only weakly efficient; see, e.g. Wierzbicki, 1986).

182

By choosing (qmin , qmax) interactively and minimizing s(. j qmin, qmax), the user may

scan the Pareto set in the search for a satisfying solution. Since the scalarizing function

s has the structure of (la), it can be minimized by NOA whenever all the objectives 'P,

are locally Lipschitzian and one can evaluate their subgradients. On the other hand,

when all 'P, are twice continuously differentiable, then it may be more efficient to use

specialized minimax methods with superlinear or quadratic local convergence rates (see,

e.g. Fletcher, 1981). However, even in this case it is not clear whether such specialized

methods can provide approximate solutions quickly, and their robust implementations

are still unavailable. Anyway, NOA seems quite efficient and robust at reasonable

accuracy requirements (see Bronisz and Krus, 1985). Additional motivation for using

max-type scalarizing functions can be found in (Wierzbicki, 1986) and other papers in

this volume.

The paper is organized as follows. Section 2 reviews some basic concepts, which

are discussed in more detail in Section 3 devoted to linearly constrained convex mini­

mization. In sections 4, 5 and 6 we describe, respectively, exact penalty methods, the

constraint linearization method and the feasible point method for convex problems. Ex­

tensions to nonconvex problems are treated in Section 7. Finally, we have a conclusion

section.

We use the following notation. R" denotes the n-dimensional Euclidean space with

the usual inner product (" .) and the associated norm I. I. Superscripts are used to

denote different vectors, e.g. xl and x 2
•

Our general reference on nondifferentiable optimization is Clarke (1983). We say

that f : R" -+ R is locally Lipschitzian if for any bounded set B in R" there exists a

finite constant L such that If(x) - f(y) I :S Llx - yl for all x, y E B. The subdifferential

of f at x is af(X) = conv { lim V f(y') : y' -+ x and f is differentiable at each y' } ,
where conv denotes the convex hull and V f denotes the gradient of f.

2 General concepts

In this section we review some useful general concepts.

Define the objective, inequality and equality constraint functions

f(x) = max {f,(x) : i = 1, , mo } ,

F[(x) = max { .F; (x) : i = 1, , m[} ,

FE(x) = max { max [F,(x), -.F;(x)) : i = m[+ 1, ... , m[+ mE } .

Let S[= { x : F[(x):s o} , SF = { x : F(x) :S o} and S = SL nSF , where

is the total constraint function. Then we may reformulate (1) as

minimize f (x) , (3a)

183

subject to F(x):S: 0 and x E SL .

Define the exact penalty function with a penalty coefficient c > 0

e (x; c) = f(x) + c max { F(x) , o} .

Given a fixed c > 0, each solution Xc to the problem

minimize e (x; c) over all x E SL

(3b)

(4)

solves (3) if it is feasible (F(xc) :s: 0). This holds if c is sufficiently large, (3) has a

solution and its constraints are sufficiently regular (see, e.g. Clarke, 1983).

The solution algorithms of NOA are feasible with respect to the linear constraints,

Le. they generate successive approximations to a solution of (3) in SL . The user must

specify an initial estimate XO of the solution, and the orthogonal projection of XO on SL

is taken as the algorithm's starting point Xl •

Two basic techniques are used for nonlinear constraints. In the first one, which

solves (4) with a suitably chosen c, the initial Xl need not lie in SF and the successive

points converge to a solution from outside of SF . The second one uses a feasible point

method which keeps the successive iterates in Sl if Xl E Sl .

The algorithms of NOA are based on the following concept of descent methods for

NDO. Starting from a given point an iterative method of descent generates a sequence

of points, which should converge to a solution. The property of descent means that

successive points have lower objective (or exact penalty) function values. To find a

descent direction from the current iterate, the method replaces the problem functions

with their accumulated piecewise linear (polyhedral) approximations. Each linear piece

of such an approximation is a linearization of the given function, obtained by evalu­

ating the function and its subgradient at the trial point of an earlier iteration. The

polyhedral approximations and quadratic regularization yield a local approximation to

the original optimization problem, whose solution (found by quadratic programming)

provides the search direction. Next, a line search along this direction produces the next

approximation to a solution and the next trial point, detecting the possible gradient

discontinuities. The successive polyhedral approximations are formed to ensure conver­

gence to a solution without storing too many linearizations. To this end, subgradient

selection (or aggregation) techniques are employed.

3 Linearly constrained convex minimization

The problem of minimizing a convex function f : Rn --+ Rover SL may be solved in

NOA by the method of Kiwiel (1987b). To avoid repetitions in subsequent sections,

most of the basic ideas will be discussed in detail for this method only.

Let gJ(Y) denote the subgradient of f at y calculated by the user's subroutine. Thus

at each y we can construct the linearization of f

!(Xj y) = f(y) + (gJ(Y) , x - y} for all x,

which is a lower approximation to f (f ~ ! (. j y) by convexity).

(5)

184

Given a starting point Xl E SL , the algorithm generates a sequence of points xl< E SL,

k = 2,3, ... , that converges to a minimizer of I on SL . At the k-th iteration the method

uses the following approximation to I

P(x) = max { ! (x; yi) : j E J; } (6)

derived from the linearizations of I at certain trial points y; of earlier iterations j, where

the index set Jj C { 1, ... ,k } typically has n+2 elements. Note that jl< may be a tight

approximation to I around y;, j E Jj, since I(y;) = jI«y;).

The best feasible direction of descent for I at xl< is, of course, the solution ,11< to

the problem min {/(xl< + d) : xl< + dE SL} , since xl< + ,11< minimizes I on SL . The

algorithm finds an approximate descent direction dl< to

minimize p(xl< + d) + Id1 2 /2 ,subject to xl< + dE SL , (7)

where the regularizing penalty term Id1 2/2 is intended to keep xl< + dl< in the region

where jl< should be close to I; without this term (7) need not have a bounded solution.

In practice we need a stopping criterion for detecting that the method may terminate

because further significant progress is unlikely. The algorithms of NOA typically exhibit

only linear rate of convergence, and we have to content ourselves with solutions with

relative accuracy of up to seven digits in the objective value; otherwise the final progress

may be painfully slow. The nonpositive quantity

is an optimality measure of xl< , since

(8)

The algorithm terminates if

(9)

where e. > a is a final accuracy tolerance provided by the user. (The term I/(xl<)1 is

included to make this test less sensitive to the scaling of I (multiplication of I by a

positive constant), but only large scaling factors are accounted for.) Usually in practice

for e. = 10-(1+1) and I = 3,4 or 5 termination occurs when I/(xl<) - I(x*) I is about

10-1(1 + I/(x*)I), and Ix - x*1 is about 10-1/ 2(1 + Ix*l), where x* is a minimizer of Ion

SL . Of course such estimates may be false for ill-conditioned problems and thus it is

rather surprising that the criterion (9) is quite reliable in practice. Some explanation

may be deduced from the fact that when the quadratic term is inactive in (7), i.e. xl< +dl<
minimizes jl< on SL then I(x*) ~ jI«x*) ~ jl«xl< + dl<) = I(xl<) + vI< .

On the other hand, when I is polyhedral termination should occur at some iteration

with vI< = a (and optimal xl<). In practice computer rounding errors prevent the

vanishing of vI< , but still we may use a rather small e. in (9), e.g. e. = e~s, where eM

is the relative machine accuracy.

185

If the algorithm does not terminate, then the negative value of vI: = II: (yl:+l) - f(xl:)

predicts the descent f(yl:+l) - f(xl:) for the move from xl: to the trial point yl:+l = xl:+dl:.

Usually vI: over-estimates the descent because f 2:: II: and II: need not agree with f at

yl:+l if its linearizations do not reflect discontinuities in V f around x . The algorithm

makes a serious step to xl:+1 = yl:+l if

(10)

where mL E (0, 1) is a parameter; otherwise a null step xl:+1 = xl: provides the new

linearization !(. ; yl:+1) for improving the next model Il:+l of f.

We typically use mL = 0.1 in (10); in practice mL > 0.5 may result in many null

steps, whereas mL < 0.1 may produce damped oscillations of {xl:} around the solution

(little descent is made at each serious step). We note that in theory finite termination

for polyhedral problems can be ensured with mL = 1 (see Kiwiel, 1987a), but our

experiments indicate that mL = 0.1 is more efficient.

The user may trade off storage and work per iteration for speed of convergence by

choosing the maximum number Mil of past linearizations involved in the approximations

II:. To ensure convergence, the method selects for keeping the linearizations active at

the solution to subproblem (7) (their indices enter Jj+1 together with k + 1), whereas

inactive linearizations may be dropped. More linearizations enhance faster convergence

by providing more accurate II:, but the costs of solving subproblem (7) may become

prohibitive. Using Mil greater than its minimal possible value n + 3, Mil = 2n say,

frequently increases the overall efficiency. To save storage, the algorithm may be run

with Mil 2:: 3 by employing subgradient aggregation instead of selection, but this will

usually decrease the rate of convergence (sometimes drastically!).

The algorithm described so far is rather sensitive to the objective scaling, mainly

due to the presence of the arbitrary quadratic term in subproblem (7). For greater

flexibility, the user may choose a positive weight u in the following version of (7)

If f varies rapidly, increasing u from 1 will decrease Idl:l, thus localizing the search for a

better point to the neighborhood of xl:. On the other hand, too "large" u will produce

many serious, but short steps with very small I xl:+1 - xl:I , and convergence will be

slow. We intend to implement in NOA the technique of Kiwiel (1988d) for choosing the

weight u adaptively. At present we note that suitable line searches (see Section 7) may

offset an improper choice of u.

Subproblem (7) is solved in NOA by a special subroutine for quadratic programming

(see Kiwiel, 1986a). This subroutine is quite efficient. Still when there are many general

linear constraints some work could be saved at direction finding by considering only

almost active constraints, i.e. only rows A j of A such that Ajxl: 2:: bj - ~~ for some

activity tolerance c ~ > O. A reasonable choice of c: which does not impair convergence

is ~: = -vl:- 1 (or c ~ = max { -vl:-1
, 1O-6

}). However, the gain in effort at direction

finding could be outweighted by an increase in the number of iterations required to

reach an acceptable solution (cr. Nguyen and Strodiot, 1984). Hence this option is not

included in NOA, which is intended for small-scale problems. For the same reason we

186

have refrained from implementing reduced (sub)gradient strategies (cf. Bihain, Nguyen

and Strodiot, 1987; Panier, 1987).

4 Exact penalty methods for convex problems

Suppose that problem (3) is convex (i.e. f and F are convex) and satisfies the generalized

Slater qualification (F(x) < 0 for some x E SL). Then problems (3) and (4) are

equivalent if c is large enough. Moreover, we may easily compute linearizations of

e(.; c) from those of f and F.

The methods of NOA with a fixed penalty coefficient require the user to specify c.

The first one solves (4) by the algorithm of Section 3 (i.e. e(·; c) replaces f). The

second one exploits the additive structure of e(. ; c) in its approximation

e(x; c) = p (x) + c max { F k(x) , 0 } (11)

formed from P (see (5)) and

Fk(x) = max { F(x; 1/) : j E J;} ,

F(x; y) = F(y) + (gF(Y) , X - y) with gF(Y) E BF(y) .

The second method is usually faster, since its approximations ek
(.; c) are more

accurate (have more linear pieces) (cf. Kiwiel, 1988a). For both methods termination

occurs if (cr. (9))

(12)

where c. and CF are positive accuracy and feasibility tolerances (provided by the user),

whereas

vk = ek (xk + dk ; c) - e (xk ; c)

yields the optimality estimates (cr. (8))

e(xk ; c) ::::; e(x; c) + Ivkl1/2lx - xkl_ vk , \:Ix E SL ,

(13)

(14)

(15)

Both methods may be allowed to choose the penalty coefficient automatically. Then

at the k-th iteration we use c = ck > 0 (e.g. in (11)). The initial c1 > 0 may be

specified by the user. The penalty coefficient is increased only if x k is an approximate

solution to (4) (i.e. it minimizes e (.; ck
) to within some positive tolerance 6:), but it

is significantly infeasible (i.e. F(xk
) is "large"). The specific updating rule of Kiwiel

(1985c) based on (14) reads

if F(x"):::; -c"v" set cHI = c", otherwise c"+l = 2c" .

187

where ICc > 1 and 1C6 E (0, 1) are parameters (e.g. ICc = 2, 1C6 = 0.1 for c l = 10 and

0) = _Vi). We are currently preferring the alternative "parameter-free" rule of Kiwiel

(1988a)

In theory both rules ensure automatic limitation of penalty growth, and they are quite

efficient in practice (i.e. they seldom produce a too large c" , which hinders the mini­

mization of e (. ; c")). However, none of them is entirely satisfactory because they are

too sensitive to the constraint scaling.

5 The constraint linearization method

The convex problem of Section 4 may be solved in NOA by the constraint linearization

method of Kiwiel (1987a), which is frequently more efficient than the algorithms of

Section 4.

At the k-th iteration the algorithm finds d" to

minimize l"(x" + d") + Id12/2 ,

subject to F"(x" + d) :::; 0 and x" + dE SL .
(16)

The solution d" is an approximate descent direction for e (. ; c") at x", provided that

c" is greater than the Lagrange multiplier c" of the first constraint of (16). Hence the

algorithm sets cHI = c" if c" ~ c" ; otherwise cHI = max {c" , lCeC"} , where ICc > 1 is

a parameter (e.g. ICc = 2), and c l = O. Again v" given by (13) and (11) satisfies the

optimality estimate (15), which justifies the termination test (12). Naturally, e (.; cHI)

replaces f in the improvement test (10).

The additional constraint activity in (16) reduces the number of degrees of freedom,

and may lead to faster convergence in comparison with the methods of Section 4. How­

ever, when Xl is very far from a solution, the present method may generate a much

larger value of c" than the former ones, and then it becomes less efficient.

6 Feasible point methods

The convex problem of Section 4 may also be solved in NOA by the feasible point

method of Kiwiel (1985d, 1988b). This method uses the approximations i" and F" of

f and F in the search direction finding subproblem

minimize iI"(x" + d) + Id12/2 , subject to x" + dES,

where

iI"(x) = max { l"(x) - f(x") , F"(x) }

approximates the improvement function

H(x; x") = max {f(x) - f(x") , F(x) } .

188

Thus, if F(xk) S; 0, we wish to find a feasible (Fk (xk + dk) < 0) direction of descent

(j(x k + dk) < f(x k)) , whereas for F(xk) > 0, dk should be a descent direction for F

(Fk(x k + dk) < F(xk)), since then we would like to decrease the constraint violation.

Naturally, H (.; x k) replaces f in the improvement test (10) with uk = iJk(x k + dk) ­

H (x k
, xk

), and (9) is used as a stopping criterion. In other words, this is just one

iteration of the method of Section 3 applied to the minimization of H (. ; x k
) over SL !

In effect the algorithm runs in two phases. Phase 1 reduces the constraint violation,

while phase 2 (if any) keeps x k feasible and decreases f(x k).

The algorithm is, in general, more reliable than the exact penalty methods of Sections

4 and 5, because it does not need to choose the penalty coefficient. Also it is more widely

applicable, since it need not in fact require the evaluation of f and gf at infeasible points.

Unfortunately, its convergence is usually much slower, because it cannot approach the

boundary of the feasible set at a fast rate.

7 Methods for nonconvex problems

Nonconvex minimization problems are solved in NOA by natural extensions of the meth­

ods described in Sections 3, 4 and 6, see Kiwiel (1985a, 1985d, 1986b, 1986c, 1988a).

For simplicity, let us consider the problem of minimizing a locally Lipschitzian func­

tion f on SL . In the nonconvex case the subgradient 9f(Y) may be used for modelling

f around x only when Y is close to x (we no longer have f 2: !(.; y)). The subgradient

locality measure

(17)

with a parameter 1. > 0 indicates how much 9f(Y) differs from being a subgradient of

f at x. At the k-th iteration the algorithm uses the following modification of (6) for

finding dk via (7)

jk(x) = f(x k) +max{ -oAxk;,J) + (gf(yi) , x - x k) : j E J;} .

In the convex case with 1. = 0 this approximation is equivalent to (6)

(since f(x k) 2: !(xkj yi)). For 1. > 0 the local subgradients with small weights

llf(x k
; yi) tend to influence dk more strongly than the nonlocal ones.

The above definition of llf is rather arbitrary (ef. Mifflin, 1982), and it is not clear

how the value of 1. should reflect the degree of nonconvexity of f (in theory any 1. > 0

will do). Of course, for convex f 1. = 0 is best. Larger values of 1. are essential

for concluding that xk is optimal because jk indicates that f has no feasible descent

directions at x k
• On the other hand, a large 1. may cause that after a serious step

all the past subgradients will become inactive at the search direction finding. Then

the algorithm will be forced to accumulate local subgradients by performing many null

steps.

It is, therefore, reassuring to observe that 1. = 1 seems to work quite well in practice

(cf. Kiwiel, 1988a). However, it may be necessary to scale the variables so that they

are of order 1 at the solution (to justify the Euclidean norm in (17)). Since automatic

189

scaling could be dangerous, it is not implemented in NOA, but we intend to pursue this

subject in the future.

Another feature of the nonconvex case is the need for line searches. Two cases are

possible when a line search explores how well ik agrees with f between x k and xk + dk.

Either it is possible to make a serious step by finding a stepsize ti E (0, 1] such that

the next iterate xk+l = xk + tidk has a significantly lower objective value than x k ,

or a null step x Hl = x k (ti = 0) which evaluates f and 9, at the new trial point

yHl = x k + t~dk, with t ~ E (0, 1], should improve the next model iHl that will yield

a better dk+l.

More specifically, a serious step ti = t~ > 0 is taken if

f(X H1
) :::; f(x k) + mLtlv

k
,

tl ~ f or IX,(X
k
; x H1

) > m"lvkl ,
whereas a null step occurs with 0 = ti < t~ :::; f and

-IX, (xk ; yk+l) + (9' (yHl) , dk) ~ mRvk ,

where mL ,mR ,m" and f are positive parameters. A simple procedure for finding ti
and t ~ is given in Kiwiel (1986c) for the case of mL + m" < mR < 1 and f:::; 1. Since

the aim of a null step is to detect discontinuities of 9, on the segment [x k
, xHl] , this

procedure requires that f and 9, be consistent in the sense that

lim suP(9' (x + t'd) , d) ~ lim inf [f (x + t'd) - f (x)] / t'
i ~ o o '-+00

for all x, dE Rn, {t'} C R+, t'! 0 .

(18)

In practice we use mL = 0.1, mR = 0.5, m" = 0.1, f = 0.1 and simple quadratic

interpolation for diminishing trial stepsizes (see Remark 3.3.5 in Kiwiel, 1985d). Yet

our crude procedure seems to be quite efficient; it requires on average less than two

function evaluations (cr. Kiwiel, 1988a). On the other hand, our experience with more

sophisticated procedures that insist on directional minimizations (cf. Mifflin, 1984) is

quite negative. The resulting increase in the number of f-evaluations is not usually

offset by a reduction in the number of iterations. This is not efficient in applications

where the cost of one f-evaluation may dominate the effort in auxiliary operations

(mainly at quadratic programming) per iteration.

We should add that in practice we employ the locality measures

I X ~ . i = max { If(x
k

) - !(x
k

; yi)1 , 1.(Sn
2

}

that over-estimate IX,(xk ; yi) by using the upper estimate s ~ = Iyi -xil+ ' E ~ ; ; l l x i + l - x ' i

of Ix k
- yil, which can be updated without storing yi.

The extensions to the nonconvex case of the methods of Sections 4 and 6 follow the

lines sketched above. We only add that all the problem functions should satisfy the

semidifferentiability condition (18). In fact the convergence analysis of Kiwiel (1988a)

requires the equality constraints to be continuously differentiable, but we have managed

to solve many problems with nondifferentiable equality constraints.

190

We may add that each method of NOA has another version that uses subgradient

deletion rules instead of subgradient locality measures for localizing the past subgradient

information (see, for instance, Kiwiel, 1985a and Kiwiel, 1986c). It is not clear which

version is preferable, since their merits are problem-dependent. We intend to clarify

this situation in the near future.

8 Conclusions

We have presented an overview of several NDO algorithms that are implemented in the

system NOA. The emphasis has been laid on practical difficulties, but they can only be

resolved by further theoretical work. We hope, therefore, that this paper will contribute

to the development of NDO methods.

9 References

Bihain, A. (1984). Optimization of upper-semidifferentiable functions. Journal of

Optimization Theory and Applications, 44, pp. 545-568.

Bihain, A., Nguyen, V. H. and Strodiot, J.-J. (1987). A reduced subgradient algorithm.

Mathematical Programming Study, 30, pp. 127-149.

Bronisz, P. and Krus, L. (1985). Experiments in calculation of game equilibria us­

ing nonsmooth optimization. In: Lewandowski, A. and Wierzbicki, A. P. eds.,

Software, theory and testing examples in decision support systems, pp. 275-286.

International Institute for Applied Systems Analysis, Laxenburg, Austria.

Clarke, F. H. (1983). Optimization and nonsmooth analysis. Wiley Interscience, New

York.

Fletcher, R. (1981). Practical Methods of Optimization, vol.II, Constrained Optimiza­

tion. Wiley, New York.

Kiwiel, K. C. (1985a). A linearization algorithm for nonsmooth minimization. Mathe­

matics of Operations Research, 10, pp. 185-194.

Kiwiel, K. C. (1985b). An algorithm for linearly constrained convex nondifferentiable

minimization problems. Journal of Mathematical Analysis and Applications, 105,

pp. 452-465.

Kiwiel, K. C. (1985c). An exact penalty function method for nonsmooth constrained

convex minimization problems. IMA Journal of Numerical Analysis, 5, pp. 111­

119.

Kiwiel, K. C. (1985d). Methods of descent for nondifferentiable optimization. Lecture

Notes in Mathematics, 1133. Springer, Berlin.

191

Kiwiel, K. C. (1986a). A method for solving certain quadratic programming problems

arising in nonsmooth optimization. IMA Journal of Numerical Analysis, 6, pp.

137-152.

Kiwiel, K. C. (1986b). A method of linearizations for linearly constrained nonconvex

nonsmooth optimization. Mathematical Programming, 34, pp. 175-187.

Kiwiel, K. C. (1986c). An aggregate subgradient method for nonsmooth and nonconvex

minimization. Journal of Computational and Applied Mathematics, 14, pp. 391­

400.

Kiwiel, K. C. (1987a). A constraint linearization method for nondifferentiable convex

minimization. Numerische Mathematik, 51, pp. 395-414.

Kiwiel, K. C. (1987b). A subgradient selection method for minimizing convex functions

subject to linear constraints. Computing, 39, pp. 293-305.

Kiwiel, K. C. (1988a). An exact penalty function method for nondifferentiable con­

strained minimization. Prace IBS PAN, 155, Warszawa.

Kiwiel, K. C. (1988b). Computational Methods for Nondifferentiable Optimization.

Ossolineum, Wroclaw (in Polish).

Kiwiel, K. C. (1988c). Descent methods for quasidifferentiable minimization. Applied

Mathematics and Optimization, 18, pp. 163-180.

Kiwiel, K. C. (1988d). Proximity control in bundle methods for convex nondifferen­

tiable minimization. Mathematical Programming, (to appear).

Lemarechal, C. (1978). Nonsmooth optimization and descent methods. Report RR­

78-4, International Institute for Applied Systems Analysis, Laxenburg, Austria.

Lemarechal, C. (1986). Constructing bundle methods for convex optimization. In:

J. B. Hiriart-Urruty, ed., Fermat Days: Mathematics for Optimization, pp. 201­

240. North-Holland, Amsterdam.

Lemarechal, C., Strodiot, J.-J., and Bihain, A. (1981). On a boundle algorithm for

nonsmooth optimization. In: Nonlinear Programming, 3 (0. L. Mangasarian,

R. R. Meyer and S. M. Robinson, eds.), pp. 245-281. Academic Press, New York.

Mifflin, R. (1977). Semismooth and semiconvex functions in constrained optimization.

SIAM Journal on Control and Optimization, 15, pp. 959-972.

Mifflin, R. (1982). A modification and an extension of Lemarechal's algorithm for

nonsmooth minimization. Mathematical Programming Study, 17, pp. 77-90.

Mifflin, R. (1984). Stationarity and superlinear convergence of an algorithm for uni­

variate locally Lipschitz constrained minimization. Mathematical Programming,
28, pp. 50-71.

192

Nguyen, V. H., and Strodiot, J.-J. (1984). A linearly constrained algorithm not

requiring derivative continuity. Engineering Structures, 6, pp. 7-11.

Panier, E. (1987). An active set method for solving linearly constrained nonsmooth

optimization problems. Mathematical Programming, 37, pp. 269-292.

Polak, E., Mayne, D. Q., and Wardi, Y. (1983). On the extension of constrained

optimization algorithms from differentiable to nondifferentiable problems. SIAM

Journal on Control and Optimization, 21, pp. 179-203.

Wierzbicki, A. P. (1986). On the completeness and constructiveness of parametric

characterizations to vector optimization problems. OR Spektrum, 8, pp. 73-87.

A Methodological Guide to the Decision Support

System DISCRET

for Discrete Alternatives Problems

Janusz Majchrzak

Systems Research Institute, Polish Academy of Sciences, Warsaw.

Abstract

DISCRET is a package created to solve the basic multicriteria decision making

problems in which a finite set of feasible alternatives is explicitly given and for

each alternative the values of all criteria describing its attributes interesting for the

decision maker (DM), were evaluated and listed in a file. The DM is assumed to

be rational in the sense that he is looking for an nondominated (Pareto-optimal)

alternative as his final solution of the problem.

The implemented approach is based on a fast technique for selecting the non­

dominated alternatives set and/or representation (subset) of this set. The reference

point approach tools are also available for the user are also available for the user for

the final selection of his most preferred alternative, together with some interactive

display facilities.

1 Introduction

1.1 Scope of the report

This report aims to:

• provide the information necessary to use the DISCRET package and to understand

its structure as wen as the capabilities of the implemented approach,

• discuss such methodological issues associated with the implemented approach,

which might be interesting for the user and which justify the chosen approach,

• attract and encourage the reader to take the advantage of the package utilization,

It is assumed that the reader and the package user possess just the very basic infor­

mation about multicriteria optimization and discrete choice problems.

194

1.2 Purpose of the DISCRET package

DISCRET is a package created to solve basic multicriteria choice problems in which a

finite set of feasible alternatives (and decisions) is explicitly given and, for each alterna­

tive, the values of all criteria describing its attributes interesting to the decision maker

(DM) were evaluated and listed. The DM is assumed to be rational in the sense that he

is looking for an efficient (Pareto-optimal) solution as his final solution of the problem.

Such a discrete multicriteria optimization problem is rather a problem of choice

than optimization, since all the information necessary to make a decision is readily

available. Such a problem is rather trivial for any human being as long as the number

of alternatives is small (say, less than ten or twenty). However, if the number of alterna­

tives and/or criteria grows, the limits of human information processing capabilities are

reached and some decision support facilities have to be utilized to guarantee a proper

and efficient decision making.

The purpose of the DISCRET package is to support the DM in his search for final

decision in an interactive and user-friendly manner. It is assumed that the DM has only

a limited knowledge of the problem he wants to solve at the beginning of the session with

DISCRET. Therefore, during the session no difficult questions are asked (for example,

about criteria trade-offs, DM' utility function or pairwise comparisons of alternatives).

The package-provided information enables the DM to gather the experience related to

his problem's specific features as well as his own preferences.

The implemented approach seems to be easy to understand and approve even for a

user who is not very familiar with multicriteria optimization techniques.

The DISCRET package has been designed to solve medium-size discrete multicriteria

problems with the number of alternatives ranging from few hundreds to few thousands.

The number of criteria is in the current version restricted to 20 (mainly due to the

limitations of display facilities).

During the session the user controls the decision-making process by choosing suitable

options from the displayed "menu". Therefore, he does not have to learn and remember

any command pseudo-language. This feature, together with special procedures for han­

dling user's mistakes and with self-explanatory package messages, makes the package

user-friendly and allows for an unexperienced user.

1.3 Fields of the package applications

In many real-life problems, decision variables take their values from a discrete set rather

than from a continuous interval. Usually, there is a finite number of available facility

location sites, the facility size or production capability may be chosen from a discrete

set of values, during a design process the components are chosen from a set of typi­

cal elements available on the market, etc. Such problems form the "natural" field of

applications for the DISCRET package.

Another field of possible applications of the DISCRET package consists of cases

in which the original problem is actually continuous (rather than discrete) but the

analysis restricted just to a finite number of alternatives appearing in this problem may

be interesting and useful for the DM, since it may result in an enlightening and a more

precise definition of his preferences, region of interest or aspiration levels.

195

Situations falling under the latter category may occur for at least two following

reasons. Firstly, if a sample of alternatives together with the corresponding criteria

values is readily available, the utilization of the DISCRET package may enable the DM

to gain an insight into the original multicriteria problem. The analysis of an assembly

of runs of a simulation model is an example of this case. Secondly, for the purpose of

an initial analysis of a problem in which the decision variables actually take their values

from continuous intervals, the DM may take into consideration just a few values for

each decision variable or to generate a random sample of alternatives.

An encouraging factor that may attract the DM is the fact that the DISCRET

package makes no restrictions on the forms of the criteria. Therefore, attributes as

complicated as required may be considered.

2 Background

2.1 The discrete multicriteria optimization problem

Package DISCRET has been created to support-in an interactive manner-multicriteria

optimization and decision making for problems with a finite number of discrete alter­

natives. Such problems are frequently referred to as implicit constraints or explicit

alternatives problems.

Let us consider the following discrete multicriteria optimization problem (DMOP).

It is assumed that a set XO of feasible discrete alternatives is explicitly given and for each

of its elements all criteria under consideration have been evaluated. The criteria values

for all feasible discrete alternatives form the set Q of feasible outcomes or evaluation.

min !(x)
"'EXO

r = {XllX2,'" ,xn } C X = R"

!(x) = (f1(X),f2(X), ... , !m(x))

!:X°-+Q

Q = {!l,h, ... ,!n} C F = R
m

!;=!(Xj), j=1,2, ... ,n

Furthermore, it is assumed that a domination cone A is defined in the objective

space F. As in most applications the positive orthant is considered, A = R~ and

A= R~ \ {O}. The domination cone introduces the partial pre-order relation "-<" into

the objective space:

vIi, h E F, !l -< h <==> Ii E h - A

The element !1 dominates h in the sense of the partial pre-order induced by the

domination cone A.

196

Element! E Q is nondominated in the set of feasible elements Q, if it is not domi­

nated by any other feasible element. Let N = N(Q) c Q denote the set of all nondom­

inated outcomes in the objective space and let Nx = N(XO) c XO denote the set of the

corresponding nondominated alternatives (decisions) in the decision space. To solve the

DMOP it means to find the set N of nondominated outcomes and the corresponding

set Nx of nondominated decisions.

Notice that DMOP is described by the two sets Q and XO defined above (together

with m, nand s). Therefore the package input files supplied by the user must contain

these two sets.

Observe also that no assumptions were made about the nature of the criteria func­

tions Ii. In fact, the only requirement for them is that they should assign numerical

values to the alternatives, indicating their attractiveness with respect to the attribute

under consideration. In particular, the criteria functions may be of the qualitative type.

The single restriction is that values assigned to alternatives by criteria should be ex­

pressed by numbers and that the user is able to indicate whether he wishes to increase

or decrease these numbers. In doing so, he defines or changes the domination cone A.

Observe also that the above abstract definition of a solution to DMOP is not very

practical: the set N of all nondominated outcomes might be very large and difficult to

compute, and its full computation might be useless if the user decides to change the

domination cone A. Therefore, an important issue is to find some representation of the

set N, not the entire set.

2.2 Overview of existing approaches

The discrete multicriteria optimization problem (DMOP) is a combinatorial problem

involving sorting and one could expect a large number of papers in the bibliography

devoted to this subject. However, the problem did not focus much attention of the

researchers-except in its utility theoretical variant that actually transforms the prob­

lem to a single-criteria one-and the bibliography we are able to point at consists only

of (Kung et al., 1975, Polak and Payne, 1976, Stahn and Petersohn, 1978), plus some

reports of the earlier research summarized there.

The insignificant interest in methods for solving DMOP could be explained by the

fact that the solution of the DMOP, the whole set of nondominated alternatives is not the

solution of the multicriteria decision making problem (MCDMP), a selected preferred

alternative. However, since the efficiency of methods dealing with MCDMP usually

depend on the number of alternatives, it is wise to reject the dominated alternatives.

A rather large number of approaches have been suggested for the solution of the

MCDMP involving discrete alternatives. They differ both in the problem formulation

and the assumptions about the decision maker (DM). Let us mention here just some

most interesting ones. The method suggested in (Keeney and Raiffa, 1976) is based

on utility functions constructed first for each criterion and then combined into a global

utility function. In (Zionts, 1981) a linear, while in (Koksalan et al., 1984) a quasiconvex

underlying utility function of the DM is assumed and the best alternative according to

an approximation of this utility function is found by asking for answers to a number of

comparisons between pairs of alternatives. Other methods, e.g. (Roy, 1971) or (Siskos,

197

1982), are based on outranking relations. In (Rivett, 1977), multidimensional scaling

techniques are used to obtain a graph pointing from least to most preferred alternatives.

Other group of approaches (some of them were proposed originally for some different

problems) is based on an observation that if the number of the alternatives is small,

then the DM is able to make a decision intuitively, without any formalism of expressing

his preferences. If the number of alternatives is larger, then one has to reduce it for

the DM by selecting a small but representative sample. Several methods for obtaining

such a representation were proposed. They utilize cluster analysis (Torn, 1980, Morse,

1980), filtering (Steuer and Harris, 1980) or random sampling (Baum et aL, 1981).

Approaches from the first of the two above-mentioned groups place the burden on

the DM. He is asked to supply the information about his preferences by the evaluation of

the alternatives -by pairwise comparisons or rankings for example. These evaluations

are substantial for the methods. Each of these methods is based on certain implicit or

explicit assumptions about the DM, such that, for example, he has an utility function

expressing his preferences. The size of the problems that can be solved is limited by

the DM's ability to provide the required amount of information by ranking or comparing

pairwise the alternatives.

In the approaches from the second group, the burden is placed rather on the com­

puter. The crucial point here is whether the obtained representation of the nondom­

inated set will be illustrative for the DM. No special assumptions about the DM are

made. He is only expected to prefer the nondominated alternatives rather than the

dominated ones.

Our approach presented in this report may be classified as one of the second group.

It is based on a new efficient method for DMOP, which also can efficiently produce a

representation of the nondominated set.

2.3 The method of dominated approximations

The implemented method is of the explicit enumeration type. It is called the method

of dominated approximations and is based on the following concept.

Def. 1 Let Q be the set of all feasible alternative outcomes, N the set of corresponding

nondominated alternative outcomes and A the domination cone. Set A is called

a dominated approximation of N iff
Nc A-A

In other words, A is a dominated approximation of N iff for each Ii E N there exists

Ii E A such, that Ii -< Ii in the sense of the partial pre-order induced by A.

We will say that the approximation A2 dominates the approximation Al of the

nondominated set N iff

Al C A2 + A

Hence, as the worst approximation of N we can consider the entire set Q, while the best

approximation is the set N itself. The method of dominated approximations generates

a sequence of approximations At, k = 0,1,2, ... , I such that

198

Thus, given Q and A we are supposed to determine N = N(Q). Assume that all

criteria are to be minimized.

Step_O Let Ao = Q, No = 0, k = O.

Step_1 If A", \N", = 0 then STOP with N", = N, else choose any index i E I = {I, 2, ... , m}

and find! E Q such that the i-th component of it is minimal in A", \ N",:

(See Remark 2).

Set NH1 = N", u {n.

Step_2 Create the new approximation AH1 by rejecting from A", \ N H1 all elements

dominated by ! (see Remark 1)

AH1 = UA", \ N H1 } \ {(/ + A) n (A", \ N H1)}) U NHI

Set k = k + 1 and go to Step_I.

Remark 1. While rejecting the elements dominated by ! it is sufficient to compare

elements of the set A", \ N H1 with! according to all but i-th criterion, since!, is

minimal among all l' in A", \ N.

Remark 2. The minimum may happen to be non-unique. Let B be the set of those

elements I; E A", \ N", for which I; appear to be minimal in A", \ N",. Actually not

all elements of Bare nondominated. One has to solve the following problem. Given B

and A select N(B). The above presented method may be used for this task with Ao = B

and I = 1\ {i}. This recurrence is applied until an unique minimum is found in the

Step_1 of the algorithm. Then, after the execution of Step-2 one has to return to the

lower level of recurrence. On each level Remark 1 holds.

Note that if the recursion described in Remark 2 would not be applied, then the set

of weakly nondominated alternatives would be determined by the above algorithm.

In order to measure the efficiency of the method, let us consider the number of

scalar comparisons S(m, n, p) required by the method to solve the DMOP with m cri­

teria, n feasible alternatives and p nondominated alternatives. From the analysis of the

method one can easily obtain

mp
S(m,n,p) ~ T(2n - p -1)

As one can see, the method solves easily problems with small p. In practical problems

p is usually a small fraction of nj the worst case is for p = n, i.e. when all alternatives

are nondominated. Note that the performance of the method does not depend on the

permutation of the alternatives.

199

2.4 Selection of a representation of the nondominated set

The biggest advantage of the method of dominated approximations is its ability to

select a representation of the nondominated set N instead of the entire set N. Unlike

other known approaches which find the entire nondominated set first and then select

a representation (differently defined for each of those methods), the presented method

selects a representation at once. This fact provides much gain in algorithmic efficiency.

Let t;, i = 1, ... , m be some given tolerance coefficient for the m criteria under

consideration, t; ~ 0, and T; = (t}, t2, . .. ,t;-l, 0, ti+l,' .. ,tm) be a vector in the objective

space. For the sake of simplicity let us assume that all criteria are to be minimized. The

following modification of the method of dominated approximations suffices to obtain a

representation instead of the whole nondominated set. In the Step...2 of the method

not only the elements dominated by the nondominated element J (found in the Step_l

by minimization over the i-th criterion values) have to be rejected, but also elements

dominated by f = J - T;. Hence, in Step_2 is modified to:

A.l:+l = ({A k \ N kH } \ {(! - T; + A) n (A k \ N.l:+l)}) UN kH

Observe that because the representation contains less elements than the nondomi­

nated set, it will be obtained with a smaller computational effort. Figure 1 illustrates

the role of the tolerance coefficients in the process of selecting a representation.

The author is not aware of the existence of any other methods that could be effec­

tively applied for a problem with few hundreds or few thousands of alternatives.

2.5 Outline of the approach and introduction to DISCRET

To start the session with DISCRET the user has to supply the file containing set Q

of the criteria values for all feasible alternatives, the file containing some problem and

data specifications and (optionally) the file containing the set XO of feasible decisions

(the load command). These files, called the data, the specification and the additional

data file respectively, describe the problem under consideration.

After the problem generation and implementation phase the user may obtain the

information about the criteria values ranges and he may put the lower and/or upper

bounds on the values of some/all criteria (the bounds command).

The bounds setting may be utilized by the user for several purposes. This is the list

of some most relevant:

• to eliminate irrelevant alternatives from further considerations,

• to specify his current region of interest in the objective space,

• to redefine his problem as a problem with a fewer criteria as the original one (as

in the method of equality /inequality constraints-see Lin, 1976), for example, a

bicriteria problem.

In the next step the user may run the DMOP solver (by executing the command

solve) to eliminate the dominated alternatives by an explicit enumeration technique.

The tolerances for criteria values play an important role here. If they are all equal

200

f2 f2

0
0 00
0

\

\
°00000

00
o ~

R ON ~o
~ 00

0

\
0

\ 0
\0

0000 f1 o fl
a) b)

f2

I

~

c)

Figure 1: Selection of the representation R = R(N) = R(Q) of the nondominated

set N = N(Q). Only nondominated elements are marked for the sake of-simplicity of

illustration.

a) the nondominated set N.

b) the representation R of the set N.

c) illustration of the tolerance mechanism.

201

zero or have small positive values that correspond to indifference limits of the DM's for

criteria values, the whole set of the nondominated solutions will be obtained. IT the

values of tolerances are equal to some significant fractions of the corresponding criteria

ranges, then a representation of the set of nondominated solutions will be obtained. The

representation is a subset of the set of nondominated solutions preserving its shape and

containing the smaller number of elements, the larger were chosen tolerance coefficients.

After the nondominated set or its representation has been obtained, the user may

proceed in one of the following paths:

• choose a new region of his interest by a proper bounds setting (by using the

command bounds),

• obtain a more or less dense representation by decreasing or increasing the toler­

ances (by using the commands solve),

• use graphic display to learn more about the problem and utilize the reference

point approach (by using the command analyse).

It is worth to mention here that-unlike in other known techniques of obtaining a

representation of the nondominated set-our approach not only does not require any

additional computational effort but even decreases the time of computation with the

ratio of #R to #N, where #N and #R are the number of elements in the nondominated

set N and its representation R, respectively.

Once any subset of the set N of nondominated solutions has been Obtained, one can

select the corresponding decisions from the additional data file (the command pick).
The DISCRET package provides also some more detailed information about the

problem under consideration. A nondominated and a dominated linear approximations

of the set of nondominated solutions are calculated (the command analyse). These

approximations are obtained in the following way. A linear function is defined by the

combination of the criteria with coefficients determined by the criteria ranges. This

function is then minimized and maximized over the set of nondominated elements to

obtain the nondominated and dominated approximation, respectively.

The information contained in the lower and upper bounds for criteria, in criteria

ranges and in nondominated and dominated approximations gives a good overview of

the shape of nondominated set. To learn more about the variety of available alternatives,

the user may use another facility provided by the DISCRET package (in the command

analyse), namely the graphical display of two-dimensional subproblems on the terminal

screen. The user chooses two criteria for the vertical and horizontal axes, while the

other criteria are:

• left unbounded-the whole problem is projected on the two-dimensional subspace

of the space of objectives, just as if all but the two selected criteria were ignored,

• restrictively bounded-a two-dimensional "slice" is cut out of the original m­

dimensional problem.

Enlargements of the chosen display fragments may be obtained simply by specifying

new bounds for the criteria on the axes. Another display feature indicates how many

202

elements does each of the 800 display points represent. This feature may be useful to

detect and investigate the cluster structure of the problem.

The powerful tool of the reference point approach (Wierzbicki, 1979) is also available

for the user (in the command analyse). By determining a reference point, he exhibits

his aspiration levels for criteria values, confronts them with the obtained solution and

modifies them and the reference point. The graphical displays mentioned above could

also be useful on this stage of the decision making process.

During a session with DISCRET the user does not have to necessarily follow the

entire procedure presented above. Once the problem generation and specification phase

has been completed, he may utilize the package facilities in any order, repeat some steps

(commands) or their sequences.

The ability of ignoring some of the criteria temporarily (by specifying that they

are to be neither minimized nor maximized) opens to the DM a possibility of using a

lexicographic or group-lexicographic approach. He may also, besides the actual criteria,

introduce in an identical way some additional criterion expressing his utility, goal or

preference function or any global criterion and use them on any arbitrary chosen stage

of the decision making process. Such additional criteria have to be evaluated for each

alternative during the problem generation phase (just as in the case of the original

criteria) .

The package offers also the possibility of an immediate return to any of the previous

stages of the session, provided that the user have saved them into files (the save and

lood commands).

3 Structure and features of the package

3.1 General description

The current pilot version of the DISCRET package consists of eight FORTRAN77 pro­

grams. In order to run any of them the user has to type an appropriate program name

(command) on his terminal. A list of DISCRET programs is presented below.

• testl - first test problem generator (the Dyer's Engine Selection Problem), a

separate program.

• test2 - second test problem generator (the location-allocation problem), a sepa­

rate program.

• lood - loads the problem from the data and specification ASCII files.

• bounds - informs about the criteria values ranges (utopia and nadir points), non­

dominated and dominated approximations of the set of alternatives and supports

setting of new bounds on criteria values.

• solve - solves the discrete multicriteria optimization problem with explicit alter­

natives (implicit constraints), Le. finds the set of nondominated or weakly non­

dominated elements or its representation, keeping or rejecting duplicate elements.

203

• analyse - supports the reference point approach and simple graphic displays of

the nondominated set.

• save - saves the problem into the data and specifications ASCII files.

• sort - sorts the alternatives in increasing/decreasing order with respect to the

values of a specified criterion, a save subcommand.

• pick - finds decisions corresponding to the chosen outcomes in criteria space, a

save subcommand.

During the command execution, the user controls the process by choosing suitable

items from the displayed menu (a list of options available at the moment). The menu

system has been chosen instead of a pseudo-language of control commands because it

does not require from the user to learn and remember a set of commands.

Each menu contains an amount of information sufficient to make the decision which

of the displayed options is the most suitable one. If the user is asked to enter some

information, everything he types is checked. If he makes a mistake, a message is dis­

played on the screen. Usually the message not only indicates the error but also shows

the correct form of the required input.

In the next chapters the package commands will be briefly presented. We will not

go into details of each menu since they are self-explanatory. The user will gather all the

necessary experience during an introductory session with DISCRET. The test problems

may be created by the commands testl and test2. The description of the test problems

can be found in the user's training manual.

3.2 Problem loading phase

The command load loads the problem by reading the data file and the specification file.

The user may also utilize it as an "unsave" facility which would allow him to return to

any problem previously created and saved during the DISCRET session.

3.3 The bounds setting phase

The command bounds reads the input data, evaluates the criteria values ranges and

displays them together with the nondominated and dominated approximation of the set

of alternatives. If the user is not satisfied with the ranges of criteria values or with the

values of approximations he can change them.

Knowing the ranges of criteria values, the DM may decide that some of the values

of criteria does not interest him at all or at least temporarily. The command bounds

makes it possible to change the DM's region of interest. By setting the appropriate

lower and/or upper bounds for criteria values, the DM restricts further considerations

to a smaller region of the objective space--his current region of interest. Only these

alternatives that satisfy the bounds will be contained in the output data file produced

by the command bounds.

204

Notice that the command bounds can select only a subset of alternatives from the

input data. If the DM wants to consider a completely different region of interest, he

has to supply the input data file containing that set of alternatives.

To illustrate this point assume, just for the sake of simplicity, that all criteria are

to be minimized. Observe that if the decreasing of an upper bound for one criterion

results in increase of the lower value for some other criterion, then it indicates that a

part of the nondominated set did not satisfy the bounds and was rejected. If this was

not the purpose of the user, he should return to less restrictive bounds. This remark

may be useful on the initial stage of the problem analysis, when the user should become

acquainted with the entire variety of the available alternatives.

3.4 The DMOP solving phase

The command solve results in solving the DMOP Le. it selects the nondominated out­

comes out of the set of feasible solutions. If the tolerances for all criteria values are

equal to zero or have some small positive values corresponding to the computer arith­

metic accuracy (for example, 1.0e-1O) or criteria values measurement accuracy, then all

nondominated outcomes are found. If the tolerances have larger positive values equal

to some significant fractions of the criteria values ranges, then just a subset of the

nondominated set, called its representation, is selected.

The command solve asks the user also about the type of the solution he is look­

ing for. It has the ability to find either the set of nondominated outcomes or weakly

nondominated outcomes. If there are duplicate outcomes (that is, if the same outcome

vector corresponds to two different decisions), then they can be treated as distinguished

ones (and all preserved) or as identical ones (and all but one rejected). Options more

sophisticated than the default option (nondominated outcomes, duplicates rejected) do

make sense in the cases when at least for some criteria rough values where initially given

and they are supposed to be refined in some next stage of the decision making process,

or when some of the criteria are more important then the other.

3.5 The problem saving phase

Once the nondominated set (or its representation or a part of it corresponding to the

current region of interest of the user selected by setting of bounds) has been obtained,

the user may wish to save it in order to continue the job later or to list its elements and

analyse them.

The subcommand sort sorts the elements of the input data file according to in­

creasing or decreasing values of criteria chosen by the user. Another option is to sort

the alternatives in increasing or decreasing order according to their identifiers. When

sorted before being printed, any set of alternatives appears to be more readable and

hence more useful for analysis.

The subcommand pick selects from the additional input data file any additional

information corresponding to the elements contained in the data file. Typically, this

additional information describes the decisions leading to the obtained nondominated

solutions.

205

The mechanism provided by the subcommands sort and pick may be especially useful

in the case when the package user is an analyst. Properly sorted data (a nondominated

set representation adequate to the current stage of the decision making process) will be

more readable for the DM.

3.6 The phase of selecting final solution

The command analyse was designed to help the user to define his region of interest in

a more precise way or to find his final solution.

At the beginning, the user will be informed about the criteria best and worse values­

the utopia and nadir points. In order to provide some more 'detailed but still aggregated

information about the shape of the nondominated set (or its representation or just a

part of it) the nondominated and dominated linear approximations are evaluated.

A linear combination of criteria with coefficients proportional to the criteria ranges

is minimized and maximized over the nondominated set to obtain its nondominated and

dominated approximation respectively. Each of these approximations may be charac­

terized by a single parameter standing for the percentage of the range it cuts off out of

each criterion values range, see Figure 2 for illustration. Solutions obtained from the

linear approximations are also displayed. This aggregated information seems to provide

good aggregate data on the shape of the nondominated set, no matter how many criteria

are under considerations.

In order to learn more about the criteria trade-offs, the user may display on the

screen of his terminal a simple graphic figure for a two-dimensional subproblem. By

setting bounds on all but two criteria he is able to cut a "slice" out of the m-dimensional

problem. The entire subset selected in this way will be represented by 800 fields on the

screen.

Finally, the user may enter the reference point approach, interactively introduce ref­

erence point exhibiting his aspiration levels for criteria values and analyse the obtained

solutions. The reference points need not to be attainable and the obtained solution

is the nondominated point nearest to the reference point in the sense of the scalariz­

ing function. A scalarizing function based on the Euclidean-norm is used. Let q be

the reference point introduced by the user. Then, assuming that all criteria are to be

minimized, the following scalarizing function is minimized:

where (f - q)+ denotes the vector with components max (0, f - q), II- II denotes the

Euclidean norm and p > 1 is a penalty scalarizing coefficient. See (Wierzbicki, 1979),

for example, for more information about the reference point approach.

4 Test examples

4.1 The Dyer's "Engine Selection Problem"

For the purpose of testing the package and to be used during introductory sessions with

DISCRET, a generator of the Dyer's "Engine Selection Problem" (see Dyer, 1973, or

206

f2

Nadir

a)

Ut'opia

I
I
I
I f'

f2

90% Nadir

__ ~~l
90%

Utopia .. ~ I

I 70%

I
I

b)
I f'

Figure 2: Two types of the aggregated information about the nondominated set N.

a) Information about the nondominated set N offered by the utopia point and the

nadir point.

b) Information carried by the nondominated (70%) and dominated (90% of criteria

range) approximations of the set N.

207

Torn, 1980) has been implemented. This is a very simple example of a DMOP. However,

it is rather well known in the literature devoted to this field of research and therefore

it seems that it will suit well as a small illustrative test problem.

Let us consider a DM who designs a new automobile and he has to choose an

engine for that car. Suppose that the variety of available engines is described by three

parameters (decision variables):

Xl - compression ratio

X% - carburation ratio (in square inches)

X3 - piston displacement (in cubic inches)

Suppose that the DM's preferences are described by the following three criteria:

II - cost of the engine

fz - horsepower

13 - mileage per gallon

The following DMOP was proposed by Dyer (1973)-see also (Torn, 1980).

Problem definition:

mmlmlze: lI(x) = 133(Xl - 8) + 10x% + X3 + 2000

maximize: iz(x) = 20(Xl - 8) + X% + 0.5X3

maXlmlze: h(x) = -1.67(XI - 8) - 0.2x% - 0.05X3 + 35

subject to:

bounds:

constraints:

8 ~ Xl ~ 11

X% ~ 40

100 ~ X3 ~ 200

50Xl - 30x% + X3 ~ 400

20Xl - 3X2 ~ 160

X3/X2 ~ 20

Problem generation:

Dyer and Torn proposed the following scheme to generate uniformly a set of decisions:

for Xl = 11 step 81 until Ul

for x% = 12 step 82 until U2

for X3 = 13 step 83 until U3

208

where Ii, Ui are the lower and upper bounds for Xi, i = 1,2,3 while Si are the corre­

sponding step size. If-following Dyer and Torn-the initial data are:

Ii Si Ui

i=1 8 1 11

i=2 10 10 40

i=3 100 20 200

then 84 generated points satisfy the problem constraints. Another way to generate a

test problem is a random generation of decision vectors X within bounds I and u. This

test problem is generated by the DISCRET's command testl.

4.2 The location-allocation problem

The second test problem is a facility location-allocation problem. It is based on the

problem presented by Lee, Green and Kim (1981).

A firm is evaluating six potential sites of plant location (in four different states)

that would serve four customer centers. The problem is where should the plants be

opened and what should be the production volume of each of the new opened plants.

Let i = 1,2, ... ,imax = 6 be the locations index and let J' = 1,2, ... ,J'max = 4 be the

customer center index.

Decision variables:

Yi = 0/1 if a plant is not opened / opened at location i,

z; - production volume (size) of a plant opened at location i.

Model variables and parameters:

Pj - total demand of customer center J',

Cij - unit transportation cost from facility i to the customer center i,

gi - fixed cost of opening a facility at location i (in $1000),

Ii - life quality score for location i,

zi - production upper limit for facility at location i (due to the state environment

quality standards),

z! - production lower limit,

z; - production increment step size,

ki
- location i production limits due to state environment quality standards,

d;j - demand placed on facility i by the customer center i,
Yi e- bCij

d··--------,--I' - Li Yi e-bCij ,

209

Xi; - quantity of units transported from location i to the customer center j,

d;; . { }
Xi; = "". d.. mm Zi, L di; ,

LJJ 'J ;

n - number of opened facilities.

Constraints:

1. Fixed cost limitation (in $1000):

LgiYi :::; 2000
i

2. Production limitations due to state environment quality standard:

zi:::;ki , i=l, ... ,imax

3. Favored customer center service level :

4. Number of opened facilities:

nmin = 1 :::; n :::; 3 = n max

Criteria:

1. Unsatisfied demand level:

min Ii = L L(di; - Xi;)
i ;

2. Favored customer center (no. 1) service level:

f
Ei YiXil

max 2 =
PI

3. Total cost :

min fa = f5 + f6 + h

4. Average life quality score:

Ei Yi1i
m a x f 4 . = ~

LJi Yi
5. Fixed cost:

min f5 = L Yigi
i

6. Transportation cost :

min f6 = L L Si;Xi;
i ;

7. Production cost:

min h = L Zie-C<Zi
i

8. Unsold production:

min fs = L max { 0, (Zi - LXi;) }
i i

210

Alternatives generation scheme:

The set of feasible alternatives is generated by the following three nested loops.

1. Consider opening n = nmin, ... , nmax facilities.

2. Generate all n locations subsets of the set of locations (n--elements combinations

of i max elements set).

3. For each facility opened at location i consider its all available sizes Zi ranging from z!
to zi with the increment step size z;.

4.3 How to get started

At the very beginning of the session a problem to be solved has to be supplied. For the

first session execute the DISCRET command testl. When the test problem is already

generated, look at three files that were produced: the specification file, the data file and

the additional data file.

Whenever you do not remember the names of the files you have created during the

session, display the history.fil from your current directory. This file contains the history

of your session.

In order to learn how to describe the details of your problem forDISCRET, print the

specification file produced by the command testl. Then execute the specify command

and try to create a specification file identical to that obtained from testl.

If you already know how to specify your problem, try some other DISCRET com­

mands. For the first time, execute them in the following order: bounds, solve, analyse,

sort, pick, just to learn what they can actually do for you.

Later on try to select your most preferable solution(s). Notice that DISCRET com­

mands can be executed in any order (if only it does make any sense for you). Refer to

the history.fil to recall the history of your session.

5 Conclusions

The DISCRET package for multicriteria optimization and decision making problems

with finite number of discrete alternatives has been briefly presented. It is the author's

hope that this report will attract the reader and encourage him to use the package.

DISCRET is an interactive package. The user may execute its commands in any

order once the problem generation and specification phase has been completed. The

variety of paths the user may follow guarantees flexibility in meeting his demands.

The author will be grateful for any critical remarks and comments concerning both

the approach and the package itself. All such suggestions would be very helpful and

may result in further package improvements.

6 References

Baum, S., W. Terry and U. Parekh (1981). Random sampling approach to MCDM. In

J.N. Morse (ed): Organizations: Multiple Agents with Multiple Criteria, Lecture

Notes in Economics and Math. Systems, 190.

211

Dyer, J.S. (1973). An empirical investigation of a man-machine interactive approach

to the solution of a multiple criteria problem. In T .L. Cochrane and M. Zeleny

(eds): Multiple Criteria Decision Making, University of South California Press.

Keeney, R.L. and H. Reiffa (1976). Decisions with Multiple Objectives: Preferences

and Value Tradeoffs, New York, Wiley.

Koksalan, M., M.H. Karwan and S. Zionts (1984). An improved method for solving

multiple criteria problems involving discrete alternatives. IEEE Transactions on

Systems, Man and Cybernetics, Vol. SMC-14, No.1, pp. 24-34.

Kung, H.T., F. Luccio and F.P. Preparata (1975) .. On finding the maxima of a set

of vectors. Journal of the Association for Computing Machinery, Vol. 22, No.4,

pp.469-476.

Lee, S.M., G.!. Green and C.S. Kim (1981). A multiple criteria model for the location­

allocation problem. Comput. and Ops Res., Vol. 8, pp. 1-8.

Lin, J.G. (1976). Three methods for determining Pareto-optimal solutions of multiple­

objective problems. In Ho and Mitter (eds.): Directions in Large-Scale Systems.

Many-Person Optimization and Decentralized Control, Plenum Press, New York

and London.

Majchrzak, J. (1984). Package DISCRET for multicriteria optimization and decision

making problems with discrete alternatives. IIASA Conference on Plural Ratio­

nality and Interactive Decision Processes, Sopron, Hungary, 16-26 August, 1984.

Morse, J.N. (1980). Reducing the size of the nondominated set: pruning by clustering.

Comput. and Ops Res., Vol. 7, No. 1-2, pp. 55-66.

Payne, A.N. and E. Polak (1980). An interactive rectangle elimination method for

biobjective decision making. IEEE Transactions on Automatic Control, Vol. AC­

25, No.3, pp. 421-432.

Polak, E. and A.N. Payne (1976). On multicriteria optimization. In Ho and Mit­

ter (eds.): Directions in Large-Scale Systems. Many-Person Optimization and

Decentralized Control, Plenum Press, New York and London.

Rivett, P. (1977). Multidimension scaling for multiobjective policies. Omega, Vol. 5,

pp. 367-379.

Roy, B. (1971). Problems and methods with multiple objective functions. Math.

Programming, Vol. 1, pp. 239-266.

Siskos, J. (1982). A way to deal with fuzzy preferences in multi-criteria decision

problems. Eur. J. Op. Res., Vol. 10, pp. 314-324.

Stahn, H. and U. Petersohn (1978). Discrete polyoptimization. Systems Science,

Vol. 4, No.2, pp. 101-109.

212

Steuer, R.E. and F. W. Harris (1980). Intra-set point generation and filtering in decision

and criterion space. Comput. and Ops Res., Vol. 7, No. 1-2, pp. 41-53.

Torn, A.A. (1980). A sampling-search-clustering approach for exploring the feasi­

ble/efficient solutions ofMCDM problems. Comput. and Ops Res., Vol. 7, No. 1-2,

pp.67-79.

Wierzbicki, A.P. (1979). A methodological guide to multiobjective decision making,

WP-79-122, International Institute for Applied Systems Analysis, Laxenburg,

Austria.

Zionts, S. (1981). A multiple criteria method for choosing among discrete alternatives.

Eur. J. Op. Res., Vol. 7, pp. 143-147.

A Generalized Reference Point Approach

to Multiobjective Transshipment Problem

with Facility Location

Wlodzimierz Ogryczak, Krzysztof Studzinski,

Krystian Zorychta

Institute of Informatics, Warsaw University.

Abstract

This paper describes the methodological background of the Dynamic Interactive

Network Analysis System (DINAS) which enables the solution of various multiob­

jective transshipment problems with facility location using IBM-PC XT/ AT micro­

computers. DINAS utilizes an extension of the classical reference point approach

to handling multiple objectives. In this approach the decision-maker forms his re­

quirements in terms of aspiration and reservation levels, i.e., he specifies acceptable

and required values for given objectives. A special TRANSLOC solver was devel­

oped to provide DINAS with solutions to single-objective problems. It is based

on the branch and bound scheme with a pioneering implementation of the simplex

special ordered network (SON) algorithm with implicit representation of the simple

and variable upper bounds (VUB & SUB). DINAS is prepared as a menu-driven

and easy in usage system armed with a special network editor which reduces to

minimum effort associated with input a real-life problem.

1 The DINAS System

DINAS is a decision support system designed for solving multiobjective transshipment

problems with facility location on IBM-PC XT/ AT or compatibles. It requires 640K
RAM and a hard disk or at least one floppy disk. DINAS can process problems consisting

of:

- up to seven objective functions,

- a transportation network with up to one hundred of nodes and a few hundreds of

arcs,

- up to fifteen potential locations.

214

A mathematical model of the problem is described in Section 2.

DINAS consists of three programs prepared in the C programming language:

1.' an interactive procedure for efficient solutions generation,

2. a solver for single-objective problems,

3. a network editor for input data and results examination.

The basic concept of the interactive scheme for efficient solutions generation is as

follows:

- the DM works with the system in an interactive way so that he can change his

aspiration and reservation levels in any direction;

- after editing the aspiration and reservation levels, the system computes a new

efficient solution by solving a corresponding single-objective problem;

- each computed efficient solution is put into a special solution base and presented

to the DM as the current solution in the form of tables and bars which allow him

to analyze performances of the current solution in comparison with the previous

solutions.

Operations available in the DINAS interactive procedure are partitioned into three

groups and corresponding three branches of the main menu: PROCESS, SOLUTION

and ANALYSIS. The PROCESS branch contains basic operations connected with pro­

cessing the multiobjective problem and generation of several efficient solutions. There

are included operations such as editing and converting the problem, computation of the

pay-off matrix, and finally, generation a sequence of efficient solutions depending on the

edited aspiration and reservation levels.

The SOLUTION branch contains additional operations connected with the current

solution. The DM can examine in details the current solution using the network editor

or analyse only short characteristics such as objective values and selected locations.

Values of the objective functions are presented in three ways: as a standard table, as

bars in the aspiration/reservation scale and as bars in the utopia/nadir scale. The bars

show percentage level of each objective value with respect to the corresponding scale.

The DM may also print the current solution or save it for using in next runs of the

system with the same problem. There is also available a special command to delete the

current solution from the solution base if the DM finds it as quite useless.

The ANALYSIS branch collects commands connected with operations on the so­

lution base. The main command COMPARE allows the DM to perform comparison

of all the efficient solutions from the solution base or of some subset of them. In the

comparison only the short characteristics of the solutions are used, Le., objective values

in the form of tables and bars as well as tables of selected locations. Moreover, some

commands which allow the DM to select various efficient solutions from solution base

as the current solution are included in this branch. There exists also an opportunity to

restore some (saved earlier) efficient solution to the solution base.

215

A special TRANSLOC solver has been prepared to provide the multiobjective analy­

sis procedure with solutions to single-objective problems. The solver is hidden from the

user but it is the most important part of the DINAS system. It is a numerical kernel of

the system which generates efficient solutions. Even for a small transshipment problem

with facility location the corresponding linear program has a rather large size. For this

reason it cannot be solved directly with the standard simplex algorithm. In order to

solve the program on IBM-PC XT/ AT microcomputers it is necessary to take advan­

tage of its special structure. A general concept of the TRANSLOC solver is presented

in Section 4 whereas theoretical backgrounds of some special computational techniques

are discussed in Sections 5 and 6.

DINAS is armed with the built-in network editor EDINET. EDINET is a full-screen

editor specifically designed for input and edit data of the generalized network model

defined in Section 2. The essence of the EDINET concept is a dynamic movement from

some current node to its neighbouring nodes, and vice versa, according to the network

structure. The input data are inserted by a special mechanism of windows while visiting

several nodes. Independently, a list of the nodes in the alphabetic order and a graphic

scheme of the network is available at any time. A special window is also used for defining

objective functions.

2 The generalized network model

A network model of the problem consists of nodes that are connected by a set of direct

flow arcs. The set of nodes is partitioned into two subsets: the set of fixed nodes and the

set of potential nodes. The fixed nodes represent "fixed points" of the transportation

network, Le., points which cannot be changed. Each fixed node is characterized by

two quantities: supply and demand. The potential nodes are introduced to represent

possible locations of new points in the network. Some groups of the potential nodes

represent different versions of the same facility to be located (e.g., different sizes of a

warehouse). For this reason, potential nodes are organized in the so-called selections,

i.e., sets of nodes with the multiple choice requirement. Each selection is defined by the

list of included potential nodes as well as by lower and upper numbers of nodes which

have to be selected (located). Each potential node is characterized by a capacity which

bounds maximal flow through the node. The capacities are also given for all arcs but

not for the fixed nodes.

A several linear objective functions are considered in the problem. The objective

functions are introduced into the model by given coefficients associated with several

arcs and potential nodes. They will be called cost coefficients independently of their

real character in the objective functions. The cost coefficients for potential nodes are,

however, understood in a different way than for arcs. The cost coefficient connected to

an arc is treated as the unit cost of the flow along the arc whereas the cost coefficient

connected to a potential node is considered as the fixed cost associated with the use

(location) of the node rather than as the unit cost.

In the DINAS system we place two restrictions on the network structure:

- there is no arc which directly connects two potential nodes;

216

- each potential node belongs to at most two selections.

Both the restrictions are not very strong. The first one does not imply any loss

of generality since every two of potential nodes can be separated by introduction of

an artificial fixed node if necessary. The second requirement, in general, restricts the

class of problems. However, in practical models usually each potential node belongs to

exactly one selection or sometimes to two selections in more complex problems.

For simplicity of the model and the solution procedure, we transform the potential

nodes into artificial arcs. The transformation is performed by duplication of all potential

nodes. After the duplication is done all the nodes can be considered as fixed and each

potential node is replaced by an artificial arc which leads from the node to its copy.

Due to the transformation we get a network with the fixed structure since all the nodes

are fixed. Potentiality of artificial arcs does not imply any complication because each

arc in the network represents a potential flow. Moreover, all the bounds on flows (i.e.,

capacities) are connected to arcs after this transformation. Additional nonstandard

discrete constraints on the flow are generated only by the multiple choice requirements

associated with the selections. Cost coefficients are connected only to arcs, but the

coefficients connected to artificial arcs represent fixed costs.

A mathematical statement of this transformed problem takes the form of the follow­

ing generalized network model:

minimize

subject to

L f!;Xi; + L f!;Yi;,
(i,ilEA\Aa (i,ilEAa

p = 1,2, ... ,no (1)

LXi; - L Xii = bi , i E N
(i,ilEA (i,i)EA

a ::::; Xi; ::::; Cij, (i, i) E A \ A a

a ::::; Xi; ::::; Ci;Yij, (i,i) E A a

g/r.::::; L Yij::::; h/r.' k = 1,2, ... ,n.
(i,;)ESl

Yi; = a or 1, (i,i) E A a

where the following notations are used:

no - number of objective functions,

N - set of nodes (including copies of potential nodes),

n. - number of selections,

A - set of arcs (including artificial arcs),

(2)

(3)

(4)

(5)

(6)

217

A" - set of artificial arcs,

If; - cost coefficient of the p-th objective associated with the arc (i,j),

bi - supply-demand balance at the node i,

Ci; - capacity of the arc (i,j),

gj; - lower number of (artificial) arcs to be selected in the k-th selection,

hj; - upper number of (artificial) arcs to be selected in the k-th selection,

8j; - set of (artificial) arcs that belong to the k-th selection,

Xi; - decision variable that represents flow along the arc (i,j),

Yi; - decision variable equal 1 for selected arc and 0 otherwise.

The generalized network model of this form includes typical network constraints (2)

with simple upper bounds (3) as well as a special discrete structure (5) - (6) connected

to the network structure by variable upper bounds (4). While solving the model we

have to take advantages of all these features.

3 Interactive procedure for handling multiple ob­

jectives

There are many different concepts for handling multiple objectives in mathematical

programming. We decided to use the so-called reference point approach which was

introduced by Wierzbicki (1982). This concept was further developed in many papers

and was used as a basis for construction of the software package DIDAS (Dynamic

Interactive Decision Analysis and Support system). The DIDAS package proved to be

useful in analysing conflicts and assisting in decision making situations (Grauer et al.,

1984).

The basic concept of the reference point approach is as follows:

1. the decision-maker (DM) forms his requirements in terms of aspiration levels, Le.,

he specifies acceptable values for given objectives;

2. the DM works with the computer in an interactive way so that he can change his

aspiration levels during sessions of the analysis.

In our system, we extend the DIDAS approach. The extension relies on additional

use of reservation levels which allow the DM to specify necessary values for given ob­

jectives (Wierzbicki, 1986).

Consider the multi-objective program associated with the generalized network model:

minimize q

subject to

q = F(x,y)

218

(x,y) E Q

where

q represents the vector,

F is the linear objective vector-function defined by (1),

Q denotes the feasible set of the generalized network model, i.e., the set defined by

conditions (2) - (6).

The reference point technique works in two stages. In the first stage the DM is

provided with some initial information which gives him an overview of the problem.

The initial information is generated by minimization of all the objectives separately.

More precisely, the following single objective programs are solved:

min{FP(x,y) + T°I:r(x,y):(X,y)EQ}, p=I,2, ... ,no (7)
nOi=l

where FP denotes the p-th objective function and TO is an arbitrarily small number.

The so-called pay-off matrix

p = 1, ... ,no; j = 1, ... ,no

which yields information on the range of numerical values of each objective is then

constructed. The p-th row of the matrix R corresponds to the vector (xP, yP) which

solves the p-th program (7). Each quantity qpi represents a value of the j-th objective

at this solution (i.e., qpi = Fi(xp,yp)). The vector with elements qpp, Le., the diagonal

of R, defines the utopia (ideal) point. This point, denoted further by qU, is usually not

attainable but it is presented to the DM as a lower limit to the numerical values of the

objectives.

Taking into consideration the j-th column of the matrix R we notice that the minimal

value in that column is qpp = q;.
Let q'! be the maximal value, Le.,

q'j = max {qpi}
l~p~no

The point qn is called the nadir point and may be presented to the DM as an upper

guideline to the values of the objectives. Thus, for each objective FP a reasonable but

not necessarily tight upper bound qn and a lower bound qU are known after the first

stage of the analysis.

In the second stage, an interactive selection of efficient solutions is performed. The

DM controls the selection by two vector - parameters: his aspiration level qO and his

reservation level qr, where

qU ~ qO < {~qn

The support system searches for the satisfying solution while using an achievement

scalarizing function as a criterion in single-objective optimization. Namely, the support

system computes the optimal solution to the following problem:

219

minimize

subject to

a r rO no a r
max up(q,q ,q) + - Lup(q,q ,q)

lpno no p=1

q = F(x,y)

(8)

(x, y) E Q

where ro is an arbitrarily small number and up is a function which measures the deviation

of results from the DM's expectations with respect to the p-th objective, depending on

a given aspiration level qa and reservation level qr.
The computed solution is an efficient (Pareto-optimal) solution to the original mul­

tiobjective model. It is presented to the DM as a current solution. The DM is asked

whether he finds this solution satisfactory or not. If the DM does not accept the current

solution he has to enter new aspiration and/or reservation levels for some objectives.

Depending on this new information supplied by the DM, a new efficient solution is com­

puted and presented as a current solution. The process is repeated as long as the DM

needs.

The function up(q, qa, qr) is a strictly monotone function of the objective vector q
with value Up = 0 if q = qa and Up = 1 if q = qr. In our system, we use (similarly as in

Wierzbicki 1986) a piece-wise linear function Up defined as follows:

{

ap(qp - q;)/(q; - q;),

up(q,qa,qr) = (qp - q;)/(q; - q;),

bp(qp - q;)/(q; - q;) + 1,

if qp < q;

if q;:S qp :S q;

if q; < qp

where ap and bp (p = 1,2, ... , no) are given positive parameters. In the DINAS system,

the parameters ap and bp are defined according to the formulae

a(qr _ qa)
a - p p

p - (q; - q~)

bp = b(q; - q;)

where a and b are positive parameters computed as follows

O 1
. (qj - qj)

a=. mm
1$; $no (qj - qj)2

1
b = 10 max

1$; $no (qj - qi)

The parameters ap and bp satisfy inequalities: ap < 1 and bp > 1, and thereby the

achievement functions up are convex. Minimization of the function up is then equivalent

to minimization of a variable up defined as follows:

(9)

220

Vp- V: + V; = (qp - q;)/(q; - q;)

0:::; vp :::; 1

v+ > 0 v
p
- >_ 0

p - ,

4 General concept of the TRANSLOC solver

(10)

(11)

(12)

The TRANSLOC solver has been prepared to provide the multiobjective analysis pro­

cedure with solutions to single-objective problems. According to the interactive proce­

dure described in Section 3 the TRANSLOC solver has to be able to solve two kinds

of single--objective problems: the first one associated with calculation of the pay-off

matrix (problems (7)) and the second one associated with minimization of the scalar­

izing achievement function (problems (8)). Both kinds of the problems have, however,

the same main constraints which represent the feasible set of the generalized network

model. Moreover, the other constraints of both the kinds of problems can be expressed

in very similar ways. So, we can formulate a general single-objective problem for the

TRANSLOC solver as follows:

maximize s

subject to

L Xij - L Xji = bi, i E N
(i,j)EA (i,i)EA

wk + L Yij = hk , k = 1,2, ... ,n.
(i,j)ESt

up - vp + d: - d; = 0, p = 1,2, ... ,no

vp- ~d: + b
1

d; - up (L ff;Xij + L ff;Yi j) = op,
ap p (i,j)EA\Aa (i,j)EAa

no

Uo - LUp = 0
p=l

ro
s+ z + -Uo = 0

no

o :::; Xij :::; Cij, (i, j) E A \ A a

0:::; Wk :::; hk - gk, k = 1,2, ... ,n.

Xij :::; CijYij, (i,j) E Aa

Up:::; Z, P = 1,2, ... ,no

Yij = 0 or 1, (i,j) E A a

and depending on the kind of optimization:

d: = 0, d; = 0, p = 1,2, ... ,no

(13)

(14)

(15)

(16)

p = 1, ... ,no (17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)

(25)

221

for the utopia point calculation or

d: ~ 0, d; ~ 0, 0::; vp ::; 1, p = 1,2, ... ,no (26)

for the achievement scalarizing function optimization, respectively, where: Up = 1 and

6p = 0 during utopia point calculation, Up = 1/(q; - q;) and 6p = -q;/(q; - q;) during

the minimization of the achievement scalarizing function, whereas all the other quanti­

ties are the same as in Sections 2 and 3.

The above single-objective problem is a typical mixed integer linear program, Le., it

is a typical linear program with integrality conditions for some variables (namely Yij).

Mixed integer linear programs are usually solved by branch and bound approach with

utilization of the simplex method. The TRANSLOC solver also uses this approach.

Fortunately, only a very small group of decision variables is required to be integer in

our model. Therefore we can use a simple branch and bound scheme in the solver.

Even for a small transshipment problem with facility location, the corresponding

linear program (13) - (23) has rather large size. For this reason it cannot be solved

directly with the standard simplex algorithm. In order to solve the program on IBM-PC

XT/ AT microcomputers, it is necessary to take advantages of its special structure.

Note that the inequalities (20) - (21) and (25) or (26) are standard simple upper

bounds (SUB) which are usually processed outside of the linear programming matrix

(Orchard-Hays, 1968). Similarly, inequalities (22) and (23) can be considered as the

so-called variable upper bounds (VUB) and processed outside of the matrix due to a

special technique. Basic rules of the technique for SUB & VUB processing are developed

in Section 5.

The main group of equality constraints (14) represents typical network relations.

Similarly, the equalities (15) and (16) include only variables with unit coefficients.

All the rows (14) - (16) can be handled in the simplex method as the so-called spe­

cial ordered network (SON) structure. Basic rules of the SON technique used in the

TRANSLOC solver are developed in Section 6.

Thus only a small number of inequalities (17) - (19) has to be considered as typical

rows of linear program. While taking advantage of this fact, the TRANSLOC solver

can process transhipment problems of quite large dimensions.

5 Implicit representation of VUB & SlJB constraints

The single - objective program (13) - (26) includes many inequalities of special simple

forms. They can be partitioned into two groups. The first one consists of the so-called

simple upper bounds (SUB), Le., inequalities of the form 0::; Xj ::; Cj for some variables

Xj and constants Cj, such as conditions (20) - (21), (26) with respect to variables Vp, and

continuous form of (24). The second one includes the so-called variable upper bounds

(VUB), Le., inequalities of the form Xj ::; CjX/r. for some variables Xj, X/r. and constants

Cj, such as conditions (22).

SUB constraints are usually implicitly represented in commercial simplex codes (see

e.g. Orchard-Hays, 1968). Schrage (1975) proposed some technique for implicit repre­

sentation of VUB constraints. The technique was further developed and led to effective

implementations (see e.g. Todd, 1982).

222

The techniques presented in the literature deals, however, only with a simple form of

VUB constraints. Namely, it is assumed that Cj = 1 in all VUBs and there are no upper

bounds on x" variables. The restriction of consideration to only unit variable upper

bounds usually does not imply any loss of generality since it can be attained by a proper

scaling of the problem. Unfortunately, in our model such scaling techniques cannot be

used without destroying of the special SON structure (see Section 6). Therefore we

were forced to extend the VUB techniques in such a way that nonunit variable upper

bounds as well as some simple upper bounds on x" variables were acceptable.

With respect to the VUB & SUB structure the linear program under consideration

can be formulated as follows. The numerical data consist of an m x n matrix A of rank

m, a column m-vector b, a row n-vector I and a column n-vector c. In addition, the

index set N = {I, 2, ... , n} is partitioned into J UK, where J represents the so-called

sons, Le., variables which appear on the left-hand-side of variable upper bounds, and

K represents the so-called fathers, i.e., variables which appear on the right-hand-side of

variable upper bounds. Any variable that is not involved in any variable upper bound

is regarded as a childless father. The set J is further partitioned into the sets J(k),

k E K, where J(k) is the set (possible empty) of sons of the father k E K. It is assumed

that the son has only one father and that no father has a father. The father connected

to a son Xj will be denoted by k(j). The problem is then

max Ix

subject to

Ax = b

Xj ~ CjX" for all k E K and j E J(k)

x" ~ c" for all k E K

x2:0

Let Sj be a slack variable for the variable upper bound Xj ~ CjX", so that

Xj 2: 0, S' > 01 -

Consider a basic solution to the problem. The basis consists of the m + v columns

corresponding to some sons Xj, some fathers x" and some slacks Sj (where v denotes the

number of VUBs). From each VUB either one slack Sj or one son Xj belongs to the basis.

Calculation of the basic slacks is out of our interest and they can be simply dropped

from the basis, Le., the corresponding rows and columns can be dropped. Further, the

basic sons which arrive in the other VUBs can be eliminated by submission Xj = CjX",

So, the whole basic solution can be computed from an m x m basis consisting of some

linear combinations of columns from matrix A.

A basic solution to the problem is characterized as follows. The set of sons is

partitioned into the three sets J = J L U JU u J B, where J L denotes the set of nonbasic

sons fixed at their lower limits (Le., Xj = 0), JU denotes the set of nonbasic sons fixed

at their upper limits (i.e., Xj = CjX,,) and J B denotes the set of basic sons. Similarly,

the set of fathers is partitioned into three sets K = K L u KU uKB, where K L denotes

223

the set of nonbasic fathers fixed at their lower limits (Le., Xle = 0), KU denotes the set

of nonbasic fathers fixed at their upper limits (i.e., Xle = Cle), and K B denotes the set of

basic fathers. The basis B consists of the columns corresponding to basic sons B i = Ai

and of the columns corresponding to basic fathers given by the formula

B le = Ale + L ciAi

iEJ(le)nJU

Consider a basic solution given by a basis B and sets JL, JU, JB, KL, KU,

K B. For the determination of a nonbasic variable to be enter the basis in the simplex

algorithm it is necessary to compute the so-called reduced costs. Let Zi denote an

ordinary reduced cost connected to the column Ai, Le.,

iE JuK

where fB denotes the basic part of the cost vector f. Due to implicit representation of

VUBs the reduced costs associated with several nonbasic variables take then form

di = zi for jEJ

dle = Zle + L CjZi' for k E K
iEJ(Ie)nJU

Thus, in comparison with pricing in the standard simplex algorithm, the pricing with

implicit representation of VUBs needs a calculation of linear combinations of ordinary

reduced costs as the only one additional operation.

Due to handling of the SUB structure together with the VUB constraints, a nonbasic

variable Xi or Xle is considered as potential incoming variable if one of the following

conditions fulfils:

di < 0

di > 0

die < 0

dle > 0

and

and

and

and

j E JL,

J' E JU,

kE KL,

kEKU.

Implicit representation of VUBs makes some degenerated simplex iterations so sim­

ple that they can be performed on line during pricing. Namely, if Xi is an incoming

variable and kU) E K L, then the corresponding simplex iteration depends only on

change sets J Land JU, Le., Xi is moved from the set J L to the set JU or vice versa.

Such an operation can be performed while pricing before the computation of reduced

costs for fathers.

Let x. (8 E J or 8 E K) be a variable chosen for enter the basis. Considering

changes in the basic solution while the value of x. is either increased for 8 E J L u K L

or decreased for s E JU u KU by a nonnegative parameter e we get six formulae for

upper bounds on the parameter e and six corresponding formulae for determination of

the outgoing variable (for details see Ogryczak et aI., 1987). Crossing these formulae

224

with four types of incoming variables we get 19 types (5 criss-crossings are not allowed)

of the simplex transformations performed in the algorithm with implicit representation

of the VUB & SUB structure. The simplest transformation depends only on moving

some variable from one set to another without any change of the basis. Most of the

transformations depend on performing one of the following operations:

(a) some basic column multiplied by a scalar is added to another basic column;

(b) some basic column is replaced by a nonbasic column or a linear combination of

nonbasic columns.

More complex transformations use both the above operations and the most complex

one needs two operations of type (a) and one operation of type (b).

6 The simplex SON algorithm

The simplex special ordered network (SON) procedure was developed by Glover &

Klingman (1981, 1985). It is a partitioning method for solving LP problems with em­

bedded network structure. Every problem of this type is characterized by a full row

rank matrix A partitioned as follows:

A = (ANN ANL)

l ALN ALL

where ANN(m x n) denotes the matrix corresponding to a pure network problem and

the other submatrices ANL(m xp), ALN(qx n), ALL(qxp) consist of any real elements.

The matrix A of the auxiliary LP problem discussed in Section 3 has obviously

this form. The matrix ANNis an incidence matrix corresponding to the transporta­

tion network studied in Section 2. Therefore each constraint represented by a row of

ANN corresponds to a node of the network and will be referred to as node constraint.

Moreover, each variable represented by a column of ANN corresponds to an arc of the

network and will be referred to as arc variable. There are two classes of the ANN

columns: columns containing exactly two non-zero entries in ANN (one +1 and one

-1) called ordinary arcs and columns containing exactly one non-zero entry in ANN

(+1 or -1) called slack arcs. The -1 entry in a column indicates the node where the

arc begins and the +1 entry in a column indicates the node where the arc ends. If

a column has exactly one nonzero element pointing one of the arc endpoints then an

artificial node outside the network can be meant as the second arc endpoint.

The SUB and VUB simplex algorithms use a basis B which is composed of m +
q linearly independent columns selected from the matrix A. Any basis B may be

partitioned as follows:

B= (B ll Bn)
l B 21 B 22

where B ll is a nonsingular submatrix of ANN. It appears to be better for the effec­

tiveness of the algorithm if rank of B ll is as large as possible.

225

Let XB = (XB" XB.) denote the basic part of the decision variable vector x, where

XB" XB. correspond to the B ll and Bn submatrices, respectively. Thus the basic vari­

ables XB, are exclusively arc variables. The basic variables XB. may also contain arc

variables. Similarly, the rows of B ll are exclusively node rows but the matrix (B2b B 22)

may also contain node rows.

The basis inverse B- 1 may be written as follows

(

B -1 B-IB V- IB B- 1 B-IB VI)B- 1 = 11 + 11 12 21 11 - 11 12 -

-V- IB 21 B1l V-I

where V = B 22 - B 21B 1/ B n .

Define the so called master basis tree (MBT) associated with a given basis. The set

of nodes of the tree contains all the nodes of our LP jembedded network problem plus

an external node called the master root. Thus MBT always contains m + 1 nodes

lV = {O,l, ... ,m}

where °is the master root, and m arcs. The nodes of MBT that correspond to rows of

B 21 are called externalized roots (ER's). Each ER is connected to the master root by

an externalized arc (EA).

All of the ordinary arcs in B ll belong to MBT. There may be two types of slack

arcs associated with B ll . If a slack arc in B ll is a slack arc of AlVlV then the arc is

replaced by an arc between the master root and its unique node. If a slack arc in B ll

is an ordinary arc in AlVlV, it is replaced by an arc between its nodes in AlVlV (one of

these endpoints is an ER node).

The arcs in the master basis tree have a natural orientation defined as follows: if an

edge (u, v) belongs to MBT and node u is nearer the master root than v, then u is called

the predecessor of v, and v is called the immediate successor of u. Thus we will refer to

a basis arc as conformable if its AlVlV direction agrees with its MBT orientation, and

refer to the arc as nonconformable otherwise.

The master basis tree is represented by the following node functions.

1. PRED

The values of the function are defined as follows:

PRED[i] = the predecessor of node i in MBT .

For convenience PRED[O] = -1.

2. THREAD

The function defines a connecting link (thread) which passes through each node

exactly once. If i is a node on the thread, then T H READ[i] is the next one. The

alternation of the nodes on the thread is defined by using the preorder method of

tree passage.

3. RETHREAD

It is a pointer which points in the reverse order of the thread, i.e., if T H READ[i] =

j then RETHREAD[j] = i.

226

4. DEPTH

The value DEPTH[i] specifies the number of arcs in the predecessor path of node

i to the master root.

5. LAST

The value LAST[i] specifies the node in the subtree T(i) that is the last node of

this subtree in THREAD order.

6. CONF
Each node i in MBT represents the predecessor arc of the node.· If the arc is

conformable then CONF[i] = +1, otherwise CONF[i] = -1.

Let P = (;:) denote the column veet", .eleeted to ente' the bas.. mat,",

PI specifies the part of P associated with B ll and P2 the part associated with B n).

Similarly ° = (OBI) denotes the representation of P in terms of B.
°B2 .

We have ° = B- 1P and hence using the partitioning formula for B-1 we obtain the

following system of equations

0B2 =V-1(-B21BII1Pl + P2)

OBI = B1/(Pl - B120B2)

Suppose that the matrix D = V-I (i.e., the right down corner part of the matrix

B-1) is attained in the explicit form. Thus, the multiplication by the matrix in the

former formula may be simply performed. Both the formulas include a multiplication

x = B)}G with some vector G. This multiplication is equivalent to solving an upper

triangular system Ellx = G, where the matrix Ell consists of the rows and columns

of B ll ordered according to the corresponding nodes and arcs on the THREAD line of

MBT.

Each column of Ell has at most two nonzero elements. One of them is located

at the diagonal and corresponds to a node v while the second one (if exist) is located

above the diagonal and corresponds to the predecessor of v. Hence, if the THREAD

line is passed backward and the node v is came across then the value of the variable

represented by v is computed and simultaneously the value of the variable represented

by the predecessor of v is modified. Thus a single pass through the master basis tree

along the RETHREAD line is sufficient for computing the x solution. The cost of such

a procedure is proportional to the number of nodes in MBT.

Let CB = (CBl,CB2) denote the vector of basis cost coefficients. The dual vector

W = (WI, W2) = cBB-1 is needed at the pricing step of the simplex method and may be

computed as follows:

W2 = (CB2 - CB1 B l/B12)V-
1

WI = (CB1 - w2 B21)B1/

227

The multiplication by the matrix V-I may be directly computed since the matrix is

assumed to be kept in the explicit form. Further, both the last formulas include mul­

tiplications of the form w = H B J} which can be effectively executed using the master

basis tree structure for B ll , similarly as while computing the primal solution x.

Consider a single step of the simplex method. When the incoming and outgoing

variables are chosen then the whole basis representation has to be changed and adjusted

to the new situation. Thus, the problem arises how to change in a single simplex iteration

the matrix D and the functions describing the master basis tree.

Let x. and X r denote the incoming and outgoing variables, respectively, and let X,

be the so-called transfer variable that belongs to XB2 and replaces X r in XBI , if it is

possible.

At each iteration, the variables can alter by the transitions:

- Incoming variable x.

- Outgoing variable X r

- Transfer variable X,

- Transfer ER nodes

XN ---+ XB I or XB2

XBI or XB2 ---+ XN

XB2 ---+ XBll or no change

XBI ---+ XB2 (one ER more),

or XB2 ---+ XBI (one ER less), or no change.

If an arc is added to the master basis tree then a loop is closed. In order to have a tree

in the next iteration also, the loop must be cut and exactly one arc from the loop must

be deleted. It is the fundamental exchange rule for the master basis tree.

At each iteration the matrix D is transformed by elimination using a given pivot

row. The following cases appear when the elimination is performed:

- the pivot row is within the rows of D;

- the pivot row is outside of D;

- a row and a column of D are dropped;

- a new row and a new column are added to Dj

- a column (row) of D is replaced by another column (row) from outside of D.

Combining the elimination cases with the transition rules for the incoming, outgoing

and transfer variables we get seven types of basis exchange steps. When XBI is maximal

relative to XB2, exactly one of the seven types of basis exchange steps will occur and

their updating prescriptions will maintain XBl maximal.

The main features of the discussed approach are cheap multiplication algorithms

with basis inverse, accelerated labelling algorithms for modifying the master basis tree

in an efficient manner and a compact form of the basis inverse occupying a small memory

space only.

228

7 Concluding Remarks

Initial experiences with the DINAS system on small testing examples confirm appropri­

ateness of the used methodology for solving multiobjective transshipment problems with

facility location. The interactive scheme is very easy to understand and it provides the

DM with compressed the most important characteristics of generated efficient solutions.

Moreover, the DM controls the system with unsophisticated parameters: aspiration and

reservation levels. In effect, one easily reaches a satisfactory solution in a few interactive

steps.

On the other hand, we have noticed that introducing of multiple objectives into the

transshipment problem with facility location transformed this easy discrete problem into

a complex one. Namely, it has been proved that the single-objective problem connected

with minimization of the achievement function is far more complex than the original

single-objective problems connected with minimization of several objective functions.

The original single-objective problem is solved with the branch and bound method after

examination only a few number of subproblems while minimization of the achievement

function requires to analyse many branches of the tree. Thus for solving large real-life

problems, rather a more advanced hardware than the standard IBM-PC XT should be

used.

8 References

Glover, F., Klingman, D. (1981). The simplex SON method for LP /embedded network

problems. Mathematical Programming Study 15, pp. 148-176.

Glover, F., Klingman, D. (1985). Basis exchange characterization for the simplex SON

algorithm for LP /embedded networks. Mathematical Programming Study 24, pp.

141-157.

Grauer, M., Lewandowski, A., Wierzbicki, A. (1984). DIDAS - theory, implementa­

tion and experiences. In M. Grauer, A.P. Wierzbicki (eds), Interactive Decision

Analysis. Springer, Berlin 1984.

Ogryczak, W., Studzinski, K., Zorychta, K. (1987). A solver for the transshipment

problem with facility location. In A. Lewandowski and A. Wierzbicki (Eds.),

Theory, Software and Testing Examples for Decision Support Systems. BASA,

Laxenburg.

Orchard-Hays, W. (1968). Advanced Linear-Programming Techniques. McGraw-Hill,

New York.

Schrage, L. (1975). Implicit representation of variable upper bounds in linear pro­

gramming. Mathematical Programming Study 4, pp. 118-132.

Todd, M.J. (1982). An implementation of the simplex method for linear programming

problems with variable upper bounds. Mathematical Programming 23, pp. 34-49.

229

Wierzbicki, A.P. (1982). A mathematical basis for satisficing decision making. Math.
Modelling 3, pp. 391-405.

Wierzbicki, A.P. (1986). On the completeness and constructiveness of parametric

characterizations to vector optimization problems. OR Spektrum 8, pp. 73-87.

Solving Multiobjective Distribution-Location

Problems

with the DINAS System

Wlodzimierz Ogryczak, Krzysztof Studzinski,

Krystian Zorychta

Institute of Informatics, Warsaw University.

Abstract

DINAS is a decision support system which enables the solution of various mul­

tiobjective transshipment problems with facility location using IBM-PC XT/ AT

or compatibles. DINAS is prepared as a menu-driven and easy in usage system

equipped with a special network editor which reduces to minimum effort associ­

ated with input a real-life problem. To illustrate the interactive procedure and

the system capabilities we present in this paper using of DINAS to analyse a small

testing example. As the test problem we use an artificial part of the real-life model

connected with the health service districts reorganization.

1 Introduction

The distribution-location type problems belong to the class of most significant real-life

decision problems based on mathematical programming. They are usually formalized as

the so-called transshipment problems with facility location. In this paper we show how

such multiobjective problems can be solved using our decision support system DINAS

(see previous paper).

A network model of the transshipment problem with facility location consists of

nodes connected by a set of direct flow arcs. The set of nodes is partitioned into

two subsets: the set of fixed nodes and the set of potential nodes. The fixed nodes

represent "fixed points" of the transportation network, i.e., points which cannot be

changed whereas the potential nodes are introduced to represent possible locations of

new points in the network. Some groups of the potential nodes represent different

versions of the same facility to be located (e.g., different sizes of a warehouse etc.). For

this reason, potential nodes are organized in tile so-called selections, i.e., sets of nodes

with the multiple choice requirement. Each selection is defined by the list of included

potential nodes as well as by a lower and upper number of nodes which have to be

selected (located).

231

A homogeneous good is distributed along the arcs among the nodes. Each fixed

node is characterized by two quantities: supply and demand on the good, but for

mathematical statement of the problem only the difference supply-demand (the so­

called balance) is used. Each potential node is characterized by a capacity which bounds

maximal flow of the good through the node. The capacities are also given for all the

arcs but not for the fixed nodes.

A few linear objective functions are considered in the problem. The objective func­

tions are introduced into the model by given coefficients associated with several arcs and

potential nodes. They will be called cost coefficients independently of their real char­

acter. The cost coefficients for potential nodes are, however, understood in a different

way than for arcs. The cost coefficient connected to an arc is treated as the unit cost

of the flow along the arc whereas the cost coefficient connected to a potential node is

considered as the fixed cost associated with activity (locating) of the node rather than

as the unit cost.

Summarizing, the following groups of input data define the transshipment problem

under consideration:

- objectives,

- fixed nodes with their balances,

- potential nodes with their capacities and (fixed) cost coefficients,

- selections with their lower and upper limits on number of active potential nodes,

- arcs with their capacities and cost coefficients.

In the DINAS system we placed two restrictions on the network structure:

- there is no arc which directly connects two potential nodes;

- each potential node belongs to at most two selections.

The first restriction does not imply any loss of generality since each of two potential

nodes can be separated by an artificial fixed node, if necessary. The second requirement

is not very strong since in practical models usually there are no potential nodes belonging

to more than two selections.

The problem is to determine the number and locations of active potential nodes and

to find the good flows (along arcs) so as to satisfy the balance and capacity restrictions

and, simultaneously, optimize the given objective functions. A mathematical model of

the problem is described in details in the previous paper of this volume.

DINAS enables a solution to the above problems using an IBM-PC XT/AT or

compatibles. It requires 640K RAM and a hard disk or at least one floppy disk. DINAS

can process problems consisted of:

- up to seven objective functions,

- a transportation network with up to one hundred of nodes and a few hundreds of

arcs,

232

- up to fifteen potential locations.

DINAS consists of three programs prepared in the C programming language:

- an interactive procedure for efficient solutions generation,

- a solver for single-objective problems,

- a network editor for input data and results examination.

For handling multiple objectives Dinas utilizes an extension of the reference point

approach proposed by Wierzbicki (1982). The basic concept of the interactive scheme

is as follows:

- the DM works with the system in an interactive way so that he can change his

aspiration and reservation levels in any direction;

- after editing the aspiration and reservation levels, the system computes a new

efficient solution by solving a corresponding single-objective problem;

- each computed efficient solution is put into a special solution base and presented

to the DM as the current solution in the form of tables and bars which allow him

to analyse performances of the current solution in comparison with the previous

solutions.

A special TRANSLOC solver has been prepared to provide the multiobjective analy­

sis procedure with solutions to single-objective problems. The solver is hidden from the

user but it is the most important part of the DINAS system. It is a numerical kernel of

the system which generates efficient solutions. The concept of TRANSLOC is based on

the branch and bound scheme with a pioneering implementation of the simplex special

ordered network (SON) algorithm proposed by Glover and Klingman (1981) with im­

plicit representation of the simple and variable upper bounds (VUB & SUB) suggested

by Schrage (1975). The mathematical background of the TRANSLOC solver was given

in details by Ogryczak et al. (1987).

DINAS is equipped with the built-in network editor EDINET. It is a full-screen

editor specifically designed for input and edit data of the network model of the trans­

shipment problems with facility location. The essence of the EDINET concept is a

dynamic movement from some current node to its neighbouring nodes, and vice versa,

according to the network structure. The input data are inserted by a special mechanism

of windows while visiting several nodes. The principles of using the editor are presented

in Section 4.

In this paper an example of problem of health service districts reorganization is con­

sidered. Such problems connected with reorganization of the primary health service in

a district of Warsaw were successfully solved with the MPSX/370 package by Ogryczak

and Malczewski (1988). Now such an analysis connected with location of new hospitals

in Warsaw macroregion using the DINAS system on an IBM-PC AT microcomputer is

prepared. To illustrate the interactive procedure and the system capabilities we present

in details using of DINAS to analyse a test problem constructed as a small artificial

part of this real-life model.

233

2 The problem

The problem of health service districts reorganization connected with location of new

health-care centers can be formulated as follows. The region under consideration is

assumed to consist of some number of geographically defined subareas or census blocks

with known distribution of the population. A number of health-care centers is available

in the region but their capabilities to offering health services is not sufficient. Therefore

some new facilities are located. The problem depends on determination of the locations

and capacities of some new centers as well as on assignment of individuals to the centers

(new and old). The proposed solution should be optimal with respect to a few objective

functions and simultaneously it must be accepted by the competent decision maker.

To set the stage, we consider as a region a part of city as it is shown in Fig. 1.

The five major highways divide the region into 12 subareas. For each of these areas

the demand on health-care services is identified in thousands of visits per year. These

quantities are included in Table 1.

Area Demand

Ribes 24.5
Larix 25.0
Robur 21.0
Arnika 20.5
Rumex 19.0
Pinus 20.0
Acer 16.0
Bobrek 22.0
Picea 15.0
Litwor 20.5
Betula 13.0
Erica 23.5

Table 1: Demands on health services

Within the region there are two health-care centers offering services: Pond and Hill.

They can offer 100 and 90 thousands of visits per year, respectively. Thus the total

supply of services amounts 190 while the total demand on services in the region is 240.

Therefore some new health-care centers should be located within the region.

There are considered four potential locations for the new centers: Ice, Fiord, Bush

and Oasis. The locations are divided into two subsets associated with the corresponding

two subregions:

North = {Ice,Fiord},

South = {Bush,Oasis}.

The distance between two potential locations in the same subregion are relatively small

whereas each of them can meet the demands on health services. Therefore the locations

belonging to the same subregion are considered as exclusive alternatives, Le., no more

than one location from the subregion can be used. Moreover, different designed capac-

234

+
Larix

Figure 1: The region under consideration

. Robur Rumex. Acer Picea Betula
Larix Arnika PinUS Bobrek Litwor Erica

Figure 2: A scheme of the network

235

ities of health centers are associated with several locations. Table 2 lists capacities of

the designed potential health-care centers.

Table 2: Potential health-care centers

One must decide which potential health-eare centers have to be built so as to meet

the total demand on health services. The decision should be optimal with respect to

the following criteria:

- minimization of the average distance per visit;

- maximization of the overall proximity to centers;

- minimization of the investment cost;

- maximization of the population satisfaction.

The first two criteria are connected with distances between health-care centers and areas

assigned to them. Taking into account the urban morphology and the transportation

network, it was accepted that the city-block metric was the best approximation to

real distances. Therefore we define the distance between an individual and the health

center as the rectangular distance between the centre of the corresponding area and

the location of the health-care center. Certain connections between the areas and the

health centers are eliminated as unacceptable due to too long distances or other troubles

with transport. The distances between several areas and all the health centers are given

in Table 3. The unacceptable connections are denoted by putting asterisks (*) as a

distance.

The overall proximity to the health care services is defined as a sum of all the

individual proximity coefficients. The individual proximity is assumed to be inversely

proportional to square of the distance to the health-care center. More precisely, the

individual proximity coefficients are defined according to the following formula (compare

Abernathy and Hershey, 1972):

where dac denotes the distance between the corresponding area a and the health-care

center c, and f is an arbitrarily small positive number. The proximity coefficients for

the whole region under consideration are given in Table 4.

The investment cost and the population satisfaction level are assumed to be a sum

of fixed costs and a sum of fixed satisfaction levels connected with several possible

locations, respectively. In our example the fixed coefficients take values given in Table

5.

236

l'ond Hlll lee .1"JOrd l1ush OasIS

Ribes 4.14 *** 2.34 3.03 *** ***
Larix 2.61 *** 1.35 3.63 *** ***
Robur 2.19 *** 3.96 *** 4.38 ***
Arnika 1.74 *** 4.08 *** 2.70 3.51
Rumex 4.53 4.32 2.85 1.35 *** ***
Pinus 2.28 4.14 1.80 0.81 2.94 4.14
Acer 4.02 1.95 *** 3.27 1.77 1.56
Bobrek 3.84 4.17 *** *** 1.35 1.65
Picea *** 2.01 *** 3.30 4.71 ***
Litwor *** 2.22 *** *** *** 4.65
Betula *** 1.95 *** *** 4.02 3.06
Erica *** 3.72 *** *** 3.42 2.46

Table 3: Distance coefficients

l'ond Hlll lee .1"lOrd Bush OasIS

Ribes 5.83 *** 18.26 10.89 *** ***
Larix 14.68 *** 54.87 7.59 *** ***
Robur 20.85 *** 6.38 *** 5.21 ***
Arnika 33.03 *** 6.01 *** 13.72 8.12
Rumex 4.87 5.36 12.31 54.87 *** ***
Pinus 19.24 5.83 30.86 152.42 11.57 5.83
Acer 6.19 26.30 *** 9.35 31.92 41.09
Bobrek 6.78 5.75 *** *** 54.87 36.73
Picea *** 24.75 *** 9.18 4.51 ***
Litwor *** 20.29 *** *** *** 4.62
Betula *** 26.30 *** *** 6.19 10.68
Erica *** 7.23 *** *** 8.55 16.52

Table 4: Proximity coefficients

In the next section we show how the above problem can be formulated as a multi­

objective transshipment problem with facility location, Le., in the form which can be

processed by the DINAS system.

3 The network model

The problem of health service districts reorganization connected with location of new

health-care centers stated in the previous section can be easy formulated as a multiob­

jective transshipment problem with facility location. The areas and existing health-care

centers are, certainly, fixed nodes of the network under consideration. Similarly, all the

potential locations of new health centers are treated as potential nodes. Arcs represent

all the possible assignments of patients to the health-care centers, i.e., arcs are associ­

ated with all the nonempty cells in Table 3 or 4. A flow along the arc from a center c to

an area a expresses a number of visits in the area a serviced by the center c. In order to

237

Table 5: Investment and satisfaction coefficients

balance the problem in terms of supply and demand an artificial node Tie with supply

equal to the overall demand is introduced. There are also defined additional arcs from

the artificial node to each health-care center (existing or potential). Capacity of the

existing health-care centers (Pond and Hill) are then represented as capacities of the

arcs from Tie to the corresponding fixed nodes. A scheme of the network is presented

in Fig. 2.

Now we can define several groups of data of the multiobjective transshipment prob­

lem with facility location. As we have mentioned in Section 1 the fixed node is char­

acterized only by the balance, i.e., difference between the corresponding supply and

demand. Table 6 lists supplies, demands and balances for all the fixed nodes in our

model. Note that the sum of supplies is equal to the sum of demands and thereby the

sum of balances is equal to zero.

Node :::iupply Demand Balance
Ribes 0 24.5 -24.5
Larix 0 25.0 -25.0
Robur 0 21.0 -21.0
Arnika 0 20.5 -20.5
Rumex 0 19.0 -19.0
Pinus 0 20.0 -20.0
Acer 0 16.0 -16.0
Bobrek 0 22.0 -22.0
Picea 0 15.0 -15.0
Litwor 0 20.5 -20.5
Betula 0 13.0 -13.0
Erica 0 23.5 -23.5
Pond 0 0 0
Hill 0 0 0
Tie 240 0 240

Table 6: Fixed nodes

In the transshipment problem with facility location objective functions are considered

as sums of linear functions of flows along several arcs and fixed costs connected with

the used locations. In our model objective functions can be divided into two groups.

Functions Investment (cost) and Satisfaction (level) are independent of the assignment

decisions and thereby they have not coefficients connected with flows along arcs (i.e.,

these coefficients are equal to 0). On the other hand, functions (average) Distance and

(overall) Proximity depend only on assignment decisions and they have not contain fixed

terms connected with locational decisions. Fixed coefficients of the functions Investment

238

and Satisfaction can be directly taken from Table 5. Similarly, the linear coefficients

of the function Proximity are given in Table 4. The linear coefficients of the function

Distance are defined as quotients of the corresponding distances by the sum of demands,

i.e., as dac /240.

There are four potential nodes which represent the potential locations of the health­

care centers, Le., Ice, Fiord, Bush, Oasis. The data connected with the potential nodes

are listed in Table 7. Here and thereafter the objective functions are denoted by abbre­

viations of the corresponding names.

1:"lxed costs

Node Capacity Invest satlsf dlst prox
Ice 5U ~ U U no U U

Fiord 60 212 87 0 0
Bush 50 186 100 0 0
Oasis 60 201 192 0 0

Table 7: Potential nodes

As we have already mentioned the locations belonging to the same subregion are

considered as exclusive alternatives, i.e., no more than one location from the subregion

can be used. Therefore we introduce into the network model selections which represent

such a type of requirements. In our model there are two selections associated with to

subregions: North and South. Both the selections have the lower numbers equal to 0

and the upper numbers equal to 1. It guarantees that at most one potential node in each

selection is active. The complete data connected with selections are given in Table 8.

Table 8: Selections

The last group of data is connected with the arcs. The arcs are characterized by their

capacities and objective functions coefficients. The cost coefficients have been already

discussed while consideration of the objective functions. Capacities of the arcs from

the artificial node Tie to the nodes representing health-care centers (Pond, Hill, Ice,

Fiord, Bush, Oasis) express capacities of the corresponding centers. The arcs connecting

the nodes representing health-care centers with the nodes representing the areas have

essentially unlimited capacities. However, in practice, flows along these arcs are also

bounded by capacities of the corresponding health-care centers and we use them as arcs

capacities. All the data connected with arcs are listed in Table 9.

239

From To CapacIty Invest satlsf dlst prox

TIe Pond 100 0 0 0 O.
Tie Hill 90 0 0 0 O.
Tie Ice 50 0 0 0 O.
Tie Fiord 60 0 0 0 O.
Tie Bush 50 0 0 0 O.
Tie Oasis 60 0 0 0 O.
Pond Ribes 100 0 0 .01725 5.83
Pond Larix 100 0 0 .010875 14.68
Pond Robur 100 0 0 .009125 20.85
Pond Arnika 100 0 0 .00725 33.03
Pond Rumex 100 0 0 .018875 4.87
Pond Pinus 100 0 0 .0095 19.24
Pond Acer 100 0 0 .01675 6.19
Pond Bobrek 100 0 0 .016 6.78
Hill Rumex 90 0 0 .018 5.36
Hill Pinus 90 0 0 .01725 5.83
Hill Acer 90 0 0 .008125 26.30
Hill Bobrek 90 0 0 .017375 5.75
Hill Picea 90 0 0 .008375 24.75
Hill Litwor 90 0 0 .00925 20.29
Hill Betula 90 0 0 .008125 26.30
Hill Erica 90 0 0 .0155 7.23
Ice Ribes 50 0 0 .00975 18.26
Ice Larix 50 0 0 .005625 54.87
Ice Robur 50 0 0 .0165 6.38
Ice Arnika 50 0 0 .017 6.01
Ice Rumex 50 0 0 .011875 12.31
Ice Pinus 50 0 0 .0075 30.86
Fiord Ribes 60 0 0 .012625 10.89
Fiord Larix 60 0 0 .015125 7.59
Fiord Rumex 60 0 0 .005625 54.87
Fiord Pinus 60 0 0 .003375 152.42
Fiord Acer 60 0 0 .013625 9.35
Fiord Picea 60 0 0 .013750 9.18
Bush Robur 50 0 0 .01825 5.21
Bush Arnika 50 0 0 .01125 13.72
Bush Pinus 50 0 0 .01225 11.57
Bush Acer 50 0 0 .007375 31.92
Bush Bobrek 50 0 0 .005625 54.87
Bush Picea 50 0 0 .019625 4.51
Bush Betula 50 0 0 .01675 6.19
Bush Erica 50 0 0 .01425 8.55
Oasis Arnika 60 0 0 .014625 8.12
Oasis Pinus 60 0 0 .01725 5.83
Oasis Acer 60 0 0 .0065 41.09
Oasis Bobrek 60 0 0 .006875 36.73
Oasis Litwor 60 0 0 .019375 4.62
Oasis Betula 60 0 0 .01275 10.68
Oasis Erica 60 0 0 .01025 16.52

Table 9: Arcs

240

4 Input of the problem

As we have already mentioned DINAS is armed with the built-in network editor EDINET.

EDINET is a full-screen editor specifically designed for input and edit the data of the

problem to be analysed. The DINAS interactive procedure works with a special file

containing whole information defining the problem and the EDINET editor enables to

prepare this file. The main data of the problem can be divided into two groups:

- logical data defining the structure of a transportation network (e.g., nodes, arcs,

selections) j

- numerical data describing the nodes and arcs of the network (e.g., balances, ca­

pacities, coefficients of the objective functions).

The general concept of EDINET is to edit the data while defining the logical struc­

ture of the network. More precisely, the essence of the EDINET concept is a dynamic

movement from some current node to its neighbouring nodes, and vice versa, according

to the network structure. The input data are inserted by a special mechanism of win­

dows, while visiting several nodes. At any time only one of the windows representing

different kinds of the data is active. The corresponding part of the data can be then

inserted. While working with the editor the DM activates several windows.

The editor is menu-driven and its main menu branches into the three available

groups of operations: FILE, PRINT NETWORK, EDIT NETWORK. EDIT NET­

WORK is the main branch of the menu. It contains such operations as LIST NODES,

NETWORK, SELECTIONS and OBJECTIVES.

The problem editing usually starts by using the LIST NODES command. The cor­

responding window consists of all the nodes in the alphabetic order, that have been

inserted so far. While starting with a new problem the list is, obviously, empty. The

DM can move the pointer along the list to select a node, or simply type a name of a

new node. Then the main screen of the editing process appears. The screen contains

the following windows: CURRENT NODE, NODE FROM and NODE TO. The node

selected from the list (or typed) is presented as the current node and the corresponding

CURRENT NODE window is active. The screen connected to our health service prob­

lem is shown in Fig. 3. The potential node Bush is there used as the current node. The

CURRENT NODE window contains the data describing the node such as the capacity,

the corresponding selection and the objective coefficients.

The DM can edit, correct or examine the data connected with the current node, or

activate the NODE FROM or NODE TO window. The NODE FROM window contains

names of the nodes that precede the current node in the network and names of the

corresponding arcs. Similarly, the NODE TO window contains names of the nodes and

arcs which directly succeed the current node in the network. If the NODE FROM or

NODE TO window is activated then the DM can select one of the nodes contained in

the window or type a new node name.

Now, similarly as in the case of the current node, the window corresponding to the

selected (or typed) node appears and the DM can edit, correct or examine the data

connected to the node.

ODE FROIl--...,
Hodf be
1m tlEB

241

IWlf umJl
TyPf Polii:n:.t;jilii1••11ClPlci ty .1\

Sflfctions

~ ­~ f S
nlMf eOfffieifnt
Invfst 186
Sat isf 11111
Di st II
Prox II

r:":"""":""'""'lUIIIt\I'D ET0,---...,
Itodf Arc

~~I I~~O
Pinus BUPI
Acf!' BAC
BoLrfk BUBO
Piefl BUPIC

MeVf to NODE FROKITO
!!)lftf !!ist "'twork ~fctivfS

~ fxit
iirlfctions

Figure 3: CURRENT NODE, NODE FROM and NODE TO windows

ODE FROKI-----,
Hodf Arc
1m TIEB HaMf I:.!!nJl

TyPf PDTi:n~ t;:jia.I••_
1

Capaci ty i1~

Sflpctions

~­ ~fS
naMP eOffficifnt
Invpst 186
Sati sf 111"
Dist II
Prox II

ARC Bush-Pi nus
HaMP ~
Capacit!i~

OLjpctivps
naMP copfficipnt
Invpst II
Satisf II
Dist 11.111225
Prox 11. 57

~ ~rrfnt !!)lftf !!ist ..,twork ~jfctivfS

Figure 4: ARC window

I!'I!J pxi t
i)lPctions

242

After the node definition or examination the DM can activate the ARC window

associated with this node. Then the data of the arc which connects the selected node

to the current node, can be also edited, corrected or examined. The arc definition

is illustrated in Fig. 4. The Pinus node is there selected in the NODE TO window.

Hence, the ARC window contains the information connected to the arc called BUPI

which starts at Bush and ends at Pinus.

Each of the nodes contained in the NODE FROM or NODE TO window can be

changed into the current node. After such an operation the selected node is put into

the CURRENT NODE window. The NODE FROM and NODE TO windows are then

modified according to the network structure.

Independently of the list of nodes, a graphic scheme of the network is available at

any time. For instance, a part of the scheme for our health service problem is presented

in Fig. 5. One can examine the network while moving along the scheme. Each visited

node can be selected as the current node to restart the editing process.

Some special windows are associated with selections and objectives. The SELEC­

TION window lists the nodes belonging to several selection. The SELECTION window

in Fig. 6 contains two selections: North and South, defined in our test problem. The ad­

ditional BOUNDS window enables editing of the lower and upper bounds on a number

of potential nodes which can be used in the selection.

Similarly, the OBJECTIVES window allows us to define objective functions by

putting their names and types of optimization (min or max). If an objective is de­

fined then the information connected with this objective is automatically inserted into

all the potential node and arc windows.

The other branches of the menu contain some technical operations on the network

file. There are available commands which enable to save the edited network (SAVE),

to restore a previously edited network for further modifications (LOAD), or to print a

compressed description of the network (PRINT NETWORK).

5 Introductory multiobjective analysis

The interactive analysis of the multiobjective problem can be performed with DINAS

by the DM who is not familiar with neither computer techniques nor mathematical pro­

gramming. DINAS is a menu-driven system with very simple commands. Operations

available in the DINAS interactive procedure are partitioned into three groups and cor­

responding three branches of the main menu (see Table 10): PROCESS, SOLUTION

and ANALYSIS.

The PROCESS branch contains basic operations connected with processing the mul­

tiobjective problem and generation of several efficient solutions. There are included

problem definition operations such as calling the EDINET editor for input or modifi­

'cation of the problem (PROBLEM) and converting of the edited problem with error

checking (CONVERT). Further, in this branch the basic optimization operations are

available: computation of the pay-off matrix with the utopia and nadir vectors (PAY­

OFF) and generation of efficient solutions depending on the edited aspiration and reser­

vation levels (EFFICIENT). As the last command in this branch is placed the QUIT

243

Tit ------~!:-!m.I__-----_r lohul'
~ Al'Ilih
~ Pinus

: rm.k
- Pieu
~ B.tula
... Erin

Bush j;------~El'iCl
Hi II

Oasis

Ti. -------IfiOI'Il--------..,E lihts
Larix
RUM'X
Pinus

~ MOV' insid. th. n.t ~ s.l.et nod.

Figure 5: NETWORK window

D
'" :'1-.,·....·.._'",· ODE TO

Hod. Hod. Arc
1m TIEB HaM' I:

~~~a
BUR

T!lp, p4!~tial BAR
Capac I t!l ;l~ Pinus BUP

'. . ,-'-
AuI' BAC

, ,. '

mI] Fiord Ie.

South Bush Oasis

~
HOl'th

!JIJm ..

- !mIll ~

1_-
~ J ~ MOV' to HODE FROMITO ~ .xit

~ ~ r l ' . n T ~ I . t . ~ s t ~ t w o l ' k ~ j . c t i v . s ~ l . c t i o n s

Figure 6: SELECTION window



244

na YSlS

ompare
Previous
Next
Last
Restore

Table 10: The DINAS main menu

operation which allows the DM to finish work with the system.

The SOLUTION branch contains additional operations connected with the current

solution. The DM can examine in details the current solution using the network editor

(BROWSE) or analyse only short characteristics such as objective values and selected

locations (SUMMARY). Values of the objective functions are presented in three ways:

as a standard table, as bars in the aspiration/reservation scale and as bars in the

utopia/nadir scale. The bars show percentage level of each objective value with respect

to the corresponding scale. The DM may also print the current solution (BROWSE) or

save it for using in next runs of the system with the same problem (SAVE). There is

also available a special command to delete the current solution from the solution base

if the DM finds it as quite useless (DELETE).

The ANALYSIS branch collects commands connected with operations on the so­

lution base. The main command COMPARE allows the DM to perform comparison

of all the efficient solutions from the solution base or of some subset of them. In the

comparison only the short characteristics of the solutions are used, Le., objective values

in the form of tables and bars as well as tables of selected locations. Moreover, some

commands which allow the DM to select various efficient solutions from solution base

as the current solution are included in this branch (PREVIOUS, NEXT and LAST).

There exist also an opportunity to restore some (saved earlier) efficient solution to the

solution base (RESTORE).

In this and next sections we present an outline of the basic multiobjective analysis

performed on our test problem. We do not discuss all the capabilities of the system

which can be used in such an analysis. More details of this analysis were described by

Ogryczak et al. (1988a).

Having defined and converted the problem as the first step of the multiobjective

analysis one must perform the PAY-OFF command. It executes optimization of each

objective function separately. In effect, we get the so-called pay-off matrix presented in

Table 11. The pay-off matrix is a well-known device in multiobjective programming. It

gives values of all the objective functions (columns) obtained while solving several single­

objective problems (rows) and thereby it helps to understand the conflicts between

different objectives.

Execution of the PAY-OFF command provides also us with two reference vectors:

the utopia vector and the nadir vector (see Table 12). The utopia vector represents

the best values of each objective considered separately, and the nadir vector express the

worst values of each objective noticed during optimization of another objective function.



245

Optimized ObjectIve values

function mvest satls! dlst prox

Invest 186 100 2.61 4976
satisf 401 368 2.17 6385
dist 413 279 2.03 8782
prox 398 187 2.12 8854

Table 11: Pay-off matrix

The utopia vector is, obviously, not attainable, i.e., there are no feasible solutions with

such objective values.

ObjectIve values
Invest satlst dlst prox

utopia 186 368 2.03 8854
nadir 413 100 2.61 4976

Table 12: Utopia and nadir vectors

While analysing Tables 11 and 12 we find out that the objective values vary signifi­

cantly depending on selected optimization. Only for the average distance we notice the

relative variation less than 30% whereas for the other objectives it even overstep 100%.

Moreover, we recognize a strong conflict between the investment cost and all the other

objectives. While minimizing the investment cost we get the worst values for all the

other objectives. On the other hand, while optimizing another objective function we get

doubled investment cost in comparison with its minimal value.

Coefficients of the nadir vector cannot be considered as the worst values of the objec­

tives over the whole efficient (Pareto-optimal) set. They usually estimate these values

but they express only the worst values of each objective noticed during optimization of

another objective function. In further analysis we will show that these estimations can

be sometimes overstep.

Due to the special regularization technique used while computation of the pay-off

matrix (see Ogryczak et al., 1988) each generated single-objective optimal solution is

also an efficient solution to the multiobjective problem. So, we have already available

in the solution base four efficient solutions connected with several rows of the pay-off

matrix. Using different commands of DINAS we can examine in details these solutions.

In particular, we can recognize locations structure for several solutions. The first solu­

tion which minimizes the investment cost is based on only one new health-care center

located at Bush. Each other solution use two new centers what explains their signif­

icantly higher investment costs. They are based on the following locations: Ice and

Oasis, Fiord and Oasis, Bush and Fiord.



246

6 Interactive analysis

Having computed the utopia vector we can start the interactive search for a satisfy­

ing efficient solution. As we have already mentioned DINAS utilizes aspiration and

reservation levels to control the interactive analysis. More precisely, the DM specifies

acceptable values for several objectives as the aspiration levels and necessary values as

the reservation levels. All the operations connected with editing the aspiration and

reservation levels as well as with computation of a new efficient solution are included in

the EFFICIENT command.

At the beginning of the interactive analysis we compute the so-called neutral solu­

tion. For this purpose we accept the utopia vector as the aspiration levels and the nadir

vector as the reservation levels. In effect, we get the fifth efficient solution based on

location two new health-care centers at Bush and at Ice. The investment cost of this

solution is rather high (invest=386) whereas the other objectives get middling values

(satisf=276, dist=2.26, prox=6457).

Apart from the solution connected with minimization of the investment cost all the

other solution are based on location of two new health-care centers what implies a high

investment cost. Therefore we try to find an efficient solution with small investment cost

(one new center) and relatively good values of the other objectives. For this purpose we

define the aspiration and reservation levels as it is given in Table 13.

Invest satlst dlst prox
aspiratIOn 186 300 2.08 8500
reservation 250 200 2.50 7000

Table 13: Aspiration/reservation levels for Solution No.6

In effect, we get the sixth efficient solution based on location of one new health-care

center at Oasis. The investment cost is small (invest=201), the satisfaction level has

middling value (satisf=192) while the average distance is very large (dist=2.58) and

the overall proximity is even less than the corresponding coefficient of the nadir vector

(prox=4933). The system automatically correct the nadir vector by putting the new

worst value as the proper coefficient.

To avoid too small values of the overall proximity in the next solution we modify

the reservation level for this objective putting 8000 as the new value. After repeating

the computation we get the seventh efficient solution based on the sole new health-care

center located at Ice. Due to the very convenient form of solution presentation in DINAS

we can easy examine performances (in terms of objective values) of the new solution in

comparison with the previous one. The overall proximity, the average distance and the

investment cost are slightly better (prox=5287, dist=2.53 and invest=200) while the

overall satisfaction level is a few percent worse (satisf= 176).

After analysis of two last efficient solutions we make a supposition that it is necessary

to relax requirements on the satisfaction level for making possibility to find an efficient

solution with good values of the average distance and the overall proximity under small

the investment cost. So, we change the reservation level associated with the function



247

satisf on 100. The system confirms our supposition. We get the eighth efficient solution

based on the sole new health-care center located at Fiord. The solution guarantees quite

large overall proximity (prox=7691) and relatively small average distance (dist=2.38)

under small investment cost (invest=212). On the other hand, the satisfaction level

has a value even less than the corresponding coefficient of the nadir vector (satisf=87).

Despite of the latter the solutions seems to be very interesting among the other efficient

solutions based on location of a sole health-care center.

Further search for a satisfying efficient solution based on only one new health-care

center have finished without success. Namely, for different values of the aspiration and

reservation levels the same efficient solutions have been generated. So, to complete

the analysis we try to examine another efficient solutions. For this purpose we relax

requirements on the investment cost. Among others, while using the aspiration and

reservation levels given in Table 14 we get the ninth efficient solution. It is based on the

same location of new centers as the third solution (Fiord and Oasis) and thereby it gives

the same investment cost (invest=413) and satisfaction level (satisf=279). However, the

average distance and the overall proximity differs slightly (dist=2.04 and prox=8791).

Jnvest satlsf dlst prox

aspiration 200 300 2.10 8800
reservation 400 200 2.50 8400

Table 14: Aspiration/reservation levels for Solution No.9

Finally, we examine all the generated efficient solutions using special comparison

tools available in DINAS. The solutions are listed in Tables 15 and 16. A careful

analysis of these solutions leads us to the following conclusion. The investment cost

cannot be regarded as a typical objective function since its values depend rather on the

number of new health-care centers than on their locations. It only partitions all the

efficient solutions into two groups: solutions based on a sole new health-care center and

solutions based on location of two new centers. Therefore it is necessary to look for a

good solution based on a sole new center which can be expanded to a better solution

by adding the second new center. In our opinion, the first new health-care center

should be located at Fiord (Solution 8). It is the only one efficient solution (based on a

sole new center) which gives acceptable values of the average distance and the overall

proximity (see Fig. 7). This solution gives also the worst value of the satisfaction level.

However, further development of this solution by adding the new health-care center

at Oasis (Solution 9) leads to a quite high value of the satisfaction level and makes

further significant improvements with respect to the average distance and the overall

proximity (see Fig. 8). Both the proposed solutions have the highest investment costs

in the corresponding groups of solutions but variation of this objective among solutions

of the same group is so small that it cannot be considered as a serious weakness.

Due to offering by DINAS easy way for modification the problem we can perform

an additional analysis while changing some objective functions. While repeating the

multiobjective analysis with omitted objective function invest we get the ninth solution



248

CoMpa~ison or Irrici.nt Solutions
.lrAiI:!JD

~ ~ AIR Bars, UIH Bars, Locations. Ualues UUScroll

Figure 7: Utopia/nadir bars for selected solutions

Effici.nt Solution No 9
IlrAiI:lJ'D!

It{lj Menu

InUfSt

htisC

Dist

Prole

~~ ~ AIR Bars, UIH Bars, Locations, Ualues

Figure 8: Utopia/nadir bars for the current solution

It{lj Menu



249

Invest satJst dJst prox
::SolutIOn 1 186 100 2.61 4976
Solution 2 401 368 2.17 6385
Solution 3 413 279 2.03 8782
Solution 4 398 187 2.12 8854
Solution 5 386 276 2.26 6457
Solution 6 201 192 2.58 4933
Solution 7 200 176 2.53 5287
Solution 8 212 87 2.38 7691
Solution 9 413 279 2.04 8791

Table 15: Efficient solutions - objective values

Hush FJOrd lee UasJS
:::iolutlOn 1 yes no no no
Solution 2 no no yes yes
Solution 3 no yes no yes
Solution 4 yes yes no no
Solution 5 yes no yes no
Solution 6 no no no yes
Solution 7 no no yes no
Solution 8 no yes no no
Solution 9 no yes no yes

Table 16: Efficient solutions - locations

as the neutral solution what confirms optimality of this solution with respect to good

values of all the three objectives.

Using the BROWSE command we can examine in details the selected solutions with

the EDINET editor. It turns out that in the eighth efficient solution the health-care

center Hill is assigned to areas: Acer, Picea, Litwor, Betula and Erica. The health-care

center Pond services areas: Bobrek, Arnika, Robur, Larix and a small part of Ribes.

The new health-care center Fiord services only areas Pinus, Rumex and the main part

of Ribes. Capacity of the new center Fiord is completely used whereas in the old centers

we have noticed some small free capacities. It suggests that the old health-care centers

have nonoptimal location with respect to the considered objective functions. The ninth

efficient solution confirms this observation. The additional new health-care center at

Oasis takes the area Acer and the main part of Erica from the region of Hill and the

area Bobrek from the region of Pond. So, in this solution both the new health-care

centers use the whole their capacities whereas the old centers use only 50-70% of their

capacities. In effect, all the health-care centers have well balanced charges.



250

7 Concluding remarks

Initial experiences with the DINAS system on small and medium testing examples con­

firm appropriateness of the used methodology for solving multiobjective transshipment

problems with facility location. The interactive scheme is very easy and supported

by many analysis tools. So, a satisfactory solution can be usually reached in a few

interactive steps.

As it has been showed in this paper application of DINAS is not limited to typical

transshipment problems. DINAS can be successfully used to solve different distribution­

location problems. The problem of health service reorganization connected with location

of new health-care centers presented in the paper is only an example among many others

real-life decision problems which can be solved with DINAS.

While solving with DINAS real-life problems on IBM-PC XT/ AT microcomputers,

the single-objective computations take, obviously, much more time than while using

some standard optimization tools (like the MPSX/370 package) on a mainframe. How­

ever, our experiences with both these approaches allow us to suppose that DINAS, in

general, will take much less time for performing of the whole multiobjective analysis.

8 References

Abernathy, W. J., Hershey, J. C. (1972). A spatial-allocation model for regional

health-services planning. Oper. Res. 20, pp. 629-642.

Glover, F., Klingman, D. (1981). The simplex SON method for LP/embedded network

problems. Mathematical Programming Study 15, pp. 148-176.

Ogryczak, W., Malczewski J. (1988). Health care districts planning by multiobjective

analysis with the MPSX/370 package. Archiwum Automatyki i Telemechaniki,

32, pp.369-381.

Ogryczak, W., Studzinski, K., Zorychta, K. (1987). A solver for the transshipment

problem with facility location. In A. Lewandowski and A. Wierzbicki (Eds.),

Theory, Software and Testing Examples for Decision Support Systems. IIASA,

Laxenburg.

Ogryczak, W., Studzinski, K., Zorychta, K. (1988a). Dynamic Interactive Network

Analysis System DINAS: User Training Manual. Technical Report.

Schrage, L. (1975). Implicit representation of variable upper bounds in linear pro­

gramming.Mathematical Programming Study 4, pp. 118-132.

Wierzbicki, A. P. (1982). A mathematical basis for satisficing decision making. Math.

Modelling 3, pp. 391-405.



Towards Interactive Solutions in a Bargaining

Problem

Piotr Bronisz, Lech Krus

Systems Research Institute, Polish Academy of Sciences, Warsaw,

Andrzej P. Wierzbicki

Institute of Automatic Control, Warsaw University of Technology.

Abstract

The paper deals with interactive arbitration processes in a bargaining problem.

Principles of constructing such processes are discussed, and several solution concepts

are considered, first in unicriterial and then in multicriterial case. The analysis is

preceded by a review of the axiomatic basis of Nash and Raiffa solution concepts.

1 Introduction: The need of interactive bargaining

procedures

The bargaining problem has a long and distinguished history of research. Most of

attention, however, was given to normative axiomatic characterizations of cooperative

solutions for the bargaining problem, under the assumption that players, even if they

have multiple objectives, can be characterized by corresponding utility functions. There

are several reasons for trying to relax these assumptions and for designing interactive

bargaining procedures. These reasons include:

• The development of interactive decision support systems on modern computers

that might be also used for bargaining and negotiation support;

• The wide use of gaming-as opposed to game theory-in support of learning

about conflict situations that indicates the need of combining properly extended

and relaxed game theoretical principles with practical gaming processes;

• Known reservations to the practical applicability of utility theory and, in partic­

ular, recently raised reservations to the universal validity of this theory as a basis

for decision making in cross-cultural situations (see, for example, Grauer, Thomp­

son and Wierzbicki, 1985) that imply the importance of interactive processes in

decision support;



252

• Recent research results in deliberative, holistic decision making (see, for example,

Dreyfus, 1985) that indicate the need of considering calculative, analytic means

of decision analysis mainly as a support in learning to make decisions and thus

again imply the importance of interactive processes of learning;

• Recent research results in evolutionary rationality (see, for example, Axelrod,

1985) that indicate the importance of an evolutionary development of cooperative

strategies in most repetitive non-zero sum games and thus again imply the need

for broadening normative approaches.

Thus, there is a need of developing interactive processes of bargaining, in particular

for the case of multiple criteria of interest to each player. With all these reservations

about and aims to broaden the scope of the normative, single-criteria bargaining the­

ory, we start this paper precisely from the normative, axiomatic foundations and try

to broaden them while attempting to preserve the abstract power of an axiomatic ap­

proach, by introducing other postulates or axioms that might be more adequate when

constructing interactive processes of bargaining.

While there has been many attempts to construct interactive bargaining processes,

we would like to express our debt to Howard Raiffa, whose concepts dominate in this

paper, and to Gunther Fandel whose ideas (see Fandel, 1979) and direct cooperation

(Fandel and Wierzbicki, 1985) motivated much of this paper.

2 The bargaining problem in terms of utility theory:

problem formulation

We consider a finite set of players, N = {1, 2, ... , n}, where each player has preferences

over the feasible outcomes which are represented by a cardinal (von Neumann and

Morgenstern) utility function. A particular outcome of the game can be represented as

a vector in n-dimensional Euclidean space, ~ n , where the i-th component is the utility

of the i-th player. A bargaining game is described by a pair (8,d), where 8 C ~n is a

set of all feasible outcomes (the outcome set, sometimes called the agreement set), and

d E 8 is an outcome of the game already experienced by all players, called a status quo

point or a disagreement point. Any outcome from 8 can be the result of the bargaining

game, if it is specified by unanimous agreement of all the players. In the event that

no unanimous agreement is reached, it is assumed that the disagreement point d is the

result of the game. Following Nash (1950, 1953), Roth (1979b), we confine ourselves

in Section 2-5 to bargaining games (8, d) satisfying the following conditions: 8 is a

compact, convex subset of ~ n , and there is at least one point x in 8 such that x > d

(Le. Xi > di for all i E N). Let B denote the class of all such bargaining games.

A solution for the bargaining problem is a function 1 : B -----+ ~n which assigns to

each bargaining game (8,d) in B a point of 8, denoted 1(8,d). When no confusion

will result, the outcome 1(8, d) will sometimes be referred to as the solution of the

bargaining game (8, d).



253

Some models presented in the literature assume that the utilities of all players are

disposable, and enlarge the set of feasible outcomes S to the set

S* = {x E lRn
: y ::; x::; z for some y, z E S}

(see Nash, 1953, p.131 for justification of such an approach). Let B* denote the class

of all bargaining games (S, d) E B with disposable utility, Le. satisfying S = S*. If a

solution for the bargaining problem is defined on B* and is strongly Pareto optimal (see

Property 4 in further text) then it may be extended to the class B because strongly

Pareto optimal points are unaffected by the transition from S to S*.

3 N ash and Raiffa axiomatic models of bargaining

In this section, we present two most important axiomatic models of bargaining known in

the literature. These axiomatic models do not describe real bargaining situations which

can occur during a particular game, they describe only some normative properties of the

set of possible agreements for the class B of bargaining games. The axiomatic solutions

for the bargaining problem are derived axiomatically, by specifying first desirable ax­

iomatic properties and then the corresponding solution. For a more detailed description

of axiomatic models of bargaining, see (Roth, 1979b) and (Roth and Malouf, 1979).

J.F. Nash (1950, 1953) proposed that a solution should possess the following four

axiomatic properties, and has then shown that the properties define a unique solution

to the bargaining problem.

Property 1. Invariance Under Positive Affine Transformation of Utility. For any

bargaining game (S, d) E B, if T is an arbitrary affine transformation such that

Tx = (atxt +bt, ... ,anxn + bn), ai > 0 for i EN, then Tf(S,d) = f(TS,Td).

Property 2. Symmetry. Suppose that (S, d) E B is a symmetric game, that is

dt = d2 = ... = dn and if x is contained in S, then for every permutation 7r on N, 7r*X

is also contained in S. Then ft(S,d) = f2(S,d) = ... = fn(S,d).

Property 3. Independence of Irrelevant Alternatives other then Disagreement Point.

For bargaining games (S,d) and (T,d) in B, if SeT and f(T,d) E S then f(S,d) =

f(T,d).

Property 4. Strong Pareto Optimality. For any bargaining game (S,d) E B, there

is no xES such that x 2: f(S, d), x i= f(S, d).

Property 1 is imposed because a cardinal utility function is unique up to an order

preserving affine transformation, i.e. the origin and scale chosen for a cardinal utility

function are arbitrary. Property 2 reflects a "fairness" principle, all the players have

"equal ability of bargaining", and the solution depends only on information in (S, d).
In the case when we have some additional information about bargaining abilities of

the players, Harsanyi and Selten (1972) show that there is a unique solution possessing

Properties 1, 3, and 4. Property 3 is the most difficult to substantiate (see Luce and

Raiffa, 1957), it requires that the solution selects an outcome using a rule which depend

only on the disagreement point and on the selected outcome itself, and not on any other

outcomes in the feasible set. Property 4 says that the players are "collectively rational" .



254

Theorem 1. (Nash, 1950) There exists a unique solution of the bargaining problem

on B that possesses Properties 1-4. This unique solution (called here Nash solution) is

defined by:

f(S, d) = F(S, d) = arg max II (x, - di )

ZESd 'EN

where Sd = {x E S : x 2': d}.

H. Raiffa (1953) proposed another solution for a two person bargaining problem,

which was axiomatically characterized by Kalai and Smorodinsky (1975), and general­

ized to the n-person case by Thomson (1980). Let I(S, d) denote the ideal point of the

game (S,d), Le.

I,(S,d) = max {x, : xES, x 2': d} for i EN.

Property 5. Weak Pareto Optimality. For any bargaining game (S,d) E B, there

is no such xES that x > f(S,d).

Property 6. Individual Monotonicity. If (S, d) and (T, d) are bargaining games

such that SeT and that for some i EN and all j E N, j =1= i, Ij(S, d) = Ij(T, d) hold

then f,(S,d) ~ /;(T,d).

Property 5 is a weaker version of collective rationality, Property 6 states that if the

set S is enlarged to a set T in such a way, that the expansion occurs only in the direction

of the i-th player, then the i-th player payoff in the enlarged game (T, d) should be at

least as large as his payoff in the original game (S, d).

Theorem 2.

a. (Thomson, 1980) There exists a unique solution of the bargaining problem on

B* that possesses Properties 1, 2, 5, and 6. This unique solution (called Raiffa

one-shot solution) is defined by:

f(S,d) = G(S,d) = d + h(S, d)[I(S, d) - d]

where h(S, d) = max {h E !R : d + h[I(S,d) - d] E S}. This means that G(S, d)
is the unique intersection point of the segment connecting I(S,d) to d with the

boundary of S.

b. (Kalai and Smorodinsky, 1975) In the two person case there exists a unique solu­

tion on B possessing Properties 1, 2,4, and 6; this solution is the function f = G
defined as above.

c. (Roth, 1979b) In the n-person case, n 2': 3, no solution exists on B possessing

Properties 1, 2, 5, and 6.

d. (Roth, 1979a) In the n-person case, n 2': 3, no solution exists on B* possessing

Properties 1, 2, 4, and 6.

It is easy to show that the Raiffa one-shot solution (as well as the Nash solution)

satisfies the following property:

Property 7. Independence of Irrelevant Alternatives other than Disagreement Point
and Ideal Point. For bargaining games (S,d) and (T,d) in B, ifI(S, d) = I(T, d), SeT,
and f(T,d) E S then f(S, d) = f(T,d).



255

4 A model of negotiations

We are interested here in a model of negotiations for the bargaining problem, which

describes not only the set of possible final agreements for the class B of bargaining

games (i.e. a solution f : B -+ lRn
), but which also gives a constructive procedure

describing the process of reaching f(8,d) for any game (8,d) E B.
In our model, a bargaining game (8, d) E B is played in several rounds 1,2, ... ,T

(it may be finite or infinite process, hence T ::; 00 ). In each round t, each player i E N

announce a "demand" tf;; if these demands jointly are admissible, i.e.

dl E 8* = {x E 8 : y ::; x ::; z for some y, z E 8},

and acceptable to all players, then they are taken as the result of this round of nego­

tiations (otherwise, this round is unsuccessful and the process begins again from cf-l).
The final admissible and acceptable demands dT of all players are supposed to consti­

tute a solution for the game (8,d). We assume that the model satisfies the following

postulates:

PI. d? = d, dl E 8* for t = 1,2, ... , T ,

P2. ~ ~ ~ - l for t = 1,2, ... ,T,

P3. ~ (= liml-+oo dl if T = 00) is a strongly Pareto optimal point in 8.

The above postulates have the following intuitive interpretations. We assume that

the process starts at the disagreement point (no player will agree to get less than his

disagreement payoff). Moreover, the process is monotonically progressive (no player

will accept an improvement of demands of another player at the cost of his concession,

a diminishing of his demands). Finally, the process leads to a strongly Pareto optimal

outcome in 8.

Following Fandel and Wierzbicki (1985), at each round of the process we assume

additionally that the demands of all players are limited by a principle of a-limited

confidence. Let I ( ~ - l ) E lRn be such that Ii(cf- 1
) = max{ Xi : x E 8, x ~ ~-l }, i.e.

I ( ~ - l ) is the ideal point of the set 8 restricted to the outcomes not worse than dl- 1
•

P4. Principle of a-limited confidence. Let 0 < a~ ::; 1 be a given confidence

coefficient of the i-th player at round t. Then acceptable demands are limited by:

for t = 1, , T, where a:"in is a joint confidence coefficient at round t,

a:"in = min { a ~ , , a~}.

Intuitively, the postulate P4 states that a single-round gain in the process should not

exceed a:"in part of the maximal cooperative gain for each player at round t. We assume

here that when the players agree on an outcome cf-1, then the outcomes 8 \ {x E 8 :

x ~ ~-l } play no further role in the future part of the process. The principle of a­

limited confidence follows from the fact that, in many practical applications the players

have limited confidence in their ability to describe and predict precisely all consequences

and possible outcomes, hence each player attempts to prevent any other player from

receiving disproportionally large gains.



256

There are interesting relations between a confidence coefficient and the conflict co­

efficient concept proposed by Wierzbicki (1987). For each x E 8 and each t define the

following coefficient, called cooperative conflict coefficient relative to status quo point
d'-l :

D(dt- l ,x) = ~~ ((Ii(dt- l ) - Xi) I (Ii(dt- l ) - d:- l
)}

It has many interesting properties (see Wierzbicki, 1987). The minimal conflict coeffi­

cient defined by : Dmin (d'-l) = minzEs D(d'-l, x) is equal to zero if and only if the ideal

point of the set 8 restricted to the outcomes not worse than dt
- l belongs to 8, i.e. if

there is no conflict in the bargaining problem. It is equal to (1 - (lIn)) if the set 8

is the smallest convex set containing d'-l such that I (dt
- l

) is its ideal point. In each

round t a value of confidence coefficient a ~ of the i-th player can be limited on the base

of a minimal conflict coefficient. It should be such that 0 < a~ ~ (1 - Dmin(dt-l)) , if

a ~ = (1- Dmin(d'-l)) for all i E N than the players might get maximal improvement of

payoffs. Moreover, the ratio a ~ I (1 - Dmin(dt-l)) characterizes percentage of maximal

improvement assumed by the i-th player.

Remark. The drawback of the conflict coefficient D(dt-l,x) is that it depends on

the dimension n. To correct for this dependence, it is reasonable, following suggestion

of Kreglewski (1984), to use the following transformation:

T D(d'-l, x) = 2D(dt-l, x) + (n(n - 2)/(n - l))D(dt- l , x)(D(dt- l , x) - 1)

where the transformed conflict coefficient T D(dt
-

l
, x) has the property that

TD(d'-l,I(d'-I)) =0, TD(dt-1,dt- l ) = 2, and TD(d'-I,(dt- 1 + I(dt- l )) I n) = 1,

which corresponds to a good intuitive interpretation of measuring the conflict by 1 if

the players accept the simplest compromise between objectives.

In order to further characterize the behaviour of players during the negotiation

process, we introduce the following principle of recursive rationality.

P5. Principle of recursive rationality. Given dt
, at each round t, there is no such

outcome x E 8*, x ~ dt, x i= dt that x satisfies P4.

This can be interpreted that, at each round t, every player is a rational individual:

he tries to maximize his demand according to the principle of a-limited confidence,

knowing that larger demands will be not accepted by other players.

We can prove the following theorem (see Appendix).

Theorem 3. For any n-person bargaining game (8, d) E B and any confidence

coefficients a ~ i n ' t = 1, ... , T such that 0 < f ~ a~i!l ~ 1In there is a unique process

dt
, t = 0,1, ... ,T satisfying the postulates P1-P5. The process is described in the

iterative way:
<fJ = d

dt = dt- l + a~in[I(dt-l) _ dt- 1]

where T is the smallest t with dt = dHI or T = 00.

Because 8 was assumed to be convex, we can observe that the process is infinite for

a ~ i n < lin. We can also notice that for 0 < a~in ~ lin the postulates P1-P5 involve
the following postulate:



257

P6. Principle 0/ proportional gains. For each round t, t

number f3 > 0 such that

1, ... , T, there is a

On the basis of the postulate P6, we can generalize the result for any confidence

coefficients o::"in such that 0 < o::"in S 1.

Theorem 4. For any bargaining game (S, d) E B and any confidence coefficients

o::"in such that 0 < f S o::"in S 1, t = 1,2, ... , T there is a unique process dt
, t =

0,1, ... ,T satisfying the postulates PI-P6. The process is described in the iterative

way:
<fJ = d

d! = d!-l + f3~in[I(dt-1) - d!-lj for t = 1, ... ,T

where f 3 ~ i n = o::"in if dt belongs to S*, elsewhere f 3 ~ i n is the maximal number such that

f 3 ~ i n < o::"in and dt belongs to S*; T is the smallest t with dt = dt+l or T = 00.

The proof of Theorem 4 is a simple modification of the proof of Theorem 3. From

convexity and disposability of payoffs in S it follows that if improvement in directions

along coordinates of some players is possible, an improvement in any direction being

their combination is also possible.

Figure 1 shows an example of the process for the confidence coefficient o::"in = 1/2

in a two person bargaining game (S, d).
Now, we show that the assumption in the postulate PI that dt belongs to S* rather

to S is important. Let us consider an example of three-person game (S, d) E B such that

d = (0,0,0) and S is the convex hull of d and the points (0, 1, 1) and (1,0, 1). It is easy

to verify that if we set dt E S in PI then the process satisfying the postulates PI-P5

is not unique, hence Theorem 3 does not hold. Moreover, the postulate P6 does not

follow from PI-P5, and there is no process satisfying PI, P3, and P6, hence Theorem

4 is not true.

Let 0: = (0:10 0:2, ••. ) denote infinite sequence of real numbers such that 0 < f S O:t S
1 for t = 1,2, .... Let GCl : B -+ !Rn be a solution defined by: for each bargaining game

(S, d) E B, GCl (S, d) is equal to the final demands dT of the players in the process with

the joint confidence coefficients o::"in = O:t for t = 1,2, ...

We can shown the following properties of the solution GCl (Bronisz, Krus, Wierzbicki,

1987):

- Feasibility. GCl(S,d) belongs to S.

- Strong individual rationality. GCl(S,d) > d.

Strong Pareto optimality. (see Property 4)

Symmetry. (see Property 2)

Invariance under positive affine transformations of utility. (see Property 1)

Continuity. Let (S;, d) E B be a sequence of bargaining games defined for a

sequence of sets Si such that limi_oo(S;, d) = (S, d) (in the Hausdorff topology)

and (S,d) E B. Then Iimi_ooGCl(S;,d) = GCl(S,d).



258

Let GO : B -t lR" be the solution (called here Raiffa continuous solution) defined by:

GO(S,d) = lim Ga(S,d).
a-+(O,O, ...)

It can be shown (Bronisz and Krus, 1986a) that the limit exists and GO(S,d) is the

final demands of the players in the continuous process of negotiation described by the

following initial-value problem

dXi/dt = fi(X) - Xi

x(O) = d,
for i = 1, ... ,n

where /;(x) = max {Yi : yES, Y ~ x}. It has been also shown (Bronisz and Krus,

1986b) that the solution cO(S,d) has all the properties presented above.

- - - - - - -::::'1
____., I

I 2 d~;' I I
I d /" I

d' v I I

I
I
I

Figure 1.

5 Comparison of the Nash and the Raiffa solutions

to the proposed solutions

It is easy to verify that in the two-person case we obtain G(l,l, ...) = G, that is the solution

following from the negotiation process with the confidence coefficients 0: = (1,1, ... ) is

equivalent to the Raiffa one-shot solution. Moreover, for n ~ 3 and any game (S, d) E

B if the Raiffa one-shot solution gives strongly Pareto optimal outcome G(S, d) then
G(l,l,···)(S, d) = G(S, d). However, G(l,l, ...) does not coincide with the generalization of

the Raiffa solution proposed by Imai (1983).

For any bargaining game (S, d) E B let [1/2(S, d) E lR" be such that

IJ/2(S,d) = max { Xi: xES, X ~ (I(S,d) + d) /2}.

Intuitively IJ/2(S,d) is the maximal payoff of the i-th player if the other player get at

least a half of their maximal payoffs improvements.



259

In two-person case, let us consider the solution H : B --+ !R2 following from the

two-rounds process with the confidence coefficients a = (1/2,1,1, ...). This solution

has the following property.

Property 8. Independence 0/ Irrelevant Alternatives other than Disagreement Point
( d j, Ideal Point ( I(B, d) j, and the point Il/ 2(B, d). For any bargaining games (B, d)

and (T,d) in B if I(B, d) = I(T, d), I l/2(B,d) = I l/2 (T, d), BeT, and f(T,d) E B
then f(B, d) = f(T,d).

F(s,d) =G(s,d) =H(s,d)

Figure 2 Figure 3 Figure 4

Property 8 is a weaker version of Property 7, which in turn is a weaker version

of Property 3. It is easy to verify that the solutions F, G, as well as H satisfy

Property 8, the solutions G and H satisfy Property 7, the solution H satisfies Prop­

erty 8. We will show now an example that a weakening of the property of indepen­

dence of irrelevant alternatives properties (P3 to P7 and P7 to P8) can improve mono­

tonicity of the solutions (in the sense of a better utilization of information about a

bargaining game). Consider a two-person game (B,d) E B* defined by d = (0,0),

B = { (Xl, X2) E !R2
: X ~ 0, X ~ + X~ ~ 1 } Because (B, d) is a symmetric game, hence the

Nash, the Raiffa one-shot, and the H solutions coincide, F(B,d) = G(B,d) = H(B,d).
The game (B, d) is presented in Figures 2, 3, and 4 while the set B is limited by a

continuous line. For simplicity, confine our consideration to games (T, d) E B* such

that T c B. From Property 3, it follows that each game (T, d) E B* such that the

upper boundary of T lies in the shaded area in Figure 2 has the same Nash solution

F(T,d) = F(B,d). Property 7 implies that each game (T,d) E B* such that the up­

per boundary of T lies in the shaded area in Figure 3 has the same Raiffa one-shot

solution G(T, d) = G(B, d). Property 8 implies that each game (T, d) E B* such that

the upper boundary of T lies in the shaded area in Figure 4 has the same H solution

H(T,d) = H(B,d). Moreover it is easy to notice that only symmetric games (T,d) have

the same Raiffa continuous solution as the game (B,d). This shows that a relaxation of

the property of independence of irrelevant alternatives decreases the set of bargaining

games having the same solution, what makes possible an improvement of monotonicity.



260

6 A multicriteria bargaining problem: problem for­

mulation and definitions

Let N = {I, 2, ... ,n} be a finite set of players, each player having m objectives. A

multicriteria bargaining game is defined as a pair (8, d), where an agreement set 8

is a subset of n * m-dimensional Euclidean space !Rn*m, and a disagreement point d

belongs to 8. If we assumed that the objectives of each player can be aggregated to

an utility function, then the multicriteria game would be converted in a single-criteria

one. However, we assume here that for some reasons-such as practical limitations of

the utility theory-the aggregation of player's objectives is impossible.

For every point x = (Xi,'" ,Xn ) E !Rn*m, Xi E !Rm, Xi = (XiI, ••• ,Xim), let Xij denote

the amount of the J'-th objective for the i-th player. We assume that each player tries

to maximize all his objectives.

A point xi E 8 is defined as i-nondominated, i E N, if there is no y E 8 such that

Yi 2: x~, Yi =J x~. A point u E !Rn*m is defined as a utopia point relative to aspirations

(RA utopia point) if for each player i E N, there is an i-nondominated point xi E 8

such that Ui = x~.

The i-nondominated point is an outcome which could be achieved by a rational

player i if he would have full control of the moves of other players. Let us observe

that in the unicriterial case there is only one i-nondominated point, in the multicriterial

case considered here there is a set of such points. That requires each player i, i EN,

to investigate the set of i-nondominated points in 8 as m-dimensional multicriteria

decision problem and then to select one i-nondominated point as his most preferable

outcome. The preferable i-nondominated point can be selected by the i-th player using,

for example, the achievement function approach proposed by Wierzbicki (1982); in this

case, the i-th player specifies his aspirations in his outcome space and a decision support

system proposes the i-nondominated point by maximizing an achievement function.

The RA utopia point generated by the selected in this way i-nondominated points,

i E N, carries information about the most preferable outcomes for all the players. The

RA utopia point significantly differs from the ideal point defined by the maximal values

of all objectives in set 8.

7 The concept of a solution

In this section, we confine our consideration to the class Bm of all multicriteria bargain­

ing games (8, d) satisfying the following conditions:

(i) 8 is compact and there is X E 8 such that X > d,

(ii) 8 is comprehensive, Le. for X E 8 if d :s. Y :s. X then y E 8.

Assumption (ii) states that objectives are disposable, Le. that if the players can reach

the outcome x then they can reach any outcome worse than x. Observe that we do not

assume convexity of the agreement set.



261

For technical reasons, it is necessary to confine attention to utopia points u > d. Let

U(S, d) denote the set of all the RA utopia points u for a bargaining game (S, d) such

that u> d.

A solution for the multicriteria bargaining problem is a function fm : Bm x lRn*m --+

lRn*m which associates to each (S, d) E Bm and each RA utopia point u E U(S, d) a

point of S, denoted fm(S,d,u).

The following c m function is proposed as the solution of multicriteria bargaining

problem:

Cm(S, d, u) = d + h(S, d, u)[u - dj,

where (S,d) E Bm, u E U(S,d), and h(S,d,u) = max { hE lR: d +h(u - d) E S}.

Intuitively, the outcome Cm(S, d, u) is a unique point of intersection of the line

connecting u to d with the boundary of S.

It can be shown (Bronisz and Krus, 1987) that this solution can be characterized by

the following axioms.

AI. Weak Pareto optimality. There is no such xES that x > fm (S, d, u).

A2. Invariance under Positive Affine Transformations of Objectives.

Let Tx (TIXI, , Tnxn) be an arbitrary affine transformation such that

TiXi = (a;;xi;+bi;);=l, ,m, where ai; > 0, i EN. Then fm(TS, Td,Tu) = T fm(S,d,u).

For any point x E lRn*m and for any permutation 11" on N, let 1I"*X = (X"'(l)"'" x".(n))'

We say that (S, d) is a symmetric game if d l = d2 = ... = dn and if xES then for

every permutation 11" on N, 11"*xES.

A3. Symmetry. For symmetric bargaining game (S, d), if UI = U2 = ... = Un then

fi(S,d,u) = f';'(S,d,u) = ... = f'::(S,d,u).

A4. Restricted Monotonicity. If (S, d) and (T, d) are such that a RA utopia point

u E U(S,d) n U(T,d) and if SeT then fm(S,d,u) :::; fm(T,d,u).

Theorem 5. (Bronisz and Krus, 1987) There exists a unique solution satisfying the

axioms AI-A4. It is the solution cm : Bm X lRn*m --+ lRn*m.

It is easy to notice that in the unicriterial case, Le. when m = 1, each bargaining

problem (S,d) has a unique RA utopia point which coincide with the ideal point and

the solution coincides with the Raiffa solution. The following theorem describes another

connection between our concept and the Raiffa solution (Bronisz and Krus, 1987).

For (S,d) E Bm, let Xi E S be an i-nondominated point defined by the i-th player

and u E U(S,d) be the RA utopia point generated by XI,x2
, ... ,xn. The points

d, xl, x 2
, ••• ,xn generate a convex hull H n, each point x in Hn can be uniquely pre­

sented in the form

x = d + (at{ul - dd, ... , an(un - dn)),

where 0 :::; a; :::; 1 for i E N. Let SH = S n H n and P be the mapping from H n to lRn

defined by :

Theorem 6. (Bronisz, Krus, 1987) If C denotes the n-person Raiffa one-shot solu­

tion then P(Cm(S, d, u)) = C(P(S), P(d)).



262

Theorem 6 shows that the n-person Raiffa solution concept can be applied directly

to the multicriteria game (S, d) if we confine consideration to the outcomes in SH, i.e.

to intersection of the agreement set S with the convex hull H".

8 The concept of an interactive solution

The proposed concept is a generalization of the process in Section 3. We confine our

consideration to multicriteria bargaining games (S, d) satisfying the conditions (i), (ii)
and, for technical reasons, the following condition.

(iii) For any xES, let Q(x) = {i : Y ::?: x, Yi > Xi for some YES}. Then for any

xES, there exists yES such that y ::?: x, Yi > Xi for each i E Q(x).

Intuitively, Q(x) is the set of all coordinates in !R,,*m, payoffs of whose members can

be increased from x in S. Condition (iii) states that the set of Pareto optimal points

in S contains no "holes". We do not assume convexity of S, however, any convex set

satisfies Condition (iii).
In our model, a bargaining game (S,d) is played in several rounds 1,2, ... ,T, in

which the successive outcomes, denoted d!, are determined.

We generalize the postulates PI-P6 in the following way.

MPI. cf = d, dt E S* for t = 1,2, ... ,T,

MP2. d! ::?: dt
-

1 for t = 1,2, ... ,T,

MP3. cfI' (= limt-+oo d! if T = (0) is a strongly Pareto optimal point in S.

In any round t, let u(dt
-

1) be the RA utopia point of the set {x E S : x ::?: dt
-

1}

reflecting the preferences of the players.

MP4. Principle of a-limited confidence. Let 0 < a~ ~ 1 be a given confidence

coefficient of the i-th player at round t. Then acceptable demands are limited by:

for t 1, , T, where a:r,in is a joint confidence coefficient at round t,

a:r,in = min {aL , a~}.
The similar relation of the confidence coefficient and conflict coefficient can be ob­

served as in the unicriterial case. For each round t define the conflict coefficient by:

D(dt-1,u,x) = ~~ ((ui;(dt
-

1
) - Xi;) / (ui;(dt

-
1

) - d~il)}.

jE{I•... ,... }

The minimal conflict coefficient defined by Dmin(d!-l, u) = min",es D(dt
-

1
, U, x) limits in

the same way a maximal value of confidence coefficients of the players in each round t.

MP5. Principle of recursive rationality. Given d!, at each round t, there is no such

outcome x E S*, x::?: d!, x =f. d! that x satisfies MP4.

MP6. Principle of proportional gains. For each round t, t = 1, ... ,T, there is a

number {3 > 0 such that



263

We can prove the following theorem (Bronisz, Krus and Lopuch, 1987).

Theorem 7. For any multicriteria bargaining game (S, d) satisfying conditions

(i) and (iii) and for any confidence coefficients a ~ i n such that 0 < f ~ a~in ~ 1,

t = 1,2, ... ,T there is a unique process tf, t = 0,1, ... , T satisfying the postulates

MPI-MP6. The process is described in the interactive way:

,fJ = d

tf = tf-1+ .B~in[U(tf-l) - tf-lj for t = 1, ... , T,

where . B ~ i n = a~in if tf belongs to S*, elsewhere . B ~ i n is the maximal number such that

. B ~ i n < a~in and tf belongs to S*; T is the smallest t with dt = tf+l or T = 00.

lt is easy to verify that for a multicriteria bargaining game (S, d) such that Gm(S, d, u)

is a strongly Pareto optimal point in S, the interactive negotiation process with the con­

fidence coefficient a ~ i n = 1 for t = 1 yields the final outcome dT = d1 = Gm(s,d,u).

9 Application of the interactive solution in decision

support for simulation games

In a model-based decision support situation we assume that a computerized model of

the gaming situation (called here the substantive model of the game) has been developed

with some specific interpretation in real life. The model should describe in mathematical

relations outcomes of the players as dependent on their decision variables. In case of

bargaining game it should allow at least describe bargaining set and disagreement point.

Several different prototypes of the model use and decision support in simulation gaming

can be used (Wierzbicki, 1987) including: playing the simulated game without decision

support, game analysis module, tentative arbitration module, module of interactive

decision support systems for individual players, interactive fair mediation module. The

structure of a decision support system that would include all of the prototypes (modules)

is presented in the Figure 5.

Playing the simulated game without any decision support is widely and almost solely

applied prototype. The game analysis module should at least compute current and

minimal conflict coefficients.

Assuming that in initial period of the game the status quo outcome is established, the

module would inform the players what is the minimal conflict coefficient compared to the

status quo. In a further period of gaming, current conflict coefficients could be computed

and displayed, together with various graphical images. The tentative arbitration module

can calculate besides conflict coefficients, a one shot cooperative solution, for example

Raiffa solution, Nash cooperative solution or others. The solution can be proposed

to the players as arbitrated one. They would not be obliged to accept the arbitrated

solution, but the knowledge of it might have a considerable impact on their behaviour.

The interactive decision system can allow particular player for interactive selection of his

moves that best serve his multiple objectives (assuming some moves of other players).

A further degree of sophistication would allow each player to put himself tentatively



264

Interactive mediation procedure

.....- Game
~Player Individual analysis Individual Player

1 DSS
and

DSS 2----. arbi tration r.-
module

Substantive model of the game

Figure 5: The structure of a decision and mediation support system

for simulation games.

in the position of other players, assume their objectives (which would not necessarily

be assumed correctly, since each player has the right of privacy of his analysis and, in

particular, his objective selection). In this mode, he could analyze cooperative outcomes.

The results of the analysis might have a basis for unsupported, verbal negotiations

between players.

The interactive mediation module can be based on the principle of limited confidence

and a "single text" procedure, see e.g. (Raiffa, 1982). The full procedure of using this

prototype might include all previous prototypes to prepare data for the mediation mod­

ule. The concept of interactive solution can be base for construction of the procedure.

In the following, an idea of the procedure based on the concept of the interactive solu­

tion is presented. The idea has been implemented in an experimental system supporting

multiobjective bargaining (Bronisz, Krus, Lopuch, 1987). The procedure consists of a

number of rounds. Each round t starts from the current status quo point dl
-

1 (the first

round starts from the status quo of the game). The player having information about

conflict coefficient at the point, specifies his current confidence coefficient a ~ and as­

suming some moves of other players tests different direction improving his payoffs from

the current status quo in space of his objectives. The directions can be specified by use

of reference points. For a particular direction (reference point) the system calculates

the corresponding solution and conflict coefficient. This information for some number

of tests allows the player to specify his aspiration levels for the objectives. This stage of

the procedure is performed independently for all the players. The system is informed

about objectives of the players, their aspiration levels and their confidence coefficients.

The system derives individual utopia components relative to aspirations of the players

and maximal confidence coefficient a ~ a x ' establishes resulting confidence coefficient ai,

and calculates result of the round d! together with corresponding conflict coefficient,



265

according to the following formulas:

where at = min { a ~ , . .. I a~, a:r,ax} and ut is utopia point relative to aspirations of the

players.

The outcomes of particular players resulting from d! and conflict coefficient are

proposed to the players as the mediated ones. The players are asked to state whether

they accept the result. If they all do, next round of mediated improvements is computed;

if some of them do not, they can revert to any of the previous prototypes.

10 Conclusions

We have presented here a theoretical basis for interactive arbitration schemes in bar­

gaining games. An iterative model of negotiations has been formulated in the case of

unicriterial bargaining game under the principle of a-limited confidence of players. Ac­

cording to the model, a process starting from the disagreement point and leading to the

Pareto optimal point of the agreement set has been constructed. Uniqueness of such

a process has been shown. An interactive process for multicriteria bargaining games

has been also considered utilizing a new solution concept being generalization of Raiffa

solution and an extension of the principle of a-limited confidence.

Appendix

Proof of Theorem 3.

To simplify notation, let:

For any 0 < a :S lin, let us consider the process described by:

rfJ = d, dt = dt- 1 + a[I(dt- l
) - dt- l

] for t = 1,2, ... , T.

For any round t, let

x = lin * (Xl + x 2 +... + x n
),

where xi = (x;, ... , x ~ ) , x ~ = Ii(d t
-

l
), x ~ . = d~-l for j i: i. The points Xi belong to S*,

hence from convexity of S*, x E S*. Because

thus d! E S* and the process described above satisfies the postulate P 1. It is easy to

notice that the process satisfies also the postulates P2, P4, and P5. Now, we show that

the process satisfies the postulate P3. If T is the smallest t with dt = dt+I then I( dt) = dt ,

i.e. there is no coordinate of dt which may be improved, thus dt is a strongly Pareto

optimal point in S* (also in S, see p.Ll). In other case, let us consider the sequence



266

{tf}~o' This sequence is monotonically increasing and limited, so it is convergent. Let

d! = limt--+oo tf and let us assume that dT is not a strongly Pareto optimal point in S*.

Then for any round t, we have:

thus this sequence is not convergent. Contradiction. This proves that the process

described above satisfies the postulates P1-P5.

The uniqueness of the process follows from the fact that for each round t, t =

1,2, ... ,T, there exists one and only one point

satisfying the postulates P4 and P5.

References

Axelrod, R. (1985). The Evolution of Cooperation, Basic Books, New York.

Bronisz, P. and L. Krus (1986a). A New Solution of Two-Person Bargaining Games,

ZTSW-17-1/86, Report of Systems Research Institute, Polish Academy of Sci­

ences, Warsaw.

Bronisz, P. and L. Krus (1986b). A Dynamic Solution of Two-Person Bargaining

Games, ZTSW-17-3/86, Report of Systems Research Institute, Polish Academy

of Sciences.

Bronisz, P. and L. Krus (1987). The Raiffa Solution for Multicriterial Bargaining

Problems, ZTSW-17-1/87, Report of Systems Research Institute, Polish Academy

of Sciences, Warsaw.

Bronisz, P., L. Krus and B. Lopuch (1987). An Experimental System Supporting Mul­

tiobjective Bargaining Problem. A Methodological Guide. In A. Lewandowski,

A.P. Wierzbicki, editors: Theory, Software and Testing Examples for Decision

Support Systems, IIASA, Laxenburg, (forthcoming).

Bronisz, P., L. Krus and A. Wierzbicki, (1987). Towards interactive solutions in Bar­

gaining Problem, RP.I.02.1.4, Report of Institute of Automatic Control, Warsaw

University of Technology.

Dreyfus, S. (1985). Beyond Rationality. In M. Grauer, M. Thompson, A.P. Wierzbicki

(eds): Plural Rationality and Interactive Decision Processes, Proceedings, Sopron

1984, Springer Verlag, Heidelberg.

Fandel, G. (1979). Optimale Entscheidungen in Organizationen, Springer Verlag, Hei­

delberg.

Fandel, G. and A.P. Wierzbicki, (1985). A Procedural Selection of Equilibria for

Supergames, (private unpublished communication).



267

Grauer, M., M. Thompson and A.P. Wierzbicki (eds) (1985). Plural Rationality and

Interactive Decision Processes, Proceedings, Sopron 1984, Springer Verlag, Hei­

delberg.

Harsanyi, J.C. and R. Selten (1972). A Generalized Nash Solution for Two-Person

Bargaining Games with Incomplete Information. Management Sciences, Vol. 18,

pp.80-106.

Imai, H. (1983). Individual Monotonicity and Lexicographical Maxmin Solution.

Econometrica, Vol. 51, pp. 389-401.

Kalai, E. and M. Smorodinsky (1975). Other Solutions to Nash's Bargaining Problem.

Econometrica, Vol. 43, pp. 513-518.

Kreglewski, T. (1984). private communication.

Luce, R.D. and H. Raiffa (1957). Games and Decisions: Introduction and Critical

Survey, New York: Wiley.

Nash, J.F. (1950). The Bargaining Problem. Econometrica, Vol. 18, pp. 155-162.

Nash, J.F. (1953). Two-Person Cooperative Games. Econometrica, Vol. 21, pp. 129­

140.

Raiffa, H. (1953). Arbitration Schemes for Generalized Two-Person Games. Annals of

Mathematics Studies, No. 28, pp. 361-387, Princeton.

Roth, A.E. (1979a). An Impossibility Result Concerning n-Person Bargaining Games.

International Journal of Game Theory, Vol. 8, pp. 129-132.

Roth, A.E. (1979b). Axiomatic Models of Bargaining. Lecture Notes in Economics

and Mathematical Systems, Vol. 170, Springer Verlag, Berlin.

Roth, A.E. and M. W.K. Malouf (1979). Game-Theoretical Models and the Role of

Information in Bargaining. Psychological Review, Vol. 86, pp. 1163-1170.

Thomson, W. (1980). Two Characterization of the Raiffa Solution. Economic Letters,

Vol. 6, pp. 225-231.

Wierzbicki, A.P. (1982). A Mathematical Basis for Satisficing Decision Making. Math­

ematical Modelling, Vol. 3, pp. 391-405.

Wierzbicki, A.P. (1983). Negotiation and Mediation in Conflicts, I: The Role of

Mathematical Approaches and Methods, WP-83-106, IIASA, Laxenburg; also in

H. Chestnat et aI., eds: Supplemental Ways to Increase International Stability,

Pergamon Press, Oxford, 1983.

Wierzbicki, A.P. (1985). Negotiation and Mediation in Conflicts, II: Plural Rationality

and Interactive Decision Processes. In M. Grauer, M. Thompson, A.P. Wierzbicki,

eds: Plural Rationality and Interactive Decision Processes, Proceedings, Sopron

1984, Springer Verlag, Heidelberg.



268

Wierzbicki, A.P. (1987). Towards Interactive Procedures in Simulation and Gaming:

Implications for Multiperson Decision Support. In: Methodology and Software

for Interactive Decision Support, Proceedings of International Workshop, Albena

(forthcoming) .



Part 2

Applications and Experiences





MIDA: Experience in Theory, Software and

Application of DSS in the Chemical Industry

Jerzy Kopytowski • .

Industrial Chemistry Research Institute

Maciej Zebrowski

Joint Systems Research Department

of the Institute for Control and Systems Engineering,

Academy of Mining and Metallurgy, Cracow,

and the Industrial Chemistry Research Institute, Warsaw.

Abstract

DSS and methodology for programming development of the chemical industry called

MIDA or Multiobjective Interactive Decision Aid have been developed and since

then are extensively applied.

It was done already in a variety of cases and in diverse decision as well as cul­

tural environments. On the verge of the second decade of this type of activity, an

experience in theory, software and application is presented. It is aimed at point­

ing out important aspects in all spheres of the activities considered. The paper

covers perspective and scope of the development programming domain showing

how the identification of the field opened way to establishing of a theoretical and

methodological framework and to consequent development of the MIDA system, its

architecture and software development. The experience goes beyond the particular

field of MIDA application and seems to be generally meaningful and therefore useful

in development and application of various decision support tools and systems.

1 Introduction

1.1 Origin and motivation

On the verge of the second decade of the research work in the area of Decision Support

Systems, concentrated on a methodology for Programming Development of the Chemical

Industry, an experience gained so far calls for synthetic review and presentation.

The unremitting search for an efficient development strategy constitutes a vast,

fundamental and vital task of management of practically every industry in today's

fast changing world. This was the most strongly formulated motivation behind the

'at present with UNIDO, Vienna.



272

research reported initially in our paper (Gorecki, Kopytowski and Zebrowski, 1978).

The motivation not only persisted since then but perhaps became even stronger through

all that time. In fact it is very effectively stimulated by a tremendous progress in

the DSS development and applications decisively supported by even more rapid and

overwhelming developments in computer hardware and software.

The role of this paper is twofold. First, it is an introduction to the whole chapter

which summarizes results of research and application in the domain of MIDA DSS

for programming development of the chemical industry. Second, which is perhaps more

important, it is to provide a synthetic presentation of key issues and experience gathered

so far which goes beyond a particular DSS and its applications. Hence the experience

seems to be generally applicable in the Decision Support domain.

The whole chapter displays in detail selected problems outlined, in this paper, which

is an introductory one not merely to support the viewpoint presented but to provide

a wider but also more detailed conceptual and methodological framework that laid a

foundation for the results gained ..

1.2 The scope of the paper

The paper is organized as follows. First, perspective and scope of the programming

development of the chemical industry is presented. It is aimed at presentation of key

identification issues which determined development of MIDA system and the method­

ology. It is followed by a briefly commented list of major and recent applications of

MIDA to present decision problems and the scope of services performed. Based on

this, a synthetic review of the experience in theory, software and applications is given

using regular references to the papers from this chapter since they are included in the

bibliography.. Conclusions and prospects for the future research are also provided.

1.3 Organization and implementation of the research

The organization and implementation of the research has been developed from its be­

ginning in 1977 and is still in process since the research is an open-ended one in this

problem- and application-oriented task. This is reflected in the origin of Joint Sys­

tem Research Department (JSRD) which is a joint venture of the academic institution,

namely Institute for Control and Systems Engineering in the Academy of Mining and

Metallurgy (ICSE - AMM) and strictly application-rooted organization, i.e. Industrial

Chemistry Research Institute (ICRI). The problem-oriented approach can be opposed

to the rather common practice which is based on a setting of a general goal: devel­

opment of DSS for Multiobjective Decision Problems. The latter situation which may

be called a tool-oriented approach as opposed to the problem-oriented one can prove

its effectiveness in general research aimed at purely scientific results. It is perhaps less

effective when tangible effects of a real application are to be reached.

It should be greatly appreciated that in all phases of the work, especially in the course

of the identification and the applications, highly qualified experts have been taking part.

These experts represent an experience of high level decision makers combined with a

deep technological and economic knowledge. Only this kind of a background combined



273

with the skills of much younger scientists specializing in systems analysis, optimization

and control theory as well as computer science could produce a special synergic effect

boosting the progress of the work.

1.4 Collaboration with IIASA

Here an important role of collaboration with IIASA must be called into light. It provided

a very important platform in MIDA development. The cOllaboration, due to the type of

tasks undertaken by JSRD has been very intensive and involved during last eight years

a pretty number of projects and programs which are to be named here. It is to be done

not only for the sake of courtesy but to show how wide is the range of problems covered

when a DSS such MIDA is to be developed along the way it was assumed to be done.

The most important was the collaboration with SDS or System and Decision Sci­

ence Program. Especially under chairmanship of A.P. Wierzbicki it provided mutual

exchange of approaches and experience. As particularly useful for development of MIDA

we evaluate the reference point concept (Wierzbicki 1980) and collaboration at early

stages of DIDAS (Lewandowski 1982) development and especially appreciate a close

collaboration with A.Lewandowski (Dobrowolski et. al. 1982).

An intensive work was done in parallel for REN or Resources and Environment

Area (under J.Kindler) (Dobrowolski et al. 1984). An extensive exchange of scientific

contacts was continued through all that time with the Energy Program. Important

effects were also gained from the work for Sustainable Development of the Biosphere

Program under Bill Clark (Zebrowski and Rejewski, 1987)

These three collaborative links helped to broaden and deepen the identification effort

with good effects, especially for the methodological progress. Last but not least an im­

portant gain in the software development experience is owing to collaboration with ACA

or Advanced Computer Applications program. This also led to valuable applications

(Zebrowski et al. 1988).

Concluding, one should emphasize that the variety of approaches and problems tack­

led in this collaboration played an important role in the progress achieved in seemingly

narrow field of development and application of MIDA, and contributed to the results

which can be generalized.

2 Scope and perspective of development program­

ming

2.1 Chemical industry and management of change

The world is permanently passing through a chain of great economic, social and techno­

logical changes. Recognition of this fact and of the need to control the forces of change

has stimulated worldwide interest in the problems of change and methods for coping

with them.

Nowhere is the need for management of change more crucial than in the industrial

sector, where many factors can affect the growth or decline of individual industries



274

and the resulting industrial structure. The process of change with perhaps the highest

impact affects the chemical industry.

Here we concentrate on management of the chemical industry due to the problems

it faces as a result of global change, particularly as a result of changing patterns of raw

materials and energy use.

The importance of the chemical industry is often greatly underestimated. Not only

does it provide soaps, detergents, medicines, but also pesticides, fertilizers, synthetic

rubbers, plastics, synthetic fibers ... - in fact, our modern technological society could be

said to be founded on the chemical industry.

One of the most surprising facts about this industry is that a large proportion of

its many products are derived from only a very small number of starting materials, of

which hydrocarbons are probably the most important.

As the processing of natural resources with mineral or agricultural origin proceeds,

the chains are branching with each processing phase from one generation of interme­

diates to another. So the developed chemical industry presents in fact ever growing

network of interlinked technologies. Final or market goods originating from this net­

work provide only a small share of the total chemical production which does not exceed

25% of the final turnover of the industry.

A practical goal has been to develop a methodology capable of proposing possible re­

structuring and/or structuring of various sectors of the chemical industry (see e.g. Borek

et aI., 1978, Gorecki et al.,1978). The approach chosen takes into account a variety of

interrelated and alternative production processes (either in use or under development),

compares their efficiency, their consumption of different resources etc. and finds the

combination of technologies that best meets particular needs while staying within the

limits imposed by the availability of resources and environmental constraints.

2.2 Programming development - MIDA approach

From the above essential overview two spheres to be identified emerge. First is the

sphere of the present and forecasted performance of the industry which is a result of the

identification. It should be described formally in order to represent the changes that

transform the industrial structure in time. Second is the sphere of management of the

changes where decisions are to be worked out and a decision support is to be developed

and naturally embedded into the decision process.

It means that a basic model of industrial structure must be created that reflects

the first sphere. It must be based on important assumptions regarding the decision

and its corresponding aggregation level as well as boundaries of the industrial structure

considered. If the management of change is going to be executed through programming

development, then such an activity can be considered as a process of design of an

Industrial Development Strategy (IDS).

IDS design is considered as a decision process based on generation of efficient devel­

opment alternatives expressed in terms of goals, critical or indispensable resources as

well as selected array of technologies which are to be utilized. The alternatives are to

be generated, selected and ranked along assumed efficiency measures.

The aim of the development programming or IDS design is a selection of the alter-



275

native which is to change the industrial structure by means of investment over the time.

Due to the dynamic properties of the development process, and specifically the develop­

ment cycle of technology (Dobrowolski et al. 1985), the time span under consideration is

of the range of 10 - 15 years. The straightforward conclusion is that due to the dynamic

nature of the development process, IDS design is to be treated and solved as a dynamic

problem. It has to be strongly underlined, however, that any attempt to formulate a

general multidimensional dynamic problem as a means for generating feasible develop­

ment alternatives must lead to oversimplification and severe loss of important factors

which should not be overlooked. At the same time, any decomposition must assure that

through a coherent methodology all the subproblems can be solved as integral parts of

the same system. A fundamental premise for the phenomena of development is the fact

that as time perspectives become longer (5,10,15... years), the reliability and accuracy

of data describing the future decreases.

To meet the challenge of a real application in a complex decision environment, a

method better responding to a managerial practice was elaborated. It is based on a

decomposition of this in fact dynamic problem along space and time. This will be briefly

presented further on after describing substantial results obtained from identification. So

before going into discussion of the kind of properties of a decision problem (or problems)

that are to be formulated and solved, let us make a step further in the identification of

IDS design.

To perform IDS design with focus on generation of development alternatives and

their selection, following elements are to be considered:

• Existing industrial structure in terms of consumption coefficients capacities and

relevant economic data,

• Potentially available technologies for construction of new plants,

The above two categories form a technological repertoire out of which a new industrial

structure is to be devised providing that a harmony between existing elements and the

new ones must be sustained. The next category of elements for analysis are:

• resources which are to be utilized in order to implement a new structure, such

as investment, manpower, water, energy etc as well as resources which are to be

supplied as feedstock to run the new structure.

• some of the resources considered are selected in a special way and called critical

resources due to the fact that their availability is a necessary condition to make

development alternative feasible.

Critical are those resources which are nominated as such by the decision maker for either

being particularly scarce or difficult to obtain; examples may be crude oil, manpower,

energy or capital. In practice the set of critical resources is closely related to the set of

criteria, since the aim is to find an optimal solution with respect to all critical resources.

Technological constraints are quite easily identified and are related to factors such as

production capacities and operating conditions. All other elements in the analysis, such

as demand for a particular product, the availability of (noncritical) raw materials, fall



276

into the category of complementary or auxiliary information which describes environ­

ment to the industrial activities such as terms of trade - specifically prices. On the

contrary, a demand for selected significant products as well as availability of selected

significant feedstock falls into the category of critical resources.

It is clear that whether a resource is selected as critical or not, it depends on the

formulation of the decision problem. In fact, a resource can be nominated to one

category or to the other by the decision maker and that in a simple way assures flexibility

of predecision analysis since each reassignment to or from the list of critical resources

corresponds to a redefinition of a decision problem..

With the above background we can now define the task of IDS design or generating

efficient development alternatives as a quest for concordance between available

resources and technologies.

The state of concordance is to be evaluated along well defined rules and measures for

evaluation (and selection) of the efficiency of achieving goals (outputs) from resources

supplied to industrial structure (inputs). Such rules and measures form a model of

efficiency evaluation which is to be established in order to solve the quest for concor­

dance to yield a feasible development alternatives. This problem area is dealt with in

(Zebrowski, 1989).

Technological repertoire, critical resources, constraints and other factors describing

the problem (or a particular industrial situation), are to be mapped into second or PDA

model of a technological network.

Since it is intuitively obvious that such a process is to be performed through the

generation and analysis of multitude of alternatives and their selection, then a mech­

anism is to be provided that enables to handle the situation. The appropriate models

and means for handling the problem of quest for concordance may be organized into a

system which is called simply DSS or Decision Support System.

The above philosophy stands behind development of MIDA system and the method­

ology. In the next step we shall present the assumptions used and a decomposition of

the development problem which were applied for practical implementation of the above

philosophy.

The effective approach taken in MIDA methodology in the practical implementation

of the idea of the quest for concordance can be presented as follows. With respect

to the decision level of the programming development, MIDA locates the IDS design

on a level which could be named an intermediate economy level (Dobrowolski et ai,

1985, Zebro......ski 1987). It goes between a macroeconomic level and microeconomic or

corporate level. The first one proves to be too aggregated; a single technology cannot

be considered in the analysis. Therefore a selection and assessment of appropriate

technologies cannot be done at the macroeconomic level. On the other hand, a corporate

or enterprise level also proves to be inadequate. This level is too narrow and particular

to comprise complex technological and economic relationships which interact in the

development process in the chemical industry.

By identifying, defining and choosing the intermediate level, as operational one for

programming development, an important original feature has been decided in MIDA

development. It comes together with the choice of an entity for setting the feasible

scope of the industrial problems which may be regarded as a basic object of the decision



277

analysis. It was called PDA or Production Distribution Area. It helped to respond to

the necessity of a formal modeling of industrial structure (IS) of the chemical industry.

In fact, this subject is formally described in (Dobrowolski, Zebrowski, 1989).

Due to a possibility of simple aggregation and desaggregation of the elements de­

scribed in terms of the PDA model, and the PDA level can be split into several levels

along so-called problem hierarchy (Gorecki et al. 1983, Dobrowolski et al. 1985). This

assures flexibility of the analysis and well corresponds to the industrial practice allowing

at the same time to apply MIDA on different levels of aggregation (with data appropri­

ate to the level considered). It makes the concept and application of the PDA model

very flexible and rather universal.

From the process of quest as considered so far on the PDA level, a goal structure can

be selected representing the assumed state of IS at the end of the horizon covered by

the analysis. However, to complete the task of programming, development of a feasible

way of transition from the present or actual IS to the selected, final IS is to be optimally

selected. The transition is to take into account the following classes of factors:

• technological and market priorities,

• location possibilities,

• construction potential capabilities,

• availability of investment.

In short, to consider these factors, the investment necessary for the transition must be

allocated both in space and time.

Therefore three levels emerge and provide a decomposition assumed in MIDA:

• selection of the final or goal IS,

• space allocation of investment,

• time allocation of investment (or investment scheduling).

Appropriate feedback between these levels provides through the space and time alloca­

tion a feasibility analysis of the goal structure originally selected.

The three level hierarchy and specifically, the space allocation and investment sche­

duling levels are discussed both theoretically and practically (through example) in

(Skocz, Zebrowski and Ziembla, 1989).

It must be underlined at this point, that the decomposition of the IDS applied in

MIDA approach corresponds to the managerial practice. On the other hand, it can

be conceptually opposed to more theoretical approaches based on dynamic program­

ming and generally aims at global solution to be obtained from one model (see for e.g.

Kendrick 1978, Dobrowolski and Rys, 1981).

The approach applied in MIDA follows from the common decision practice. First

the goal "what" must be selected, then questions "where and how" should be answered.

The decisive factor here is that the spatial allocation demands more detailed information

related to sites and this must be confronted with spatially disaggregated values obtained



278

from global solution in terms of critical resources. Site specific constraints must be also

obeyed.

There is also one more methodological disadvantage coming from globally formulated

and solved problems - difficulty of interpretation - especially of cause - effect type. Too

many factors are involved at once to enable that kind of analysis. It makes a real

interaction with decision maker rather illusory.

3 Evaluation of experience in DSS

3.1 Major MIDA applications

Some most important and representative applications for the scope assumed in this

presentation of MIDA system and methodology were selected. The list of applications

to be discussed is as follows:

1. Polish Government Energy Program - MIDA was used to elaborate a strategy

for integration of energy and chemical sectors. MIDA study contributed to the fact

that a new development, namely energochemical processing of coal, was brought

to light and attained its place in the long-term policy.

2. JSRD competed successfully in offering its services to UNIDO and performed the

following projects lesults obtained from these projects as well as from the SADCC

study mentioned further on are documented in UNIDO Reports, distribution of

which is restricted:

• Master Plan for Development of the Chemical Industry in Iran,

• Master Plan for Development of the Chemical Industry in Algeria,

• Master Plan for Development of the Petrochemical Industry in Algeria.

Within the framework of the above projects the services covered:

• delivery and installation of equipment and adjacent software as well as delivery

and installation of MIDA Decision Support System,

• training of the counterpart personnel (using lectures, video tapes, top executive

seminars and most of all learning by doing methodology),

• elaboration of the development program in various alternatives,

• industrial and system analysis c o n s u l t i n g ~

3. Shanxi Case Study - this application was done as a part of ACA project in

IIASA for Shanxi Province in People's Republic of China and services performed

were similar to those described for UNIDO, but the DSS software was developed

as a spatially oriented version of the models incorporated in MIDA. The devel­

opment program for coal based chemical industry was elaborated for the Shanxi



279

province and technical expertise was also shared with the counterpart (Zebrowski

et al.,1988).

4. SADCC Study - Study of the manufacture of industrial chemicals in the member

states of SADGG - this application was done under the contract with a consulting

firm. The firm was contracted for a UNIDO project for SADCC countries. SADCC

stands for Southern African Development Coordination Conference. Its members

are 9 countries: Angola, Botswana, Lesotho, Malawi, Mozambique, Swaziland,

Tanzania, Zambia, Zimbabwe. The consulting company contracted JSRD to per­

form application of MIDA system for the above study.

The above applications can be categorized to show range of problems and areas that

can be tackled with a DSS and methodology such as MIDA as well as to provide a useful

generalization of experience ained.

First category

A problem area related to the development of industrial sectors such as chemical and

energy industries is selected. A research is to be carried out and forecasts provided with

various technological and development alternatives. This is kind of predecision analysis

which includes both research and application type of activities. The responsibility of

JSRD as a contracted party covers all the work and study that may be considered as a

kind of long range research programs with step by step results to be produced in form

of progress and final reports. Results are used by various governmental agencies as well

as other scientific centers.

This kind of application is exemplified by no 1 on the above list.

Here a DSS is used by the team performing the job mainly as a laboratory tool.

No clearly defined decision maker is present in the process. In such case a variety of

skills and experience, specifically presence of industrial experts in the team is especially

decisive for good results to be obtained. In such cases by in parallel promoting a work

devoted to the problem and a work done on developing methodology and DSS system

proves to be fruitful and effective. Such in fact is organization of work assumed by

JSRD.

Second category

A development program is to be elaborated for a foreign partner. Such were the

applications that were contracted by JSRD with UNIDO. This covers wide span of

services and responsibilities. The period assigned for the job is relatively very short :

in the range of 1,5 - 3 month.

The DSS is to be delivered and installed together with computer equipment. More­

over, a user's team must be trained in a variety of skills including not only operation of

DSS but first of all methodology of its application. These circumstances impose variety

of demands which for the lack of space and the type of paper cannot be discussed in

details but must be of deep concern. They can be briefly presented as follows.



280

The principle of operation of a DSS and methods applied should be as clear as

possible and as simple as possible at the same time they must eliminate omitting or loss

of any essential factors.

A great attention in DSS architecture, functioning and methodology must be paid

to facilitate procedures which may help in validating both : simple source data and

resulting development alternatives.

Users' involvement is a key factor, both to assure obtaining valuable and useful

alternatives that would be accepted for implementation and to establish self-reliance of

the users' team (including a decision maker). This can be done through very extensive

educational effort and specifically by working out a "learning by doing" methodology.

This must be backed also by very clear and well edited documentation supporting all

activities as well as results of the project.

If one would like to compare the two above categories of application it could be

formulated as follows.

First category provides more scientific and broad approach but is much less demand­

ing in terms of software development, methodology and reliability of the system. On the

other hand the second category provides extremely heavy duty testing of all elements

taking part in the project.

This includes also all skills and abilities of people involved. It also provides important

insights coming from different cultural and decision environments.

Moreover it provides also very useful cases which are an inspiration for the future

developments in all aspects : theoretical, software and methodological.

Third category.

The system and methodology are to be adopted for different environment and are

to be embedded in another system. Such is the case of the Shanxi case study a work

done for ACA IIASA project contracted with Peoples Republic of China (Zebrowski et

aI., 1988).

Apart from the previous remarks formulated for the case of UNIDO projects which

remain valid, some additional observations can be formulated.

A DSS becomes a module of a larger system. All kinds of problems of interfacing

with other types of software arise. The same concerns interfaces with other models.

At the same time in this particular case new elements specific for spatial alloca­

tion backed by scheduling of investment were also developed. In general this kind of

applications help finding another way to generalization and standardization of architec­

ture and functionality of the DSS not to mention new theoretical and methodological

developments which usually also come in dealing with new, original problems.

Fourth category

The last but not least category is the one when there is no direct contact with

the field. The interface comes through third party. It provides a very useful kind of

verification of system and methodology. It was the case of the fourth application listed

above.



281

The experience gained so far from a single case reported here may be too limited to be

generalized but due to difference in approaches and experience represented by the third

party which is supposed to be professional in the field of programming development,

a new light can be brought on the own approach which has to defend itself in such

circumstances. In fact it also helps to test and improve system and methodology with

procedures for validation of data and results.

The above remarks summarize briefly experience in the domain of DSS as gained

from major, categorized for that purpose applications of MIDA. Generality of catego­

rization as well as of the relevant experience prove to be useful not only for a specific

DSS such as MIDA.

Following this line it seems to be worthwhile to further synthesize the experience

and knowledge gained both from application and research point of view.

We may continue with general methodological and theoretical aspects of Decision

Support after presenting some selected theoretical and software developments of MIDA

system and methodology. Then, this will lead to conclusions and prospects for the

future.

3.2 Theory and software

The substantial and perhaps decisive effort was devoted to the identification of the chem­

ical industry, and the mechanisms behind its development (Kopytowski et al. 1982).

Special emphasis was given to emerging from this concept of an industrial structure and

its properties.

This led to development of a basic model and methodology (Dobrowolski et al. 1984).

By proposing the concept of locating the programming development activity, as one

executing the management of change on the intermediate economy level (Dobrowolski

et al. 1986) an indispensable theoretical background for programming development was

established.

In parallel, through all that time, MIDA system was developed. The system was born

in terms of conceptual framework and its basic functional and architectural structure

surprisingly early (Borek et al. 1978). This was possible owing to the very strongly

problem oriented research and applications being executed in parallel.

But nevertheless a necessity of formulating a basic theory of the field of a DSS appli­

cation is to be spell out very strongly. The theory enables then for proper elaboration

of the DSS architecture and helps in implementation of the system. The system can

then be verified and improved from application to application and consequently from

version to version.

The basic model of an IS described in (Dobrowolski, Zebrowski, 1989) in the cur­

rently stabilized form is sufficiently general and can be applied (and already was applied)

in the variety 'of specific problems going beyond an immediate scope of development pro­

gramming. It can be also used in practically any process industry. The methodology

for the case specific model adaptation was also developed (see (Dobrowolski, Zebrowski,

1989) )

A useful theoretical development described in (Zebrowski, 1989) contributed, through

development of the model, to the multiobjective evaluation of industrial structures. It



282

reflects the hierarchy and relation between efficiency and substitution providing a key

interface between intermediate economy level of the programming development and the

macroeconomic level or the environment of decision making analysis considered. This

concept has also wider application potential then original field of MIDA.

The hierarchical decomposition described above, applied to the development pro­

gramming also may be regarded as a theoretical development which contributed not

only to the current state of the MIDA approach and the system. The theoretical devel­

opments in spatial allocation and scheduling of investment have the two aspects: they

contributed to MIDA development and may be regarded as more generally applicable.

Traditionally from the theoretical point of view, a formal decomposition of the model

such as PDA should be considered especially when dimensionality is of concern. Our

findings are not in conformity with the traditional approach. We found that practical

way leads not through numerical decomposition of large PDA model but through step

by step synthesis of smaller models which after being optimized and evaluated are

to be integrated into one big model. The following aspects were taken into account.

Validation of primary data for PDA model can be efficiently achieved when dealing with

smaller models. The same, even to greater extent, considers interpretation of results

especially with respect to properties of various technologies, applicability of feedstock,

attainability of goals etc.

Therefore it can be summarized that both from theoretical and practical points of

view, the real problem is rather on the side of synthesis of large PDA model aimed at

generation of efficient development alternatives (alternative developoment programmes)

as opposed to mentioned before" traditional" theoretical approach leading through de­

composition of primary big model into smaller submodels.

One of important areas of research was, and still remains, the problem of evaluation

and selection of development alternatives (development programmes) leading to their

ranking and selection. The first step was done based on application of SCDAS concept

(Dobrowolski, Zebrowski, 1987). The idea of ranking and selection of development
alternatives was experimented with on the case of alternative technologies. It was a

test example for the idea of application of the proposed approach to the ranking and

selection of development programmes.

All the identification, theoretical and application activities were accompanied by the

software development.

The important synthesizing effect is provided by knowledge and know-how gained

at the border of all the above activities with focus on implementation of DSS and its

software. This can be found in the MIDA architecture and is described in (Dobrowolski,

Rys, 1988). Again experience gained in this field goes well beyond a particular DSS.

The paper also describes software elements which are parts of a DSS MIDA.

Beside the MIDA development, a variety of other software tools was also developed.

It is worth to mention just two examples of packages described shortly in the part 3

of this volume. These are POSTAN - postoptimal analysis package (Dobrowolski et

al. in print.) and PLP or Parametric Programming Package (Golebiowski in print.). A

variety of other software developed could be quoted not only as useful for MIDA but

also as generally applicable as every day tools. They provided an important professional

upgrade of the team involved.



283

4 Conclusions and future prospects

When concluding the kind of review of a substantial period of experience in the theory,

software and application of a DSS such as MIDA, one should aim at pointing out its

general as well as elsewhere applicable aspects.

This can be done from the perspective of the fact that MIDA DSS and MIDA

methodology have been developed and applied in the substantial number and variety of

cases. More over it was done in a diverse decision as well as cultural environments.

The research program aimed at the development of a DSS for programming devel­

opment of the chemical industry although was (and is) an open ended one but at the

some time was (and is) very strongly problem and application oriented. It was very

much supported by the team work organized with participation of high class industrial

experts representing both decision making and technical skills. The synergic effect of

all the above enumerated elements proved to be decisive for obtaining results reported

so far.

Extensive and conceptually wide collaboration with IIASA provided a scientific back

up which must not be underestimated.

MIDA does playa double role in the game. It is a permanently improved scientific

tool which provides together with already accomplished case studies a unique laboratory

for research and application in two related areas: in programming development of the

chemical (and process industries) and in development of decision support tools and

systems.

MIDA is also a professional DSS package offered as a product on the market. The

demand coming from competition exerts a specific kind of pressure on its development

and performance.

Now we can naturally involve a problem of learning. In the above mentioned sys­

tems role in research as a laboratory tool the aspect of learning should be exposed and

considered. This situation is similar to the role of DSS in the process of a decision anal­

ysis considered as a process of learning. In MIDA a decision maker is cast in a creative

role and interacts with the system in the process of generating efficient alternatives of

development. This in fact is a process of learning and a creative thinking. By assuming

a creative role of a decision maker we have also assumed a subjective factor to be present

in the process, since it represents other side of the creative involvement. Decision maker

presides over the process but also must take full responsibility for the effect.

MIDA experience strongly supports profound ideas represented in the book by Stuart

and Hubert Dreyfus (1986) with the meaningful title "Mind over machine. The Power

of Human Intuition and Expertise in the Era of the Computer".

DSS can only assist a decision maker and experts in their strive to design and select

an efficient development alternative. An optimal solution obtained from DSS is to be

considered as an important but just a factor in the process.

DSS may also help in training of those who aim at becoming experts. They are bound

the climb through the levels proposed by Dreyfuses: from novice, through advanced

beginner, competent proficient to the expert.

However when a real application is to be accomplished, the team of experts must

represent the highest level of expertise. In some instances, when getting into a new case,



284

an expert may be forced to step down to the level of proficiency, the level of competence

may not be acceptable. Then DSS proves to be useful in helping with the quick and

efficient upgrade - back to the level of expertise.

The development of MIDA is going to be continued in all respects presented in this

paper.

In the field of theory work is foreseen both on mechanisms of development as well

as on resource allocation problems, both in space and in time.

Further work in the direction of ranking and selection of development alternatives

will, as it is expected, lead to implementation of a new module for MIDA system which

would serve as a tool for evaluation of alternatives by a group of experts.

New models are to be developed especially concerning fine chemicals obtained from

periodic and batch processing. This would be complementary to MIDA type of DSS

covering so called light or fine chemical industry (e.g. colorants, pharmaceuticals) due

to its specific technological and marketing properties.

CAD type of approach is envisaged aimed at development of some engineering tools

useful both in programming development and design of new technologies.

All these efforts are supposed to be accompanied by methodological developments.

The base and verification for all the activities will be provided by applications.

Acknowledgements

The contribution of industrial experts collaborating in all phases of MIDA development

and applications hardly can be overestimated. The gratitude must be expressed to

W.Marek, S.Gibinski, J.Wojtania and J.Wilczynski. H.Gorecki contributed substan­

tially in scientific part of development. The collaboration with A.Lewandowski and

A. Wierzbicki is to be once again acknowledged.

References

Bellman, R. (1961) Adaptive Control Process - a Guided Tour. Princeton University

Press, Princeton, New Jersey.

Borek, A.,G. Dobrowolski, M. Zebrowski, (1979) Applications of System Analysis in

Management of Growth and Development of the Chemical Industry.

CHEM/SEM.8/R.16 Report of Chemical Industry Committee of the United Na­

tions.

Dobrowolski, G., Rys T. (1981) A Dynamic Model for Development Programming of

Production - Distribution Area. Theory and Applications. Materials of School

of Economic Systems Simulation, Trzebiatowice (in Polish)

Dobrowolski, G., H. Gorecki, J. Kopytowski, M. Zebrowski (1982) The Quest for a

Concordance Between Technologies and Resources as a Multiobjective Decision

Process. Multiobjective and Stochastic Optimization, pp. 463-475, IIASA Col­

laborative Paper CP-82-512, Laxenburg, Austria.



285

Dobrowolski, G., Kopytowski J., Lewandowski A., Zebrowski M. (1982) Generating

Efficient Alternatives for Development of the Chemical Industry. IIASA Collabo­

rative Paper CP-82-54, Laxenburg, Austria.

Dobrowolski, G., J. Kopytowski, J. Wojtania, M. Zebrowski (1984) Alternative Routes

from Fossil Resources to Chemical Feedstock. IIASA Research Report RR-84-19,

Laxenburg, Austria.

Dobrowolski, G., M. Zebrowski (1985) Decision Support in Substitution Analysis for

IDS - Industrial Development Strategy Exemplified by the Fuel and Feedstock

Sector of the Chemical Industry. The Application of DIDAS. Theory, Software and

Test Examples for Decision Support Systems, A. Lewandowski and A. Wierzbicki

eds., IIASA, Laxenburg, Austria.

Dobrowolski, G., J. Kopytowski, T. Rys, M. Zebrowski (1985) MIDA - Multiobjeetive

Interactive Decision Aid in the Development of the Chemical Industry. Theory,

Software and Test Examples for Decision Support Systems, A. Lewandowski and

A. Wierzbicki eds.,IIASA, Laxenburg, Austria.

Dobrowolski, G., T. Rys, K. Hajduk, A. Korytowski (in print) POSTAN3 - Extended

Postoptimal Analysis Package for MINOS. To appear in IIASA Collaborative Se­

ries, Laxenburg, Austria.

Dobrowolski, G., M. Zebrowski (1987) Ranking and Selection of Chemical Technolo­

gies Application of SCDAS Concept. Theory, Software and Testing Examples for

Decision Support Systems, A. Lewandowski and A. Wierzbicki eds., pp. 233-241,

WP-87-26, IIASA, Laxenburg, Austria.

Dobrowolski, G., T. Rys (1989), Architecture and Functionality of MIDA , in the same

volume.

Dobrowolski, G., M. Zebrowski (1989), Basic Model of an Industrial Structure, in the

same volume.

Dobrowolski, G., M. Zebrowski (1989) - Hierarchical Multiobjecive Approach to a

Programming problem, in the same volume

Dreyfus, H.L., S.E. Dreyfus (1986) Mind over machine. The Power of Human Intuition

and Expertise in the Era of the Computer. Second Ed. Bosil Blachwell Ltd.,

Oxford UK.

Golebiowski, A. (in print) PLP - A Package for Parametric Programming. To appear

in IIASA Collaborative Series, Laxenburg, Austria.

Gorecki, H., J. Kopytowski, T. Rys, M. Zebrowski (1984) Multiobjective Procedure

for Project Formulation - Design of a Chemical Installation. In: M. Grauer, A.P.

Wierzbicki (Eds.) Interactive Decision Analysis - Proc. of Int. Workshop on

Interactive Decision Analysis and Interpretative Computer Intelligence Springer

Verlag pp. 248-259.



286

Kendrick, D. A., A.J. Stoutjestijk (1978) The Planning of Industrial Investment Pro­

grams. Vol. 1. A Methodology. Johns Hopkins University Press, Baltimore,

M.D., for World Bank Research Publications.

Kopytowski, J., J. Wojtania, M. Zebrowski (1981) Fossil as Key Resources of Hydrocar­

bons for the Chemical Industry - the Burning Problem of Industrial Development.

nASA Collaborative Paper CP-81-20, Laxenburg, Austria.

Lewandowski, A., S. Johnson, A. Wierzbicki (1986) A Prototype Selection Committee

Decision Analysis Support System SCDAS: Theoretical Background and Com­

puter Implementation. nASA Working Paper WP-86-27, Laxenburg, Austria.

Rejewski, P., M. Zebrowski (1987) ERIS - Energochemical Regional Integrated System.

Paper presented in nASA Workshop on Integrated Energy Systems, Laxenburg,

Austria.

Skocz, M., M. Zebrowski (1986) An Extended Resources Allocation Method in Design

of Industrial Development Strategy. Proceedings of [FAG Symposium on Large

Scale Systems, Zurich.

Skocz, M., M. Zebrowski, W. Ziembla (1989), Spatial Allocation and Investment

Scheduling in the Development Programming, in the same volume.

Wierzbicki, A.P. (1980). The Use of Reference Objectives in Multicriteria Optimization

- Theoretical Implications and Practical Experience. nASA Working Paper WP­

79-66, Laxenburg, Austria.

Zebrowski, M. (1987) Multiobjective Evaluation of Industrial Structures. MIDA Ap­

plication to the case of the chemical industry. Theory, Software and Testing

Examples for Decision Support Systems, A. Lewandowski and A. Wierzbicki eds.,

WP-87-26, nASA, Laxenburg, Austria.

Zebrowski, M., P. Rejewski (1987) Technological Innovations for Ecologically Sustain­

able Development, nASA Working Paper WP-87-17, Laxenburg, Austria.

Zebrowski, M. (1987) A Guide to the Integrated Development Programming. Joint

Systems Research Department Report for UNIDO Project. Vienna, Austria.

Zebrowski, M., G. Dobrowolski, T. Rys, M. Skocz, W. Ziembla (1988) Industrial Struc­

ture Optimization: The PDAS Model. Expert Systems for Integrated Develop­

ment: A Case Study of Shanxi Province The People's Republic of China, Final

Report, nASA, Laxenburg, Austria.

Zebrowski, M. (1989) Multiobjective Evaluation of Industrial Structures, in the same

volume.



Basic Model of an Industrial Structure

Grzegorz Dobrowolski, Madej Zebrowski

Joint System Research Department

of the Institute for Control and Systems Engineering,

Academy of Mining and Metallurgy, Cracow,

and the Industrial Chemistry Research Institute, Warsaw.

Abstract

This is the second paper in the series dealing with the development programming

of the chemical industry. The paper introduces a basic model of an industrial

structure that is used in many variations in the MIDA system and is a kernel of

extended models constructed for special cases in the field. It reflects static behavior

of a chosen branch or an area of the chemical industry. The model is called PDA

- Production Distribution Area.

1 Introduction

The primary version of the model called PDA - Production Distribution Area was

published in 1978 (Borek at al.). Currently presented version - stabilized formally

few years ago as a result of its extensive use (see for example Dobrowolski et al. 1984)

- constitutes a formal base for the Model Management System of MIDA (see the last

paper in the series). Moreover, the PDA was a core in somehow complicated models of

the chemical industry e.g. the Spatial PDA (Zebrowski et al. 1988).

Such a role of the PDA model in the whole activity stems from its open character

and a way of its formulation. The openness means here that:

• a final shape of an operational PDA depends on a chemical branch modeled (data
for the model),

• instead of a criterion or criteria, formulas named below the aggregates are proposed

with possibility to combine them and to obtain complete optimization problem,

• there is a freedom in creation of constraints that may be put on the aggregates

also,

• to formulate other new aggregated it is possible basing on the lower layer of the

model that reflects static behavior of a network representing a strongly connected

production structure of the chemical industry.



2B8

The model in its type is a quasi-linear programming one because some optimization

scenarios are possible using pure linear formulas:

• a single objective case with a choice of criteria,

• a multi objective case,

• a linear-fractional case for a single objective.

As this is the second paper in the series dealing with the development programming of

the chemical industry, a reader is expected to refer to the rest of the series and to the

bibliography as usual.

2 Verbal description of the model

One of the most interesting facts about the chemical industry is that a large proportion

of its products are derived from only a very small number of raw materials. As the

processing of natural resources with mineral or agricultural origin is going downstream,

the chains that represent ways of processing are branching from one generation of in­

termediates to another. To complicate this figure some chains are coupled together

across few generations making loops. Moreover, there exist alternative routes leading

to particular intermediates and there are also alternative routes and technologies that

produce various final products. So the developed chemical industry presents in fact ever

changing network of interlinked technologies.

A particular branch of the chemical industry can be modeled as a network of pro­

duction processes aggregated to simple production functions and distribution flows for

a group of chemicals specified. The following components are considered in the model:

• chemicals and other resources and their flows in the PDA represented by balance

nodes satisfying the mass balance principle,

• chemical transformations represented by processes that process chemicals ex­

changeable with the environment into other exchangeable chemicals,

• other indispensable resources also in terms of their flows.

A simple transition function is defined for the process elements by yield and consumption

coefficients together with a capacity constraint. The network is constructed in the way

that processes are connected to each other throughout balance nodes.

Relations between the components of the model are to reflect well-known phenomena

existing in the chemical industry:

• a chemical can either go to or be obtained from a number of the transformations,

• a chemical transformation may either produce or consume a number of chemicals,

• one or more chemical processes can run on one chemical installation,

• certain resources are necessary for operation of any installation,



289

• chemicals and resources can be exchanged via their flows with the environment.

Interaction with the environment is assumed by I/O flows of chemicals and other re­

sources (sources and sinks of the network).

The domain of the model application and also through considering yield or con­

sumption coefficients with respect to capacities allow all formulas of the model to be

linear.

All the above is comprised in a lower layer of the model that is a bipartite net­

work with constraints. Moreover, using the described flows, a set of aggregates can be

evaluated for the PDA. The aggregates are constructed on the base of cost calculation

scheme using prices and of energy equivalent calculation using the lower heating value.

Additionally two lists of prices are used with the exchange rate as a parameter. It

corresponds to the economy with a non-convertible currency and prices different for

domestic and foreign markets.

Below all modeled phenomena will be described in rather brief form. First, a short

comment on interpretation will be done and next, equations are presented.

3 Elements of the model

There are five types of elements of the model:

1. Installations - indexed by set I,

2. Processes - indexed by set P,

3. Media - indexed by set J,

4. Markets - indexed by set M.

5. Special resources - indexed by set S.

To reflect the possibility of running a number of different chemical processes on the same

hardware the element called installation was introduced. Processes of the particular

installation are dependent on a common capacity constraint.

The idea of installation splits I/O flows into two categories called:

media - flows which are interchanged between processes themselves and between pro­

cesses and environment of the PDA, i.e. raw materials, products and by-products.

special resources - flows which are interchanged between installations and environment

(common for all processes running on a particular installation), e.g.. investment,

manpower.

To model an interface between the PDA and its environment, markets for media are

introduced. The markets introduce characteristics of I/O media in terms of their sell­

ability and availability. There may be up to four markets for a particular medium:

domestic sale, domestic purchase, foreign sale (export) and foreign purchase (import).

Because the category of special resources is not numerous they are treated separately.



290

Having in mind that media constitute a majority of flows, nobody ought to be

surprised that it is a means for modeling not only particular chemicals, energy carriers

but also pollutants in bulk (solid waste, liquid waste, emission) or in groups of toxic

substances.

4 Formulas

Let us introduce variables of the model:

Zp, pEP - a level of production of process p,

Y'j, j E J, m E M - an amount of medium j bought or sold on market m.

An auxiliary equation describes amount of a given medium produced or consumed.

Y; = L b;p Zp - L a;p Zp, j E J

PEP/ PEPj-

while the symbols above are defined as follows:

P,-:- - a subset of processes where medium j is consumed,

a;p Zp - quantity of medium j consumed (consumption coefficient),

P/ - a subset of processes where medium j is produced,

b;p Zp - quantity of medium j produced (yield coefficient).

Balance equation for media

(1)

L y'j - L y'j =Y;
mEMt mEM;

where:

J E J (2)

Mt - a subset of markets where medium j may be sold,

M;- - a subset of markets wher,e medium j may be bought,

Balance of special resources

Formulas for a balance of the special resources have the same shape and only interpre­

tation of coefficients is different.

Q' = L L q; Zp ,

iEI pEP'

s E S (3)

where: pi - the subset of processes running on the installation i.
For each special resource the coefficient q; is estimated as a value related to the

capacity of the process p .

The following special resources are defined in the PDA model:



291

• investment in a portion counted in the convertible currency, that must be paid

abroad (the coefficient is a unit investment cost),

• investment in a portion counted in the local currency spent locally (unit investment

cost for local expenses),

• labor - unskilled workers (a ratio men to capacity),

• supervision,

• labor - laboratory & control.

The applied above approach means that dependencies of investment and labor with

respect to the capacity are linearized. To sustain reliability of the model at this point,

a procedure for adjustment is assumed to keep an obtained production level reasonably

close to the capacity.

Other special resources can be introduced for any special applications of the model.

Constraints on flows

Market constraints

(4)

Special resources constraints

Q' ::::; Q' ::::; Q' , s E S (5)

(6)i E I

Capacity constraints for processes

1
L::-zp::::;l,

pEPi zp

where: :Zp - production capacity of the process p.

When a number of processes are to run on the same installation, the capacity is

calculated under an assumption that the particular process occupies the whole instal­

lation.

Reconstruction constraints

1 1
L ::- zp + L ::- zp ::::; 1, 0, n E I (7)

pEP. Zp pEPn zp

Indexes 0 and n denotes an installation to be reconstructed and an installation after

reconstruction, respectively. The constraint is defined for all couples of installation spec­

ified. There is a linearization of an exclusion condition that the old and new installations

can not run simultaneously. Such a trick is successful when links of the installations in

the network are similar.



292

Aggregates

Production value

L L cj yj
jEJ mEMT

1

where: c'j - a price of medium j on the market m.

Cost of materials

L L c'J' yj
jEJ mEM-:­

1

(8)

(9)

Another aggregate can be obtained as a difference of the production value and the cost

of materials that is called the manufacturing value added.

Production cost

+ L L c'J' yj
jEJ mEM;

(10)

where: a p - a unit process cost coefficient for process p. The coefficient includes all cost

factors modeled except the cost of materials. There are the cost of special resources

and - depending on an assumed scheme of cost calculation - depreciation, taxes,

assurance, overheads, etc.

The production cost can be used to get a formulas for profit and in turn for simple

rate of return.

Energy equivalent of production

~ ~ m m
L L cj Yj
jEJ mEMt

where: e'j - unit energy equivalent of medium j.

For media that are not an energy carriers the lower heating value

coefficient.

Energy equivalent of materials

L L e'J' Y'J'
jEJmEM;

(11)

is used as the

(12)

Using the two above aggregates derivative ones can be obtained: the energy lost and

the energy efficiency.



293

5 Summary

As it was shown the PDA model constitutes the base for various operational models

used by the MIDA system and methodology. The final formulation is gained as an effect

of the following steps:

1. Selection of a type of the model by fixing a set of aggregates used.

2. Definition of the particular network and its constraints according to data about

an area of the chemical industry under consideration.

3. Selection of criterion or criteria and putting limitation to aggregates.

Such an approach to construction of the model is suitable when it may be incorporated

into a DSS system.

The steps in a MIDA environment are realized as follows:

1. Selection of a particular computer implementation of the MIDA.

2. Generation of the model automatically done by the computer system according

to a contents of data base.

3. Selection or alteration during interactive session with the MIDA.

The PDA model presented proved its applicability in many diverse cases (discussed in

the preceding paper). It was also tried in a dynamic version (Dobrowolski and Rys

1981), however this route was not selected in MIDA for implementation.

References

Borek, A., Dobrowolski G., Zebrowski M. (1978) GSOS - Growth Strategy Optimiza­

tion System for the Chemical Industry. In: Advances in Measurement and Control

MECO'78, pp. 1128-1131, vol. 3, Acta Press, Athens.

Dobrowolski, G., Rys T. (1981) Dynamiczny model programowania rozwoju sieci pro­

dukcyjno-handlowej. Teoria i aplikacja. In: Symulacja systemow gospodarczych.

Szkola Trzebieszowice'81. Suplement, K. Nowak A. Pelech, eds., pp. 1-22, To­

warzystwo Naukowe Organizacji i Zarzadzania, Wroc1aw, Gliwice.

Dobrowolski, G., Kopytowski J., Wojtania J., Zebrowski M. (1984) Alternative Routes

from Fossil Resources to Chemical Feedstock. IIASA Research Report RR-84-19,

Laxenburg, Austria.

Zebrowski, M., Dobrowolski G., Rys T., Skocz T., Ziembla W. (1988) Industrial Struc­

ture Optimization: The PDAS Model. In: Expert Systems for Integrated Devel­

opment: A Case Study of Shanxi Province The People's Republic of China, Final

Report, Volume I, pp. 87-134. IIASA, Laxenburg, Austria.



Multiobjective Evaluation of Industrial Structures

Maciej Zebrowski

Joint Systems Research Department

of the Institute for Control and Systems Engineering,

Academy of Mining and Metallurgy, Cracow,

and the Industrial Chemistry Research Institute, Warsaw.

Abstract

Problem of multiobjective evaluation of Industrial Structures is presented. It
is located in the context of programming development of the chemical industry.
The boundaries of the decision space are defined. Efficiency evaluation model is

presented based on the concept of Output (0) and Input (I) efficiency relations
of an Industrial Structure subject to the programming of its development. Some

implications of the model on decision support system DSS and its methodology are
highlighted backed with the example of a multiobjective evaluation of a particular
industrial structure.

1 Introduction

In order to provide a DSS well fitted to the decision problem of programming develop­

ment as presented in the introductory paper an appropriate framework for evaluation

of industrial structures (IS) in question must be set up.

By the nature of the problem it is a multiobjective one. In this paper such a frame­

work is presented.

It consists of two levels:

• The first level is an efficiency evaluation model. The one that reflects the efficiency

relations between resources assigned to the IS and resources that as a result are

obtained from it .

• Second or the lower level contains a model of IS which is a subject of multiobjective

evaluation.

While this model or a PDA type of model is discussed in the preceding paper in this

series here attention is focused on the efficiency evaluation model. However, it should

be mentioned that the efficiency evaluation model is of the general type and it can be

coupled with various models (and/or their versions) of an IS.

The origin of the model discussed goes back to the substitution phenomena, which

by their nature are involved in the development process of any IS and may be considered

synonymous with its development.



295

Then the boundaries of the decision space are discussed and it is shown that they

naturally evolve from the properties of the techno-economic systems.

The model for the multiobjective efficiency evaluation is discussed. It is based on

prerequisites which in a formal way reflect natural preferences in the decision making

practice and are represented by efficiency ratios of consumed (or input) and obtained

(or output) resources.

They are in agreement with the properties of the techno-economic system in general

and what obviously follows with the properties of IS discussed in particular.

Implications of the model on the DSS and thus the methodology of its application are

brieflY highlighted opening way to the example of the multiobjective evaluation of the

particular IS described by a PDA model of Fuels and Feedstock branch of the chemical

industry.

The research reported here was sponsored by the Polish Government Energy Pro­

gram, but since the sponsor willingly accepted collaboration with IIASA specifically

with the Study on Theory, Software and Testing Examples for Decision Support Sys­

tems, the concepts originated in the initial project were further developed and as such

are presented.

2 Formal framework for the multiobjective evalua­

tion

2.1 Origin and problem statement

Development of on industrial structure (IS) is equivalent to its transformation (in the

course of time) by means of investment. The process of transformation involves substi­

tution phenomena.

Three types of substitution can be enumerated:

• substitution of feedstock,

• substitution of final products,

• substitution of technologies.

Physically, it is substitution of technologies - old by new - that enables for the two other

types of substitution to take place.

Consequently, in programming development, the key activity is a generation and

then assessment of development alternatives. From an alternative to alternative all

three types of substitution are involved and have to be clearly assessed.

To asses alternatives considered and substitution involved is the goal of the prede­

cission analysis. The assessment must be done along well established rules for efficiency

evaluation.

Two layers or two levels must be identified:

• First represents efficiency evaluation rules. These can be mapped in the model that

reflects efficiency relations between resources assigned (consumed) and resources

obtained (or resulting). These rules are to be applied to the IS considered.



296

• Second layer or level represents industrial structure itself. In general it is to be

mapped in the model specific for the IS considered, while the first level remains

basical1y intact. In particular a PDA type of model, described in the second paper

of the series is involved (Dobrowolski and Zebrowski,1988).

Therefore attention is to be focused on the first level namely on the efficiency evaluation

model.

2.2 Boundaries of decision space

Boundaries of a decision space stem from the nature of development of industrial struc­

tures and can be considered as general1y applicable concept for a techno-economic sys­

tem. First the concept of efficiency can be introduced.

Two types of efficiency can be considered:

• economic efficiency,

• physical efficiency.

The first can be exemplified by profit or MVA (Manufacturing Value Added). It is

natural that only domain of positive values is interesting from the point of view of

decision analysis. This is equivalent to values greater than 1 if the efficiency is to be

expressed in the terms of ratio and means that one is interested only in a domain in

which a gain is assumed as a result of PDA activity.

For the second type of efficiency Le. physical, due to its nature the corresponding

ratio must be smaller than 1 since for the physical properties of any industrial system a

loss must accompany any material processing. This in turn can be exemplified by yield

or consumption coefficients describing efficiency of conversion process of feedstock into

products. The other example would be energy conversion efficiency or ECE.

From the above it can be concluded that decision space is naturally delimited by

efficiency domain. Simply by choosing efficiency ratios, decision maker delimits the

decision space making it feasible from the point of view of development analysis.

2.3 The model

Without loosing generality we may use PDA model to represent IS model in our con­

siderations.

Let us consider a PDA (or an IS) taking into account only two types of resources ­

consumed or utilized by the PDA and those that may result from this utilization. They

can be respectively denoted as:

yI _ input resources,

yO - output resources.

The resources of yI and yO type could be chemical raw materials, semi-products and

products as well as water, technological energy and investment. The set of solutions of

a PDA model designates, a maximum range of substitution dependent on the repertoire



297

of technologies considered in the network. In real life cases, the range of substitution

is narrowed by additional restrictions imposed on yl resources (availability) and yO

resources (salability and/or demand patterns) and the production level (production

capacities). Such constraints may either represent actual information (as a result of

identification) or also be postulated in order to obtain additional information on the

substitution properties of the network.

We specify now some general prerequisites that enable further formalization of the

control of substitution process and thus will be useful for efficiency evaluation of a PDA.

Prerequisite 1. Efficient-feasible state.

The states of a PDA that satisfy specific additional constraints are considered as

feasible, whereas such feasible states that:

are regarded as efficient-feasible.

The assumption that we might restrict the analysis to efficient-feasible states limits

the substitution range. Therefore at this stage of considerations we restrict the substi­

tution analysis to such cases which are most efficient. As it will be explained below,

efficiency can be formally expressed in a number of other ways.

Although this assumption may seem to be intuitively obvious, it is practically dif­

ficult to satisfy it if the number of yl and yO flows is large. This obstacle may be

overcome by following a modified prerequisite instead:

Prerequisite 2. Aggregate efficiency.

Instead of optimizing each component of flow of the resources yl and yO a smaller

number of attributes can be defined to characterize the resources yl and yO thus enabling

for their aggregation. These aggregates will be used for representation of the area

resources. The price of a product or a raw material, or their heating values may be

regarded as examples of such attributes.

We assume that it is possible to characterize the input resources by ni aggregate

quantitative attributes that will be minimized and the output resources by no attributes

that will be maximized:
al (yI) ERn;

aO(yO) E Rno

where Rn;, Rno - the corresponding spaces of real vectors.

Aggregate attributes can be also obtained through subtraction of other attributes

provided those attributes have the same physical meaning and formal rules of subtrac­

tion are followed. Economic efficiency calculated as a difference between value of the



298

total sale of PDA and the total cost of production in a particular state of the flows of

resources, or the total energy balance of the PDA calculated as the difference between

total energy consumed and total energy obtained (in products) may serve as examples

of such aggregates.

We shall thus assume that:

• the attributes of resources of both I and 0 type can be quantified in positive

numbers only,

• attributes of 1,0 resources are classified accordingly as consumed (minimized) and

obtained (maximized),

• the difference between two attributes of 0-1 type can be defined in cases of at­

tributes of the same nature, whereas for 0 > I, the result of subtraction 0-1

brings gain to the system while for 0 < I the result of 1-0 means loss.

Thus, the Prerequisite 1 is modified to the following:

aO
........ max

and correspondingly for attributes that allow for subtraction:

........ max

........ mIn

Three remarks can be related to the above principles of aggregation:

1) The number of attributes aI, aOdecreases with aggregation, hence satisfying Pre­

requisite 2 is easier than satisfying Prerequisite l.

2) The substitution may be limited also by imposing constraints on aggregate at­

tributes.

3) Substitution may take place both on the side of input aggregates and on the side

of output aggregates. Should such a substitution occur, each state of the PDA can

be characterized by different efficiency of the transition from inputs to outputs.

Therefore, the concept of efficiency is fundamental for the model and it will be

explained further in detail.



299

Prerequisite 3. Equivalence and efficiency.

Either the resources or their aggregate attributes are considered as hierarchically

equivalent. It results from the fact that following Prerequisites 1 or 2 the optimization

applies equivalently to all resource components or individual attributes, which corre­

sponds to multiobjective optimization in Pareto sense.

A hierarchy of resources or attributes can be introduced first when entering the

sphere of the formulation of a development thesis (Dobrowolski and Zebrowski, 1985).

Such a formulation is discussed in the following paper (Dobrowolski and Zebrowski,

1988).

Within the formal framework of the substitution model one should solve the problem

of how to represent the efficiency of substitution. The efficiency rules are to provide

a formal interface between substitution and preferences assigned by a decision maker

when formulating a development thesis.

Therefore let us analyze again Prerequisite 1. As it was mentioned, it comprises

the operations min, max and connects de facto substitution with its efficiency. Observe

that in order to consider a substitution of that kind at least two resources of the same

type and one of the opposite must be considered, i.e. two output resources and one

input resource or vice versa. For instance, raw materials substitution usually means a

substitution of a raw material 1 for a raw material 2; obviously the efficiency of such an

operation must be related to the product or products obtained.

The problem arises how to express efficiency of obtaining a given product yO from

raw materials y/ or Y2
I

• It may be solved by introducing the concept of efficiency ratios

where:
yO yO
I' I' 1-+ max

Yl Y2

denotes the efficiency of obtaining yO from y{ or y:, respectively, while

y{ yl
-2 1-+ mzn

yO' yO'

denotes the efficiency of consuming y{ and y:, respectively, to obtain yO. Therefore,

they may be regarded as equivalent inverse intensity ratios. The same applies also for

the aggregate attributes:
aI

1-+ mln
aO

aO
1-+ max

a1

while, in the above example, the attribute a1 might jointly characterize the case of

resources y{, y{. The above ratios are a natural generalization and provide very practical

efficiency indicators. The same applies to ratios built on differential aggregates; a good

example of such combined ratio may be:

1-+ max



300

where denominator expresses resources consumed (such as net energy balance) while

the numerator expresses resources obtained (such as added value).

We can conclude this discussion by following remarks:

• Prerequisites 1, 2 and 3 provide for a simple analysis of substitution of elementary

resources (of 1,0 type) based on a chosen set of intensity ratios .

• The area of substitution is limited by the assumptions of optimization of chosen

indicators.

When formulating a development thesis in the multiobjective industrial development

analysis for a given PDA, the key issue is that of critical resources. The decision maker

may, for the sake of the formulation of the development thesis, assign a status of critical

resource to any of the resources of ° or I type as well as their aggregates (Dobrowolski

et al. 1984) According to MIDA methodology, a critical resource is defined as single re­

source or an aggregate attribute which obtained this status through the decision maker's

choice, as it was considered by him as crucial (critical) for the implementation of the

development thesis.

In the context of the efficiency evaluation model considered here, the status of a

critical resource could be assigned e.g. to the resource that was chosen in order to find

out a possibility and efficiency of its substitution by another resource. Hence a PDA

model is then examined to enable the analysis of substitution efficiency as a part of

analysis resulting from development thesis.

2.4 Toward decision support for multiobjective evaluation of

industrial development strategy-IDS

Before discussing a real life example let us make some additional observations. The

intensity ratios built on the input and output aggregates when used as criteria for

multiobjective problem, attain their extreme values in vertices of Pareto optimal surface.

It was proposed (Dobrowolski and Zebrowski, 1984) to define this area denoted by the

efficient vertices in the criteria space as Attainable Performance Area (APA).

It was described in the paper on basic or PDA model (second in the series) that a

technological repertoire or a set of technologies is naturally divided into two subsets.

The first represents existing technologies while the second - potentially available tech­

nologies that require additional investment. Therefore two types of respective industrial

structures must be distinguished: the first, that assures the attainability of current pro­

duction goals by existing technologies and the second that comprises those technologies

that can be introduced by means of investment.

The formal framework presented above provides a good point of departure for de­

vising a DSS tool for the evaluation of industrial development strategies in terms of

intensity ratios which are practically used and well interpretable by decision makers.

This approach became then naturally a part of MIDA methodology (Dobrowolski et al.

1985).

To make this extension applicable, following methodological steps are to be consid­

ered. The starting one is the evaluation of APA which is to be represented by selected



301

set of intensity ratios and which is to be agreed with the decision maker as a complete

set for a given stage of analysis. All the necessary conditions for the evaluation of the

existing state in terms of its performance such as production goal as well as a set of

other defining conditions (see an example below and also (Dobrowolski and Zebrowski,

1985)) are to be known. Another distinguished structure is the one that may be called

an ultimate or goal structure. This is defined by a similar set of parameters and con­

ditions as those describing the existing structure with the fundamental difference that

they correspond to the aspirations of the decision maker.

The above provides a first step in the analysis. Next comes the analysis of Attain­

able Performance Area (APA). There is no unique way of analyzing this type of Pareto

set. It should be adjusted to the particular needs of a decision maker when solving a

particular case; however, the necessary information, that is, the efficient vertices must

be designated. Then a feasible method for acquiring knowledge about the properties of

APA is to be chosen. APA, let us remind, reflects properties of the available repertoire

of technologies assembled into alternative industrial structures. These structures repre­

sent potential alternatives for industrial development strategy that are Pareto optimal

with respect to intensity ratios (criteria) accepted for their evaluation. A practical fea­

sible indication for devising such a method is to define some cross sections of APA,

parameterized by a ratio representing a decision variable which is a driving force for

the development. This could be represented for example, by intensity ratio built on

investment. Obviously such a ratio is indispensable when a set of intensity ratios is

being considered by a decision maker.

Next comes, as a natural step, the evaluation of various development trajectories

expressed in terms of horizon of implementation of alternative development strategies.

This gives to the decision maker an idea about the dynamics of achieving the goal

structure as represented by a completion of a chosen industrial development strategy.

From that stems a natural mode of parameterizing an implementation horizon by the

period of investment return.

Having all the above information, the decision maker can also obtain the resulting

values of critical resources which are to be consumed or can be obtained with respec­

tive strategies. This knowledge compared with corresponding data from the analysis

performed for the existing state is a very practical method of evaluating substitution

of critical resources due to the substitution of technologies within respective industrial

structures. All the above considerations will be now illustrated by means of a practical

industrial example.

3 Example of multiobjective evaluation of IDS

3.1 Energy and chemical feedstock PDA

Based on the formal background presented above, the problem may be referred to

a particular PDA. Purposefully an area was chosen that was described before in other

works (see for e.g. Dobrowolski and Zebrowski, 1985 and also next paper in this volume),

since it may serve as a good example and illustration of MIDA approach. For brief the

model considered here will be denoted PDA-EF (Energy and Feedstock).



302

Let us start from presenting shortly a considered object of the analysis. Its dimen­

sions amount the number of 89 installations (processes) and 65 raw materials, semi­

products and products. They were chosen from a given data base (see Dobrowolski et

al. 1984) and constitute the model of PDA. Thereby a repertoire of attainable produc­

tion structures was determined together with indispensable resources of all sorts and

this delimits space for alternative development strategies.

The PDA covers the production of motor fuels (gasoline, diesel oil, jet-fuel) basic

hydrocarbon chemical raw materials (aromatics, olefines, methanol, etc.) and heating

oil from crude oil, coal, lignite and gas.

In principle it is an area connected with crude oil processing. Methanol which is

regarded as a potential fuel and raw material for a number of new applications, was

added to this area. It is enriched by processing of coal and lignite. Technologies for

processing natural gas are also present but with limited representation (mostly for

methanol production).

Consequently the PDA includes existing plants (refineries, methanol, aromatics and

olefines plants) as well as the future ones based on a range of technologies for processing

coal and lignite (gasification, liquefaction, pyrolysis, critical extraction of coal, etc.).

New plants for crude oil processing are also included.

Information about the PDA necessary for analysis, may be ordered as follows:

1. Technological repertoire is given (described by respective parameters and produc­

tion capacities - for existing and new technologies).

2. Substitution of critical resources that are primary energy carriers (a basic feed­

stock) is to be evaluated. These are:

• crude oil,

• hard coal,

• lignite,

• natural gas.

3. It is assumed that the range of substitution is limited through demand for the

output critical resources imposed by the strategy of higher level (macroeconomic

production goals). This comprises following products:

• ethylene,

• benzene,

• methanol,

• diesel oil,

• carbonizate from coal,

• carbonizate from lignite.

This demand describes a goal production level while existing production levels are

also defined.



303

4. The following values are assumed to be the attributes that enable for aggregation:

• prices of I, 0 resources (including technological energy, that is, steam and

electric energy),

• heating values of raw materials and products existing in the PDA.

5. The following aggregates are defined:

• IE - input energy - technological energy used by PDA and energy contained

in raw materials,

• OE - output energy - energy gained in the products,

• II - input investment,

• IV - input value - value of purchase of raw materials and energy,

• OV - output value - value of sale of the products.

Additionally a differential aggregate can be defined:

AV = OV - IV - which is interpreted as the Added Value.

6. Efficiency ratios expressed in terms of the defined aggregates are as follows:

• OE/IE - Energy Conversion Efficiency

• OV/IV - Economic Efficiency ratio,

• AV/II - Efficiency of Investment, which is equivalent to RI - Return on In­

vestment.

Let us consider the multiobjective problem based on the following three efficiency ratios:

OE/IE f-+ max ;

OV/IV f-+ max ;

AV/II f-+ max i

A set of states of the PDA-EF model defining possible substitution will be a solution

to this problem. Observe that:

• Prerequisites 1 and 2 are satisfied for the representation of the assumed attributes;

• The problem is formulated in the Pareto sense (equivalence of criteria) and, there­

fore, Prerequisite 3 is also satisfied;

• Efficiency of substitution is considered in terms of assumed criteria.



304

Symbol of Criterion OV I IV OE I IE AV I II II

experiment name (Input Investment)

V Economic efficiency 1.80516 0.72361 0.25237 15576

( OV I IV)

E Energy conversion 1.51682 0.87435 0.62281 4340

efficiency

(OE /IE)

I Return on Investment 1.48720 0.77076 2.02212 1130

( AV I IV)

Table 1: APA - Attainable Performance Area - Vertices

Therefore, the set of solutions comprises only such alternatives of substitution, for

which the three efficiency ratios have greater value than the rejected ones. Such set of

solutions can be presented as a surface in the criteria space, which will be shown in the

next paragraph. In such a way, the substitution area for all input and output resources

existing in PDA-EF was obtained. It can be expressed in terms of assumed efficiency

ratios and in absolute values of critical resources gained or consumed. These two types

of parameters describe industrial structure rather adequately from the point of view of

a decision maker since they provide information about the scale or level of operation

and its intensity (Skocz, Zebrowski, 1986). At the same time, this information serves

best for the comparison of various development alternatives. The completeness of ratios

as well as list of critical resources taken into consideration may vary from case to case

but the principle remains unchanged.

In the case discussed here the surface representing the set of solutions of the problem

of optimal substitution is spanned by three vertices of this Pareto surface. They may

be interpreted as follows:

DE/IE (max)
DV/IV (max)
AV/ II (max)

denotes the state of PDA-EF with the greatest energy efficiency.

denotes the state of PDA-EF with the greatest economic efficiency.

denotes the state of PDA-EF with the best investment efficiency.

3.2 Experiments with the model

Experiments with a PDA-EF model are summarized in Tables 1-4 and visualized by

Figure 1.

APA or Attainable Performance Area of PDA-EF is shown in Table 1. This gives

an idea of the substitution flexibility of the technological repertoire as expressed in

terms of the three selected ratios. Another important information given in that table it

the cost of investment (II) which is to be involved to attain a structure corresponding

to respective vertices. The difference in calculated values of II is more than 10 fold,

while the corresponding ratios are not so dramatically different however the experienced

decision maker knows that even several per cent difference in intensity ratios should not

be underestimated. Table 4 - which is a summary table - provides a relation between

the existing industrial structure and APA. It shows also the consumption of critical



305

V, I, E vertices

VE projection of Pareto surface on plane of economic efficiency (OV/IV) and energy

conversion efficiency (OE/IE)

VI-I, EI-I lines corresponding to constant value of return of investment

VI-2,E

VI-3, VE-3

VI-4, VE-4

OV
IV

V

1.8

1.7

1.6

E

1.5

1.4

• Existing structure

9r
0.7 0.8 0.9

Figure 1: Pareto set for Fuels and Feedstock PDA.



306

No Va ue 0 Symbo of OV (IV O"'l'''' Symbo or OV-, IV U'" f IE
AV f II Experiment min' Experiment miD. •

1 1.00000 VI - 1 1.6134.0 O.B30oSe 264.6 EI·l 1.4.a603 0.86807 2573

2 0.82281 VI -::I 1 . 6 8 6 ~ 8 0.8260 4724. E 1.61682 0.814.36- 4.34.0

3 0.460372 VI- 3 1.73178 0.70030 134S VE·3 1.70738 0.82508 6612

• 0.30816 VI -. 1.78340 0.7201 1264.6 VE·4- 1.77041 0.71374 11728

Table 2: APA - Attainable Performance Area - Cross Sections parameterized by value

of AV/II

resources for respective industrial structures and their substitution as related to their

intensity ratios.

Table 2 contains cross sections of APA as visualized on Figure 1. Cross sections are

defined by the fixed value of the rate of return on investment, namely AVIII.
With the above knowledge it is useful to perform the following evaluation of APA (il­

lustrated by Table 3.). This evaluation is done in order to figure out the implementation

horizon and the rate of return on investment as parameterized by a return period. This

is a better methodological approach than the one based only on a pre-defined return of

investment ratio.

The reader is invited to get a closer insight by evaluating the data himself. It may

be added that - with such simple calculations - a good feeling of dynamic properties

of the evaluated strategies can be achieved by a decision maker. This is meant in the

sense of feasibility of a given strategy in time related to the indispensable investment

level. Naturally the value of the information on development dynamics lies rather in

the comparison of various industrial development strategies than in the calculation of

static indices. Without a preliminary comparison of basic indices, however, the choice

of alternatives for further investigation cannot be carried out. The dynamic aspects are,

in terms of investment schedule, discussed in the separate paper of this series.

Finally, Table 4 provides information which summarizes the results of the analysis.

4 Conclusions

We may conclude that by incorporating in MIDA system and methodology the concepts

presented in this paper, it became a practically oriented and advanced DSS. The simple

theoretical framework provided a good interface between the system and a decision

maker.

In particular the concept of APA utilized in this paper proved to be very useful

owing to its practical and clear interpretation. The progress described here demanded,

however, a very substantial effort on the side of software implementation, specifically

a linear fractional programming solver developed by G. Dobrowolski, which was im­

plemented and embedded in MIDA system. Similarly, an Optimist software package

implemented by T. Rys was an important software tool enabling MIDA to be used for

the type of analysis described in this paper.



307

Production Unit Capacity Location Construction

Start Finish

Dibutyl Phthalate 3000 A 2.0 3.5
Dinitrotoluene 22000 B 2.5 3.5
Dioctyl Phthalate 40000 A 2.0 3.5
Ethylbenzene (Benzene Alkylation) 75000 A 2.0 3.5
Ethylene Glycol and Oxide 15000 A 0.5 2.0
Melamine-Formaldehyde Resin 10000 B 0.5 2.0
Phenol-Formaldehyde Resol Syrup 10000 B 0.5 2.0

Phosgene from Chlorine and CO 22000 B 2.5 4.0
Phtalic Anhydride from o-Xylene 27000 A 1.0 2.5

Polyether Polyol for Polyurethanes 38000 B 2.5 4.0
Polyethylene Terephthalate from TA 40000 A 1.5 3.0
Polystyrene General Purpose 30000 A 2.0 4.0
Polystyrene High IlJlpact 10000 A 2.0 4.0
Polyurethane Resin from Polyol and TDI 50000 B 3.5 4.5
Propylene Oxide (Ethylbenzene Process) 27000 A 1.5 3.5
Sodium Alkylbenzene Sulfonate 40000 B 0.5 2.5
Sulfuric Acid from Sulfur 100000 B 0.5 2.0
TDA from Dinitrotoluene 14000 B 2.5 4.0
TDI from TDA 17000 B 2.5 4.5
Terephthalic Acid from p-Xylene 35000 A 1.0 2.5
Unsaturated Polyester Resin 10000 A 1.0 2.5
Urea-Formaldehyde Syrup 15000 B 0.5 2.0

Table 2: Spatial allocation and investment schedule for structure 8 1



308

Production Unit Capacity Location Construction

Start Finish

ABS Resin 10000 A 8.0 9.0

Acetic Acid from Methanol 40000 C 6.5 8.5

Acrilonitrile (Propylene Ammoxidation) 50000 B 6.5 8.5

Bisphenol from Phenol and Aceton 15000 A 8.0 9.5

Butadiene from C, Extraction 35000 B 5.0 7.0

Butene-1 (Ethylene Dimerization) 12000 C 7.5 8.5

Caprolactam from Cyclohexane 50000 A 6.5 8.5

Carbon Black from Carbon Black Oil 30000 A 4.5 6.5

Chlorine (electrolysis) 100000 B 7.5 9.0

Cyclohexane from Benzene 50000 A 6.5 8.0

Epoxy Resin 20000 A 8.0 9.5

Ethyl Acetate 5000 C 7.5 8.5

Ethylene Glycol and Oxide 20000 B 5.5 7.0

Ethylene from Ethane 150000 C 5.5 8.0

Ethylene from Naphtha MS Cracking 150000 B 4.0 6.5

Methylmethacrylate Cyanohydrin Proc. 10000 B 7.0 9.0

Nylon 6 (chips) 30000 A 6.5 8.5

Polyethylene High Density 80000 B 4.5 6.5

Polyethylene Linear Low Density 120000 C 6.0 8.0

Polymethylmethacrylate 5000 B 7.5 9.0

Polypropylene (Amoco Technology) 50000 B 5.0 7.0

Polyvinyl Acetate Emulsion 50000 C 8.5 10.0

Polyvinyl Chloride Suspension 50000 B 8.0 10.0

Primary Alcohol Ethoxylate 10000 A 5.5 7.5

Primary Alcohol Ethoxysulfonate 10000 A 5.5 7.5

Primary Alcohol Sulfonate 10000 A 5.5 7.5

Primary Alcohols C6 - C12 15000 A 5.0 7.0

SAN Resin 5000 A 8.0 9.0

Styrene-Butadiene Rubber 45000 A 4.5 7.0

Unsaturated Polyester Resin 10000 A 8.0 9.5

Vinyl Acetate from Ethylene 50000 C 8.0 9.5

Vinyl Chloride (Oxychlorination) 50000 B 8.0 10.0

Table 3: Spatial allocation and investment schedule for final structure 82



309

Acknowledgements

Author feels deeply indebted to his co-workers from JSRD and would like to express his

gratitude to G. Dobrowolski who assisted in conceiving the primary version of the model

(M. Zebrowski, 1987). W. Ziembla helped significantly in the last stage of completion

of the paper when the concept of APA was utilized for IDS evaluation. The above does

not take off the responsibility from the author for any faults that may occur in the

presented paper.

References

Borek, A.,G. Dobrowolski, M. Zebrowski, (1979) Applications of System Analysis in

Management of Growth and Development of the Chemical Industry.

CHEM/SEM.8/R.16 Report of Chemical Industry Committee of the United Na­

tions.

Dobrowolski, G., J. Kopytowski, J. Wojtania, M. Zebrowski (1984) Alternative Routes

from Fossil Resources to Chemical Feedstock. IIASA Research Report RR-84-19,

Laxenburg, Austria.

Dobrowolski, G., M. Zebrowski (1985) Decision Support in Substitution Analysis for

IDS - Industrial Development Strategy Exemplified by the Fuel and Feedstock

Sector of the Chemical Industry. The Application of DIDAS. Theory, Software and

Test Examples for Decision Support Systems, A. Lewandowski and A. Wierzbicki

eds., IIASA, Laxenburg, Austria.

Dobrowolski, G., J. Kopytowski, T. Rys, M. Zebrowski (1985) MIDA - Multiobjective

Interactive Decision Aid in the Development of the Chemical Industry. Theory,

Software and Test Examples for Decision Support Systems, A. Lewandowski and

A. Wierzbicki eds.,IIASA, Laxenburg, Austria.

Skocz, M., M. Zebrowski (1986) An Extended Resources Allocation Method in Design

of Industrial Development Strategy. Proceedings of [FAG Symposium on Large

Scale Systems, Zurich.

Zebrowski, M. (1987) Multiobjective Evaluation of Industrial Structures. MIDA Ap­

plication to the case of the chemical industry. Theory, Software and Testing

Examples for Decision Support Systems, A. Lewandowski and A. Wierzbicki eds.,

WP-87-26, IIASA, Laxenburg, Austria.



Hierarchical Multiobjective Approach

to a Programming Problem

Grzegorz Dobrowolski, Maciej Zebrowski

Joint System Research Department

of the Institute for Control and Systems Engineering,

Academy of Mining and Metallurgy, Cracow,

and the Industrial Chemistry Research Institute, Warsaw.

Abstract

This is the forth paper in the series dealing with the development programming
of the chemical industry. In the paper it is shown how a development thesis can
be formulated and a development alternative generated using a MIDA computer

system. A methodological framework of the MIDA utilization is introduced illus­
trated by an exemplary hierarchical, multiobjective development thesis. To obtain

development alternatives for such a thesis the DIDAS approach is used to solve op­
timization problems on levels of the hierarchy and to assure coordination between

some of them. A thesis is equivalent to substitution analysis of critical resources

such as crude oil, gas, coal, lignite and investment, energy for a selected branch of
the chemical industry. Results of the analysis are presented.

1 Introduction

The research reported here was partly sponsored by IIASA Contracted Study Agreement

on Theory, Software and Testing Examples for Decision Support Systems and partly by

the Polish Government Energy Program.

This is the forth paper in the series dealing with the development programming

of the chemical industry. Therefore just few terms playing an important role for the

contents of the paper will be briefly reminded here. A reader is expected to refer to the

rest of the series and to the bibliography as usual.

A development thesis is a term that represents - expressed mostly qualitatively

- aspirations, goals, preferences, limitations of a decision maker. A development

alternative is equivalent to structured technologically and expressed quantitatively a

development program of the particular industrial branch. PDA - Production Distri­

bution Area (see the second paper of the series) is a model that can be useful as a basis

for transformation of a development thesis into a development alternatives. MIDA ­
Multiobjective Interactive Decision Aid is a computer system to support all activities

related to the transformation a development thesis into a development alternative.

The aim of this paper is three-fold:



311

1. To show how a development thesis can be formulated and a development alterna­

tive or alternatives generated using the MIDA.

2. To show an application of the DIDAS (see Kallio et al. 1980, Lewandowski et al.

1981) in the design of development alternatives in the chemical industry.

3. To report results of the substitution analysis for selected critical resources, such

as crude oil, natural gas, coal and lignite in the area of relevant chemical industry.

The substitution analysis involves also aggregated resources such as energy and

investment.

Substitution of resources stems from the very nature of the chemical processing. Usually

alternative routes lead from a feedstock to products (through various semi-products)

owing to the existence of alternative processing ways of chemicals. To those alternatives

correspond a variety of industrial structures which may be selected to perform the above

transformations.

The results of our efforts directed towards performing the above task are presented

in the following way.

Section 2 serves as a setting of a formal framework for the use of MIDA for generation

development alternatives along the course of a development analysis. The development

alternatives design is a very broad subject and in our research we have worked on its

various aspects (see Borek et al. 1979, Dobrowolski et al. 1980, Dobrowolski et al. 1982,

Dobrowolski et al. 1984).

Next comes Section 3 on the substitution analysis of critical resources such as crude

oil, gas, coal, lignite (feedstock side) and investment effectiveness, energy (aggregates),

etc. The substitution analysis is introduced by a development thesis of the hierar­

chical multiobjective form. The analysis starts from a short description of the area:

PDA dealing with fuel and chemical feedstock production with 89 technologies and 65

products.

Next the results of the analysis are presented to illustrate the effectiveness of the

MIDA system. The last section contains conclusions.

2 Generation of development alternatives with PDA

model

We shall now discuss basic assumptions and methodological guidelines in the process

of generating development alternatives according to the MIDA approach. It will be

presented out from the point of view of a decision maker and his experts what does

not limit possibility of placing the whole process within any type of an organizational

scheme.

To initiate the process of problem formulation, a decision maker has to prepare a

development thesis. It is not easy to specify this term since a development thesis means

verbalized description of decision maker's vision, expectations, limitations and other

aspects regarding development of industry which can be a branch or anything like a



312

PDA with its boundaries not necessarily precisely defined at this stage. Needless to say

that a basic thing at this stage is a sound knowledge about the existing industry.

So at first this verbalized knowledge is to be expressed in terms of production goals,

policy measures imposed from outside such as expected interest rates, taxes, availability

of resources such as raw materials etc. Also at that stage a decision maker should specify

which resources are to be considered as critical. This concerns wide spectrum such as

investment, manpower, water, selected raw materials e.g. crude oil or intermediates

like ethylene or methanol. Also preferences in terms of expected performance such as

maximization of certain yields like fuels, minimization of energy consumption are to be

spelled out.

At the same time all the knowledge related to a development thesis is used in order to

pre-specify a technological repertoire of an industrial branch or an area of the chemical

industry including existing and potentially available technologies and described in terms

of the PDA model. The PDA model is precisely described in the second paper of the

series, a particular PDA (a model of the particular chemical branch) for which the

analysis was carried out is described in Section 3. Here we can simply assume that the

PDA model is available and we may consider it as a black box.

Using the PDA model the decision maker plays a specific game in which he tries

his image of a real object and its environment against technological conditions and

possibilities reflected by the model of PDA. The only rule of the game is that the

decision maker ought to be familiar with all features of the model.

Let us gather the features in a methodological order:

1. Given PDA.

Source information on PDA describing:

• chemical processes (existing and potential)

• flows of chemicals

• other physical flows (like: energy, water, wastes, etc.).

Bipartite network as the model of PDA reflects:

• balance of the flows

• transitions of the flows performed by processes

2. Given physical feasibility conditions

• capacities of at least existing processes

• restrictions on I/O flows

Remarks:

The above data describe chemical processes and a production structure

built from them. They are well defined, quantified and also for the given

moment are assumed to be constant (however it may happen that some

of them are even erroneous).

Capacities of new technologies may be assumed as unknown and should

result from the analysis.



313

3. Given marketing information:

• prices and their relations (known and forecasted)

• demand for or availability of chemicals

Remarks:

The above data however well defined are relatively much more uncertain

then data on technology (see also remark above).

This may affect results of the analysis in the case of error but is not

considered to be so critical otherwise.

Based on the above a development thesis can be formulated. It means that following

points are to be fulfilled:

1. Critical resources are chosen and named.

2. Possible restrictions imposed on the critical resources are defined.

3. Preferences or possible criteria are selected based on the critical resources.

4. Goals (points 2 and 3) and their hierarchy is defined.

Amounts of media defined as the critical resources characterize a production goal or

availability of raw materials. The production goal which may be expressed in terms

of ranges of production levels to be attained, represents strong driving force and, in

fact, imposes on the PDA a constraint which is practically decisive for alternatives that

can be devised. Aggregates selected as the critical resources express at the same time

preferences to the performance of the PDA model since it is intuitively obvious that one

is expecting to minimize cost of production and purchase as well as cost of investment

and energy consumed hoping to maximize sales value.

The better explanation of the nature of a development thesis will be given through

an example. This will be done later.

3 Development thesis for Energy & Chemical Feed­

stock PDA

Let us start from presenting shortly a considered object of the analysis. It is the same

Energy & Chemical Feedstock PDA that was used as an object of multiobjective eval­

uation in the previous paper in the series.

Its dimensions amount the number of 89 installations (processes) and 65 raw ma­

terials, semi-products and products. They were chosen from a given data base (see

Dobrowolski et al. 1984) and constitute the model of PDA. Thereby a repertoire of

attainable production structures was determined together with indispensable resources

of all sorts and this delimits space for alternative development strategies.

The PDA covers the production of motor fuels (petrol, oil, jet-fuel) basic hydro­

carbon chemical raw materials (aromes, olefines, methanol, etc.) and heating oil from

crude oil, coal, lignite and gas.



314

In principle it is an area connected with crude oil processing. Methanol which is

regarded as a potential fuel and raw material for a number of new applications, was

added to this area. It is enriched by processing of coal and lignite. Technologies for

processing natural gas are also present but with limited representation (mostly for

methanol production).

Consequently the PDA includes existing plants (rafineries, methanol, aromes and

olefines plants) as well as the future ones based on a range of technologies for processing

coal and lignite (gasification, liquidization, pyrolysis, critical extraction of coal, etc.).

New plants for crude oil processing are also included.

Let us remind that such a model contains the repertoire of production structures

that can be selected with respect to the development thesis expressed by the decision

maker. The key problem in the analysis would be substitution of natural hydrocarbons

(crude oil, gas) by coal and lignite for assumed array of chemical production.

The existing plants that were included into the model do not cover the possibilities

of their reconstruction and modernization as it goes beyond the scope of the paper.

Due to the illustrative character of the development analysis considered here one of

the important aspects such as terms of trade is only signaled. In practice much attention

is paid to price relations (see Dobrowolski et al. 1984) and they are regarded to be an

important factor in the analysis. In the case considered here the prices of basic energy

carriers and obtained from them derivatives were assumed on the level of average world

prices from early 80-ties.

Having in mind methodological considerations and assumptions described in the

previous section we may now formulate the development thesis.

1. It is assumed that all necessary data and information are available and known

to the decision maker (as well as to his experts). We shall refer to the above

knowledge in the course of analysis whenever it would be necessary.

2. The following critical resources were selected:

Production of :

methanol

benzene

ethylene

diesel oil

Cost of production

Value of sales

Investment

Total energy consumed

Consumption of :

crude oil

natural gas

coal

lignite



315

3. Assignment of restrictions, preferences and tendencies to the critical resources.

The process of assignment of restrictions, preferences and tendencies is a decisive

task since it results in

Hierarchy of goals :

Level 1. Production of : methanol, benzene, ethylene, diesel oil is to be carried

within defined range.

Remarks:

The selected products are of strategic type for other PDA's and industrial

sectors. Therefore the assumptions or forecasts on their availability are

considered to be of most importance.

The ranges are imposed on the decision maker by environment of the

PDA and at the moment he can only trace their impact.

Level 2. Operational efficiency which is expressed by ratio of value of (yearly)

sales, by (yearly) cost of production is assumed to be not less than 1.3.

Remarks:

From the efficiency analysis it is known that for the Energy & Chemical

Feedstock PDA maximum for this ratio is 1.35.

By setting ratio to be not smaller than 1.3 which is only a slight re­

laxation from its maximum, the decision maker has made an important

choice of his own. Of course, this could be a result of negotiations with

the financial authorities based on the analysis of the PDA (carried out

with respect to the rate of return ratio).

Level 3. Investment, total energy consumption are to be minimized.

Remark:

It is a property of the industrial hardware especially in the chemical

industry that the energy saving plants are capital intensive. Therefore

there is a contradiction in such a goal which has to be resolved through

learning about possible trade-off's.

Level 4. Consumption of the critical feedstock: crude oil, natural gas, coal and

lignite is to be minimized.

Remarks:

All the above critical resources are at the same time primary energy

carriers.

On this level a feedstock substitution is to be analyzed and a relation of

level 3 and 4 found out.

Special emphasis is on crude oil and gas since they are to be almost

totally imported.

From this four-level hierarchy which is to be treated more as exemplification than as a

strict rule in the case of the substitution analysis, following conclusions may be drawn.



316

Level 1 which concerns production goal may as its alternative describe availability of

feedstock which would convert the case of the problem how to best achieve production

goal into the decision problem how to utilize best the available feedstock. Obviously

a third case may occur that is a combination of these two. So the Levell imposes a

constraint on variety of development alternatives of the PDA.

Level 2 provides a driver in terms of efficiency ratios or ratio, which is to drive a

selection of alternatives within constraints imposed on preceding level. Levels 3 and 4

emphasize in the development thesis a substitution which is to be analyzed and selected

under assumed conditions. In this case the substitution analysis will be two-level with

the higher level expressed in terms of aggregates and the lower level as substitution of

selected feedstock.

This can be done by solving two hierarchically coupled Multiobjective Optimization

Problems MOP corresponding to the levels 3 and 4 respectively.

Now in order to formulate the solving scheme as the next step in the methodology

a particular method (tool) has to be selected. In our case we have selected the DIDAS

(see Kallio et al. 1980, Lewandowski et al. 1981). The choice was based on two facts:

1. Our experience in the DIDAS application for generating efficient alternatives for

the development in the chemical industry (see Dobrowolski et al. 1982).

2. The property of the reference point approach (see Wierzbicki 1979). The optimal

solution in the Pareto sense is obtained as the closest to the point selected by the

decision maker in the space of resources. This point is called the reference point.

To build up a methodology for solving the problem such as the one above let us formulate

the following observations and remarks.

• All levels operate on the same model of the PDA.

• A solution from a given level may be used as a natural reference point for solving

the MOP from the neighboring higher level. The result simply tells the decision

maker (not imposing anything on him) what would be the solution on the given

level closest from the one comforting him on the lower level.

• Therefore a feasible direction of solving hierarchy of MOPs is from the bottom to

the top level.

• It is important that upward direction assures optimality of the higher level. How­

ever the optimal solution on a given level will be only suboptimal on the lower

level.

• The open question is how to initiate process of finding an acceptable solution on

the lowest level.

A methodological approach for solving a hierarchical MOP such as discussed here

emerges as a kind of conclusion from the above remarks.

Analysis is to start from the lowest level which in our case would be level 4 on

which minimization of consumption of primary energy carriers is assumed. As a result



317

of solving MOP of level 4 we obtain the optimal (in the Pareto sense) amounts of the

critical resources it is of crude oil, gas, coal and lignite. The development alternative

which assures this actual level of consumption of the critical resources, demands at the

same time, a given amounts of the resources which are assumed as objectives for the

higher level (here level 3). In the particular case these will be investment and total

energy consumption, to which corresponds the development alternative most effective

from the point of view of saving the primary energy carriers.

The values of investment and total energy consumption are going to be used as

a reference point for solving the problem of the higher (in this case 3) level. Here

the meaning of the term reference point has its real value. It shows how a certain

development alternative chosen from the point of view of goals of one level (here level 4)

from repertoire of the PDA refers to the development alternative which is going to be

chosen on the higher level (it is 3).

Therefore it can be seen that the above procedure supports the decision maker giving

him the ability to solve hierarchical problem assuring coordination of goals assumed on

the particular levels.

4 Numerical results

We may take a look at some results of the substitution analysis described in the previous

section.

First the properties of the PDA as seen on the level 3 are shown on Figure 1. It can

be seen that as condition on effectiveness set by the effectiveness ratio Roo is relaxed, the

attainable range of the optimal substitution of total energy consumption by investment

widens. In the case of maximum attainable efficiency Roo = 1.35 no substitution is

possible as could be expected from the properties of the PDA model. On the other

extreme we find the case of unconstrained effectiveness which corresponds to situation

where the level 2 would be deleted.

Of course, the term optimal substitution means here Pareto-optimality with respect

to total energy consumption and investment.

In the case considered here the constraint on efficiency (level 2) was assumed to

be Roo = 1.3, and for that value substitution is further investigated. Table 1 shows

the substitutional flexibility of the Energy & Chemical Feedstock PDA as expressed in

terms of the critical resources. Experiments no. 1-5 illustrate the spectrum of possible

substitution (with no. 1 and 5 representing the corner solutions). For comparison given

is (experiment no. 0) the solution for Roo = 1.35, it is the maximum possible efficiency

ratio.

One may comment on these results with the following remarks:

• For the assumed effectiveness ratio equal to 1.3 the selected production structures

are oriented towards crude oil processing with limited consumption of coal and

gas .

• Such a selection is imposed by the constraints from the level 1 where ranges of

strategic products are assumed. One of them is diesel oil which with the known

technologies can be best obtained from crude oil.



min

Investment
[bit m.u.)

c

318

B

Roe =1.35 max
o

Roe(uncot'lstr.)

Total energy consumed
[mil. Gcal]

Figure 1: On the level 3

min

Experiment no. 0 1 2 3 4 5

Operational effectiveness ratio 1.35 1.3 1.3 1.3 1.3 1.3

Investment bil.m.u. 1066. 581. 557. 497. 478. 460.

Total energy consumption mil. Gcal 318. 259. 259. 263. 266. 268.

Crude oil mil. tons 22.2 21.1 21.4 21.8 21.8 21.8

Natural gas bil.cub.m 1.4 O. O. O. O. O.
Coal mil. tons O. O. o. o. o. O.
Lignite mil. tons 23.8 11.0 10.1 10.3 11.8 12.0

Economic efficiency bil.m.u. 244. 177. 179. 180. 182. 183.

Table 1: Substitutional flexibility of Energy & Chemical Feedstock PDA.



319

energy
carriers

Figure 2: On the level 4

• Constraints of the level 1 have limited very strongly the possibility of substitution

among primary energy carrier. Promotion of coal processing and production of

diesel oil are contradictive goals and therefore the higher level imposes the result.

• Basic substitution can be seen on the level 3 and it can take place within choice

of various technologies of processing crude and lignite.

• The case of the maximum efficiency moves the choice to completely new magnitude

of investment (practically double).

• From the point of view of effectiveness analysis another drawback from insisting on

maximizing just Roe ratio can be shown. On the other hand return on investment

which is calculated as ratio of economic efficiency to investment is much worse in

the case of Roe = 1.35 than in any other case (experiments no. 1-5, see table 1).

At the same time within all range of substitution in the case discussed terms of

return of investment turn out to be stable.

However the above consideration go beyond strictly defined substitution analysis it is

important to show how the both types of analysis interleave, and feedbacks naturally

may arise.

Figure 2 illustrates the process of analysis as seen from the level 4. Point A represents

an initial reference point chosen for the level 4. Projected on the surface of Pareto­

optimal solutions it produces the point B, which in turn used as a reference for the

level 3 leads to the point C which is not optimal any more for the level 4.

In Figure 1 the points Band C visualize the mechanism of a search for acceptable

strategy: from reference solution B (transformed result of the level 4) to the final

solution C (level 3).



320

Ref. levA Sol. levA

and

Ref. lev.3 Sol. lev.3

Operational effectiveness ratio 1.3 1.3

Investment bil.m.u. 1175. 570.

Total energy consumption mil. Gcal 302. 258.

Crude oil mil. tons 15. 17.6 21.

Natural gas bil.cub.m 1.5 104 O.
Coal mil. tons 15. 4.2 O.
Lignite mil. tons 25. 27.6 11.

Economic efficiency biI.m.u. 198. 176.

Table 2: Results of analysis.

Table 2 contains three columns. The first describing the reference point stands

for the estimated availability of crude oil, gas, coal and lignite. It represents kind of

expectations of the decision maker not the real constraints. The PDA response which is

optimal with respect to minimization of the critical resources consumption, is shown in

the second column of table 2. Due to the heavy use of lignite and some processing of coal

the proposed development alternative would be both capital (investment 1175 billions

m.u.) and energy (302 millions Gcal) consuming. This is the production structure of

the PDA which is oriented towards minimization of crude through substitution of coal

and lignite. By using the values of investment and energy consumption obtained as a

reference for the 3rd level we find in column 3 a resulting strategy which is optimal

with respect to investment and total energy consumption. From the first sight it can

be seen that it practically coincides with experiment no. 1 (table 1). It means that the

minimum energy corner has been attained. It can be concluded that due to presence of

the level 4 representing strategy based on conservation of primary energy carriers the

resulting development alternative obeys it by choosing compromise solution biased by

the energy conservation policy.

5 Conclusions

In the paper the methodological framework for use of the MIDA computer system was

described.

The basic terms as a development thesis, development alternatives were introduced.

They interrelations were formally described and exemplified by the case of substitution

analysis for the given area of the chemical industry that is the Energy & Chemical

Feedstock PDA.

All activities to carry the analysis out were supported by the MIDA system. The

multiobjeetive hierarchy of goals constituting the development thesis imposes applica­

tion of the DIDAS as a tool for solving multiobjective optimization problems on levels

of the hierarchy and for an especially designed schema of coordination between them.



321

In our approach we have exposed the role of creativity in the development analysis

and therefore a subjective factor which is to be introduced by the decision maker.

The complete results of our investigation are much more detailed since they contain

information such as production levels, capacity utilization etc. This kind of information

was omitted here as not being directly relevant to the scope of this paper. It will

be enclosed in the report prepared for the cosponsor of this project it is the Polish

Government Energy Program.

References

Borek, A., Dobrowolski G., Zebrowski M. (1979) Applications of System Analysis in

the Management of Growth and Development of the Chemical Industry.

CHEM/SEM.8/R.16 Report of the Chemical Industry Committee of the United

Nations.

Dobrowolski, G., Kopytowski J., Zebrowski M. (1980) Development Forecast of Pro­

duction Structure. Proceedings of the XIV Union of Polish Architects Congress,

June 1980, Zakopane, Poland, pp. 19-26.

Dobrowolski, G., Kopytowski J., Lewandowski A., Zebrowski M. (1982) Generating

Efficient Alternatives for Development of the Chemical Industry. nASA Collabo­

rative Paper CP-82-54, Laxenburg, Austria.

Dobrowolski, G., Kopytowski J., Wojtania J., Zebrowski M. (1984) Alternative Routes

from Fossil Resources to Chemical Feedstock. nASA Research Report RR-84-19,

Laxenburg, Austria.

Kallio, M., Lewandowski A., and Orchard-Hays W. (1980), An Implementation of the

Reference Point Approach for Multiobjective Optimization. nASA Working Paper

WP-80-35, Laxenburg, Austria.

Lewandowski, A., and Grauer M. (1982) The reference point optimization approach

- methods of efficient implementation. In M. Grauer, A. Lewandowski and A.P.

Wierzbicki (Eds.) nASA Collaborative Paper CP-82-s12, Laxenburg, Austria.

Wierzbicki, A.P. (1979) The Use of Reference Objectives in Multiobjective Optimiza­

tion - Theoretical Implications and Practical Experience. nASA Working Paper

WP-79-66, Laxenburg, Austria.



Spatial Allocation and Investment Scheduling

the Development Programming

Maciej Skocz, Maciej Zebrowski, Wieslaw Ziembla

Joint Systems Research Department

of the Institute for Control and Systems Engineering,

Academy of Mining and Metallurgy, Cracow,

and the Industrial Chemistry Research Institute, Warsaw.

Abstract

In the paper we describe a decision support system for programming develop­

ment of process industries. The system offers facilities such as long term analysis

and design of the industrial structure development with an emphasis on investment

allocation efficiency. Thus, three levels of the system corresponding to relevant de­

cision making tasks are distinguished. First is devoted to a quest for an optimal

industrial structure and its development trajectory, second aims at spatial alloca­

tion of production units selected on the first level, the third is responsible for the

investment scheduling. The method is exemplified by a case of the petrochemical

industry.

1 Introduction

.
In

From the decision maker (DM) point of view, industrial development can be viewed as

a process of changing production structure by means of investment over the course of

time. There is no definite method of choice of appropriate time horizon for industrial

development programming. Any choice may be disputable and criticized as an arbitrary

assumption.

Here MIDA approach and decomposition applied to the problem that were only

highlighted in the introductory paper are discussed.

For our considerations two qualitatively distinguishable activities are to be per­

formed in the development programming. First goes a quest for an optimal industrial

structure, second is how to determine a strategy that would transform the existing struc­

ture into the optimal one by the end of the time horizon. The industrial development

strategy design problems are basically two-dimensional, one dimension being time and

the second one, space were discussed separately in our papers (Skocz, Zebrowski and

Ziembla, 1987, Skocz and Ziembla, 1987). Both types of activity will be discussed in

the paper and the natural hierarchy which evolves will play an important role in formu­

lation of the process. This hierarchy opens way for decomposition of the whole problem



323

and thus enables application of specific algorithms for all levels of the hierarchy. Such

a practical method corresponds to a real-life management tasks and therefore naturally

becomes a core of a specialized Decision Support System (DSS) such as MIDA.

The above approach is presented in the paper along the following lines. First, the

problem of programming industrial development is identified. The case of petrochemical

industry has been chosen for exemplification of the problem as the most complex and

general representation of process industries. Then, three layers of programming devel­

opment are distinguished. The quest for an optimal industrial structure which is a task

solved on the upper layer of the system has been extensively described in other papers

(Borek et aI. 1987, Dobrowolski G. et aI. 1984, Dobrowolski et aI. 1985) and in this

series. Here emphasis is given to show its impact on initiating the investment planning

process. From this naturally evolves a problem of the investment spatial allocation and

scheduling devoted to an efficient implementation of the optimal industrial structure.

An important role in such a management system is given to a feedback between

the three layers. This feedback varies in time; as an immediate goal the investment

spatial allocation and scheduling activity can be applied as a plausibility test of the

industrial structure to be attained. The other role of this feedback comes into effect

in a preliminary phase of implementation of the planned structure. As the structure

development is distributed over a long time-span, the described sequence of steps may

be repeated a number of times so as to reflect a knowledge and experience gathered by

the management in the course of time.

Basing on the above observations, appropriate procedure has been developed and

described in Section 5.

To illustrate the approach and the method, an example based on a real-life case of

the petrochemical industry is added. The case illustrates the problem of spreading over

the planning period a massive investment which is to be balanced against economic

constraints such as e.g. the assumed rate of return. On the other hand, technological

constraints are also to be satisfied due to strong interdependence between chemical

plants (sources and sinks).

2 Programming development of a process industry

From a very broad and complex area of programming development of a process industry

we are extracting here only those elements that are indispensable to show how invest­

ment allocation is embedded in this activity. A broader view on the subject can be found

in other papers of our group (Dobrowolski et al. 1982, Dobrowolski et aI. 1984, Dobro­

wolski et aI. 1985). As has been mentioned, the programming development process is

a multilevel, dynamic activity, considered as a permanent task of the management. Its

time horizon extends ten, fifteen or more years ahead.

The highest level of the hierarchy was named (Borek et aI. 1978, Dobrowolski et aI.

1984) a Production-Distribution Area (PDA) level. PDA comprises a selected domain

of the process industry composed into a kind of a network. Nodes of the network are

technological processes, while arches represent flows of raw materials, intermediates and

products. A selection of boundaries of such a system usually poses a problem itself (see



324

e.g. Dobrowolski et al. 1984). For the sake of this paper it is sufficient to assume that

PDA is a selected branch that consumes particular resources and supplies particular

products. The proposed approach, however, seems to be a sufficiently wide concept

concerning any production system with defined inputs, outputs and coefficients of i/o

transformation.

From a formal point of view, PDA model is stated in a linear programming con­

vention and as such one it constitutes a core of the DSS. Basing on the model, on a

request of the decision maker, a number of multi- or single- objective optimization prob­

lems can be generated and solved according to an assumed scenario. The scenario is a

formally expressed development thesis representing expectations of a DM based on his

up-to -date knowledge. With help of the DSS, a development thesis is transformed into

industrial development strategy through a chain of interactive procedures. In general,

a scenario comprises information that are characterized below in an aggregated form:

• existing structure of the industry described in the form of a PDA,

• new or potentially available technologies that can be included into the PDA struc­

ture by means of investment (the existing and new technologies are a basic reper­

toire for selecting future production structure),

• availability of resources (so called critical resources) such as raw materials, en­

ergy, manpower etc.; a special emphasis will be given to availability of investment

capital,

• demand patterns for selected products,

• terms of trade for all other resources, intermediates, products etc,

• objectives to be used for selection of ultimate as well as intermediate structures

in terms of consecutive PDAs.

Objectives are formulated in terms of various efficiency relations between critical

resources e.g. profit/energy, input energy/output energy, profit/investment capital.

It is important to underline here that analysis on this level should lead to selection of

PDA structures according to their" intensive properties" such as expressed by the above

fractional objectives.

Let us focus now on a dynamic process of generating of industrial structures. Within

the time horizon any particular PDA structure represents a cross- section of a develop­

ment trajectory from the initial to the final state. Intermediate structures (substruc­

tures) correspond to conditions imposed by scenarios issued for times Ti , i E I . A

number of such cross-sections, indexed by i, is up to DM and usually corresponds to

5-year periods what is independent on economic system.

Anyway, a selection of the times Tt, i E I should result from interactions of the

industry with the surrounding world (forecasted production goals, changing resource

availability, macroeconomic forecasts etc). By decomposing the development trajectory

into a limited number of subperiods DM can practically simulate scenarios "what-if"

separately for any substructure subject to its relations with the environment. This task



325

may be fulfilled by different methods of which dynamic programming method seems to

be a straightforward concept. However, taking into account practical applicability of the

method, including computational effectiveness on one hand and on the other interactive

properties of the DSS, we have decided otherwise.

The method proposed in the paper is based on the following step-wise approach:

1. investigation of the existing structure,

2. selection of the ultimate final structure corresponding to the end of programming

horizon,

3. generating intermediate development patterns (substructures) for selected times

Ti , i E I.

The above steps are done according to scenarios resulting from development the­

sis. The presented approach leads to compression of information that is necessary to

generate large-scale development programs and enables better perception of the results.

The above steps constitute one iteration of the PDA level and provide the DM with a

primary version of development program. This program is to be verified on second and

third levels described in the next sections.

3 Spatial allocation of production units in invest­

ment planning

A next decision task to be solved is the spatial allocation of production units that are

already selected as members of a production network to be developed. In other words,

this new decision problem is to decompose a production structure Si into a set of local

substructures Sf, l E L subject to conditions specific for particular location (sites).

Obviously, sites should be regarded as places of distinct features, which influence

the investment condition and production process later on. A goal of the decomposition

is to achieve minimum cost of investment and operation (including manufacturing and

transportation costs) of the whole production system while satisfying the production

task.

To get a closer view on the problem, let us have a comment on component of the

costs. The investment costs can strongly depend on a place, especially if conditions

for differently developed countries are being compared, or even between developing

countries themselves. For example, in North-African countries, the so-called location

factor, which multiply investment cost related to West Europe, can vary from 1.3-1.4 on

a see-side to 2.0 and more on interior. Regardless of local conditions, the decomposition

of production structure can rise investment costs, since smaller units are relatively more

expensive. This can be illustrated by the following formula:

( )'". . cap
tnv = tnvre! -­

cap._!



326

where the exponential factor is less than 1.0 when the capacity is bigger than capr.!

(the least economically recommended capacity), and bigger than 1.0 otherwise.

Location of production units strongly influence the operation costs as well. Some

components of the operation cost can be derived from different investment costs, another

components are a consequence of various prices of water and energy, waste management,

expenses on manpower, transportation, etc. The above can be also real constraints

imposed on production planned in a given site (e.g. limited availability of water, energy

or manpower).

A spatial factor to be considered is transportation. This results from:

• various transportation alternatives (means and routes, such as highways, railroads,

water, pipes) to be used for the same products,

• spatial dispersion of demand for chemical products or feedstock,

• unbalanced existing industrial structure.

The transportation problem has been widely investigated so now only the aspect

related to spatial allocation of investment will be described. It seems to be important

to note at this place that for transportation modeling a decomposition of demand for

products or feedstock supply is indispensable.

Since local factors create more detailed conditions to be taken into account in pro­

gramming development, a solution to the spatial problem will verify the preliminary

global development program. A result obtained will require, however, a further exam­

ination by construction time constraints. This problem will be described in the next

section, so now let us to complete the considerations with formulation of the spatial

allocation problem (Skocz and Ziembla, 1987, Zebrowski et al. 1988).

Modeling of spatial allocation (of production units) in invest­

ment planning

First, the symbols are categorized and defined.

Symbol Definition

SETS AND INDEXES

IE L

mEM

kE K

jEJ

rE R

LM

VARIABLES

z

Plant location

Marketing center

Prod uction process

Chemical or medium (feedstock, intermediate, product)

Route/mean of transport

Redefined set of sites and markets, LM = L u M

Process level (production level)



x

q

PARAMETERS

a

b

d

AV

DE

RC

327

Amount of substance transported by route/mean

Investment capital need to plant construction

Production (output) coefficient

Consumption (input) coefficient

Unit market price

Unit transportation price

Scaling exponent for plant investment calculation

Market availability of feedstock

Market demand for substance

Transportation capacity

Second, the constraints of the spatial allocation are specified.

PRODUCTION LEVELS BALANCE

Zk ~ L Zkl, k E K
tEL

LOCAL BALANCE ON RAW MATERIALS, INTERMEDIATES AND FINAL PRODUCTS

L akizkl - L bkiZkl = L L Xir - L L Xir, 1 ELM, j E J
kEK kEK nELM rER., nELM rER,.

RAW MATERIALS SUPPLY AVAILABILITY BALANCE

L L xir ~ AVim , mE M, j E J

IEL rER m,

PRODUCT DEMAND BALANCE

DEim = L L xir, mE M, j E J

nEL rERlm

TRANSPORTATION CAPACITY BALANCE FOR ROUTE/MEAN

L xir ~ RCr , r E R,n , I, n E LM

iEJ

and also:

Xir ?: 0, Zkl ?: 0, j E J, k E K, r E Rnl , n,1 E LM

Next objectives can be formulated as follows:

TRANSPORTATION COST

TC L L L L dirXir

iEJ lELM nELM rER.,

INVESTMENT COST

IC L L qkl

lEL kEK



328

where:

MANUFACTURING COST

Me = ve + ee

where:

• ve (various cost) depends on cost of raw materials in linear relationship and several parameters
1

ve - L L L L XjrCjm,

jEJ mEM IEL rERml

• ee (constant cost) depends on investment cost in linear form and several parameters

ee - L L qkl·

IEL kEK

4 Investment scheduling problem

The investment scheduling problem consists of sequencing and scheduling of the con­

struction of plants that will finally compose the assumed industrial network. According

to any optimal substructure of the network Sf ,i E I, 1 E L determined for given plan­

ning periods, each investment planning problem has its own pattern structure to be

completed within a relevant time-horizon Tt, i E I. Given the times of final and partial

completion of the network, as well as the corresponding final and intermediate patterns

to be achieved under certain conditions, one may formulate the investment scheduling

problem.

The goal of investment scheduling is to enhance investment efficiency and capital

turnover; as a practical decision rule one may accept here minimizing of completion

time subject to limited investment capital (distributed over multiple year intervals) or,

in a broader sense, maximizing of overall profit gained in the production network.

Such objectives have certain consequences in the problem formulation. It might be

observed for the minimal time objective that since the program has to satisfy precedence

relations imposed on substructures and also on particular plants within the substruc­

tures, the intermediate completion times might be relaxed in the investment planning

problem. To increase investment efficiency, the industrial substructures and the final

network will be scheduled as closest to their due dates as possible. The same relaxation

we will assume for the second objective of the scheduling problem.

In the case of a solution that violates due dates (both delays and time savings

are of concern), what is naturally a most common case, the investment schedule has

to be evaluated in terms of higher-level decision objective(s). It means that for any

intermediate due date Tt one has to determine a structure s ~ that really corresponds

to T; . Then, if s ~ differs from Sf , consequences of implementation of s ~ instead of Sf

should be evaluated. Following the analysis of the consequences, one will be faced with

two following classes of situations:

lThe exact formula for cost calculation is given in MIDA User's Manual, 1987, and Guide to Devel­

opment Programming (Zebrowski, 1987).



329

• the investment schedule for a period i may be maintained,

• the investment schedule for a period i should be changed in order to attain the

assumed substructure S: in the due time To (obviously by a modification of the

originally assumed time distribution of investment capital. One of the most nat­

ural approaches towards changing investment schedule in order to achieve a strict

completion time of a given substructure, is to identify investment capital bottle­

neck subject to the required conditions.

Hence, three different scheduling strategies are of concern - first two that aim at

minimizing completion time or maximizing the overall profit gained in the production

system, and a different one that minimizes investment indispensable for completion of

selected substructures in their due times. It should be emphasized that if modification

of investment distribution cannot be accepted then new local substructures must be

generated on spatially allocation level, or even upper level. Therefore, an investment

schedule of spatial by allocated production unit obtained on the lower decision level can

be converted into an investment plan through interaction with three levels of DSS.

Because of the space limitation we attach only some mathematical formulation of

considered investment scheduling problems, whereas solving algorithms are described

in other our papers (Skocz, Zebrowski and Ziembla, 1987, Zebrowski et al. 1988).

Modeling of investment scheduling

The symbols are categorized and defined as follows:.

Symbol Definition

SETS AND INDEXES

iEI

IE L

kEK

(i,k) E RT

T E (7i-l> Til

VARIABLES

v

g

PARAMETERS

e

T;-l

T;

AI

Planning period (macro - structural level)

Production site

Production process

Technological predecessorship relation

Time unit (micro - scheduling level)

Starting time for plant construction

time investment consumption for plant

Profit rate for plant corresponding z capacity

Starting interval of planning period

Last interval of planning period

Availability of investment capital (or other resources) on site



RI

P

330

Requirement on investment capital (or other resources) for plant in time its con­

struction

Plant construction time

Next, constraints are specified.

CONSTRUCTION TIME CONSTRAINTS

To < Vkl ~ Ti - Pk, k E K, I E L

PREDECESSORSHIP CONSTRAINTS

Vkl + Pk ~ vii + Pi, (k, i) E RT

INVESTMENT (RESOURCE) TIME BALANCE

L gk,(r) ~ AIi,(r) , IEL,rE(Ti_ lI Ti ]
kEK

where:
if r < Vkl

if Vkl < r ~ Vkl + Pk

if r > Vkl +Pk

kEK

Objective can be formulated as follows:

MAXIMUM TOTAL PROFIT

T P = L L ekt! T" - Vkl + Pk I
iE/ kEK

max TP - min L L eklvkl

iE/ kEK

MINIMUM COMPLETION TIME

CT = max (rkl + Pk)
kEK

MINIMUM "INVESTMENT MODIFICATION"

1M = min I AI;(r) - L gkl(r) I
<E(To,T. I

5 Interaction between decision levels

From the description of investment spatial allocation and scheduling problems, one may

derive a clear idea of interaction between various levels of decision analysis (Figure 1).

The upper level that is responsible for creating development of the industrial struc­

ture in a long run defines tasks for investment spatial allocation of production unit level

as well as one of investment scheduling and supervises their work. In that sense, it

should initialize the second level with the initial and final structure of the production

network as well as selected substructures (intermediate patterns) that constitute some

important checkpoints of the network development Si , i E I. Each substructure is

determined by the set of technologies and their production levels:

Si = {(k,z), k E K}

On the second level these substructures are decomposed into local subnetworks with

respect to investment-, manufacturing-, and transportation costs as the objectives. Ob­

viously, additional data are necessary to solve this problem:



331

n

ment

S hedu e

Develop

level , Program

S·
I

Spat ion
level 2 ..

Allocatio

sl I t I SL T
I I

I I

-
level 3 Invest men

Ic

Decision

Maker

Figure 1: Interactive decision making system

• spatial distribution of feedstock availability (for each marketing center and site)

• spatial dispersion of production demand (for each marketing center)

• availability of transport (means and routes capacity)

• unit cost utilities (water, energy) in sites, prices on markets and unit costs of

transport

The resulting Pareto-optimal spatial allocated substructures S, should be next analyzed

towards agreement with predecision prerequisites. If this tasks cannot be done (e.g. too

high transportation cost in the case of a strictly limited number of production sites un­

der strongly dispersed high tonnage products demand or resources supply, or too high

investment cost in the case of more decentralized production) then a modification of the

structure S, on the upper level should be performed. One can try to search for a tech­

nology perhaps less efficient but based on local resources (reduction of transportation

cost) or a technology which economic capacity is less then previously selected. Other­

wise, when the results of decomposition satisfy the goals expressed by selected criteria,

the results obtained is a starting point to the last level of the decision system, Le. a

verification of local structures sf with respect to their completion times. The following

input data are given to investment scheduling level:

• local substructures Sf, i E I, l E L

• investment capital corresponding local substructures sf



332

• starting and completion times of the final network as well as completion times T;
,i E I of intermediate pattern structures (substructures). The latter due dates are

relaxed at this stage of the scheduling problem.

• profit rates ekl, k E K, I E L of all plants that are to constitute the network (Le.

potential profits to be gained in unit time).

In addition, time distributed investment constraints must be specified: they reflect

different factors of local construction engineering, camps, works, transport of machinery

as well as investment capital constraints. Next, the investment scheduling problem with

profit- or completion time- type objective can be solved.

As an output of the scheduling procedure, the upper level is supplied with the

following information:

• structures s ~ that can be actually completed exactly in the times Ii, i E I,

• actual intermediate and final completion times t: corresponding to the assumed

pattern substructures sf, i E I, I E L,

• actual time distribution of investment capital consumption in sites.

Evaluation of the resulting schedule usually leads to reformulation of initial assump­

tions of the scheduling program. As has been mentioned, new scheduling tasks are

derived from those investment schedules where substructures are to be completed in

disagreement with the due dates and, moreover, this fact cannot be accepted, Le.:

max t
'
. > T;

IEL 1-

Then, on the requirement of the first level, programs that minimize "modification of

investment time distribution" to satisfy due times are worked out.

If this modific.ation can not be accepted, then it is necessary for the second or

even first level to review development program that was originally setup. In order to

draw assumptions for an improved program trade-offs between intermediate and final

structures, their completion times, selection of production sites and investment capital

should be investigated. After compromising trade-offs are found, a new program can be

drawn and evaluated following the described procedure.

The above is to be performed on three levels according to their functions with the

relevant feedback through a necessary number of iterations between the levels. These

iterations take place through interaction between a decision maker and DSS. This again

proves a creative and subjective role of the decision maker in the design of the industrial

development program (Gorecki et al. 1984).

6 An example - A case study in petrochemical in­

dustry

As an example we present results of elaboration of a development program of petrochem­

ical industry in a developing country by means of three levels version of MIDA system

(structures optimization, spatial allocation and investment scheduling modules).



333

Production Unit Capacity Location

Ethylene from Light Naphtha 130000 site A

Polyethylene LD (Autoclave Reactor) 50000 site A

Benzene from Reformate 80000 site A

p-Xylene and o-Xylene 40000 site A

Vinyl Chloride Via Oxychlorination 50000 site A

PVC Suspension Polymerization 50000 site A

Chlorine (electrolysis) 100000 site A

Methanol from Natural Gas 100000 site B

Formaldehyde 25000 site B

Phenolic Resin 10000 site B

Table 1: Existing industrial structure - 80 .

We assumed a 10 year planning horizon divided into 5-year intervals. Correspond­

ingly, three structures 80 , 8 1 , 8 2 are to be concerned where 80 denotes an existing one,

8 1 an intermediate one and 8 2 a final structure.

First, 8 0 was analyzed and found as a weakly developed and unbalanced production

system. In Table 1 a set of technological units (with yearly capacities) corresponding

to 80 is given. It results from the analysis that 80 cannot satisfy the demand; on the

other hand, some valuable intermediates are expelled to external markets.

Taking into account the need for products and availability of resources, a design of

final structure 8 2 developed from 80 was undertaken. To solve this problem, MIDA

structure optimization module was used. A list of potential technologies to be selected

within 82 comprised of 135 plants of petrochemical feedstock (naphtha, LPG, NPG,

condensate etc.) conversion into plastics, rubbers, fibers, detergents etc. As a result

of optimization, the structure 8 2 characterized by minimal simple rate of return was

determined. A basic description of 82 is given in Table 2. The investment value for the

optimal case is 2.3 bil. $, net income 359 mil. $, so pay-back period is 6.3 years.

Subject to assumed limitation of 570 mil. $ (25% of total amount) to be spent in

the first period, Le. between To and T1 and up to additional goals:

• utilization of surplus (unbalanced) production of ethylene - 60000 t, benzene ­

80000 t, o-xylene - 25000 t, p-xylene - 40000 t and toluene - 10000 t yearly,

• maximum profit over investment as objective,

the intermediate structure 8 1 was selected.

This is illustrated also in table 2. After the design of 81 and 8 2 has been done, the task

of the first level was accomplished in iteration 1.

For spatial decomposition of the development program three sites were assumed:

A - where existing plants, refinery and crude oil deposits were located

B - densely populated with developed other branches of the industry



334

Basic Results Unit Values for

Structure 8 1 Structure 8 2

Investment Capital mil. $ 572 2280

Net Income mil. $ 101 359

Manufact. Value Added mil. $ 258 833

Import mil. $ 110 205

Export mil. $ 160 372

Domestic Purchase mil. $ 126 310

Domestic Sale mil. $ 345 1194

Pay-back Period years 5.7 6.3

Table 2: Global results for selected final structure - 82 and intermediate one - 8 1•

C - densely populated, where deposits of NPG were found.

In all sites we assumed existence of marketing centers, and in addition the one foreign

trade center. Data about transportation, investment costs, costs of utilities, as well as

constraints on water, energy and manpower were identified. The optimization problem

was solved in order to minimize total cost of manufacturing and transportation. The

result of the decomposition of 8 1 and 8 2 into substructures located in sites A,B,C is

illustrated in Table 3 (for 8d and Table 4 (for 82).

To realize the task of the third level, problems of investment scheduling for im­

plementation of the development programs in sites were formulated and solved. As a

time interval on this level half-year-intervals were assumed. For each of the intervals,

constraints on the investment capital to be spent were imposed. Resulting schedules

(starting and completion time for each plant construction) are given also in Table 3 and

Table 4.

The latter solution to the development problem terminates the first iteration of the

procedure supported by the DSS.

7 Conclusions

A multilevel version of MIDA system, aimed at design of industrial development strategy

is described in the paper. Numerical results illustrating the process of deriving optimal

industrial structure are presented.

To classify the presented system within the DSS domain devoted to industrial de­

velopment programming, let us make the following observations.

In general, relatively few systems of this type are described in detail with respect

to methodology and practical results. Despite the rather scarce information, it can be

concluded that two extreme approaches to the problem have evolved.

The first one is based on large and complex integrated models (e.g. Stoutjesdijk

and Kendrik, 1978, Sophos et al. 1980, Palmer et al. 1984). The second extreme

approach which recently seems to gain more attention puts less emphasis on formal



335

Production Unit Capacity Location Construction

Start Finish

Dibutyl Phthalate 3000 A 2.0 3.5

Dinitrotoluene 22000 B 2.5 3.5

Dioctyl Phthalate 40000 A 2.0 3.5

Ethylbenzene (Benzene Alkylation) 75000 A 2.0 3.5

Ethylene Glycol and Oxide 15000 A 0.5 2.0

Melamine-Formaldehyde Resin 10000 B 0.5 2.0

Phenol-Formaldehyde Resol Syrup 10000 B 0.5 2.0

Phosgene from Chlorine and CO 22000 B 2.5 4.0

Phtalic Anhydride from o-Xylene 27000 A 1.0 2.5

Polyether Polyol for Polyurethanes 38000 B 2.5 4.0

Polyethylene Terephthalate from TA 40000 A 1.5 3.0

Polystyrene General Purpose 30000 A 2.0 4.0

Polystyrene High Impact 10000 A 2.0 4.0

Polyurethane Resin from Polyol and TDI 50000 B 3.5 4.5

Propylene Oxide (Ethylbenzene Process) 27000 A 1.5 3.5

Sodium Alkylbenzene Sulfonate 40000 B 0.5 2.5

Sulfuric Acid from Sulfur 100000 B 0.5 2.0

TDA from Dinitrotoluene 14000 B 2.5 4.0

TDI from TDA 17000 B 2.5 4.5

Terephthalic Acid from p-Xylene 35000 A 1.0 2.5

Unsaturated Polyester Resin 10000 A 1.0 2.5

Urea-Formaldehyde Syrup 15000 B 0.5 2.0

Table 3: Spatial allocation and investment schedule for structure 8 1



336

Production Unit Capacity Location Construction

Start Finish

ABS Resin 10000 A 8.0 9.0

Acetic Acid from Methanol 40000 C 6.5 8.5

Acrilonitrile (Propylene Ammoxidation) 50000 B 6.5 8.5

Bisphenol from Phenol and Aceton 15000 A 8.0 9.5

Butadiene from C4 Extraction 35000 B 5.0 7.0

Butene-l (Ethylene Dimerization) 12000 C 7.5 8.5

Caprolactam from Cyclohexane 50000 A 6.5 8.5

Carbon Black from Carbon Black Oil 30000 A 4.5 6.5

Chlorine (electrolysis) 100000 B 7.5 9.0

Cyclohexane from Benzene 50000 A 6.5 8.0

Epoxy Resin 20000 A 8.0 9.5

Ethyl Acetate 5000 C 7.5 8.5

Ethylene Glycol and Oxide 20000 B 5.5 7.0

Ethylene from Ethane 150000 C 5.5 8.0

Ethylene from Naphtha MS Cracking 150000 B 4.0 6.5

Methylmethacrylate Cyanohydrin Proc. 10000 B 7.0 9.0

Nylon 6 (chips) 30000 A 6.5 8.5

Polyethylene High Density 80000 B 4.5 6.5

Polyethylene Linear Low Density 120000 C 6.0 8.0

PolymethyImethacrylate 5000 B 7.5 9.0

Polypropylene (Amoco Technology) 50000 B 5.0 7.0

Polyvinyl Acetate Emulsion 50000 C 8.5 10.0

Polyvinyl Chloride Suspension 50000 B 8.0 10.0

Primary Alcohol Ethoxylate 10000 A 5.5 7.5

Primary Alcohol Ethoxysulfonate 10000 A 5.5 7.5

Primary Alcohol Sulfonate 10000 A 5.5 7.5

Primary Alcohols C6 - C12 15000 A 5.0 7.0

SAN Resin 5000 A 8.0 9.0

Styrene-Butadiene Rubber 45000 A 4.5 7.0

Unsaturated Polyester Resin 10000 A 8.0 9.5

Vinyl Acetate from Ethylene 50000 C 8.0 9.5

VinyI Chloride (Oxychlorination) 50000 B 8.0 10.0

Table 4: Spatial allocation and investment schedule for final structure S2



337

models and is practically devolved of optimization algorithms. Instead, it applies a very

thorough evaluation of alternatives based on a multiattribute analysis done by experts

that includes various "soft" factors (Keeney et aJ. 1986, Siskos et aJ. 1986, Lewandowski

et aJ. 1986).

In the case reported a combination of both approaches is used. Optimization models

and algorithms are used to support the process of generating alternative solutions being

the development options. On the other hand, it is assumed that experts and decision

makers will be engaged in evaluation and selection of the alternatives.

Such an approach provided an extension of MIDA methodology and resulted in a

version of DSS for development programming. A basic concept of described version

of MIDA system is to introduce a modular and hierarchical structure of the models

involved. It improves their comprehension and enables interaction of the user (decision

maker) in selection of a final solution. It is our hope that the above features coming

from the" learning by doing" approach were reflected in the paper.

Acknowledgements

The authors wish to express their gratitude for contribution and close collaboration

to St. Gibinski. His outstanding expertize in development programming cannot be

overestimated.

The software development which was decisive to implement and apply the concept

presented was completed with respect to scheduling by T. Rys. Spatial PDA model

and generator were implemented by G. Dobrowolski. Their highly skilled contribution

in software development is appreciated.

References

Borek A., G. Dobrowolski, M. Zebrowski (1978) GSOS - Growth Strategy Optimization

System for the Chemical Industry. Proc. of MECO-78, Athens.

Dobrowolski G., J. Kopytowski, A. Lewandowski, M. Zebrowski (1982) Generating

Efficient Alternatives for Development of the Chemical Industry. IIASA Collabo­

rative Paper CP-82-54, Laxenburg, Austria.

Dobrowolski G., J. Kopytowski, J. Wojtania, M. Zebrowski (1984) Alternative Routes

from Fossil Resources to Chemical Feedstock. IIASA Research Report RR-84-19,

Laxenburg, Austria.

Dobrowolski G., J. Kopytowski, T. Rys, M. Zebrowski (1985) MIDA (Multiobjective In­

teractive Decision Aid) in the Development of the Chemical Industry. In: Theory,

Software and Test Examples for Decision Support System pp. 219-234. IIASA,

Laxenburg, Austria.

Gorecki H., J. Kopytowski, T. Rys, M. Zebrowski (1984) Multiobjective Procedure for

Project Formulation - Design of a Chemical Installation. In: M. Grauer, A.P.



338

Wierzbicki (Eds.) Interactive Decision Analysis - Proc. of Int. Workshop on

Interactive Decision Analysis and Interpretative Computer Intelligence Springer

Verlag pp. 248-259.

MIDA User's Manual (1987) Joint System Research Department, Cracow, Poland.

Kenney R., J. Lathrop, A. Sicherman (1986) An Analysis of Baltimore Gas and Electric

Company's Technology Choice. Oper. Res. J., Vol. 34, No 1.

Lewandowski A., S. Johnson, A. Wierzbicki (1986) A Prototype Selection Commit­

tee Decision Analysis and Support System SCDAS : Theoretical Background and

Computer Implementation. nASA Working Paper WP-86-27, Laxenburg, Aus­

tria.

Palmer K., N. Boudwin, H. Patton, A. Rowland, J. Sammes, D. Smith (1984) A Model­

Management Framework for Mathematical Programming. An Exxon Monograph.

John Wiley and Sons, New York.

Siskos J., J. Lombard, A. Qudiz (1986) The Use of Multicriteria Outranking Methods

in Comparison of Control Options Against Chemical Pollutant. J. Op. Res. Soc.,

Vol 37, No 4.

Skocz M., M. Zebrowski, W. Ziembla (1987) A Method for Design of Industry Devel­

opment Strategy. In: Preprints of X IFAC Congress in Munich 1987.

Skocz M., W. Ziembla (1987) Spatial PDA Modeling for Industrial Development with

Respect to Transportation Costs. In: Theory, Software and Testing Examples

for Decision Support System pp. 224-236. nASA Working Paper WP-87-26,

Laxenburg, Austria.

Sofos A., E. Rotstein, G. Stephanopolous (1980) Multiobjective Analysis in Modeling

the Petrochemical Industry. Chemical Engineering Science, Vol 35, No 12.

Stoutjesdijk A., D. Kendrick (1978) The Planning of Industrial Investment Programs.

A World Bank Research Publications, John Hopkins Univ. Press, Baltimore and

London.

Zebrowski M. (1987) Guide to Development Programming in the Chemical Industry.

Joint System Research Department, Cracow, Poland.

Zebrowski M., G. Dobrowolski, T. Rys, M. Skocz, W. Ziembla (1988) Industrial Struc­

ture Optimization: The PDAS Model. In: Expert Systems for Integrated Devel­

opment: A Case Study of Shanxi Province The People's Republic of China, Final

Report, Volume I, pp. 87-134. nASA, Laxenburg, Austria.



Architecture and Functionality of MIDA

Grzegorz Dobrowolski, Tomasz Rys

Joint System Research Department

of the Institute for Control and Systems Engineering,

Academy of Mining and Metallurgy, Cracow,

and the Industrial Chemistry Research Institute, Warsaw.

Abstract

The last paper in the series is devoted to description of features of MIDA ­

Multiobjective Interactive Decision Aid designed by the authors for programming

development of the chemical industry. Because MIDA system was used to carry out

the analysis reported in the former papers, the reader can find here details that can

supplement his opinion of the whole activities in the application field. The paper

attempts to gather most of important assumptions that can be formulated with

respect to the architecture and functionality of a DSS and to show how they can be

realized in the support system based in its core on the multiobjective optimization

problem.

1 Introduction

The last paper in the series contains description of MIDA - Multiobjective Interactive

Decision Aid that is not only a DSS but also a name for methodology of programming

development of the chemical industry (Dobrowolski et al. 1985).

The paper consists of two parts. The first three sections present the main features

of MIDA system on a background of approaches to the construction of decision sup­

port systems known from the literature. This gives an opportunity for enumeration of

important aspects of architecture and functionality of MIDA system which ought to be

taken into account when a new DSS based on an optimization problem is built.

The second part of the paper, it is section 5, contains detailed description of MIDA

system. Walking down MIDA menu system all available options are briefly described

to illustrate ideas introduced in the first part of the paper as well as to clarify details

omitted in previous papers of the series that deal with applications of the system.

Especially, the second paper about the PDA model is complementary for understanding

the structure of MIDA data base.

Research and applications in the field of computer supported programming devel­

opment of chemical industry are known among industrial and scientific circles in the

world. Especially multinationals are leading experts in this field with EXXON and their

monograph (Palmer et al. 1984). Another example might be a group working for the



340

World Bank who have published a book on programming development of the fertiliz­

ers industry (Kendrick and Stoutjestijk 1984). A number of researchers (Sophos at al.

1980) have devoted their work to the problems of the technological background of the

development of chemical industry.

2 Some classification aspects

What type of DSS is MIDA ?

Wang and Courtney (1984) found out the following actors involved in activities around

DSS:

• a model builder,

• a system administrator who is responsible for selecting and configuring the DSS,

coordinating the decision making environment and monitoring the operation of

the DSS,

• an information supplier who provides data needed for the decision making task,

• a decision maker who is responsible for defining the decision making task.

In the case of MIDA, the above roles are shared among a group of designers and a

user. A main assumption here is that the system, taking into account its delicate area

of application, is rather personal. Then the user plays the role not only of decision

maker but also of a model builder (to establish those details which are an object of the

decision task themselves), information supplier (because of the same reason, especially

when uncomparable sources are available) and system administrator (some options have

an open character and need completion) as well.

Sprague (1980) differentiates systems designated as DSS into three types:

• specific DSS - a hardware and software system that allows a user to deal with a

specific set of related problems,

• DSS generator - hardware and software that provides capabilities to build a specific

DSS quickly and easily,

• DSS tool - a hardware or software element that facilitates the development of an

item from the both above classes.

It is obvious from introduction that our MIDA is of the specific type. Even the second

part of Sprague's (1980) definition appears to be sustained as long as the phrase set of

related problems roughly means some elasticity in a problem formulation.



341

Data-oriented versus Model-oriented DSS

A particular branch of the chemical industry can be modeled as a network of produc­

tion processes aggregated to simple production functions and distribution flows for a

group of chemicals specified. The model is called PDA - Production Distribution Area

(Dobrowolski et aI., 1984).

A dichotomy between data-oriented and model-oriented DSS introduced by Alter

(1980) cannot be easy resolved for MIDA.

Data availability in MIDA (to provide the user with desired descriptive information)

is of equal importance with modeling capability (to provide him with normative infor­

mation). It is assumed that both types of information play their roles in the process of

self-learning, experimenting and approaching towards a decision.

While looking at the model as an effect of identification and structuralization of the

development programming problem, MIDA can be regarded as a model-oriented DSS

because it imposes a structure and views of the database and supplies a whole model

management system.

Model Management Capability

As opposed to those problems that are well structured, the problem of programming

development is tried in different ways that are rather of taste of a decision maker a

matter. Some agreement is observed with respect to modeling basic properties of the

industry (the basic model of PDA) but the choice of attributes that are aggregated or

evaluated is individual. In brief, a question arises what criteria ought to be formulated

to complete a mathematical model.

Bonczek et al. (1979) proposed the following taxonomy for analyzing the degree of

knowledge that is assumed for the user with respect to model utilization:

• the user can procedurally specify a model's algorithm,

• the user is familiar with a collection of pre-specified models available,

• the model, if exists, is hidden and only some consequences can be observed.

The best characteristic of MIDA gives the medial case.

The core of the system is an optimization problem that is constructed of PDA basic

model fed by DBMS - Data Base Management System and interactively supplemented

with a criterion or criteria. This is done by the user selecting pre-defined aggregates

that evaluate PDA basic model. In addition, specific models can be created for various

branches of the chemical industry with the possibility of parametric modification.

3 Elements of architecture

Basic architecture

A framework for DSSs proposed by Sprague (1980) decomposes it into:

• a dialogue management system DMS that comprises all user interfaces,



342

• a database management system DBMS that involves the creation, storage, ma­

nipulation and retrieval of data,

• a model management system MMS that performs functions corresponding to those

of DBMS but with respect to models.

MIDA implementation has shown that the above structure ought to be supplemented

by a fourth subsystem gathering all auxiliary functions that are vital for utilizing DSS

as a computer system.

The strongest assumption about user friendliness calls for functions such as main­

tenance of archive, making backups and re-installing of the system that can be done

from inside the system. An auxiliary subsystem AS provides the user (esp. unexperi­

enced one) with a comfortable interface to suitable commands of a computer operating

system.

Although all software elements of MIDA can be, with some effort, assigned to one of

the above subsystems, a natural order of calling system options from the user perspective

does not accord with the discussed decomposition.

Two levels of MIDA control

A difficult issue to be resolved is the conflict between an open character of MIDA

methodology and MIDA the specific character of implementation which requires defini­

tions of all operating options and their interrelations.

A concept of wide utilization of macros is an often suggested remedium from this

conflict. DSS generators ought to be equipped with specially designed languages to

build the macros for composite reviews of databases, generation of typical models, etc.

The MIDA has to be a complete, compact computer tool that obviously strongly

bounds the user's activities but on other hand only in such aspects that may be useful,

especially for beginners. Some compromise has been attained by introducing two levels

of control of the system. The first level is tailored for an unexperienced user. All

options of this level have been previously programmed so that just a choice among

them is needed. This corresponds to the macro idea. Much effort has been devoted in

order to make these options handy and reliable.

Although the options of level 1 cover the problem area satisfactorily, the implementation

offers also a 2nd level which comes deeper into MIDA architecture and opens way for

more complicated tasks. Unfortunately, operation on the level 2 needs more practice

and knowledge.

Dialogue management system

The best characteristics of DMS is the variety of screens used. MIDA uses three types

of screens following a taxonomy proposed by Jarke at al. (1984):

• information display (title screens, help screen, results of the database views),

• data entry/update (access to the database, input values to programs),

• menu choice (fixed and open set of choices).



343

Although graphic screens built of drawings rather than texts can be put into the infor­

mation display class, it is worthwhile to emphasize their existence because they create

a new interface of quite special features.

The nature of the system is such that output information is mostly of numerical

type. A special mode of display is applied to avoid long numerical tables.

The information is grouped in small portions, possibly not exceeding a single screen,

that form basic views of the data becoming more detailed from screen to screen. The

highest level of such a hierarchy consists of graphic-type screens that present informa­

tion using simple diagrams (pie- or bar-charts) with names and few numbers that only

roughly give values or amounts in relative units. The level is used to evoke a proper im­

pression of basic proportions between values of most importance; meanwhile, the lowest

level has to produce the long tables inevitable for printed reports.

A single session with MIDA usually consists of a sequence of calls to chosen options

of the system. As the way of utilization ought to follow methodological indicators, the

order of calling is pre-defined and ought to be strongly recommended to the user.

The above observation introduces an idea of guiding menu system applied in MIDA.

Every time it is possible, menu screens show the next appropriate options for contin­

uing the procedure. Help screens available at each step of the procedure make clear a

momentary offer of the system.

On any level of the menu system, so-called hot keys are at the disposal of the users.

These hot keys cause:

• return to the parental menu,

• immediate quitting the system,

• temporary escape to the operating system,

• displaying an adequate portion of the help text.

4 Detailed description of MIDA

MIDA computer system has been designed as a menu-driven, screen oriented and user­

friendly Decision Support System. It means that everybody who operates the system

is guided with a hierarchically organized collection of menus that contain all functional

options that the system offers. Therefore no direct calls to the computer operating

system are required and the software incorporated in the system is transparent to the

user.

The menus are organized into a tree-like structure that means that the main menu

(root menu) branches off to submenus. After the user selects a required option from

among those listed in a given menu, the system can either switch him to the correspond­

ing submenu or directly performs a function when a selected option is at a leaf of the

menu tree.

The structure of the menu system organizes the functional description of the system.

Some obvious options will be only mentioned without any detailed description.

Here is the main menu of the system:



344

1. PREPARE AND REVIEW DATABASE

2. GENERATE PROBLEM

3. PERFORM EXPERIMENTS

4. SELECT AND DISPLAY RESULTS

5. LOOK-OVER EXPERIMENTS ARCHIVE

6. AUXILIARY FUNCTIONS

PREPARE AND REVIEW DATABASE

By using this option of the main menu, the user gets access to MIDA relational DBMS.

DBMS consists of a database, which is an organized collection of information, and a

relational management system that enables the user to enter, store, manipulate and

retrieve information organized into the database.

DBMS Module is designed according to the philosophy of MIDA and incorporated

into DSS system. Because the database aims at feeding the DSS with the input data

that are used for generating optimization problems based on PDA model, the database

structure has been designed up to the requirements of the whole system. Therefore its

functions take into account special requirements and structure of the a system.

All functions of MIDA DBMS were programmed using INFORMIX Relational Data

Base System (1987).

Organization of the database

The information contained in the database is organized into several groups, called tables

(or database tables). This way of the database organization stems from two main factors:

a natural hierarchy of information used by MIDA system and a convenient data retrieval

mode. The information is stored in a format that allows the database software to answer

questions quickly and cooperate efficiently with other modules of the system.

The database consists of the following tables:

MAIN PARAMETERS table

INSTALLATION table

COMMENTS TO INSTALLATION table

PROCESS table

PROCESS INPUT OR OUTPUT MEDIA table

CHEMICAL OR MEDIUM table

MARKET table

COMMENTS TO MEDIA table

The above tables are mutually connected by links defined throughout the database.

These connections create a logical structure of the data stored that allows for efficient

cross-table queries and access to different data required by the system.

Here is the submenu that specifies basic functions provided DBMS.

1. ENTER AND UPDATE DATA

2. REVIEW PDA

3. Check PDA Consistency



345

4. Print Last Review

5. Repeat Last Review

Enter and Update Data

By selecting this option of the system, the user communicates with the DBMS of MIDA.

He is guided by a collection of forms that are used as an input vehicle to feed into the

system's database parameters of chemical processes, technological and economic data

concerning installations as well as information about markets and selected macroeco­

nomic factors (policy measures).

Using the forms the user can browse through records and files to find information

based on a search relation. Once a record is displayed, he can delete or modify it and

also add new records. Moreover, the DBMS provides extensive options of data checking

and protection.

Data manipulation using forms

Functions supported by the DBMS for the data manipulations can be called when a

required form is displayed by selecting one of the options contained in the submenu of

the ENTER and UPDATE DATA function i.e.

1. Installation/Processes

2. Media

3. Main Parameters

The data manipulation rules are common for all the forms called by the above three

options. Once a form is selected, the user is able to add, delete, find and update rows

of a table interactively. Actions of the user are supervised by DBMS checking whether

entries fall within a specified range, correspond to the types declared or meet other

requirements. During data entering and updating, relevant prompts and comments are

guiding the user.

The database functions (commands) appear at the top of any screen. The commands

can be executed by typing the first character of the command, in either upper or lower

case.

A detailed description of more important functions is given below. The most im­

portant command is ADD; to perform alteration already entered data, UPDATE and

REMOVE can be used proceeded by QUERY command to fix the row of interest. Other

commands play auxiliary roles. On the higher level of MIDA control, the user can op­

erate here without knowing details about all the commands of this option.

The ADD command

After the command a is pressed, the screen displays blank columns or default values

and is ready for adding a new data. While adding new row, the system is guiding the

user with comments and warnings.



346

The QUERY, NEXT and PREVIOUS Commands

The q QUERY command is used for finding certain rows in the database. After q is

typed, one of the columns (fields) should be filled with a search value. When the ESC key

is pressed, all the rows with the selected search value will be located and put in a current

list. The current list can be examined with the NEXT and PREVIOUS commands. If

another query is done, a new current list is created.

In addition to searching for equal values, it is possible to search on the basis of

relational operators. Queries can involve more than one column. Each column can

contain either a search value or a relational operator followed by a search value. The

query function locates all rows that contain the combinations of columns satisfying the

search relations and values.

The asterisk and question mark characters have a special effect when performing

searches on character columns. They represent an undefined substring or character,

respectively, in the searching value.

To specify a range of values as a search criterion, one should place low and high

limits for the range into the column, separated by a colon.

The UPDATE command

The UPDATE command u is for changing the contents of the currently displayed row.

While changing the contents of the columns, the system can alert the user if the changes

are inconsistent with the declared types of data to be introduced. In such cases, the

system does not allow the cursor to travel outside the column until there is a correct

entry in it.

The REMOVE command

After pressing r the system asks for confirmation that the row is to be deleted. The

command is executed if Y or y is pressed.

The MASTER and DETAIL commands

These commands support cross-table queries throughout the database. This more scr

phisticated query mechanism takes advantage of the hierarchical, tree-like structures of

the database (the consecutive levels of the hierarchy comprise INSTALLATION table,

PROCESS table and PROCESS I/O MEDIA table that constitute one structure as well

as MEDIA and MARKET table in the other one). In general, the MASTER command

allows for joining the currently displayed row to a table of a higher hierarchy level that

is related to the previous one (master table). For example, if a row of the MARKET

table is displayed, pressing MASTER causes switching to the MEDIA table. On the

rows of the MEDIA table the user can perform further queries.

As opposed to the MASTER command, the DETAIL command allows for joining

the currently displayed row to a table of a lower hierarchy level that is related to the

previous one (detail table). For example, if a INSTALLATION table row is displayed,

one can switch to the related rows of the PROCESS table by pressing the DETAIL

command.



347

Specification of the input data

While manipulating with the data to be stored or stored already in the database, the user

is supported with computer forms that are input and update vehicles of the database.

Each data base table has its own form. Each form is displayed on a separate screen,

except the CHEMICAL OR MEDIUM form and MARKET form that are displayed

together on one screen.

The practical meaning of the input data corresponding to particular forms is dis­

cussed below. The forms should be filled in the sequence as they follow in this section.

It allows for checking some cross-references during inputing data.

CHEMICAL or MEDIUM form

The form is called by selection of Media option of the submenu. It contains the following

columns:

number - is assigned automatically as a consecutive one. It appears

after correct filling the whole form. Therefore, the cursor omits

this column.

name - name of the medium is to be entered.

code - is not required to be entered. The column can be used for

auxiliary information storage.

unit - the name of measure unit or its symbol (it is to be the same

as in PROCESS I/O MEDIA table and as relevant to prices

introduced.

lower heating value - heating value of a medium is to be entered (in

unified units e.g. Gcal) for a unit assumed in the column above.

This column is to be filled twice.

date of issue - a time of data validity is to be written (year, month,

day).

number of markets - a number of markets is to be written as a digit (1­
4). In the case of removing previously entered market or adding

another one the user should remember that he has to change this

column.

MARKET form

If this form is filled directly after CHEMICAL or MEDIUM form, the information on

the market is treated as corresponding to the medium introduced. Therefore the form is

displayed together with the MEDIUM form by selecting Media option of the submenu.

If the MARKET form is filled later, then each medium is to be searched using the

database query command. The MARKET form may be filled only after the medium



348

has been entered to CHEMICAL or MEDIUM form. The following columns are specified

in the form:

market type - a letter which defines a type of the market (a comment

on symbols used appears in lower part of the screen): e - export,

i-import p - domestic purchase, s - domestic sale.

price - unit price of a product should be entered while holding consis­

tency with the unit column in CHEMICAL OR MEDIUM form.

The price is to be expressed in unified currency i.e. in L.C. (lo­

cal currency) when the market type is defined as p or s and in a

convertible currency otherwise.

lower limit - concerns a lower sell ability or availability level of a given

medium from a given market.

upper limit - analogous to the above.

COMMENTS TO MEDIUM form

The columns included to the form are reserved for additional descriptive-type informa­

tion about a given medium.

MAIN PARAMETERS form

This form is displayed after the Main Parameters option of the database submenu is

selected. The following items are included into this form:

PDA name - a name of area of interest (chemical branch).

location factor - it is a ratio of the Fixed Capital Investment for local

conditions over the standard (Gulf coast) case. Default value is

fixed as 1.

exchange rate - the exchange rate of Local Currency to the convertible

currency should be entered.

blcc depreciation - the depreciation rate in % is to be entered. The

default value is 10%.

offsite depreciation - the depreciation rate in % is to be entered. The

default value is 5%.

debt/equity ratio - the share of external loan in the FCI value in % is

to be entered.

interest on debt - the interest rate in % is to be entered.

working capital - the relative value in % of the Total Capital Invest­

ment is to be entered.



349

interest on working capital - the interest rate in % is to be entered.

insurance - the relative value in % of the Fixed Capital Investment is

to be entered. The default value is 0.5%.

property tax 8 rent - the relative value in % of the Fixed Capital In­

vestment is to be entered.

labor wages - the average yearly wages of labor in L.C.

supervision wages - the average yearly wages of supervisors in L.C.

laboratory wages - the average yearly wages of laboratory staff in L.C.

laboratory materials - a relative value in % of laboratory wages. The

default value is 100%.

operation supply cost - this includes costs of maintenance materials

done as a percentage of Fixed Capital Investment. The default

value is 0.8%.

direct overhead - a relative value in % of the sum of direct labour,

supervision and maintenance costs. The default value is 60%.

maintenance cost - a relative value in % of the Fixed Capital Invest­

ment. The default value is 5%.

administration - a relative value of cost in % of the sum of direct

labour, supervision and maintenance cost. The default value is

15%.

sale 8 marketing - a relative value in % of Factory Manufacturing

Cost. The default value is 15%.

R 8 D cost - research and development cost. The default value is 3%.

INSTALLATION form

This form, as well as COMMENTS TO INSTALLATION form, PROCESS form and

PROCESS I/O MEDIA forms can be accessed by selecting the Installations/Processes

option of the database submenu. The following columns are included into the form:

installation number - is assigned automatically as a consecutive one.

It appears after correcting filling in the whole form. The cursor

omits the column.

installation name - the name of installation should be entered.

installation code - a column for additional information may not be

filled in this moment.



350

installation type - enter an adequate letter: 0 - for existing installa­

tion, p - for planned installation, r - for installation being under

redevelopment.

reconstruction reference - write a number of the installation that is to

be redeveloped (only if option r is has been used).

battery limits - a value of battery limits (blcc); to be entered twice so

as to avoid mistakes. Attention should be paid to units - they

have to be the same for the whole base (e.g. millions, thousands

etc).

offsite - a proportion of offsite to blcc expressed in % is to be intro­

duced.

labour, supervision, laboratory and control - number of workers emplo­

yed.

number of processes - a number of processes which run in the instal­

lation and will be specified in the PROCESS form, for each in­

stallation at least one process must occur.

scaling exponent - a parameter that is commonly used for rescaling the

investment cost for the different capacity.

investment domestic - a share of domestic investment in FCI, expres­

sed in %.

date of issue - the date of data validation (year, month, day).

After the form is filled, and the row is added, a number is assigned to all installations

(in installation number column). The numbers are unique codes of installations in the

given base.

COMMENTS TO INSTALLATION form

In this form a space for additional information on the installation is reserved. This

information, if needed, can be entered as a character string (text) into the sequence of

columns. Basically, the information would comprise recommendations for a technology

to be developed and a company that is foreseen to implement the installation.

PROCESS form

This form is selected by pressing the DETAIL command from the level of the INSTAL­

LATION form. The following columns appear in the PROCESS form:

process number - is assigned automatically as consecutive one, it ap­

pears after correct filling the whole form. The cursor omits the

column.



351

process name - the name of process should be entered.

process code - a column for additional information; not required to be

entered.

capacity - production capacity per year in the assumed measure units.

production capacity is usually expressed as an amount of pro­

duction (more rarely as an input amount) of the medium which

is a capacity reference.

capacity reference - code of the medium which is a basis for calculation

of technological coefficients related to other inputs or outputs of

the process.

number of media - a number of raw materials, products and utilities

occurring in the process.

installation reference - is not entered, the number is assigned auto­

matically, number of installation appears to which the process is

added.

The user can return to the INSTALLATION form level by pressing the MASTER com­

mand on the PROCESS form level or quit by pressing the END command.

PROCESS INPUT OR OUTPUT MEDIA form

This form is accessed by pressing the DETAIL command from the level of PROCESS

form. The following data are of concern:

process reference - is not entered, it appears automatically if an ade­

quate PROCESS form has been filled before.

medium reference - code of the medium.

input-output - a letter is to be written: 0 - for products, by-products

and other process outputs (e.g. steam in an exothermic process),

i. - for media consumed in the process, also for utilities.

coefficient - consumption or production coefficient of a medium in a

given process (recalculated for the unit of main product i.e. ca­

pacity reference in PROCESS form). The column is to be filled

twice. A coefficient for the medium defined in PROCESS form

as a capacity reference is always equal to 1.

The user can return to the PROCESS form by pressing the MASTER command from

the PROCESS I/O MEDIA level or quit by pressing the END command.



352

Review PDA

Taking into account the specific application of MIDA database, a selection of database

reviewing options are supported in the system.

Here is a menu of possible reviews to be selected from the REVIEW PDA level:

1. Medium Distribution (by number)

2. Medium Distribution (by name)

3. Purchase Limits

4. Sale Limits

5. ECE - Energy Conversion Efficiency

6. Profitability

7. Manufacturing Value Added

8. Process Inputs and Outputs (by number)

9. Process Inputs and Outputs (by name)

10. Single Plant Evaluation

11. Processes List

12. Media List (with prices)

13. Advanced Reviewing

14. Print Last Review

15. Repeat Last Review

Reviews 1-4, 8, 9 are to display the contents of the database from the MIDA methodol­

ogy (level 1) point of view. They allow for showing the connections between those data

that constitute the technological network as well as for a comprehensive information on

some items stored in the database.

The options are very useful for learning, data validation especially when a strat­

egy assumed for data gathering is distributed in the sense that particular information

about an installation or a chemical may corne from different sources as far as formal

requirements are sustained.

Options 5-7, 10 are to calculate and display economic and technological parameters

for evaluation of particular chemical processes and also for display of selected informa­

tion concerning the market. Besides learning and data validation these options playa

direct role in the decision process allowing simple evaluation and ordering of technolog­

ical alternatives.

Below the standard database reviewing options contained in the REVIEW PDA

submenu are briefly described.

Medium Distribution (by number)

Medium Distribution (by name)

These options allow for listing the processes in which a given medium occurs. In the

first option the medium is defined by its number, in the second one by its name or a

name-based search string (for example instead of searching by the full name ammonia it

is possible to write ammo*). After one of the options is selected, all processes connected

to the medium are displayed, with an information whether the medium is of input (i) or



353

output (0) type in each process. This information is followed with relevant consumption

coefficients of the medium related to main products of the processes.

Sale Limits

Purchase Limits

The two options are to display limits of the sell ability and availability of all media

for which such limits are imposed. Both limits concern upper and lower bounds of sell

ability (of products) and availability (of raw materials).

ECE - Energy Conversion Efficiency

For any process an energy conversion efficiency is calculated and displayed as a ratio (%)
between the output and input energy. In addition, a total energy supplied to the process

(both the energy contained in input media and the technological energy) is given. To

make the output list more concise, it is assumed that only those processes of the ECE

beyond a declared range will be displayed. The default ECE range (as assumed to be

acceptable) is 60-90%.

Profitability

For each process its profitability derived from the production value - PV and total

manufacturing cost - TMC is calculated and displayed. On the display absolute values

of a unit manufacturing cost as well as a ratio of PV vs. TMC expressed in % are

given. To make the output list more concise, it is assumed that only those processes

of profitability lying beyond a declared range are displayed (the default range is 70­

150%). If for any process some data are missing (e.g. some prices are equal to 0), its

profitability will be displayed regardless the value.

Manufacturing Value Added

For each product a Manufacturing Value Added is calculated and displayed. This is

expressed as an absolute value of unit input (cost of raw materials, supplies, utilities

and maintenance materials) and as a relation of MVA over the input value expressed in

%. Similarly to the options 5, 6, for the sake of brevity, only those processes of MVA

lying beyond a declared range are displayed (the default range is 90-170%).

Process Input/Output (by number)

Process Input/Output (by name)

The functions of the above options are self-explanatory. Besides the inputs and outputs

of each process the technological coefficients related to a main product are displayed.

Single Plant Evaluation

For each plant (installation) the selected information either retrieved directly from the

data base or preprocessed as complex factors is given. The information comprises the



354

following data 1:

Capacity,

Fixed Capital Investment - FCI,

Product Value - PV,

Total Manufacturing Cost - TMC,

Profit,

Simple Rate of Return,

Break-Even Point,

Manufacturing Value Added - MVA,

MVA/FCI,

MVA/PV,

PV/FCI,

Energy Consumption.

Processes List

This option provides a list of all processes stored in the database, described by names

and capacities.

Media List

This option provides a list of all media stored in the database, described by names and

prices corresponding to certain kinds of markets.

Advanced Reviewing

The option falls into those that form the 2nd level of MIDA control. To use this option

effectively the user has to know not only the special language but the structure of

database with internal names of tables and fields.

The option provides the user with extensive capabilities for data reviewing, updating

and deletion with respect to large group of the rows. It is supported with an Structured

Query Language SQL which combines power and flexibility with easy use.

After pressing this option of MIDA submenu, the user gets an access to the SQL

menu-like interface. Functions offered on the SQL menu allows the user to handle with

SQL scripts. He can prepare a new one (NEW or MODIFY commands) using his

favorable text editor, perform (CHOOSE, RUN) previously done and store the SQL

script (SAVE) for further use.

The SQL script is built from SQL commands defined both in ANSI standard (mainly

SELECT, UPDATE, DELETE commands) and in RDS INFORMIX (see INFORMIX

1987) extensions that add many miscellaneous commands comfortable for a data base

administrator. Below a basic explanation of most important commands' syntax is given.

1 Break-even Point - this economic indicator determines a production level expressed as a part of pro­

duction capacity which assures an equilibrium of cumulative receipts (profit) with cumulative production

costs.



355

It do not exhaust all the language capabilities - in fact the flexibility and power of

data retrieval are limited only by imagination of the user.

The SELECT command

The SELECT command is for retrieval of selected contents of the database.

The syntax of the SELECT command is as follows:

SELECT clause FROM clause

{ WHERE clause
{ GROUP BY clause

{ HAVING clause

{ ORDER BY clause

{ INTO TEMP clause

}

}

}

}

}

Briefly, the SELECT clause names a list of columns of expressions to be retrieved, the

FROM clause names a list of tables, the WHERE clause sets conditions on the rows, the

GROUP BY clause groups rows together, the HAVING clause sets conditions on the

groups, the ORDER BY clause orders the selected rows, and the INTO TEMP clause

puts the results into a temporary table.

The UPDATE and DELETE Commands

The UPDATE and DELETE commands permit modification or deletion of database

rows in mass. The syntax of the commands is as follows:

UPDATE table_name SET column_name = expr
column_list = expr_list

* = expr_list
{ WHERE clause }

DELETE FROM table_name { WHERE clause }

Updating of the data is gained by specification of a table name and a column name (or

names) and a new contents of this column done by an arithmetical expression. Rows

to be affected may be picked up using WHERE clause. DELETE command may be

applied to a whole table indicated by a name or to chosen rows given by WHERE clause.

During the above commands is executed, the affected rows or columns can be dis­

played, one at a time, and the system prompts to verify that a change or deletion is

required.

Print Last Review

It is one of AS (auxiliary subsystem) functions that causes the system to prepare a hard

copy of results of the last applied review already shown on the screen.



356

Repeat Last Review

Results of the last review are saved and can be send to the screen on request. This

option is useful when after doing some operations outside the Review PDA option the

user wants to recall previous values of a certain review.

Check PDA Consistency

This option provides the user with a possibility of automatic checking of inconsistencies

and errors that can occur in the database. The program traces for errors that violate

the structure of data corresponding to the structure of PDA basic model.

When an incorrect situation is found, the system displays a list containing infor­

mation on the error status, number and names of items that are subjects of the error

followed by a comment. Basically, two kinds of errors are distinguished: errors E and

warnings W. The first kind makes further calculations impossible (a generated model due

to its structure cannot give the optimal solution); the second is not critical for further

processing though warnings can indicate on facts that can substantially influence the

solution.

Data checking performed bases on:

• information redundancy purposefully introduced into the data base,

• analysis of reference in the data base,

• analysis of constraints put on media distribution.

The following situations cause error E messages:

wrong number of media - different number of media in a process and

a number of corresponding rows in the PROCESS I/O MEDIA

table.

wrong number of markets - different number of markets declared

for a medium and a number of corresponding rows in the MAR­

KET table.

wrong number of processes - different number of processes in an

installation and a number of corresponding rows in the PRO­

CESS table.

product out of network - a medium occurs in the table CHEMI­

CAL OR MEDIUM but it is not specified among the technolog­

ical data.

output locked - a medium is specified as an output of the network

but no sale market was defined for this product.

input locked - a medium is specified as an input of the network but

no purchase market was defined for it.



357

wrong price relation - prices set out for purchase or import as

well as for sale or export are in relation that is not realistic from

the economic viewpoint. Basically, sale- or export-prices should

exceed those of purchase or import. Otherwise, if such data are

introduced to the PDA model, it causes circulation of products

beyond the production network (as it means that it is beneficial

to buy products and then sell them without any processing).

Moreover, the system can display the following warnings:

output import redundant - the indicated product is an output of

the production network, and moreover, import on the product is

assumed.

input export redundant - the indicated product is an input of the

production network, and moreover, export on the product is as­

sumed.

mixed limited - the indicated product is both a process input and

a process output. There is a constraint imposed on the flow of

this product inside the network.

GENERATE PROBLEM

The option establishes a bridge between DBMS and MMS. The optimization model is

generated from the database using DBMS mechanisms; on the other hand selection of

different version of PDA basic model is, in fact, a domain of MMS.

Here is a content of the menu displayed on the GENERATE PROBLEM level:

1. Generate Model (capacities constrained)

2. Generate Model (capacities relaxed)

3. Model Adaptation

4. Dictionary Adaptation

The basic function of the module is selection and transformation of data stored in the

database into so-called MPS file, DICTIONARY file and CHANGE file.

The MPS file contains information organized according to linear programming stan­

dard of IBM called MPS (Mathematical ... 1976) and widely used for such applications.

It is important that the structure of the MPS file reflects an assumed structure of

the model selected for simulation experiments.

The DICTIONARY file contains description of selected MPS codes (names) in natu­

ral language and report specification for every optimization run. In principle, the file is

a cross- reference array that combines MPS codes and real-life names as well as param­

eters of scale and units introduced for variables that occur in the solution. The latter

file determines an order and classification (attribute-oriented cross-cutting groupings)

of the reported results due to requirements of the user.

The CHANGE file points at aggregates that are used for objectives definition or

media that can be modified during simulation experiments on a given model. The



358

file also defines set of criteria that can be selected for an optimization run, kind of

constraints or single parameters.

The first two options of the menu cause MPS file generation either corresponding to

a PDA model with incorporated constraints on capacities of processes as determined in

the database or without those constraints. The second option is especially useful at the

initial stage of the analysis to estimate production levels that meet global conditions as

e.g. investment value assumed, production goal etc.

Options 3, 4 come from 2nd level of MIDA control and enable adaptation of the

model and intervention into a default contents of the report on optimization, respec­

tively.

PERFORM EXPERIMENTS

By selection of this main menu option, the user activates the MMS. It consists of an

integrated optimization package devised for solving linear programming problems of

three types:

LP problems with a single objective function, solved using revised simplex method,

FLP problems with single fractional linear objective function,

MLP multicriteria problems solved through the reference point method (Wierzbicki

1979).

Capabilities of the MMS allow for flexible definition of optimization experiments and

rough analysis of results. They are as follows:

• the user may choose optimization mode and may change this mode during the

work with the package,

• a selected criterion (or criteria) from a pre-defined set can be selected,

• constraints can be changed for selected variables of the model,

• a so-called utopia point is calculated automatically in the case of multiobjective

problems,

• a fast review of optimization results is possible,

• clear and understandable reports of results can be created,

• results can be stored on disk files for further analysis,

• a basis solution calculated for an initial problem is maintained, what results in sig­

nificant acceleration of computations in the case of repeated usage of the package

with the same starting base,

• postoptimal analysis can be done with respect to constraints introduced by mar­

kets.



359

The following actions are also possible to support analysis on 2nd level devised mainly

for model designers:

• any of the elements of generalized simplex matrix using MPS codes may be

changed,

• the results can be stored in MPS output standard (Mathematical... 1976).

Though some of the above functions may seem to be redundant as compared to those

contained in other menus of the system, they have been implemented intentionally to run

experiments more efficiently when changes of the input data do not violate dimensions

of the initial problem.

Below all functions provided by the menus of MMS will be listed. It aims at giving

a comprehensive view on the structure of the subsystem only because while using it the

user can be always supported with detailed instructions of Help.

The main menu of the module is as follows:

1. Select Optimization Type

2. Input Manager

3. Run Solver

4. Output Manager

5. Exit

In principle, all options 2 - 5 of the main menu can be executed in any order; nevertheless

to guide the user while solving the problem, the system highlights the options following a

logical order of the solving procedure. The options of the menu comprise key components

of the problem formulation, solving, reporting and modification.

Select Optimization Type

This option should be executed as the first one to determine type of the optimization.

A selected type can be changed during the session.

When the Select Optimization Type option is executed, the system offers the fol-

lowing submenu:

1. Single Objective

2. Multiobjective

3. Fractional

Regardless which one of the above types is chosen, the system then asks whether the

user wants to start from a previously calculated basic solution (old basis) and displays

names of those bases that have been stored already. To get more information about

existing basis files, it is possible to call Help. If no one of the listed bases can be used for

the current problem, the user should select the New Basis option displayed as the first

one on the list of simplex bases and then will be asked for a name of the new basis file.

It is important that starting calculations from an old basis (if possible) brings solution

of the problem much faster which is crucial for efficient solving large-scale problems.



360

Input Manager

This option is for a scenario definition of an optimization problem to be solved. When

a choice of the starting basis is decided, the system returns to Input Manager option

of the main menu. On this level a detailed formulation of the problem can be done

following the options of the submenu:

1. Prepare Objectives

2. Bound Items

3. Run MPS-like Modifier

4. Calculate Utopia Point (if applicable)

5. Exit

As opposed to the main menu, the user is free to execute the options in any order.

Prepare Objectives

Activation of this option causes displaying a screen of data entry/update type. The

user can choose from a set of pre-defined aggregates those that are to form current

criterion or criteria. Simultaneously a direction of optimization is determined. The

criteria selection is performed by using the keys for moving through the menus. To

choose an optimization direction the user should:

1. move the cursor to the third column of the screen

2. press SPACE BAR until a desired direction will be displayed, Le.:

min - minimization,

max - maximization,

flo - ignore,

den - a denominator; which is only applicable to the fractional optimization - in

this case min or max indicates a numerator.

When the user has decided to do a single objective optimization, he can define only

one objective from the list. If he has declared to perform a multiobjective experiment,

he is provided with a similar list containing an additional fourth column reserved for

a reference point value. The similar mechanism allows to enter new values for the

reference point. Because the list displayed for Prepare Objectives option may exceed

the space of one screen (window), it can be scrolled down or up.

Bounds Item

If the user wants to modify constraints on the aggregates or variables that represent

market conditions this option is adequate. It can be done in a similar way as assigning

new values for the reference point.

To define new lower (upper) bound the user should pick the given item up and move

the cursor to the third (fourth) column of the screen and enter new value. It is obvious

that a lower bound should be less than or equal to the corresponding upper bound.



361

The two above options of MMS (level 1) are used to complete or interactively modify

the optimization problem.

Run MPS-like Modifier

It is an option from 2nd level of control that allows changing any LP-matrix element.

Using this option requires a good knowledge of the model associated with the MPS file

structure (Mathematical ... 1976). Because a wrong update of the file can damage the

model, this option should be used with caution. First, the Section Definition Com­

mand should be entered to define the MPS section to be updated. This command can

be followed by updating commands corresponding to the Section Definition Command.

Each section definition command must be typed without blanks and each updating

command must start from a blank and consist of a number of fields (like in the MPS

file) separated by at least one blank. The update of a section is terminated by a new

section definition command. The section definition command endata ends modification

and quits the option.

Any time the (ll command can be introduced for looking through the MPS file. In

the multiobjective case an original (not preprocessed) file is taken into account.

Calculate Utopia Point

The option runs series of optimization problems and searches for an utopia point cor­

responding to the defined set of objectives. This option obviously applies to a multiob­

jective optimization.

Run Solver

The option activates the solving procedure for the currently defined problem (if it is

possible).

Analysis of infeasible and unbounded solutions

The cases of infeasible or unbounded solutions can happen quite often while doing

simulation experiments. Especially for complex and large-scale models it can be difficult

to trace reasons for infeasibility or unboundness.

To support diagnosis of these reasons, the system provides an analysis of such cases,

if required. The analysis consists of giving names of variables that have contradictory

constraints (infeasible case) or that cause unbounded solution. When the solution tends

to violate an upper constraint (bound) of a variable, the comment TOO HIGH is written.

When the solution tends to violate the lower bound imposed, the comment TOO LOW

is displayed. It means that in the TOO HIGH case, the upper bound of the variable

should be increased, and correspondingly, in the TOO LOW case, the lower bound should

be decreased. Dependent on a kind of a bound violated, five categories of bounds can

be signaled together with a name of variable: import, export. domestic purchase.

domestic sale and process. In the second category of infeasibility caused by an



362

unmatched balance equation, the analysis giving a name of balance equation violated

while solving a problem is displayed.

If the unbounded solution occurs, the system provides a necessary diagnosis of the

case by indicating a variable that caused the situation. In a very rare case of unbounded

solution met in the phase 1 of simplex algorithm, the systems warns the user that the

analysis could be irrelevant.

Both cases can be analyzed on the basis of MPS-like solution that can be stored

on a diskfile by selecting an appropriate option of the Output Manager under a name

extended by .mps

Output Manager

After an experiment is run successfully, the user can be supported by the Output Man­

ager to review and store results of the optimization. Here is the corresponding submenu:

1. Show Criteria Solution

2. Show Fast Report

3. Show Report

4. Compare with Previous Run

5. Postoptimal Analysis

6. Store Report

7. Store MPS-like Solution

8. Prepare Solution for Storing in Database

9. Store Results

10. Print Last Report

11. Show Utopia Point

12. Exit

Show Criteria Solution - the values and optimization directions of objectives for the

current solution will be displayed,

Show Fast Report - the current solution will be quickly displayed in a rough form,

Show Report - the current solution will be displayed in as nicely as possible formatted

form. Only non-zero values will be taken into account. It is possible to review

this report conveniently,

Compare with Previous Run - a comparison of the current solution with the pre­

vious one (if any) will be performed on assumed level of accuracy (i.e.requested

by the user).

Postoptimal Analysis - the postoptimal analysis performs ordinary ranging on the

bounds. For each lower bound and each upper bound, the subroutine determines

the maximum range in which the bound can vary without affecting the optimal ba­

sis. The option is a problem oriented implementation of a type of the postoptimal

analysis of POSTAN 3 package (see Dobrowolski at al. 1984).



363

Store Report - the previously prepared report will be stored in a file named by the

user,

Print Last Report - either the report generated by the option 3 or postoptimal anal­

ysis report can be printed,

Store MPS-like Solution - the solution will be prepared in special (MPS-standard)

form which can be useful for model developers. This form is practically unreadable

for normal users but can be useful for tracing consecutive steps of the solving

procedure (the format of the printout is described in (Murtagh and Saunders

1977). The system will ask for the file name for storing the results,

Prepare Solution for Storing in Database - the solution will be prepared in a for­

mat acceptable by data base management system. This solution can be loaded

into the database and analyzed by DBMS utilities.

Store Results - the current solution will be stored for future analysis. The following

files will be created: report, solution for DBMS, an utopia value (if calculated)

and value(s) of criteria,

Show Utopia Point - a value of utopia point will be displayed (if calculated by Input

Manager after calling the multiobjective option),

Exit - goes to the upper level menu.

SELECT AND DISPLAY EXPERIMENT

Again the user is armed with DBMS but now the reviews can go not only through input

data but results of an experiment as well.

The option is to be selected after an optimization experiment is run. It provides the

user with a variety of reports on the solution dependent on several solution-components

that might be of interest to him. Some of the reports are standard (level 1 of MIDA

control), the other (level 2) can be printed out on request of the user who can design a

format and content by himself.

Here the whole menu offered by pressing the option follows:

1. Select Experiment to Display

2. Report on Optimization

3. PDA Evaluation

4. Processes

5. Import

6. Export

7. Domestic Purchase

8. Domestic Sale

9. Domestic Sale form Import

10. Single Plant Evaluation

11. Medium Distribution (by number)

12. Medium Distribution (by name)



364

13. Process Inputs and Outputs (by number)

14. Process Inputs/Outputs (by name)

15. Advanced Reviewing (via informer)

16. Print Last Review

17. Repeat Last Review

Select Experiment to Display

Since the results of various experiments can be stored in the system during a session with

MMS, not only those of the recent one can be reported. To recall results of experiments

done already, this option should be pressed before selecting anyone listed below.

Scenario

A scenario containing information about assumptions set for the simulation experiment

is displayed. The scenario is preceded by a name of an experiment and an optimal

criterion value.

PDA Evaluation

Development programs (as expressed by optimal solutions relevant to assumed condi­

tions) are to evaluated by means of the following indicators:

Fixed Capital Investment - FCI,

Domestic Investment,

PDA Net Income - NI,

NI/FCI,

PDA Import,

PDA Domestic Sale,

Production Profit,

Simple Rate of Return,

Production Import,

Domestic Sale of Production,

Manufacturing Value Added - MVA,

MVA/FCI,

Gross Production Value - GPV

MVA/GPV,

Export,

Domestic Purchase,

Energy Consumption,

Direct Labour,

Supervisory Labour,

Laboratory and Control.

As can be observed, the above indicators are classified into three categories that corre­

spond to PDA as a whole and to the production system itself. This is done to explicate



365

evaluation of development programs from two various viewpoints. The indicators are

be calculated after the experiment for an assumed scenario is performed, i.e. as a post­

optimization analysis of the generated development program. As can be seen, some

aggregates give criterion value(s) while the other are performance indicators only.

Processes

The report on processes provides a two-fold information. First, a share of investment

cost over process-units is displayed. For the sake of better visualization of the results,

the values in % are shown in a bar chart shape. Next, the user can quit the review

or request for a more detailed information. Now, production volumes of processes are

displayed both in absolute values and as a portion of an assumed level. Those that are

omitted in the report have the production equal to zero.

Import

Similarly to the review Processes, the report has two functional sections. The first one

gives a share of particular media in total import of the PDA in a bar chart shape. The

second section provides information on quantity and value of products imported by the

PDA.

Export

This review is analogous to the one about import, and the data are displayed in the

same mode.

Domestic Purchase

This report provides information on domestic purchase of media in the PDA. The report

is analogous to the one about import and export, and the data are displayed in the same

mode.

Domestic Sale

This report provides information on domestic sale of products of the PDA. The report

is analogous to the one about import and export, and the data are displayed in the

same mode.

Domestic Sale from Import

This report shows complementary imports of market goods that is necessary for meeting

domestic demands. Import of a medium is expressed in proportion to the whole volume

of its sale in %.



366

Single Plant Evaluation

This report provides a complex information concerning any single process or installation,

relevant to an optimal production level calculated during a simulation experiment. The

components of the report are the same as for the Single Plant Evaluation suboption of

Review PDA.

Gross Production

This component of the report provides a total production value calculated as a sum of

production values over all processes of the PDA.

Medium Distribution (by number)

Similarly to the reports as above, this one gives information divided in two segments

- two bar charts located with opposite orientation. The first one shows sources of a

given medium in the PDA with relative quantities of the medium gained, the second

one contains the outputs. This way the user obtains a graphical image of balance of

the medium in the network, corresponding to an optimal solution. As in the option

described above a picture is followed (on request) by a table with detailed distribution

of the medium.

Medium Distribution (by name)

The function of the report is analogous to the last described option, but it does not

provide the graphic part of report.

Process Input/Output (by number)

Process Input/Output (by name)

A specification of all inputs and outputs of a given process is displayed. It contains

quantities of inflows and outflows of the process. The process can be selected either by

its number or by name.

Advanced Reviewing (via SQL)

Quite similar to the Advanced Reviewing of the database, this option provides a powerful

reporting mechanism based on the same Structured Query Language - SQL described

already (see INFORMIX ... , 1987).

Therefore, using the same syntax of the commands, the user can select and retrieve

information concerning results of optimization experiments as it was done for the source

data stored in the database. This is a result of loading the solution to the database.

LOOK-OVER EXPERIMENTS ARCHIVE

This option provides a user with tools for the maintenance of an archive of results stored

during the work with the PERFORM EXPERIMENTS option. Here is the menu offered:



367

1. Scenarios of Stored Experiments

2. Compare Experiments

3. Remove Experiment

4. Print Last Review

5. Repeat Last Review

Display Scenarios of Stored Experiments

This option shows a content of the experiments archive. In the archive those experiments

that are meaningful for the user are to be stored. The experiments are represented by

their names given by the user during running the PERFORM EXPERIMENTS option

and scenarios set for those experiments.

Compare Experiments

This option is run when a comparison of results of various experiments is required.

When the option is selected, the user can choose experiments to be compared from

among those displayed on the screen. In principle, if the user picks up no more than

3 experiments, the output is produced on the screen and can be printed out as well.

Otherwise, only a printout is possible. The system can recapitulate the differences

between the results following one of the COMPARISON MODES (up to the user's

convenience) :

1. Different Elements

2. All Elements

3. Percent Relation

In the All Elements mode, the system displays all components of the solution regardless

their values. As opposed to this mode, the modes Different Elements and Percent

Relation introduce only different elements of the results to the comparison table. In the

first one all the results are quoted in absolute values, the second one sums us differences

in a relative manner (in %) with respect to the basic solution. As a basic solution,

results of the first selected experiments are taken.

Remove Experiment

To do up the archive file, those experiments that are no longer important should be

removed. An experiment that is to be removed can be indicated on the list displayed

by using the same mechanism as for all menus (i.e. by highlighting the name of an

experiment to be deleted).

AUXILIARY FUNCTIONS

The system provides the user with tools for making backups of the database contents.

Here is the relevant menu:

1. Store D.B. on Diskette

2. Restore D.B. from Diskette



368

3. Store D.B. in ASCII format

4. Restore D.B. from ASCII format

5. Reinstall MIDA System

Store Database on Diskette

This option is to do backups of the database contents. It is recommended to do backups

reasonably often, i.e. after each substantial update of the database. Otherwise any

failure of the computer or the hard disk can spoil a lot of work invested in the data

entering. Before pressing the option 3, a formatted high density diskette should be

inserted in a slot. The principle is that one base can be stored on one diskette.

Restore Database from Diskette

This option restores a previous contents of the database stored on a high density diskette.

To restore a database contents, anew, empty database should be established e.g. by

using of a Reinitialize Database option.

Store Database in Ascii Format

This option produces a dump of a database contents in the form of an character file. It

is useful for making a compact backups of databases especially when the same database

should be installed on another operating system (e.g. when it is to be moved from

DOS to XENIX). In addition, the character dumps are a convenient form of a database

reviewing, especially for experienced users.

Restore Database from Ascii Format

This option loads a new, empty database from ascii dumps.

Reinitialize Database

This option establishes a new, empty database in the current directory. The former

contents of the database, if such one exists in the directory is removed.

5 Summary

MIDA presented in this paper exists in two implementations: for DOS and for UNIX

(XENIX, ULTRIX) operating systems. These implementations, regardless slight differ­

ences that arise as an effect of implementation in different computer environments, are

the same from the user point of view.

Until now, MIDA is extensively used in three different places in the world, supporting

several different development problems of the chemical industry on the national level.

Moreover, some elements of MIDA methodology and software tools are implemented in

the fourth place.



369

The above fact suggests that some new modification to the system may come soon

as a consequence of use by various people and in various places.

Acknowledgements

The section on description of MIDA is based on MIDA - User's Manual that was

prepared by our friend and collaborator dr Maciej Skocz. We are very obliged him for

a possibility of quoting large parts of the text.

References

Alter, S.L. (1980) Decision Support Systems: Current Practice and Computing Chal­

lenges. Addison-Wesley Publishing Co., New York.

Bonczek, R.H., C.W. Holsapple and A.B. Winston (1979) Computer based support of

organizational decision making. Decision Science, Vol. 10, no. 2, pp. 268-291.

Dobrowolski, G., K. Hajduk, A. Korytowski and T. Rys (1984) POSTAN - A Package

for Postoptimal Analysis (An Extension of MINOS). nASA Collaborative Paper

CP-84-32, Laxenburg, Austria.

Dobrowolski, G., J. Kopytowski, J. Wojtania and M. Zebrowski (1984) Alternative

Routes from Fossil Resources to Chemical Feedstock. nASA Research Report

RR-84-19, Laxenburg, Austria.

Dobrowolski, G., J. Kopytowski, T. Rys and M. Zebrowski (1985) MIDA (Multiob­

jective Interactive Decision Aid) in the Development of Chemical Industry. In

Theory, Software and Testing Examples for Decision Support Systems. A. Le­

wandowski and A. Wierzbicki (Eds) pp. 235-251, nASA Collaborative Paper,

Laxenburg, Austria.

INFORMIX - Relational Database System. User's Manual. (1987) Relational Data­

base Systems, Inc.

Jarke, M., M.T. Jelassi and E.A. Stohr (1984) A Data-driven User Interface Generator

for a Generalized Multiple Criteria Decision Support System. IEEE Computer

Society Reprint, Silver Spring, USA.

Kendrick, D.A. and Stoutjestijk A.J. (1978) The Planning of Investment Programs.

Vol. 1 A Methodology. Johns Hopkins University Press, Baltimore M.D., World

Bank Research Publications.

Mathematical Programming System/360 Version 2, Linear and Separable Program­

ming - User's Manual (1976) IBM Document no. H20-0476-2.

Murtagh, B.A. and M.A. Saunders (1977) MINOS - A Large-Scale Linear Program­

ming System. User's Guide. Technical Report SOL 77-9, System Optimization

Laboratory, Stanford University, California.



370

Sophos, A., Rotstein E. and Stephanopoulos G. (1980) Multiobjective analysis in mod­

eling the petrochemical industry. Chemical Engineering Science, Vol. 35(12), pp.

2415-2426.

Sprague, R.H. (1980) A framework for the development of decision support systems.

MIS Quarterly ,vol. 4, no. 4, pp. 1-26.

Palmer, K. (1984) A model management framework for mathematical programming.

An EXXON Monograph, Wiley New York.

Wang, M.S. and J.F. Courtney (1984) A Conceptual Architecture for Generalized

Decision Support System Software. IEEE Transaction on System, Man, and Cy­

bernetics, vol. 14, no. 5, pp. 701-711.

Wierzbicki, A. P. (1979) The Use of Reference Objectives in Multiobjective Optimiza­

tion - Theoretical Implications and Practical Experience. Working Paper WP­

79-66, International Institute for Applied System Analysis, Laxenburg, Austria.



Part 3

Short Software Descriptions





IAC-DIDAS-L
A Dynamic Interactive Decision Analysis

and Support System

for Multicriteria Analysis of Linear and Dynamic

Linear Models on Professional Microcomputers

Tadeusz Rogowski, Jerzy Sobczyk, Andrzej P. Wierzbicki

Institute of Automatic Control, Warsaw University of Technology.

1 Purpose of the packages

IAC-DIDAS-Ll and L2 are two versions of software packages - prototype versions of de­

cision analysis and support systems - for interactive, multiobjective analysis for models

describing substantive aspects of a decision situation that are represented in linear pro­

gramming or dynamic linear programming form. Such models are often used to represent

situations of complex decisions involving economic, environmental and technological as­

pects. Models of this type must be formulated by teams of analysts specialized in a

given field, before they can be helpful to decision makers. Once formulated, however,

such models can be used in many ways to learn about decision options and predicted

results.

2 Methodological background

IAC-DIDAS-L systems can be used either by analysts specialized in modelling or by

decision makers experienced in a given field but not necessarily computer specialists.

These systems help in organizing work with decision models in a process of interactive,

dynamic decision support. First, they help in model edition and initial analysis; then

in the formulation of a multiobjective decision analysis problem; then in the initial

assessment of bounds of decision outcomes or objectives for a given problem.

A model of multiobjective linear programming type is characterized by its decision

variables, its outcome variables defined by linear model equations, and its constraints

or bounds on various variables. In multiobjective analysis, the user can select objective

variables (mostly among outcome variables) that might be minimized, maximized or sta­

bilized close to given values. This constitutes the definition of multiobjective analysis

problem. For a given problem, the package can help in computing bounds on efficient



374

(multiobjectively optimal) values of the objective variables and in suggesting a compro­

mise efficient solution. All this is done in IAC-DIDAS systems by special multiobjective

optimization methodology and special optimization solvers; but the user needs not to

be bothered with these specialized details, because he can influence the choice of an ef­

ficient solution (decisions and outcomes) by specifying his reference point or aspiration

levels for the objective outcomes he has determined, and asking the system to find the

efficient solution that matches his aspirations most closely.

An interactive multiobjective analysis of the problem based on the principle of refer­

ence point optimization is performed, while the user (the analyst or the decision maker)

indicates the type of solutions that he is interested in by specifying his aspiration levels

for objective outcomes (or for their trajectories in the dynamic case) and the decision

support system responds to his directions by solving a special optimization problem and

answering, whether his aspirations are attainable. If not, the system proposes decisions

with outcomes that come uniformly as close as possible to the stated aspiration levels.

If the aspiration levels are attainable but cannot be exceeded, the system proposes de­

cisions with outcomes that precisely match the aspiration levels. If the aspiration levels

can be exceeded, the system proposes decisions with outcomes that uniformly exceed

the aspirations. By changing the aspiration levels, the user can easily control and select

such decision options that are best suited for his preferences.

Finally, the system can also help in a post-optimal analysis of a selected decision

option by examining various options that are close to it. All results of analysis can

be illustrated graphically on the monitor screen. The user can also have print-outs of

selected results of analysis.

The system helps also the user to keep track of consecutive results of analysis and

stores results marked by the user as important in a special result directory. Because

the user can formulate various multiobjective decision problems for given model of sub­

stantive aspects of the decision situation (by maximizing or minimizing multiobjective

various model outcomes, etc.), the system keeps also track of various problem formu­

lations. Finally, the system allows also to work with various models of one or more

decision situations; thus, the system has also model and problem directory.

The system includes two demonstrative models with some problem formulations

and illustrative results of their analysis; by watching these demonstrations, the user can

easily learn how to work with the system. One of the demonstrative examples used

in both versions illustrates a diet composition problem and the other example depends

on the system version. In the version 11 that includes the possibility of working with

dynamic models but uses a more specialized format of model edition, an example of

controlling two reservoirs on a river illustrates dynamic problems of decision analysis.

In the version L2 that is essentially limited to static models but has an easy and user­

friendly spreadsheet format of model edition, an example from agricultural economics

illustrates the possibilities of the system.



375

3 Short program description

IAC-DIDAS-L1 and L2 are software packages from the class of prototypes of interactive

multiobjective decision analysis and support systems. When supplemented by a model

of the substantive aspects of a decision situation (involving economic, environmental,

technological etc. aspects), they can serve both as tools of model analysis used by

specialists and as decision support systems used by decision makers that are experienced

in a given substantive field (but not necessarily computer specialists) that want to

investigate various aspects of many decision options. These packages are developed to

the level of scientific transferable software, that is, are tested and documented enough

to be used widely in research. The IAC-DIDAS-L packages are designed for use with

models of multiobjective linear programming and dynamic linear programming type.

IAC-DIDAS-L1 is written in FORTRAN, contains a special linear programming

optimization solver for multiobjective problems, that results in relative fast execution

of optimization runs during interactive analysis but requires the preparation of the

model of substantive aspects of decision situation in the MPS format (standard for

linear programming specialists but not necessarily easy for an average user); on the

other hand, this version allows also for an easy edition and analysis of dynamic models.

IAC-DIDAS-L2 is written in PASCAL, contains another version of linear program­

ming optimization solver adapted for multiobjective problems and supports an interac­

tive definition and edition of the model of substantive aspects of decision situation in a

user-friendly format of a spreadsheet.

Both versions have user interfaces with helps displaying various commands used

depending on the stage of decision analysis process. Both versions have data bases with

directories of various models, multiobjective analysis problem formulations and various

results of analysis. Both versions have graphic interfaces helping to illustrate results of

analysis.

4 Hardware requirements

Both IAC-DIDAS-L1 and L2 are implemented on professional microcomputers com­

patible with IBM-PC/XT (with a hard disk, Hercules or color graphics or EGA card

and, preferably, a coprocessor) or a similar IBM-PC/AT configuration.

References

Rogowski, T., J. Sobczyk, A. P. Wierzbicki (1988). IAC-DIDAS-L Dynamic Interac­

tive Decision Analysis and Support System, Linear version. WP-88-110, Interna­

tional Institute for Applied Systems Analysis, Laxenburg, Austria.



HYBRID

A Mathematical Programming Package

Marek Makowski

IIASA, Laxenburg, Austria"

Janusz S. Sosnowski

Systems Research Institute, Polish Academy of Sciences, Warsaw.

1 Purpose of the package

HYBRID 3.1. is a mathematical programming package which includes all the functions

necessary for the solution of linear programming problems, both static and dynamic

(in fact also for problems with structure more general then the classical formulation of

dynamic linear problems). HYBRID 3.1. may be used for both single- and multi-criteria

problems. The package may be also used for solving single-criteria linear-quadratic

problems. Since HYBRID is designed for real-life problems, it offers many options

useful for diagnostics and verification of a model for a problem being solved.

HYBRID is a member of DIDAS family of decision analysis and support systems

which is designed to support multicriteria analysis via reference point optimization.

HYBRID can be used by an analyst or by a team composed of a decision maker and

an analyst or---on last stage of application-by a decision maker alone. HYBRID is a

tool which helps to choose a decision in a complex situation in which many options may

and should be examined. Possible applications include problems of economic planning

and analysis, management, technological or engineering design problems, problems of

environmental control.

2 Methodological and theoretical backgrounds

A multicriteria problem is transformed by HYBRID to an equivalent single criterion

problem. Therefore a multicriteria problem is solved as a sequence of parametric op­

timization problems modified by a user in interactive way upon analysis of previous

results.

'on leave from the Systems Research Institute of the Polish Academy of Sciences, Warsaw.



377

HYBRID uses a non-simplex algorithm - a particular implementation of the Lagrange

multiplier method - for solving linear programming problems. General linear constraints

are included within an augmented Lagrangian function. The LP problem is solved by

minimizing a sequence of quadratic functions subject to simple constraints (lower and

upper bounds). This minimization is achieved by the use of a method which combines

the conjugate gradient method and an active constraints strategy. The method exploits

the sparseness of the matrix structure. A dynamic problem is solved through the use

of adjoint equations and by reduction of gradients to control subspaces. The simple

constraints (lower and upper bounds for non-slack variables) for control variables are

not violated during optimization and the resulting sequence of multipliers is feasible

for the dual problem. Constraints other then those defined as simple constraints may

be violated, however, and therefore the algorithm can be started from any point that

satisfies the simple constraints.

3 Description of implementation

HYBRID is coded partly in C language and partly in an extension of Fortran-77 (func­

tions coded in Fortran, after processing by a preprocessor, conform to the ANSI standard

of Fortran-77). The PC version has also a user friendly driver (with context sensitive

help) and functions that ease analysis of a solution and modification of parameters of

multicriteria problem.

4 Hardware requirements

HYBRID 3.1. may be used on VAX 6210 (running under Ultrix-32) and on IBM-PC

XT/ AT or compatible (with any graphic card). The PC version for small problems

requires 256kB RAM, for larger problems a configuration with more RAM is needed.

The coprocessor is strongly recommended but a version of HYBRID is available also for

a PC configuration without coprocessor.

5 References

Makowski, M. and J. Sosnowski (1988). User Guide to a Mathematical Program­

ming Package for Multicriteria Dynamic Linear Problems HYBRID Version 3.1,

WP-88-111, International Institute for Applied Systems Analysis, Laxenburg,

Austria, December 1988.



IAC-DIDAS-N

A Dynamic Interactive Decision Analysis

and Support System

for Multicriteria Analysis of Nonlinear Models

Tomasz Kreglewski, Jerzy Paczynski, Janusz Granat,

Andrzej P. Wierzbicki

Institute of Automatic Control, Warsaw University of Technology.

1 Purpose of the package

The decision analysis and support systems of DIDAS family-that is, Dynamic In­

teractive Decision Analysis and Support systems -are specially designed to support

interactive work with a substantive model of a decision situation while using multicrite­

ria optimization tools. They stress the learning aspects of such work, such as the right

of a decision maker to change his priorities and preferences when learning new facts.

DIDAS systems can be used either by analysts who want to analyse their substantive

models, or by teams of analysts and decision makers, or even by decision makers working

alone with a previously defined substantive model; in any case, we shall speak further

about the user of the system.

There are several classes of substantive models that all require special technical

means of support. The IAC-DIDAS-N version is designed to support models of mul­

tiobjective nonlinear programming type. Models of this type include two classes of

variables: input variables that can be subdivided into decision variables (means of

multiobjective optimization) and parametric variables (model parameters that are kept

constant during multiobjective analysis but might be changed during parametric or

sensitivity analysis)-and outcome variables that can be subdivided into several types,

the most important of them being optimized outcomes or objectives (the ends of mul­

tiobjective optimization that can be either maximized or minimized or stabilized, that

is, kept close to a desired level). The user might change the classification of outcome

variables and select his objectives among various outcome variables when defining an

multiobjective analysis problem.

For all input and outcome variables, a reasonably defined nonlinear model should

include lower and upper bounds, that is, reasonable ranges of admissible changes of

these variables. Moreover, an essential part of a nonlinear model definition are model



379

equations, that is, nonlinear functions that define the dependence of all outcome vari­

ables on input variables. To make the model definition easier for the user, it is assumed

that outcome variables are defined consecutively and that they can depend not only on

input variables, but also on previously defined outcome variables.

The IAC-DIDAS-N system helps in definition, edition, initial analysis and veri­

fication, optimization and multiobjective decision analysis of a rather broad class of

nonlinear models. An important feature of IAC-DIDAS-N is that it supports also

automatic calculations of all derivatives of nonlinear model functions.

2 Methodological background

A typical procedure of working with the IAC-DIDAS-N system consists of several

phases.

In the first phase, a user-typically, an analyst-defines the substantive model and

edits it on the computer. IAC-DIDAS-N supports the definition and edition of substan­

tive models in an easy but flexible standard format of a spreadsheet, where the input

variables correspond to spreadsheet columns and the outcome variables-to spreadsheet

rows; special cells are reserved for various additional information. Another new feature

of IAC-DIDAS-N is a symbolic differentiation facility that supports automatic calcula­

tions of all derivatives required by a nonlinear programming algorithm. The user does

not need to laboriously calculate many derivatives and to check whether he did not

make any mistakes; he only defines model equations or outcome functions in a form

that is acceptable for the symbolic differentiation program-which admits functions

from a rather wide class. The spreadsheet format allows also for display of computed

values of automatically determined formulae for derivatives in appropriate cells. The

user of IAC-DIDAS-N can also have several substantive models recorded in special

model directories, use old models to speed up the definition of a new model, etc., while

the system supports automatically the recording of all new or modified models in an

appropriate directory.

In further phases of work with DIDAS-type systems, the user-here typically an

analyst working together with the decision maker-specifies a multiobjective analysis

problem related to his substantive model and participates in an initial analysis of this

problem. There might be many multiobjective analysis problems related to the same

substantive model: the specification of a multiobjective problem consists in designating

types of model outcomes, especially objective outcomes that shall be optimized, and

specifying bounds on outcomes. For a given definition of the multiobjective analysis

problem, the decision and outcomes in the model are subdivided into two categories:

those that are efficient with respect to the multiobjective problem (that is, such that

no objective can be improved without deteriorating some other objective) and those

that are inefficient. It is assumed that the user is interested only in efficient decisions

and outcomes (this assumption is reasonable provided he has listed all objectives of his

concern; if he has not, or if some objectives of his concern are not represented in the

model, he can still modify the sense of efficiency by adding new objectives, or changing

the types of objectives).



380

One of main functions of DIDAS-type systems is to compute efficient decisions and

outcomes - following interactively various instructions of the user - and to present

them to the user for analysis. This is done by using the principle of reference point

optimization - that is, solving a special parametric nonlinear programming problem

resulting from the specification of the multiobjective analysis problem; for this purpose,

IAC-DIDAS-N contains a specialized nonlinear programming algorithm called solver.

Following the experiences with previous versions of nonlinear DIDAS systems, a special

robust nonlinear programming algorithm was further developed for IAC-DIDAS-N.

The main phase of work with the IAC-DIDAS-N system consists in interactive

scanning of efficient outcomes and decisions, guided by the user through specifying two

reference points called reservation point and aspiration point in the objective space, i.e.

reservation levels and aspiration levels for each objective; the system admits also the

more simple option of specifying either only an aspiration level or only a reservation

level for some objectives. The user can get additional information about the range of

possible outcomes during so called initial analysis of multiobjective problem and thus he

can reasonably specify his reference levels: aspiration level that he would like to attain

and reservation level that he would like to satisfy in any case. The system suggests

some initial values for both reference points.

IAC-DIDAS-N utilizes the aspiration and the reservation levels as parameters in

a special achievement function coded in the system, uses its solver to compute the

solution of a nonlinear programming problem equivalent to maximizing this achievement

function, and responds to the user with an attainable, efficient solution and outcomes

that strictly correspond to the user-specified references (in the sense of being possibly

close to the aspirations if they are unattainable, and uniformly better than aspirations

if they are attainable).

3 Short program description

The IAC-DIDAS-N system (Institute of Automatic Control, Dynamic Interactive De­

cision Analysis and Support, Nonlinear version) is a decision support system designed

to help in the analysis of decision situations where a mathematical model of substantive

aspects of the situation can be formulated in the form of a multiobjective nonlinear

programming problem.

The system supports the following general functions:

- definition and edition of a substantive model of the decision situation in a user­

friendly format of a spreadsheet.

- specification of a multiobjective decision analysis problem related to the substan­

tive model.

initial multiobjective analysis of the problem, resulting in estimating bounds on

efficient outcomes of decisions and in learning about some extreme and some

neutral decisions.



381

- interactive analysis of the problem with the stress on learning possible efficient

decisions and outcomes, organized through system's response to user-specified

aspiration and reservation levels for objective outcomes. The system responds

with efficient objective outcomes obtairred by maximization of an achievement

function that is parameterized by the"user-specified aspirations and reservations.

4 Hardware requirement

The program can be run on an IBM-PC-XT, AT or a compatible computer with Her­

cules Graphics Card, Color Graphic Adapter or Enhanced Graphics Adapter and, prefer­

ably, with a numeric coprocessor and a hard disk. If a numeric coprocessor is available

then the coprocessor version of the system can be used taking advantage of the copro­

cessor computational capacity, otherwise only the emulation version of the system can

be used with less computational capabilities. The system programs are recorded on two

diskettes. Each diskette contains compiled code of one version of the system together

with some data files with demonstrative examples of nonlinear models.

References

Kreglewski T., J. Paczynski, J. Granat, A. P. Wierzbicki (1988). IAC-DIDAS-N

A Dynamic Interactive Decision Analysis and Support System for Multicriteria

Analysis of Nonlinear Models with Nonlinear Model Generator supporting model

analysis. WP-88-112, International Institute for Applied Systems Analysis, Lax­

enburg, Austria.



DISCRET

An Interactive Decision Support System

for Discrete Alternatives Multicriteria Problems

Janusz Majchrzak

Systems Research Institute, Polish Academy of Sciences, Warsaw.

1 Executive summary

DISCRET is a system created to solve basic multicriteria choice problems in which a

finite set of feasible alternatives (and decisions) is explicitly given and for each alterna­

tive the value of all criteria describing its attributes interesting to the decision maker

(DM) were evaluated and listed. The DM is assumed to be rational in the sense that

he is looking for a Pareto-optimal solution as his final solution of the problem.

Such a decision problem is rather trivial for any human being as long as the number

of criteria and alternatives is small (say, 3-5 criteria, 7-15 alternatives) However, if the

number of alternatives and/or criteria grows, the limits of human information process­

ing capabilities are reached and some decision support facilities have to be utilized to

guarantee a proper and efficient decision making.

In many real-life problems the decision variables take their values from a discrete

set rather than from a continuous interval. Usually there is a finite number of available

facility location sites, the facility size or production capability may be chosen from a

discrete set of values, during a design process the components are chosen from a set of

typical elements available on the market, etc. Such problems form the "natural" field

of applications for the DISCRET system.

Another field of possible applications of the DISCRET system consists of cases in

which the original problem is actually continuous (rather than discrete) but the analysis

restricted just to a finite number of alternatives appearing in this problem may be

interesting and useful for the DM, since it may result in an enlightening and a more

precise definition of his preferences, region of interest or aspiration levels.

Situations falling under the latter category may occur for at least two following

reasons. Firstly, a sample of alternatives together with the corresponding criteria values

may be readily available (from simulation model runs for example). Secondly, for the

purpose of an initial analysis the DM may take into considerations just a few values for

each decision variable or generate a random sample of alternatives.

The DISCRET system makes no restrictions on the forms of the criteria. Therefore,

attributes as complicated as required may be considered.



383

To start the session with DISCRET the DM has to supply the file containing set

of the criteria values for all feasible alternatives, the problem specification file and

(optionally) the file containing the set of feasible decisions. These files, called the

data, specification and the additional data file respectively, describe the problem under

consideration.

After loading the problem the DM may obtain the information about the criteria

values ranges and he may put the lower and/or upper bounds on the values of some/all

criteria. The bounds setting may be utilized to eliminate irrelevant alternatives from

further considerations or to specify the current region of interest in the objective space.

In the next step the DM may eliminate the dominated alternatives by an explicit

enumeration technique. The tolerances for criteria values play an important role here.

If they are all equal zero or have small positive values that correspond to indifference

limits of the DM's for criteria values, the whole set of the nondominated solutions will

be obtained. If the values of tolerances are equal to some significant fractions of the

corresponding criteria ranges, then a representation of the set of nondominated solutions

will be obtained. The representation is a subset of the set of nondominated solutions

preserving its shape and containing the smaller number of elements, the larger were

chosen tolerance coefficients.

The biggest advantage of the implemented enumeration method is its ability to select

a representation of the nondominated set instead of the entire set. Unlike other known

approaches which find the entire nondominated set first and then select a representation

(differently defined for each of those methods), the presented method selects a represen­

tation at once. This fact profits in efficiency. Observe that because the representation

contains less elements than the nondominated set, it will be obtained with a smaller

computational effort.

The powerful tool of the reference point approach is also available for the DM.

By determining a reference point, he exhibits his aspiration levels for criteria values,

confronts them with the obtained solution and modifies them and the reference point.

To learn more about the problem the graphic display of two-dimensional subproblems

on the terminal screen can be utilized. The DM chooses two criteria for the vertical and

horizontal axes, while the other criteria are restrictively bounded - a two-dimensional

"slice" is cut out of the original m-dimensional problem. The graphical displays are

very useful on this stage of the decision making process, since the DM can see clusters

(groups) of alternatives.

DISCRET is an interactive system. The DM may execute its commands in any

order. The variety of paths the DM may follow guarantees flexibility in meeting his

demands. The implemented approach seems to be easy to understand and approve

even for a user who is not very familiar with multicriteria optimization techniques.

2 Short program description

The interactive decision support system DISCRET has been designed to solve medium­

size discrete multicriteria choice problems with the number of alternatives ranging from

few hundreds to few thousands. The number of criteria is in the current version re-



384

stricted to 20 (mainly due to the limitations of display facilities).

The program is recorded on a diskette(s) and should be installed on an IBM-PC­

XT/ AT or a compatible computer with a Color Graphic Adapter, Enhanced Graphic

Adapter or Hercules Graphic Card and a hard disk. The compiled code is distributed to­

gether with a number of files it requires and with two test problems generators providing

demonstrative examples.

The system supports the following menu--eontrolled general functions:

Loading user's problems in an easy to prepare standard of an ASCII file form.

Criteria values ranges (utopia and nadir points) display, and new criteria values

bounds setting to define the user's current region of interest.

Solving the discrete multicriteria optimization problem with explicit alternatives

(implicit constraints), Le. finding the set of nondominated or weakly nondominated

elements or it's representation, keeping or rejecting duplicate elements, etc.

The reference point approach, Le. selection of nondominated alternatives that

correspond to user-supplied aspiration levels for criteria.

Graphic display of the two-dimensional "slices" of the problem showing the user

alternatives clusters (groups).

References

Majchrzak J. (1988). DISCRET: An Interactive Decision Support System for Dis­

cret Alternatives Multicriteria Problems. WP-88-113, International Institute for

Applied Systems Analysis, Laxenburg, Austria.



DINAS

Dynamic Interactive Network Analysis System

Wlodzimierz Ogryczak, Krzysztof Studzinski, Krystian Zorychta

Institute of Informatics, Warsaw University.

1 Purpose of the system

DINAS is a scientific transferable software tool which enables the solution of various

multiobjective transshipment problems with facility locations. For a given number of

fixed facilities and customers and for a number of potential facilities to be optionally

located, DINAS provides the user with a distribution pattern of a homogeneous product

under a multicriteria optimality requirement. While working in an interactive mode,

the user gets optimal locations of the potential facilities and a system of optimal flows

of the product between nodes of the transportation network. With DINAS one can

analyse and solve such problems as:

- the transportation problem with new supply and/or demand points location,

- the problem of warehouses location,

- the problem of stores location for the agricultural production,

- the problem of service centers location and districts reorganization,

and many other real-life distribution-location problems.

2 The problem statement

DINAS works with problems formulated as multiobjective transshipment problems with

facility location. A network model of such a problem consists of nodes connected by

a set of direct flow arcs. The set of nodes is partitioned into two subsets: the set of

fixed nodes and the set of potential nodes. The fixed nodes represent "fixed points" of

the transportation network, i.e., points which cannot be changed, whereas the potential

nodes are introduced to represent possible locations of new points in the network. Some

groups of the potential nodes represent different versions of the same facility to be

located (e.g., different sizes of a warehouse etc.). For this reason, potential nodes

are organized in the so-called selections, i.e., sets of nodes with the multiple choice

requirements. A homogeneous good is distributed along the arcs among the nodes. Each



386

fixed node is characterized by two quantities: supply and demand on the good. Each

potential node is characterized by a capacity which bounds maximal good flow through

the node. The capacities are also given for all the arcs but not for the fixed nodes. A

few linear objective functions are considered in the problem. The objective functions

are introduced into the model by given coefficients associated with several arcs and

potential nodes (the so-called cost coefficients, independently of their real character).

The cost coefficient connected to an arc is treated as the unit cost of the flow along

the arc. The cost coefficient connected to a potential node is considered as the fixed

cost associated with locating of the node (e.g., an investment cost). Summarizing, the

following groups of input data define the transshipment problem under consideration:

- objectives,

- fixed nodes with their supply-demand balances,

- potential nodes with their capacities and (fixed) cost coefficients,

- selections with their lower and upper limits on number of active potential nodes,

- arcs with their capacities and cost coefficients.

The problem is to find the best (satisfying) location and flow scheme, i.e., to determine

the number and locations of active potential nodes and to find the good flows (along

arcs) so as to satisfy the balance and capacity restrictions.

3 Methodological and theoretical backgrounds

DINAS does not solve the multiobjective problem. It rather makes the user selecting

the best solution during interactive work with the system. According to some user's

requirements DINAS generates various efficient solutions which can be examined in

details and compared to each other. The user works with the computer in an interactive

way so that he can change his requirements during the sessions. The DINAS interactive

procedure utilizes an extension of the reference point optimization. The basic concept

of that approach is as follows:

- the user forms his requirements in terms of aspiration and reservation levels, i.e.,

he specifies acceptable and required values for given objectives;

- the user works with the computer in an interactive way so that he can change his

aspiration and reservation levels during the sessions.

DINAS searches for the satisfying solution while using an achievement scalarizing func­

tion as a criterion in single-objective optimization.



387

4 Description of the implementation

DINAS is prepared as a menu-driven and easy in usage system. The system consists of

three programs prepared in the C programming language:

- the network screen editor for friendly data input and results examination;

- the solver for single-objective optimization;

- the main interactive procedure for handling multiple objectives.

The basic version of the system is capable of solving problems with seven objective

functions, about one hundred of fixed nodes, a few hundreds of arcs, and fifteen potential

nodes organized in a few selections.

5 Hardware requirements

DINAS runs under Disk Operating System (DOS version 3.00 or higher) on an IBM­

PC XT/ AT or compatibles equipped with Hercules, EGA or CGA card and requires

640 K RAM. A hard disk is recommended but not necessary. One double-sided double­

density floppy disk drive is sufficient to run DINAS. The system can be installed in two

versions: with taking advantages of the Numeric Data Processor chip, or without using

the NDP chip. However, for solving large real-life problems the version with the NDP

chip is strongly recommended. A printer is useful but not necessary since all the reports

can be routed directly to a printer or to a disk file for printing at a later time.

References

Ogryczak, W., K. Studzinski, K. Zorychta (1988). Dynamic Interactive Network Anal­

ysis System - DINAS, version 2.1. User's Manual. WP-88-114, International

Institute for Applied Systems Analysis, Laxenburg, Austria.



MCBARG

A System Supporting Multicriteria Bargaining

Piotr Bronisz, Lech Krus, Bozena Lopuch

Systems Research Institute, Polish Academy of Sciences, Warsaw.

1 Executive summary

Many aspects of economic, environmental, or technological activity are influenced di­

rectly by bargaining between and among individuals, firms, and nations ("players").

In the pure bargaining problem, considered in the MCBARG system, the bargaining

conditions are determined entirely by the bounds of discussion, within which the final

outcome is determined by the interaction of the players. Even in the case of one in­

dividual, firm, and nation, there are many situations of complex decision, the decision

maker needs help to learn about possible decision options, decision consequences. The

MCBARG system enables learning process of the players, and supports reaching the

final outcome in the multicriteria bargaining problem. It is based on the theoretical

results presented in Bronisz, Krus, Wierzbicki (this volume).

The multicriteria bargaining problem is a generalization of classical bargaining prob­

lem, under assumption that the utility functions of participants are not given explicitly.

This generalization follows from the fact that an aggregation of participant's or player's

objectives is often impossible, because of various practical limitations of the utility the­

ory. The problem is defined by an agreement set - the set of outcomes that can be

reached under unanimous agreement of the players, and by a disagreement (status quo)

point which is a result of the problem if there is no such an agreement.

The proposed interactive process consists in generation of sequence of outcomes lead­

ing to a nondominated solution. The process is based on limited confidence principle,

taken from practical observation, which says that the players have limited confidence

in their ability to predict consequences and possible outcomes, hence each player tries

to prevent other players from receiving disproportionally large gains. The generated

outcomes are consistent with preferences of the players. The process assures also some

fairness rules and is resistent to various manipulations of the players.

The algorithm consists of a number of rounds. Each round starts at the current sta­

tus quo point (the first round starts from the initial status quo point). At each round the

player specifies his confidence coefficient (i.e. defines part of the maximal improvement

of the outcomes the counter players can obtain in the round). Furthermore assuming

some moves of the other players, he tests different improvement directions for his objec­

tives. This phase of the work with MCBARG system consists in an interactive scanning



389

of outcomes guided by each player through specifying reference points in the objective

space. The reference points are composed of aspiration levels of each player for his

objectives. The players get additional information about the range of possible outcomes

for a given confidence coefficient and some assumed actions of the counter players. This

information is useful for reasonable specification of the aspiration levels. The system

generates also some initial values for the aspiration levels and calculates corresponding

outcomes (called neutral outcomes). The scanning of the player outcomes is performed

in the system through directional optimization and lexicographic improvement of the

week Pareto outcomes. The system responds to the player with an attainable, efficient

(under the assumed confidence coefficient) outcomes that strictly correspond to the

player-specified aspirations. The results obtained for a number of different reference

points can be easily compared through scrolling option in both numerical and graphical

form. To finish this phase, the player is required to select, according to his prefer­

ences, his reference point indicating his preferable improvement direction. These points

selected independently by all the players are basis for calculation of the result of the

round. The result,is calculated following the limited confidence principle (the minimal

confidence coefficient is used for all players) and trying to improve outcomes for all

players in the directions specified by their reference point. Thus, the system acts as

a neutral mediator proposing a single-test provisional agreement improving the initial

situation and forming a basis for next round of negotiations. The results are presented

independently to the players in form of report, and the players can go to the next round

assuming the obtained result as a new status quo point. The process terminates when

an efficient, strictly Pareto-optimal solution in the agreement set is reached.

The system includes a generator and an editor of the model of the bargaining problem

for which the interactive process is organized. The model describes the agreement set

in form of a set of inequalities, and the status quo point. The generator and the editor

enable introducing linear or nonlinear formulas defining the inequalities using standard

operators and functions. An illustrative example has been prepared which relates to

the problem of cooperation of two farms. The problem consists in division of products

resulting from cooperation between two farms, according to the preference of farm

owners.

2 Short program description

The MCBARG system is a decision support system designed to help in analysis of

decision situation and mediation in multicriteria bargaining problem in which a math­

ematical model of the problem can be formulated by a status-quo point and a system

of inequalities describing agreement set in objective space of the players.

The program is recorded on one diskette that should be installed on an IBM-PC­

XT, AT or compatible computer with Hercules Graphics Card, Color Graphic Adapter

(CGA) or Enhanced Graphics Adapter (EGA). A diskette contains compiled code of the

program together with some data files for a demonstrative example of the bargaining

problem.

The system supports the following general functions:



390

The definition and edition of a model of the bargaining problem together with the

specification of the multicriteria decision problem.

Interactive mediation by generation of a sequence of outcomes (depending on

player-specified aspirations), leading to a nondominated solution in agreement

set.

Report of the final, efficient solution of the problem.

The second function proceeds in a number of rounds and in each round the system

supports:

Initial multiobjective analysis of the bargaining problem for each player, that

results in estimating bounds on efficient outcomes and learning about the extreme

and neutral outcomes.

Unilateral, interactive analysis of the problem with the stress on learning, orga­

nized through system response to user specified confidence coefficients and aspi­

ration levels for objective outcomes. The systems responds with efficient (under

the assumed confidence coefficient) objective outcomes.

Calculation of the multilateral, cooperative solution of the round. Reporting the

results of the already performed rounds.

References

Bronisz, P., L. Krus, B. Lopuch (1988). MCBARG: A System Supporting Multicriteria

Bargaining. WP-88-115, International Institute for Applied Systems Analysis,

Laxenburg, Austria.



POSTAN 3 and PLP

Extensions of MINOS for Postoptimal Analysis

Grzegorz Dobrowolski, Tomasz Rys

Joint System Research Department

of the Institute for Control and Systems Engineering,

Academy of Mining and Metallurgy, Cracow,

and of Industrial Chemistry Research Institute, Warsaw.

Adam Golebiowski, Krystyn Hajduk, Adam Korytowski

Institute for Control and Systems Engineering,

Academy of Mining and Metallurgy, Cracow.

1 General information

POSTAN3 (Dobrowolski et al.), an extended version of POSTAN (Dobrowolski et al.

1984) and POSTAN2 (Dobrowolski et al. 1987), is a postoptimal analysis package for

linear and linear-fractional programming problems. It may also be used to solve linear­

fractional problem by a direct, noninteractive method. The package is composed of a

number of FORTRAN routines which are incorporated into MINOS, the well-known

linear and non-linear programming code developed by Murtagh and Saunders (1977).

The postoptimal analysis is performed after MINOS has found an optimal solution, and

is initiated by adding new specifications to the original list of MINOS specifications.

The main objective of POSTAN3 is ranging, i.e., determining the ranges in which

certain parameters (or groups of parameters) may be changed without affecting the

optimal solution and/or the optimal basis. Sensitivity coefficients which are not included

in the output of the unmodified version of MINOS are also determined.

Two new auxiliary modules have been implemented in POSTAN3 to improve its

user interface:

• a module for programming a sequence of optimization problems,

• a module for decoding and selective printing of results.

PLP (Golebiowski) is a software package for parametric linear programming. It is also

an extension of MINOS and is initiated by adding some specifications to the original

list of MINOS specifications. PLP uses MINOS as the solver of optimization problems.

It includes sections which create an interactive framework for parametric programming

and perform ranging and housekeeping procedures.



392

Optionally, PLP gives a complete parametric programming analysis for one, or more,

of the following vectors: cost, rhs, and bounds. In the same run, several problems of

this kind can be solved and for each, the starting point may be the original optimal

solution or the final solution obtained in the last problem.

2 Notes on implementations

The available implementations of the packages can be divided into two groups:

1. Main frame implementations that are destined for large scale optimization prob­

lems requiring a powerful computer system. An important parameter of the com­

puter system at this point is operational memory available to a process.

2. Personal computer implementations that can run under restriction with respect

to dimensionality of the problem. The minimum hardware configuration is 640

kB of operational memory and a mathematical co-processor.

Main frame

POSTAN batch mode version. Software requirements: FORTRAN IV-E compiler.

PLP

OPT

batch mode version. Software requirements: FORTRAN IV-E compiler.

interactive mode, screen-oriented, menu-driven version. Software require­

ments: FORTRAN 77, C Language compilers, UNIX or XENIX operating

system. There is a special implementation of POSTAN. In place of advanced

postoptimal routines the reference point multiobjective optimization method

is incorporated.

Personal computer

POSTAN batch mode version. Software requirements: FORTRAN 77 compiler.

OPT interactive mode, screen-oriented, menu-driven version. Software require­

ments: FORTRAN 77, C Language compilers, Dos or XENIX operating

system. There is a special implementation of POSTAN. In place of ad­

vanced postoptimal routines the reference point multiobjective optimization

method is incorporated.

PCPOST interactive mode, window-oriented, menu-driven version. Software require­

ments: FORTRAN 77, C Language compilers, Dos operating system. There

is a full implementation of POSTAN.



393

3 Formulation of linear programming problem

The formulation of the linear problem analyzed by POSTAN3 and PLP is the sane as

for MINOS. Minimize (or maximize) a linear cost function

F(x) = aox

subject to m row constraints:

di ::; ai x ::; gi, i

and n constraints on separate variables:

1, ... ,m

(1)

(2)

dm+i ::; Xi ::; gm+i, i = 1, ... , n (3)

Here x is an n-dimensional column vector of decision variables, ao is an n-dimensional

row vector of cost coefficients (also called the objective row), the ai, i = 1, ... , m, are

n-dimensional row vectors, the lower bounds di , i = 1, ... , m + n, are real numbers or

-00, and the upper bounds gi, i = 1, ... , m + n, are real numbers or +00. Of course, if

the bounds take the values +00 or -00 the corresponding relation (2) or (3) must be

replaced by a strict inequality. If di = gi, then the variable Xi is said to be fixed. If

di = -00 and gi = +00 the variable Xi is said to be free. Analogous terms are used to

describe the rows aiX.

It should be recalled that in MINOS the two-sided inequality constraints (2) are

not stated explicitly, but rather specified using ranges. More precisely, a one-sided

inequality is introduced in the form aiX ::; gi (type L) or aiX 2 di (type G), together

with a real number ri called the range. In the first case, the difference between the

right-hand side gi and this number yields the lower bound (di = gi - ri); in the second

case the sum of the right-hand side di and the real number ri gives the upper bound

(gi = di + ri).

As option of POSTAN3 and PLP are expressed in terms of the internal formulation

of the linear problem we shall recall this concept. The linear programming problem (1) ­

(3) is transformed by MINOS into the following internal form: Minimize (or maximize)

the variable

-Xn +1+obj

subject to equality constraints:

Ax = 0

and inequality constraints:

1 ::; x ::; it

Here A is an (m + 1) X (n + m + 2)-matrix:

A I

(4)

(5)

(6)

(7)



394

where I denotes the (m + 1) X (m + 1) identity matrix and

where

ai = ai i < obj, iiobj = an, iii = ai-l i > obj

hi = bi i < obj, ho&j o , h; = bi- 1 i > obj

where

{
0 if d; -00 and g; = +00

b; = d; if di is finite and g; = +00
gi if g; IS finite

(8)

The first n components of the extended vector of decision variables x E Rn+m+2 form

a subvector identical to Xj these components are described as structural. Element Xn+l

is called the right-hand-side componentj it is fixed at -1. The remaining components

of x are called slack or logical components. The objective variable Xn+l+obj is free. The

vector of lower bounds I and the vector of upper bounds U are defined as follows:

Ui gm+; i

1, ... ,n, In+l

1, ... ,n, U n+l

-1, In+l+obj = -00

-1, Un+l+obj = +00

(9)

Now let i = n + 1 + j, j = 1, ... , m. Then

Ii = hi, Ui = k; for j < obj and I;

where

k;-1 for J > obj (10)

h; = k; = 0 if the j-th row constraint is fixed (Le., of type E)

hi = 0, k; = +00 if dj = -00 and gj is finite (one-sided constraint of type L)

hi = -00, k; = 0 if dj is finite and gj = +00 (one-sided constraint of type G)

h; = 0, k; = gj - dj if dj and gj are finite

hi = -00, ki = +00 if the j-th row constraint is free.

4 Postoptimal analysis for linear problems in POS­

TAN3

Here we give a list of ranging options of POSTAN3 for linear problems.

Ranging on costs

Ordinary ranging

For each cost component a ~ , i = 1, ... , n the largest range is determined in which a ~ may

vary without affecting the optimal solution. While the range for a ~ is being determined,

all other components a ~ , j t= i, remain fixed at their original values. Some information

on the change of state of variables at the boundaries is also given.



395

Directional ranging

For a given increment ~ a o E Rn of the cost vector ao , the largest real tmax ;::: 0 is

determined such that for every cost vector of the form ao + t~ao , t E [0, tmax ], the

optimal solution is the same as at the point, ao (Le., at t = 0). The boundary cost

components ah + tmax~ah, i = 1, ... , n and some information on the change of state of

variables at the boundary are also given.

Ranging on right-hand sides

Ordinary ranging

For each component b" i = 1, ... , m + 1 of the rhs vector (except for the objective row,

i =1= obj), the maximum range is determined in which b, may vary without affecting

the optional basis. While the range for b, is being determined, all other components

b;, i =1= j are fixed at their original values. It should be noted that the rhs vector b is

not always the rhs of a constraint system in the original formulation (1) - (3); the user

should refer to (5) - (11). Some information on the change of state of variables at the

boundaries is given.

Directional ranging

For a given vector of increments ~ b E Rm+J of the rhs vector b, the largest real tmax ;::: 0

is determined such that for every rhs of the form b+ t~b, t E [0, tmaxl, the optimal basis

is the same as at the point b(Le., at t = 0). At the boundary t = tmax either the optimal

solution vanishes or one of the basic variables changes its state. Its name and the type

of change are given. together with the boundary values of rhs elements.

Ranging on bounds

Ordinary ranging

For each lower bound i, and each upper bound u" i = 1, ... , n + m + 2 two ranges

are determined: range A which is the maximum range in which the bound may vary

without affecting the optimal solution, and range B, which is the maximum range in

which the bound may vary without affecting the optimal basis. While these ranges are

being determined for i, (or u,), all other bounds remain fixed at their original values.

Some information is given on the change of state of variables at the boundaries. This

analysis is not performed for fixed variables.

Directional ranging

For a given vector of increments c o l ( ~ i , ~ u ) E R2(m+n+2) of the vector of bounds

col(i, u), two real numbers are determined:

• tmaxa ;::: 0, the largest real number such that for every bound vector of the form

col(i,u) + t col(~i,~u), t E [O,tmaxa], the optimal solution is the same as for the

bound vector col(i, u), i.e., at t = O.



396

• tmaxb ~ 0 , the largest real number such that for every bound vector of the form

col(l, iL) + t col(~I, ~iL), t E [0, tmaxb], the optimal basis is the same as for the

bound vector col(l, iL), Le., at t = O.

Boundary values of the elements of bound vector and some information on the change

of state of variables at the boundaries are also given.

4.0.1 Ordinary ranging on elements of constraint matrix

For selected elements a}, i = 1, ... ,n, j = 1, ... ,m of the constraint matrix

col(aI, a2,"" am) (see (2)) the largest range is determined in which a} may vary without

affecting the optimal basis or the state of nonbasic variables. The list of the selected

elements is given in the data. While the range for a} is being determined, all other

elements aL k i- 1 and/or j i- 1, are fixed at their original values. The sensitivity

of the optimal cost with respect to the elements is also calculated. In addition, some

information on the change of state of variables at the boundaries is given.

Directional ranging on constraint rows

For a given increment vector ~ a i E Rn of the constraint vector ai, i = 1, ... , m, the

largest range (tmin, tmax ) is determined such that for every i-th constraint vector of the

form ai + t~ai, t E (tmin, tmax), the optimal basis and the state of nonbasic variables

are the same as at the point ai (i.e., at t = 0). The sensitivity of the optimal cost with

respect to parameter t at t = 0 is also calculated. In addition, the boundary values of

the constraint row ai and some information on the change of state of variables at the

boundaries are given.

Directional ranging on structural columns of constraint matrix

For a given vector of increments ~ a i of the column ai, i = 1, ... , n, the largest range

(tmin, tmax) is determined such that for every i-th constraint column of the form a i + t ~ a i ,

t E (tmin, tmax), the optimal basis and the state of nonbasic variables are the same as

at the point ai (Le., at t = 0). The sensitivity of the optimal cost with respect to

parameter t at t = 0 is calculated. addition, the boundary values of the column ai and

some information on the change of state of variables at the boundaries are given.

5 Parametric programming options of PLP

Parametric analysis of cost

The cost vector ao = (ao l ,ao2, ... ,aon) (see (1)) is changed along a direction given by

the user, ~ a o = (~aot,~ao2, ... ,~aon) according to the formula:

ao(t) = ao(O) + t~ao, t ~ 0 (12)

where ao (0) is the starting value of cost. If the structural variable, say Xi, is fixed then

~ a o i is automatically set to zero, regardless of the value given in the data.



397

PLP determines a sequence of values of the parameter denoted by to, t}, , tk, such

that 0 == to < t 1 < tz < ... < tk and in each of the intervals [ti, tH1 ), i = 0, , k - 1 the

optimal solution is constant and in each case the optimal basis is different. The integer

k:

1. may be defined by the user as the maximum number of iterations,

2. may be determined by the condition that the optimal solution is constant for every

t 2': tk and different from that in [ tk-l, tk),

3. may be determined by the condition that there are no optimal solutions for every

t < tk'

Parametric analysis of rhs

The right-hand side vector b= col (b1 , ... , bm +1 ) (see (7) and (8)) is changed along a

direction given by the user, ~ b == col( ,1 b1 , ... , ,1 bm+1 ), according to the formula:

b(t) == b(O) + t~b , t 2': 0 (13)

where b(O) is the starting value of rhs. The component of ~ b which correspond to the

objective row is automatically set to zero, ~ b O b j = O.

PLP determines a sequence of values of the parameter denoted by to, t}, , tk such

that 0 == to < t 1 < t z < ... < tk and in each of the intervals [ti, tHd, i = 0, , k - 1 the

optimal basis is constant and in each

1. may be defined by the user as the maximum number of iterations,

2. may be determined by the condition that the optimal solution is constant for every

t 2': tk and different from that in [ tk-l, tk),

3. may be determined by the condition that there are no optimal solutions for every

t < tk.

Parametric analysis of bounds

The vector of bounds col(l, u) E R!(n+m+l!) (see (9)) is changed along a direction

given by the user, col(L1I, L1u), according to the formula:

col(l(t), u(t)) = col(I(O), u(O)) + t col(L1I, L1u) , t 2': 0 (14)

where col(I(O), u(O)) is the starting value of bounds. The bound increments ~ J i . ~ i i i
which corresponds to fixed variables are automatically set to zero regardless of the values

given in the data.

If there is no lower and/or upper bound for the i-th variable Xi (see (6)) the corre­

sponding increment ~ i ; and/or ~ i i i , respectively, is also automatically set to zero.

PLP determines a sequence of values of the parameter denoted by to, t1 , , tk such

that 0 = to < t 1 < t z < ... < tk and in each of the intervals [ti, tHd, i == 0, , k - 1 the

optimal basis is constant and in each case different. The integer k :



398

1. may be defined by the user as the maximum number of iterations,

2. may be determined by the condition that the optimal solution is constant for every

t ~ tA; and different from that in [ tA;-l, tA;),

3. may be determined by the condition that there are no optimal solutions for every

t < tA;.

Each interval [ti, ti+1) is optionally divided into two subintervals [ti, ti")' [ti", ti+1)' The

interval [ti,t i ") is the maximum interval where the optimal solution remains constant

and not only the optimal basis. It often happens that ti = ti'"

Dependent and independent work

All three kinds of analysis can be performed in one run. The starting point for the next

kind of analysis may be either the original starting optimal solution (The Independent

Work) or the last optimal solution obtained in the preceding analysis (The Dependent

Work). The continuation is impossible if the optimal solution vanishes.

Controlling output

In each of the three kinds of analysis the following information is available. The user has

to specify the frequency of printing the complete current optimal solution in MINOS

format. This means that the complete printout is given for the values of parameters t

equal to to+, tp+, t 2p+, ... , and t(A;-l)+ or tH depending on whether the optimal solution

exists for t < tA;. The notation ti+ means that we take the right-hand limit of the optimal

solution at ti' The user specifies frequency of printing the so called PLP ITERATION

LOG. This is a short message containing most important information about current

change of optimal solution (value of the parameter t, change of optimal basis, current

value of objective function).

Tolerances

The performance of PLP is strongly affected by the choice of tolerances. Especially im­

portant are two tolerances determined in MINOS: the tolerance of optimality (TOLD)

and the tolerance offeasibility (TOLX) . In the proper procedures of the PLP the follow­

ing general rule is adopted. All quantities greater than or equal to l.E+15 are taken as

equal to infinity and all quantities whose absolute value is less than l.E-9 are regarded

as equal to zero.

6 Linear-fractional programming in POSTAN3

The LFP part of POSTAN3 deals with linear-fractional programming problems of the

form: Minimize

F(x) = ~::; where x E R
n

, c, d E Rn , 0:, f3 E R (15)



399

subject to

A x ~ b, x ~ 0 where bERm, A - n X m matrix (16)

It is assumed that dx + f3 > 0 in the whole of the admissible region.

Ranging on cost

For each cost component c' and d' the largest range is determined in which the com­

ponent may vary without affecting the optimal solution. All other components, except

that being analysed, remain fixed at their original values.

References

Dobrowolski, G., K. Hajduk, A. Korytowski and T. Rys (1984). POSTAN - A Package

for Postoptimal Analysis (An Extension of MINOS). IIASA Collaborative Paper

CP-84-32, Laxenburg, Austria.

Dobrowolski, G., K. Hajduk, A. Korytowski, T. Rys (1985). POSTAN 2 - An Extended

Postoptimal Analysis Package for MINOS, In Theory, Software and Testing Ex­

amples for Decision Support Systems, A. Wierzbicki and A. Lewandowski Eds.,

International Institute for Applied Systems Analysis, Laxenburg, Austria.

Dobrowolski, G., T. Rys, K. Hajduk, A. Korytowski (1988). POSTAN 3 - Extended

Postoptimal Analysis Package for MINOS. WP-88-117, International Institute for

Applied Systems Analysis, Laxenburg, Austria.

Golebiowski, A. (1988). PLP - A Package for Parametric Programming. WP-88-118,

International Institute for Applied Systems Analysis, Laxenburg, Austria.

Murtagh, B.A., M.A. Saunders (1977). MINOS - A Large-Scale Linear Programming

System. User's Guide. Technical Report SOL 77-9, System Optimization Labo­

ratory, Stanford University, California.

Rys, T. (1988). PC-POSTAN version 3.0. Postoptimal Analysis Package. User's

Manual. WP-88-119, International Institute for Applied Systems Analysis, Lax­
enburg, Austria.



THE INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS

is a nongovernmental research institution, bringing together scientists from around the

world to work on problems of common concern. Situated in Laxenburg, Austria, IIASA

was founded in October 1972 by the academies of science and equivalent organizations of

twelve countries. Its founders gave IIASA a unique position outside national, disciplinary,

and institutional boundaries so that it might take the broadest possible view in pursuing

its objectives:

To promote international cooperation in solving problems arising from social, economic,

technological, and environmental change

To create a network of institutions in the national member organization countries and

elsewhere for joint scientific research

To develop and formalize systems analysis and the sciences contributing to it, and promote

the use of analytical techniques needed to evaluate and address complex problems

To inform policy advisors and decision makers about the potential application of the

Institute's work to such problems

The Institute now has national member organizations in the following countries:

Austria

The Austrian Academy of Sciences

Bulgaria
The National Committee for Applied

Systems Analysis and Management

Canada

The Canadian Committee for IIASA

Czechoslovakia
The Committee for IIASA of the

Czechoslovak Socialist Republic

Finland
The Finnish Committee for llASA

France

The French Association for the

Development of Systems Analysis

German Democratic Republic
The Academy of Sciences of the German

Democratic Republic

Federal Republic of Germany
Association for the Advancement

of IlASA

Hungary

The Hungarian Committee for Applied

Systems Analysis

Italy
The National Research Council

Japan
The Japan Committee for llASA

Netherlands
The Foundation llASA-Netherlands

Poland
The Polish Academy of Sciences

Sweden
The Swedish Council for Planning and

Coordination of Research

Union of Soviet Socialist Republics
The Academy of Sciences of the Union

of Soviet Socialist Republics

United States of America
The American Academy of Arts and

Sciences






