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Non-steroidal Anti-inflammatory drugs (NSAID)-exacerbated respiratory disease (N-ERD)

is characterized by nasal polyposis, chronic rhinosinusitis, adult-onset asthma and

hypersensitive reactions to cyclooxygenase-1 (COX-1) inhibitors. Among the available

treatments for this disease, a combination of endoscopic sinus surgery followed by aspirin

desensitization and aspirin maintenance therapy has been an effective approach. Studies

have shown that long-term aspirin maintenance therapy can reduce the rate of nasal polyp

recurrence in patients with N-ERD. However, the exact mechanism by which aspirin can

both trigger and suppress airway disease in N-ERD remains poorly understood. In this

review, we summarize current knowledge of aspirin effects in N-ERD, cardiovascular

disease, and cancer, and consider potential mechanistic pathways accounting for the

effects of aspirin in N-ERD.
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INTRODUCTION

NSAID Exacerbated Respiratory Disease (N-ERD) is characterized by nasal polyp formation,
asthma, and hypersensitivity to all cyclooxygenase-1 (COX-1) inhibitors, which are commonly used

non-steroidal anti-inflammatory drugs (NSAIDs). COX-1 catalyzes the production of

prostaglandins, thromboxanes and prostacyclins from arachidonic acid, and NSAIDs act by

blocking the ability of COX-1 to initiate the biosynthesis of these mediators by catalyzing

oxidation of arachidonic acid (1). The earliest known description of N-ERD in the medical

literature can be traced to a 1922 article by Widal et al. (2) Over four decades later, Samter and

Beers provided a more systematic characterization of the combination of aspirin-intolerance with
nasal polyps and asthma, referred to initially as Samter’s triad (3, 4). Subsequently, this became

known as aspirin exacerbated respiratory disease (AERD), and more recently as N-ERD to more

accurately reflect its association with hypersensitivity to all drugs that inhibit COX-1 (5, 6).

Clinically, N-ERD is characterized by an adult onset of severe nasal congestion followed by chronic

rhinosinusitis, and eventually by the development of nasal polyps. Asthma is frequently although

not universally present in N-ERD (7). Nasal polyps, which are benign growths in the paranasal
sinuses that can obstruct airflow leading to difficulty in breathing and loss of olfactory sense, are a

key feature of N-ERD, and the severity of sinonasal symptoms due to nasal polyps is often correlated

with the severity of asthma symptoms (8). In addition, endoscopic sinus surgery decreases or
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abolishes reactions to aspirin in most N-ERD patients, and

improves long term responses to aspirin desensitization and

maintenance treatment (9, 10).

In N-ERD, the underlying inflammatory process of the upper

and lower respiratory systems begins and occurs independently

of the NSAID consumption. However, intake of COX-1
inhibitors triggers symptoms resembling an allergic reaction or

an asthma attack (11). Around 15% of patients with N-ERD may

be unaware of their hypersensitivity to these drugs (12).

Surveillance studies indicate that N-ERD is not a rare

condition. From one study by Rajan et al. it was found that

approximately 7% of all adult asthmatics have N-ERD (13). The
prevalence of N-ERD is higher in severe asthma patients (15%)

followed by patients with nasal polyps (10%) (13). N-ERD

patients have greater morbidity than aspirin tolerant asthma

patients, as characterized by more frequent corticosteroid bursts,

increased hospitalizations and emergency visits, and lower

baseline forced expiratory volume in 1 second (FEV1) (12, 14).
Among treatment approaches that have shown benefit in N-

ERD, aspirin desensitization followed by a continuous long-term

aspirin administration has yielded significant improvement in

the clinical course of many patients (15–19). This treatment

reduces asthma and sinonasal symptoms, daily use of

corticosteroids, ER visits or hospitalization due to asthma, and

sinus infections (20, 21). Desensitization and aspirin
maintenance therapy reduces and delays the occurrence of

nasal polyps in more than 70% of N-ERD patients (22, 23).

Even though the beneficial effects of aspirin desensitization and

maintenance therapy are now accepted by many practitioners,

the mechanisms, by which aspirin leads to the suppression of

clinical symptoms and to polyp prevention are not well
understood. In this review we focus on pathways by which

aspirin can exert anti-inflammatory effects and prevent the

recurrence of the nasal polyps in N-ERD.

IMMUNOLOGICAL FEATURES OF N-ERD

N-ERD is characterized by increased numbers of eosinophils and
mast cells, upregulation of type-2 (T2) pro-inflammatory

cytokines, and abnormalities in the production of cysteinyl

leukotrienes and prostaglandins (24–29). Hypersensitivity

reactions are caused by inhibition of COX-1 by the NSAIDs.

Even though increases in several inflammatory mediators such as

cysteinyl leukotrienes and prostaglandins are associated with N-
ERD, the exact events that result in the initiation and the

progression of the disease are not yet known.

Involvement of Leukotrienes
and Their Receptors in N-ERD
5-lipoxygenase (5-LO) mediated oxidation of arachidonic acid

produces cysteinyl leukotrienes (cysLTs) and leukotriene B4 (LTB4).

CysLTs
Leukotrienes are a family of inflammatory lipid mediators that

are synthesized from arachidonic acid by eosinophils, mast cells,

macrophages, neutrophils and basophils (30–33). Leukotrienes

C4 (LTC4), D4 (LTD4) and E4 (LTE4) are collectively known as

cysLTs due to the presence of a cysteine residue. In neutrophils,

monocytes, eosinophils, mast cells, and basophils, arachidonic

acid is oxidized by 5-lipoxygenase (5-LO) to produce an unstable

metabolite, leukotriene A4 (LTA4) (34). In monocytes, mast cells,
eosinophils, and basophils, LTA4 upon conjugation with

glutathione is then converted to LTC4 by leukotriene C4

synthase (LTC4S) (35–37). LTC4 is then extracellularly

converted to LTD4 and its stable metabolite, LTE4 (38–40).

LTC4, LTD4 and LTE4 are potent bronchoconstrictors in

human and in other species (41–44). LTD4 functions via its
interaction with a G protein-coupled receptor, cysteinyl

leukotriene receptor 1 (CysLT1R), which has a lower affinity

for LTC4 and LTE4. In addition, LTD4 and LTE4 have a similar

affinity to another leukotriene receptor, cysteinyl leukotriene

receptor 2 (CysLT2R), also a G-protein coupled receptor. There

may also be other less investigated cysLT receptors that could be
involved in the action of these lipid mediators (45, 46).

The over-production of cysteinyl leukotrienes is a

characteristic feature of N-ERD (26, 35). Urinary levels of

LTE4 are elevated at baseline and increase several fold after

aspirin challenge in N-ERD patients compared to aspirin-

tolerant asthma patients (47, 48). Several possible mechanisms

have been proposed to account for the overproduction of cysLTs.
For example, eosinophils and mast cells can produce cysLTs,

raising the possibility that the overproduction of cysLTs is a

result of the higher numbers or an increased activation of these

cells in respiratory tissue of N-ERD patients (24, 25). The two

main enzymes involved in the production of these lipid

mediators are 5-LO and LTC4S. In case of biopsies from N-
ERD patients, the percentages of mast cells and eosinophils

staining positive for 5-LO was much higher than in the

biopsies from the aspirin tolerant patients (36, 49). Platelets

too can express LTC4S, and upon adhering to leukocytes they are

capable of using the leukocyte-derived LTA4 as a substrate for

conversion to LTC4. In this regard, it is interesting that N-ERD

patients had a higher percentage of platelet-adherent leukocytes
than aspirin-tolerant asthma patients (35). Another reason for

the overproduction of cysLTs is related to the decrease in the

prostaglandin E2 (PGE2) levels in nasal tissue samples including

nasal polyps. Low PGE2 levels may contribute to the shift of the

arachidonic acid metabolism pathway towards leukotriene

synthesis. PGE2 inhibits cysLT production in people with N-
ERD via the inhibition of 5-LO (50, 51). Therefore, the

overexpression of cysLTs in N-ERD is likely a result of an

increased activity of 5-LO and LTC4S, and an increased

availability of the LTC4S due to the increase of platelet-

adherent leukocytes (52).

Overexpression of cysteinyl leukotriene receptor CysLT1R in

nasal biopsies of N-ERD patients has also been reported (53).
The mRNA and the protein expression of CysLT1R can be

increased by interleukin-13 (IL-13) and inteleukin-4 (IL-4), as

observed in human monocytes and monocyte-derived

macrophages (54). Both of these cytokines have an increased

expression in N-ERD, suggesting that they could act as
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important drivers of pathology in N-ERD at least in part by

augmenting cysLT receptor expression. Potentially, genetic

polymorphisms in cysLT receptor genes could contribute to

this mechanism of disease pathogenesis, although such

polymorphisms have not yet been described in N-ERD. Little

is currently known about the involvement of CysLT2R in
N-ERD.

LTB4
5-LO catalyzes the conversion of arachidonic acid to LTA4 (34).

LTA4 can then be converted either to cysLTs as mentioned in the

above section or can be converted to LTB4 by LTA4 hydrolase in

neutrophils and eosinophils (55). LTB4 is a pro-inflammatory
lipid mediator that functions as chemoattractant for eosinophils,

monocytes, macrophages, and neutrophils (56–58). LTB4 can

activate leukocytes via its interaction with a G-protein-coupled

surface receptor BLT1 (59). LTB4 concentrations are elevated in

the bronchoalveolar lavage fluid from patients with severe

asthma, with eosinophils being the major source of LTB4

production (60). In N-ERD, along with an increase in the
urinary level of the cysLT, LTE4, there is an increase in the

urinary levels of an LTB4 metabolite during reactions to COX-1

inhibitions (61).

Involvement of Prostaglandins
and Their Receptors in N-ERD
Prostaglandins are lipid molecules derived from arachidonic acid

by the action of the COX enzymes via endoperoxide

intermediates such as prostaglandin G2 (PGG2) and H2

(PGH2). The latter leads to the production of the five main

bioactive prostaglandins, prostaglandins D2 (PGD2), E2 (PGE2),
F2a (PGF2a), prostacyclin (PGI2) and thromboxane A2 (TXA2)

(62). Three of these (PGD2, PGE2 and TXA2) have been

implicated in the pathogenesis of N-ERD.

PGD2
PGD2 is the main product of COX-derived intermediates in mast

cells (63). It is also produced by eosinophils, although the lower

expressions of the terminal PGD2 synthase gene compared to
mast cells makes eosinophils a smaller source of this

prostaglandin (64). PGD2 performs a wide range of functions

through its interaction with its receptors: the thromboxane

prostanoid (TP) receptors, and D-prostanoid (DP) receptors

DP1 and DP2. The DP2 receptor is also known as

chemoattractant receptor-homologous molecule expressed on

TH2 cells (CRTH2). Upon binding to the TP receptor, PGD2

can function as a bronchoconstrictor and can also function as a

potent chemoattractant for eosinophils and basophils via its

interaction with CRTH2 (65–67). PGD2 can mediate

vasorelaxation, inhibition of platelet aggregation, and

bronchodilation primarily through stimulation of the DP1

receptor (68), and its signaling through this receptor also
exerts an anti-inflammatory role in allergic inflammation (69).

However, the functions of the DP1 and DP2 receptors in allergic

inflammation are considered to be antagonistic (70), with DP1

stimulation resulting in mostly anti-inflammatory effects such as

inhibition of cell migration, vasodilation, eosinophil apoptosis

(71), whereas DP2 triggers pro-inflammatory effects by

upregulating type 2 cytokines in Th2 cells (72, 73).

N-ERD is characterized by an overexpression of PGD2, as

shown by the higher concentration of PGD2 in the sputum of N-

ERD patients compared to aspirin tolerant asthma patients (74).

N-ERD patients who have higher baseline levels of PGD2-
metabolite in urine experience more severe clinical reactions to

aspirin (75, 76), and the inability to tolerate aspirin

desensitization has been attributed to the high levels of urinary

PGD-metabolite (75). There are various mechanisms responsible

for the high expression of PGD2 in N-ERD. Nasal polyps of N-

ERD patients have a high concentration of mast cells and
eosinophils which both express hematopoietic prostaglandin D

synthase required for the synthesis of the PGD2 (64, 77, 78).

Nasal polyp tissue and bronchial mucosa of asthmatic patients

have been found to be rich in the cytokine thymic stromal

lymphopoietin (TSLP), which can stimulate PGD2 production

by mast cells (79). Nasal polyps have increased expression of
TSLP compared to healthy nasal tissues (80–82), and Buchheit

et al. showed that the levels of TSLP were significantly higher in

the nasal polyps of N-ERD patients compared to nasal polyps of

aspirin-tolerant asthma patients (64). Additionally in N-ERD

patients, the levels of PGD2 paradoxically increase in plasma and

urine after aspirin challenge, and correlate with the severity of

the reaction to aspirin (64, 76, 83, 84). This is counterintuitive,
considering that aspirin inhibits COX enzymes that represent a

key step in prostaglandin synthesis, and could indicate an

alternate pathway for PGD2 synthesis. Alternatively, this

elevation of PGD2 could reflect effects of aspirin on targets

other than COX enzymes, or indirect effects resulting from

increased levels of leukotrienes (85).

PGE2
In contrast to PGD2, the levels of PGE2 in N-ERD are greatly

reduced both in peripheral blood cells and nasal tissue samples,

including nasal polyps (86, 87). There are 4 subtypes of the E-

prostanoid (EP) receptor to which PGE2 binds, designated as

EP1, EP2, EP3 and EP4 (88, 89). PGE2 can function both as a pro-

and an anti-inflammatory mediator. PGE2 may exhibit opposing
functions via interaction with different EP receptors based on the

cell type and the location (90). The pro-inflammatory effects of

PGE2 is usually observed in various inflammatory conditions

such as arthritis, inflammatory bowel disease, and also in

different types of cancers (91–94).However, PGE2 exerts anti-

inflammatory and bronchoprotective effects in the airways by
suppressing allergen induced-inflammatory responses (95, 96).

In N-ERD, PGE2 functions as an anti-inflammatory mediator as

it prevents both airway obstruction and the increase in the

urinary LTE4 associated with aspirin challenge in N-ERD (50,

97). PGE2 exerts its anti-inflammatory effects in the airways

through the EP2 and EP4 receptors by activating protein kinase A

(PKA). PGE2 binds to EP2 and EP4 receptors that activate
adenylate cyclase. Next adenylate cyclase increases the levels of

cellular cyclic AMP. This in turn activates PKA (98). PKA then

phosphorylates 5-LO, thus directly inhibiting the catalytic

activity of 5-LO and regulating the leukotriene synthesis by

working as a brake for the production of cysLT (51). PGE2
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signaling through its EP2 receptor blocks mast cell degranulation,

limits eosinophil migration, and inhibits the allergen-stimulated

release of mast cell-derived inflammatory mediators including

PGD2 in the airways of asthma patients, providing another

possible mechanism for its bronchoprotective action (99, 100).

The reduced expression and function of PGE2 in N-ERD could
be attributed to a combination of factors. One of the enzymes

responsible for the synthesis of PGE2 is COX-2, and expression of

the mRNA for this enzyme is markedly reduced in nasal polyps of

N-ERD patients compared to polyps and normal mucosa of aspirin-

tolerant asthma patients (101). There is also diminished expression

of EP2 receptors on mast cells and nasal fibroblasts of N-ERD
patients (102, 103). Since PGE2 exerts its anti-inflammatory

activities mainly through EP2, a reduced expression of the latter

could decrease the ability of PGE2 to perform its anti-inflammatory

actions in N-ERD patients. The reduction in PGE2 observed in N-

ERD may also account at least in part for the increased baseline

levels of PGD2 that are generally observed in N-ERD. Consistent
with this, an elevated PGD2/PGE2 ratio in the nasal polyps of

patients with chronic rhinosinusitis is often indicative of N-ERD

(104). In addition, a reduction in the level of PGE2 in the nasal

polyps of N-ERD patients may remove the normal brake on cysLT

production, leading to the increased levels of leukotrienes (89).

Consistent with the proposed important role of PGE2 deficiency in

N-ERD, studies have shown inhaled PGE2 to serve as a
bronchodilator in N-ERD patients (50, 105).

TXA2
TXA2 is the main COX-product derived from platelets (106). It is

a potent unstable vasoconstrictor and hydrolyzes to an inactive
but stable form, thromboxane B2 (TXB2) (107). TXA2 is a pro-

inflammatory prostanoid involved in platelet aggregation and

activation, and facilitates leukocyte recruitment (108, 109).

Studies in animal models show that TXA2 can function as a

potent bronchoconstrictor and mediates its effects through

interaction with the TP receptors (110–112). Similar to PGD2,

an overexpression of TXA2 is also associated with the
pathogenesis of N-ERD. The basal urinary level of the stable

thromboxane metabolite (TX-M) is found to be higher in N-ERD

patients espcially those who are unable to tolerate aspirin

desensitization as a treatment (75). The exact mechanism for

the overexpression of TXA2 is not known.

Involvement of Lipoxins in N-ERD
In 1984, Serhan et al. first described a new set of oxygenated

derivatives of arachidonic acid isolated from human leukocytes

that were different from the other eicosanoids as they contained a

conjugated tetraene structure (113). In a follow-up study, these
trihydroxytetraenes, generated from the interactions of the 5-

and 15-lipoxygenase (5-LO and 15-LO) pathways of human

leukocytes, were designated lipoxins and considered to be a

newly recognized series of arachidonic acid metabolites. The

two main products were designated lipoxin A4 and lipoxin B4
(114). There are two major pathways for lipoxin biosynthesis.

One of these involves platelet-leukocyte interactions in which
leukocyte-produced LTA4 is converted to lipoxin A4 and lipoxin

B4, by platelet 12-lipoxygenase (115). The other pathway involves

the action of 15-LO on arachidonic acid to produce 15(S)-

hydroxyeicosatetraenoic acid (15(S)-HETE) which is then used

as a substrate by 5-LO to produce lipoxins (116). 5-LO is

involved in the production of both leukotrienes and lipoxins,

and is thus an integral part of both pro- and anti-
inflammatory pathways.

Lipoxins are produced by a variety of cells, including airway

epithelium, platelets and eosinophils, and they perform functions

different than CysLTs (117, 118). Unlike CysLTs which mainly

function as bronchoconstrictors, lipoxins exert anti-

inflammatory properties and inhibit bronchoconstriction (119).
Lipoxins inhibit eosinophilic and neutrophilic migration

dampening the airway hyperreactivity and allergic airway

inflammation (120–122). The anti-inflammatory effects of

lipoxins are mediated by interaction with a high-affinity, G-

protein-coupled receptor called ALX/FPR2 (lipoxin receptor

(ALX)/N-formyl peptide receptor (FPR)-2) (120, 123–125).
These lipid mediators bind to ALX/FPR2 present on T and B

cells, and regulate B and T cell-mediated responses during

resolution of inflammation (126, 127). ALX/FPR2 receptors are

also found on natural killer and innate lymphoid type 2 cells, and

lipoxin A4 inhibits inflammatory responses by these cells (128,

129). Apart from this, lipoxin A4 also binds to the CysLT1R with

equal affinity as LTD4 and acts as an antagonist by regulating the
action of LTD4 as well as leukocyte trafficking (130).

A characteristic feature of N-ERD is the diminished lipoxin

levels, although the mechanism accounting for this remains unclear

(117). At baseline, N-ERD patients have a lower level of lipoxins in

plasma and blood leukocytes as compared to aspirin tolerant

asthmatic patients (131, 132). The levels of lipoxins also correlate
directly with the severity of asthma. Studies comparing N-ERD and

aspirin tolerant asthma patients suggest a link between aspirin

sensitivity and the ability to generate lipoxins (117). This may

potentially involve altered metabolism of the lipoxin precursor 15

(S)-HETE (133, 134). The low levels of lipoxins in N-ERD could be

due to preferential conversion of 15(S)-HETE into 15-oxo-

Eicosatetraenoic acid (15-oxo-ETE) rather than lipoxins (135).
Another possible cause for reduced lipoxins in N-ERD could be

the low levels of PGE2, since PGE2 is capable of switching lipid

mediator biosynthesis from LTB4, a proinflammatory product of 5-

LO, to the production of 15-LO product, lipoxin A4 (136).

Additionally, there is a reduced expression of the ALX/FPR2

receptor genes in the peripheral blood of severe asthma patients,
which included NERD patients, likely leading to an overall

reduction in lipoxin function (137).

Another aspect of lipoxin biosynthesis that may be relevant to

N-ERD is the finding that aspirin has different effects on the

COX-1 and COX-2 enzymes, which leads to generation of

bioactive anti-inflammatory tetraene eicosanoids known as

aspirin-triggered 15-epi-lipoxins (138). Aspirin covalently
modifies both COX-1 and COX-2 by acetylating their active

site serine residues (139). Acetylation of COX-1 results in the

complete inhibition of its activity of generating prostaglandins

from arachidonic acid (1, 140). In contrast, the acetylation of a

serine residue in COX-2 results in a switch from a prostaglandin-
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producing COX-2 into an enzyme that converts arachidonic acid

to the R stereoisomer of 15-HETE (i.e., 15(R)-HETE) (138, 140).

15(R)-HETE is then metabolized in a transcellular manner by 5-

LO in leukocytes to produce 15-epi-lipoxin. A defect in this

aspirin-dependent pathway in N-ERD patients might be another

mechanism contributing to their deficiency in lipoxins.

TREATMENT OF N-ERD

There are several treatments that benefit N-ERD patients, including

leukotriene modifiers, corticosteroids, anti-immunoglobulin E (IgE)

monoclonal antibody, endoscopic sinus surgery, and aspirin

desensitization and maintenance therapy (141). In this section we

will focus on the beneficial effects of aspirin treatment in N-ERD
and discuss possible mechanisms for its action.

Aspirin Desensitization and
Maintenance Therapy
Although aspirin acts as a potent and rapid trigger of respiratory
symptoms in N-ERD patients, extensive clinical experience shows

that desensitization can be achieved inmany patients and reinforced

by continuous aspirin maintenance therapy. One of the earliest

reports on aspirin benefits in the treatment of N-ERD was

conducted in 1980 by Stevenson et al. They showed that aspirin-

sensitive patients were able to continue on a daily dose of aspirin
with subsequent symptom improvement and a decrease in daily

corticosteroid dose (142). Since then, various short and long-term

studies have been conducted that corroborate the benefits of aspirin

desensitization followed by aspirin maintenance therapy in N-ERD

(22, 143, 144). Aspirin desensitization in N-ERD involves a gradual

administration of aspirin to the patient in a controlled setting.

Available protocols suggest administration of 40 mg, 80, mg, 160,
mg, and 325 mg every 60 to 90 minutes, until the patient is able to

tolerate a dose of 325 mg of aspirin. Following aspirin

desensitization, aspirin maintenance therapy is initiated,

commonly with twice daily dose of 650 mg followed by tapering

to 325 mg twice daily (145, 146). Clinically, N-ERD patients treated

with aspirin maintenance regimens experience a reduction in their
daily need for maintenance corticosteroid, improvement in clinical

symptoms of asthma, and experience a significant reduction in ER

visits or hospitalization due to asthma (16, 20, 147, 148). Endoscopic

sinus surgery enhances the response to aspirin treatment, and can

even create responses to aspirin maintenance in cases that

previously failed aspirin treatment (9, 149). The effects of NSAIDs

other than aspirin in alleviating the symptoms of N-ERD have not
been extensively studied. At present, a combination of endoscopic

sinus surgery followed by aspirin desensitization and aspirin

maintenance therapy is widely used to treat N-ERD patients.

POTENTIAL MECHANISM OF
ASPIRIN ACTION

The underlying mechanism of aspirin’s anti-inflammatory action in
N-ERD is not completely understood. Long-term aspirin treatment

has a beneficial effect in a wide range of diseases. Its therapeutic

effects are well-established in cardiovascular disease, thalassemia,

and various types of cancers with particular relevance to prevention

of colorectal cancers (150–152). Table 1 summarizes the function of

aspirin in different diseases. There is a suggestion that the

continuous blocking of the COX-activity is generally associated
with aspirin treatment benefits (18, 53, 176). Since aspirin is a

powerful inhibitor of COX-1, long-term aspirin action has resulted

in reduced levels of prostaglandin D2 (75, 177). However, there are

difficulties in explaining the beneficial effects of aspirin maintenance

therapy in N-ERD by solely considering known effects on the

arachidonic acid pathway. For example, a potential pathway for
alleviating the symptoms of N-ERD should include lowering

urinary levels of LTE4 as a measure of cysLTs and increasing the

levels of PGE2. However, high doses of aspirin treatment of N-ERD

patients for eight weeks was found to either not change or increase

urinary LTE4 levels (75, 177), and also induced a further reduction

in urinary PGE-metabolite levels. Thus, aspirin therapy appears to
reduce nasal symptoms in N-ERD patients without correcting any

of the known defects in PGE2 and cysLT production. These findings

imply involvement of other pathways that may be unrelated to

direct COX-1/2 inhibition and the modulation of products of the

cyclooxygenase and lipoxygenase pathways. Some of the possible

alternative mechanisms are summarized in Figure 1 and are

discussed in the sections that follow.

Aspirin-Triggered Lipoxins and Inhibition
of Growth Factors
Lipoxins and 15-epi-lipoxin reduce symptoms of severe asthma,

airway inflammation and airway hyper-responsiveness (119, 120,
178, 179). For example, lipoxin A4 blocks airway hyper-

responsiveness and pulmonary inflammation by decreasing

leukocytes and mediators such as interleukin-5 (IL-5) and

interleukin-13 (IL-13) (120). 15(S)-HETE is considered to

function both as a pro- and an anti-inflammatory molecule and is

a precursor to lipoxins and 15-epi-lipoxin. Kowalski et al. showed

for the first time with cultured epithelial cells from nasal polyps, a
significant increase in 15(R)-HETE generation following aspirin

exposure was observed only in cells derived from N-ERD patients

(87). This was closely followed by another study which showed a

similar observation in peripheral blood leukocytes where higher

levels of 15(R)-HETE were generated in N-ERD patients upon

aspirin exposure, when compared to the aspirin tolerant asthma
patients (132). In addition, a recent report showed that N-ERD

patients with higher baseline 15(S)-HETE plasma levels showed a

greater improvement in respiratory symptoms and pulmonary

function during treatment with aspirin (134). Thus, aspirin

treatment benefit in N-ERD patients may be associated with the

ability to convert 15(R)-HETE to 15-epi-lipoxin by 5-lipoxygenase.

Lipoxins, including aspirin-triggered lipoxins, may potentially
exert antifibrotic effects by reducing the expression of vascular

endothelial growth factor (VEGF). VEGF causes angiogenesis and

drives the proliferation and survival of the epithelial cells in chronic

rhinosinusitis (180, 181). An increased level of VEGF is also found

in the nasal lavage of chronic rhinosinusitis patients with nasal

polyposis (181). The increased PGD2 levels in nasal polyps of
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patients with chronic rhinosinusitis has been identified as a
dominant factor in inducing the production of VEGF via the DP

receptors, and an increased level of VEGF has been documented in

nasal polyps of N-ERD patients (24, 182, 183). In N-ERD,

overexpression of PGD2 may explain the increase in VEGF, and

suppression of VEGF production could be a potential mechanism,

by which nasal polyp recurrence is reduced in N-ERD. While the

effect of aspirin on VEGF expression levels has not been studied in
N-ERD, its effect in other disorders has been documented. For

example, aspirin inhibits tumor angiogenesis and cell proliferation

by reducing the expression of VEGF (184, 185). Lipoxin A4

suppresses tumor growth by inhibiting the VEGF production in a

hepatocarcinoma cell line (186). Even though the direct effects of

aspirin to reduce the levels of VEGF has not been studied in N-ERD,
it could be a possible mechanism of aspirin action.

Production of Resolvins and Aspirin-
Triggered Resolvins
The enzymatic oxygenation of arachidonic acid, an omega-6

fatty acid, produces both anti- and pro-inflammatory lipid
mediators. On the other hand, metabolism of the omega-3

fatty acids such as eicosapentaenoic acid (EPA) and
docosahexaenoic acid (DHA) mainly produces pro-resolving

mediators such as resolvins of the E-series and D-series and

protectins. Resolvin D1 (RvD1) and resolvin E1 (RvE1) promote

resolution of inflammation in allergic airway disease, and have

also been implicated in resolution of inflammation in tumors

(187, 188). Resolvin D2 (RvD2) and resolvin D3 (RvD3) are also

known to have potent inflammation resolving activities (188,
189). DHA is converted to the D-series resolvins via the

sequential oxygenation initiated by 15-LO and followed by

5-LO via 17S-H(p)DHA (17(S)-hydroperoxy-docosahexaenoic

acid). On the other hand, aspirin acetylated COX-2 and 5-LO

converts DHA to aspirin triggered resolvins via 17R-H(p)DHA

(17(R)-hydroperoxy-docosahexaenoic acid) (190). Along with
the D-series resolvins, their aspirin-triggered counterparts also

function as anti-inflammatory and pro-resolving factors in

tumors and allergic airway inflammation by reducing

polymorphonuclear leukocyte infiltration (189, 191).

RvD1 and its aspirin-triggered 17R epimer (AT-RvD1)

promote resolution in allergic airway inflammation by

decreasing eosinophil counts and proinflammatory mediators,

TABLE 1 | Effect of Aspirin on various diseases.

Diseases Functions Applications

Cardio-vascular diseases

(152–160)

Controls cardiac hypertrophy and fibrosis by modulating

angiotensin, thromboxane, and prostacyclin production,

inhibits platelets activation and aggregation. Downregulates

NF-kB, VCAM-1 and oxygen free radicals leading to

reduction of vascular inflammation via p38MAPKs-NF-kB-

VCAM-1 pathway.

Improves vascular dysfunction, cardiac hypertrophy, and

oxidative stress. Reduces risk of non-fatal myocardial

infarction. A low dose of aspirin may prevent from

developing cardiovascular diseases, prevents second heart

attack/stroke. Reduces stroke chances in diabetic patient

with or without a history of heart disease. Prevents

myocardial infarction and decreases incidence of stent

thrombosis in patients with atrial fibrillation and

atherosclerotic cardiovascular disease.

Thalassemia (161, 162) Downregulates CD40L expression leading to reduction in

inflammation and thrombosis in patient with thalassemia

and b-thalassemia major.

Prevention of thrombosis and protect from new white

matter brain lesions in beta thalassemia major patients.

Tumorigeneses of hepatic,

ovarian and colon cancer

(163–165)

Downregulates bcl-2 expression and upregulating Bax and

p53 to inhibit tumorigenesis in lung, ovarian and colon

cancer cells. Downregulates MMP-2 and E-cadherin

expression along with platelet activation resulting in reduced

invasion of hepatic adenocarcinoma cell line.

Reduces tumor growth and metastasis, inhibits tumor cell

invasion.

Colorectal and colon

cancers (166)

Inhibits WNT and MAPK pathways, arrest cell cycle. Induces cancer cell apoptosis.

Hepatocellular carcinoma

(167, 168)

Modulates NF-kB/P4HA2 axis and LMCD1-AS1/let-7g/

P4HA2 axis in hepatocellular carcinoma. Induces high

expression of DNA mismatch repair proteins hMLH1,

hMSH2, hMSH6 and hPMS2.

Inhibits hepatocellular carcinoma. Inhibits cell cycle and

induces apoptosis of human colon cancer cells.

Esophageal, prostate,

breast, gastric, and

gastro-intestinal cancers

(153, 169–173)

Downregulates atherothrombosis, inactivates platelet

aggregation and cancer metastasis in esophageal and

gastro-intestinal cancers. Inhibits angiogenesis in gastric

cancer. Enhances nitric oxide production leading to IKKb-

mediated inhibition of NF-kB activity in gastric, prostate and

breast cancer stem cells.

Reduces risk of esophageal, gastric, breast, prostate, and

gastro-intestinal cancers.

Bone degeneration (174) Activation of osteoblastic bone formation and inhibition of

osteoclast activities via cyclooxygenase-independent via

Wnt/b-catenin pathways.

Maintaining bone mass, qualities, bone self-regeneration,

and fracture-healing.

Non-alcoholic fatty

liver disease (175)

Inhibits lipid biosynthesis, decreases levels of TNF-a and

angiotensin II type1 receptor along with activation of

PPARd-AMPK-PGC-1a pathway, as well as by modulating

the mannose receptor and C-C chemokine receptor type 2

levels in macrophages.

Improves non-alcoholic fatty liver disease and

atherosclerosis.
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and by increasing the clearance of allergens from the bronchial

tree (192). These molecules can also reduce the levels of Th2
cytokines IL-4 and IL-13 in the lung, as measured in

bronchoalveolar lavage fluids (192). Both RvD1 and aspirin-

triggered RvD1 exert their pro-resolving effects via the ALX/

FPR2 receptors that are also used by lipoxins to exert their anti-

inflammatory actions (193, 194). While the effects of resolvins in

N-ERD have not been studied extensively, indirect evidence of

their relevance is suggested by the finding that a diet high in
omega-3 fatty acids can improve N-ERD-associated symptoms,

and this is associated with increased levels of RvD1 and reduced

urinary levels of pro-inflammatory LTE4 and PGD-metabolite

(195). Enhanced production of resolvins upon aspirin treatment

should thus be examined further as a possible mechanism of

aspirin benefits in N-ERD.

Aspirin Effects on Inflammatory
Cytokine Levels
Cytokines play an integral part in allergic inflammation. IL-4 for

example, is involved in the progression of several allergic

conditions (196, 197). In N-ERD, overexpression of IL-4 in the

nasal and sinus mucosa of the nasal polyps contributes to the

pathogenesis of the disease (198). IL-4 can strongly and

selectively upregulate the expression of the LTC4S mRNA and

proteins (199). It can also upregulate the m-RNA and protein
expression of CysLT1R (an LTD4 receptor) in human monocytes

and monocyte-derived macrophages, thus also contributing to

the pathogenesis of allergic disease and asthma by modulating

the responsiveness to LTD4 (54). A possible mechanism is the

activation of the transcription factor signal transducer and

activator of transcription 6 (STAT6) by IL-4 (200). At the

transcriptional level, the expression of CysLT1R and LTC4S can
be induced by IL-4 through a STAT6 response element located in

the promoter region of CysLT1R and LTC4S (201, 202).

Prolonged aspirin use reduces the level of IL-4 in sputum

samples of N-ERD patients (18, 144, 203, 204). The mechanism

by which aspirin reduces IL-4 levels in N-ERD is not well

understood, but one possibility could be that this occurs at the
level of IL-4 transcription as observed in an in vitro analysis

where aspirin (1 mM) was effective in inhibiting gene expression

of IL-4 in activated CD4+ T cells (198, 204). This aspirin-induced

reduction in the levels of IL-4 transcription can lead to beneficial

downstream effects. For example, an aspirin-induced reduction

in the level of IL-4 can prevent the activation of STAT6 as seen in

in vitro studies in human PBMCs (205). In case of N-ERD, two
studies have shown that aspirin can inhibit the IL-4-STAT6 axis,

A B C D

FIGURE 1 | The potential mechanisms of aspirin action in N-ERD. (A) Aspirin acetylates and completely inhibits COX-1. As a result of long-term, high-dose aspirin

treatment, there is a reduction in the level of PGD2. (B) Aspirin acetylates COX-2. Acetylation of COX-2 results in the production of 15(R)-HETE, leading to generation

of 15-epi-lipoxins from arachidonic acid and resolvins from DHA and EPA. Lipoxins and resolvins bind to ALX/FPR2 on ILC2, T, B, and NK cells leading to decreased

inflammation. Lipoxins also exert antifibrotic effects by reducing the expression of VEGF. Resolvins act on ALX/FPR2 on macrophages and PMN and promote the resolution

of the allergic reaction. (C) Aspirin may inhibit the activation of NF-kB. Aspirin potentially binds to IKK-b (IkB Kinase) and inhibits the degradation of IkB, resulting in inhibition

of the NF-kB pathway. (D) Inhibition of high mobility group box 1 protein (HMGB1). Aspirin directly binds and inhibits HMGB1 and subsequently leads to the inhibition of the

downstream pro-inflammatory activating signaling pathway via NF-ĸB. DHA, Docosahexaenoic acid; EPA, Eicosapentaenoic acid; ILC2, innate lymphoid type 2 cells;

M, macrophage; L, lymphocyte; NK. Natural Killer; PMN, Polymorphonuclear; UB, ubiquitin; P, Phosphate.
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thus resulting in therapeutic benefits associated with aspirin

treatment by reducing the level of CysLT1R and LTC4S

(202, 206).

Regulation of the NF-kB Pathway
Nuclear factor kappa light chain enhancer of activated B cells

(NF-kB) is a protein complex that plays an important role in
promoting inflammation, cell proliferation and survival. It is

present in complex with inhibitor of nuclear factor kB (IkB), an
inhibitory protein. The IkB Kinase (IKK) is an enzyme complex

consisting of two catalytic subunits involving kinases (IKK-a and

IKK-b) and a regulatory subunit (IKK-g). Upon activation, IKK

phosphorylates IkB resulting in the degradation of the protein
complex and translocation of NF-kB to the nucleus. After its own

activation, NF-kB can activate the transcription of various pro-

inflammatory cytokines, chemokines and adhesion molecules. In

cancer, a deregulated NF-kB pathway promotes tumor cell

survival, proliferation, migration, invasion, angiogenesis, and

resistance to therapy (169).

Increased expression of NF-kB is associated with nasal polyposis
(207). The involvement of the NF-kB signaling pathway has been

well documented in chronic airway diseases such as asthma by

activation and translocation of NF-kB via the phosphorylation of

IKK-b (208, 209). Interleukin-25 (IL-25) induces myofibroblast

differentiation, extracellular matrix production and matrix

metalloprotease expression in nasal fibroblasts via the NF- kB
signaling pathway, thus aiding the process of the tissue growth

and leading to nasal polyposis in chronic rhinosinusitis (210). IL-25

is also upregulated in N-ERD but, to our knowledge, no direct

association of the NF-kB pathway has been established in case of N-

ERD. An elevated level of the ligand for Receptor Activator of NF-

kB (RANK-L) was observed in the tissue homogenates from nasal

polyps of N-ERD patients (211). An increased expression of RANK-
L could result in downstream activation of NF- kB, however this will
have to be investigated further to determine the exact role of NF- kB
in N-ERD.

There is evidence that, besides inhibiting the cyclooxygenase-

prostaglandin axis, aspirin also mediates anti-tumor and anti-

inflammatory effects through inhibiting NF-ĸB (212). There are
various ways by which aspirin can inhibit NF-kB, which may

include aspirin binding to the kinase IKK-b to reduce its

accessibility to ATP and prevent phosphorylation of IkB (212,

213). Stabilization of IkB in this way has been suggested as a

possible mechanism of inhibition of allergic airway inflammation

by aspirin (192). Resolvin D1 and aspirin triggered resolvin D1
can reduce airway eosinophilia by decreasing IkB-a degradation,

leading to a reduced activation of NF-ĸB (192). Therefore aspirin

can eventually reduce the activation of NF-ĸB via an indirect

mechanism involving resolvins, although the exact mechanism

remains unknown at this time. Association of NF-kB with nasal

polyp formation in N-ERD needs further investigation as a

potential target for anti-inflammatory aspirin action.

Inhibition of High Mobility Group
Box 1 Protein
High mobility group box 1 or HMGB1 is a non-histone,

chromatin binding protein that belongs to the family of

damage-associated molecular patterns and plays an important

part in inflammation. HMGB1 is involved in cancer angiogenesis

and in cancer progression and metastasis development (214,

215). It exerts its pro-inflammatory and pro-angiogenic activity

via its interaction with various toll-like receptors but most

importantly toll-like receptor 4 and via receptor for advanced
glycation end products (RAGE) (216, 217). These interactions

then activate downstream signaling pathways such as MAPK and

NF-ĸB which in turn releases pro-inflammatory cytokines such

as tumor necrosis factor-a, interleukin-1,-6,-8, and VEGF (218).

Apart from cancer, HMGB1 is also involved in asthma

pathogenesis as HMGB1 and its receptor RAGE are
overexpressed in the sputum of severe asthma patients (219).

The protein-receptor pair is also overexpressed in the nasal

tissues of those diagnosed with eosinophilic chronic

rhinosinusitis with nasal polyps (220, 221). Interleukin-33 (IL-

33) is a an inducer of mast cell activation and innate type 2

immunity and is present in increased levels in the nasal polyp
tissues of patients with N-ERD (222). A recent study in mice

showed that stimulation with LTC4 upregulates the expression of

surface HMGB1 (223). HMGB1 can then signal through RAGE

resulting in the amplification of CysLT2R-mediated platelet

activation which can lead to an increase in IL-33 levels.

Due to its pro-inflammatory effects, HMGB1 is an important

drug target and a potential biomarker for various
neurodegenerative diseases and cancers. It has been suggested

that aspirin is capable of inhibiting HMGB1-mediated tumor

progression (224). Even though the exact mechanism of HMGB1

inhibition by aspirin is not fully known, aspirin may function by

directly binding to HMGB1 and suppressing its proinflammatory

functions even at low doses (225). HMGB1 activates VEGF,
downstream signaling of NF-ĸB pathway, and IL-33. Inhibition

of HMGB1 by aspirin can therefore lead to a downregulation of

these pathways, although a clinical relevance of these potential

actions in N-ERD needs to be further investigated.

Epigenetic Changes
Aspirin’s effectiveness in treatment of cancer may be related to

epigenetic changes, such as histone acetylation. Histone
acetylation involves histone acetyltransferase and histone

deacetylase enzymes (226), and the activities of these enzymes

can be regulated by aspirin (163). In fact, inhibition of histone

deacetylase in general is now considered to be a possible

therapeutic approach for colorectal and other cancers by

regulating epigenetic changes (227–229). Aspirin in particular
was shown to modulate epigenetic changes in colon cancer by

inhibiting the activity of histone deacetylase which leads to

restoration of histone 3 lysine 27 acetylation, eventually

suppressing levels of tumor necrosis factor-a and interleukin-

6 (230).

Epigenetic changes such as hyper and hypo-methylation of

genes mainly associated with the arachidonic acid pathway have
been observed in N-ERD (231). In the nasal polyp samples of

N-ERD patients, Cheong et al. observed that the following genes

were hypomethylated: the PGDS gene encoding prostaglandin D

synthase, the ALOX5AP gene encoding 5-LO activation protein,

and the LTB4R gene encoding the leukotriene B4 receptor, while
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the PTGES gene encoding prostaglandin E synthase was

hypermethylated (231). Laidlaw et al. also observed epigenetic

changes in the form of histone acetylation at the PTGER2

promoter that dysregulates the EP2 receptor expression in the

nasal fibroblast of N-ERD patients (103). Whether or not these

epigenetic changes could function as possible targets for aspirin
therapy in N-ERD is still unknown.

CONCLUSION

Therapeutic Implications
Aspirin desensitization and maintenance therapy following

endoscopic sinus surgery is an effective treatment for N-ERD

patients that reduces the recurrence of nasal polyps. Aspirin and

its use as an anti-inflammatory agent have been widely studied in

cancer, but the exact mechanism of its actions in N-ERD is not

completely understood. It is also unexplained why some N-ERD
patients fail aspirin desensitization and maintenance therapy. In

this review we summarized the potential pathways of aspirin

action based on the available knowledge of aspirin’s effectiveness

on eicosanoids, growth factors, pro- and anti-inflammatory

pathways, and cytokines. Exploring these mechanisms may

highlight the diversity of aspirin action. Mechanistic studies
may help in developing new and more effective treatments for

N-ERD using aspirin and other agents. Information on aspirin

actions may help identify N-ERD patients who are appropriate

candidates for this effective and affordable treatment.

Limitations and Future Directions
The mechanism of aspirin action to relieve the symptoms of

N-ERD is not fully understood. There are various avenues for

further investigation of aspirin actions in N-ERD. A major

emphasis has been primarily on the arachidonic acid pathway

and its regulation by aspirin in N-ERD. Aspirin exerts its anti-

inflammatory effects in other diseases, for example in cancer, by

several other pathways. Limited information is available for some

of these pathways such as production of resolvins and
modulation of epigenetic changes in N-ERD. Further studies

are needed to determine the role of these pathways in N-ERD.

The role of NF-kB, VEGF, HMGB1, and RAGE in N-ERD needs

to be better defined. Long-term studies with an emphasis on

molecular pathways would provide a robust understanding of the

disease and pathways that could serve as therapeutic targets.
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