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Abstract

Genome-wide analysis of alternative splicing has been a very active field
of research since the early days of NGS (Next generation sequencing) tech-
nologies. Since then, ever-growing data availability and the development of
increasingly sophisticated analysis methods have uncovered the complexity
of the general splicing repertoire. However, independently of the considered
quantification methodology, very often changes in variant concentration pro-
files can be hard to disentangle. In order to tackle this problem we present
ASpli2, a computational suite implemented in R, that allows the identifica-
tion of changes in both, annotated and novel alternative splicing events, and
can deal with complex experimental designs.

Our analysis workflow relies on the analysis of differential usage of sub-
genic features in combination with a junction-based description of local splic-
ing changes. Analyzing simulated and real data we found that the consolida-
tion of these signals resulted in a robust proxy of the occurrence of splicing

alterations. While junction-based signals allowed us to uncover annotated
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as well and non-annotated events, bin-associated signals notably increased
recall capabilities at a very competitive performance in terms of precision.

Keywords:  Alternative splicing, RNAseq,

1 1. Introduction

2 The vast majority of protein coding genes in eukaryotic organisms are
s transcribed into precursor RNA messenger molecules (pre-mRNA) carrying
4+ protein coding regions (exons) interleaved by non-coding ones (introns). The
s later are removed in a co-transcriptional dynamical maturation process called
s splicing. Alternative splicing (AS) occurs whenever distinct splicing sites are
7 selected in this process resulting in different mature mRNA molecules [1, 2].
8 Far from being an exception, it was found that AS is a rather common
o mechanism of gene regulation that serves to expand the functional diversity
10 of a single gene allowing the generation of multiple mRNA isoforms from a
1 single genomic locus [3]. Five basic modes of AS are generally recognized: the
1> skipping of a given exon (exon skipping, ES), the exon elongation/contrac-
13 tion produced by the use of alternative 5" donor (Alt5’) or 3’ acceptor (Alt3’)
1 sites respectively, the retention of an intronic stretch in the mature mRNA
15 form (intron retention IR), and the alternative use of mutually exclusive ex-
16 ons (MEX). These canonical forms of AS are prevalent among eukaryotes,
17 although their relative incidence might vary between them [4]. Despite their
18 ubiquity, these simple patterns that mainly involve binary choices of exons,
19 donor and acceptor sites, do not exhaust the splicing repertoire. On the con-
20 trary, much more complex biologically relevant patterns could arise [5, 6]. In

a1 practice the study of AS faces many technical challenges that cause that every
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» quantitative approach typically suffers methodological limitations. Despite
3 the use of different statistical approaches, some methods consider only pre-
2 existing known annotation, some can exclusively handle canonical splicing
»s events and some can only handle pairwise comparisons between conditions
2 (for a comprehensive review see [7, 8, 9]).

2

2 The analysis of AS at genomic scale started-in with microarray technolo-
2 gies [10, 11] and nowadays is routinely probed using RNAseq assays [12, 13].
s Roughly speaking, there are three main computational approaches to study
a1 splicing diversity from RNAseq data. For one hand there are transcript re-
» construction methods, like MISO [14] or Cufflink [15] that aim to infer a
;3 probabilistic model of the frequency of each isoform from the read distribu-
1 tion mapped to a given gene. In the same spirit, Kallisto [16] and Salmon[17]
55 are two recently introduced methods that leverage on light-weight pseudo-
s alignment heuristics to quantify transcript abundances. For the other hand,
» methods like DEXSeq [18] , edgeR [19, 20], or voom-limma [21], focus on
1 the analysis of differential usage of subgenic features (e.g. exons) between
» conditions. Finally, there are also methods like rMATS [22], MAJIQ [5] or
o LeafCutter [23] that leverage on junction information to infer both, anno-
s tated and novel splicing events.

2

5 Differently form other approaches, ASpli2 was specifically designed to in-
u tegrate several independent signals in order to deal with the complexity that
s might arise in splicing patterns. Taking into account genome annotation in-

s formation, ASpli2 considers bin-based signals along with junction inclusion
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s indexes in order to assess for statistically significant changes in read cover-
s age. In addition, annotation-independent signals are estimated based on the
s complete set of experimentally detected splice junctions. Noticeably, ASpli2
so can provide a comprehensive description of genome-wide splicing alterations
51 even for non-trivial experimental designs. Our approach relies on a gener-
2 alized linear model framework (as implemented in edgeR R-package [24]) to
53 assess for the statistical analysis of specific contrasts of interest.

54 In order to weigh ASpli2’s performance we compared it against three
ss different state-of-the-art methodologies: rMATS [22], LeafCutter [23] and
ss. MAJIQ [5]. The first one is a widely used piece of software that can in-
s tegrate coverage and junction information to assess for changes in splicing
ss  patterns. Additionaly, LeafCutter and MAJIQ are two recently introduced
so  methodologies that are widely used by the bioinformatics community. Both
s approaches focus on the analysis of clusters of junctions to study local splic-
&1 ing patterns of varying complexity. However, they differ in many technical
2 and statistical aspects [5]. For instance, LeafCutter was not designed to han-
&3 dle intron retention events and considers a Dirichlet-multinomial generalized
s« linear model to test for differential intron excision between two groups of
ss samples. MAJIQ, on the other hand, relies on a bayesian estimation of the
s posterior Percent Selected Index to identify splicing affected junctions.

o7 Other methodolgies like DEXSeq [18], edgeR [24], or voom [21] are also
¢ widely considered for bioinformatics analysis as they are very versatile tools
s to analyse differential usage of exons from RNA-seq data. In fact, ASpli2
70 makes use of the genome-binning scheme originally presented in DEXseq to

7 quantify read coverage signals (see Sup.Mat.8.1) and leverages on the statis-
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2 tical framework developed in edgeR to estimate robust splicing signals (see
73 Section 3.1). These methodologies constitute great toolboxes to implement
7 ad-hoc analysis. However, as they do not intend to provide per se self-
75 contained solutions that produces final reports starting from read-alignment
7 input data they were not explicitly included in our analysis.

7 The paper is organized as follows. In Section 2.2 we analyzed a simu-
7z lated dataset in order to evaluate the specificity and sensitivity of ASpli2
7o discoveries. These results were contrasted against LeafCutter, MAJIQ and
so TMATS outcomes in order to analyse ASpli2 performance. In Section 2.3 we
s1 explored the ability of ASpli2 to uncover consistent splicing-patterns from
&2 two independent RNAseq assays that probed the same biology. We focused
&3 on the alterations of splicing patterns of A. thaliana transcriptome caused
sa by the knock out of PRMT5, a methyl transferase that, among other pro-
s teins, targets several Sm spliceosomal proteins [25, 26, 27]|. This analysis was
ss also performed with the other considered methodologies in order to compare
&7 their capacity to generate reproducible results. In addition, we capitalized on
ss  ASpli2’s ability to handle complex experimental designs to produce a consol-
s idated data-set from the independent assays. In this section we also aimed to
o quantify the level of agreement of ASpli2, LeafCutter, MAJIQ and rMATS
a1 discoveries with qRT-PCR based alternative splicing evidence. To that end,
e we took advantage of two independent studies that analyzed splicing altered
i3 events in PRMT5 mutants using qRT-PCR assays [25, 28|. Finally, in Sec-
o tion 2.4, we considered a 28 samples paired-study of human prostate cancer
s [29]. Using this data-set we analyzed how the performance, time and memory

o requirements scaled with the number of considered samples in a paired exper-
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o7 imental design. Finally, we discussed our results in Section 4 and presented

93 our conclusions in Section 5.

9 2. Results

wo  2.1. ASpli2 workflow

101 ASpli2 was designed as a flexible R package to carry out all the major
102 tasks required for gene expression and splicing analysis. A typical ASpli2
w3 workflow involves: parsing the genome annotation into subgenic features
s called bins, overlapping read alignments against them, perform junction
s counting, fulfill inference tasks of differential bin and junction usage and,
s finally, report integrated splicing signals. A workflow diagram and a sum-
w7 mary of ASpli2 core functionality can be found as Supplementary Figures S1
s and S2 respectively. As shown in Figure S1, at every step ASpli2 generates
o self-contained outcomes that, if required, can be easily exported and inte-
no grated into other processing pipelines. Supplementary Figure S3 shows an
m  example of the interactive html report generated as a final output. A detailed
2 description of ASpli2 functionality is included in ASpli2’s R vignette, which
3 is provided as Supplementary Material.

114

us  2.2. Synthetic dataset

116 Changes in splicing patterns were simulated in a treatment vs control
ur setup for genes of the chromosome-one of the Arabidopsis thaliana plant

us  genome (three samples per condition). In our simulations, the differential
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1o usage of splicing variants affected 2451 genomic bins in 915 genes (see Ma-
120 terial and Methods 3.3).

121

122 The ASpli2 analysis pipeline provided three different cues to probe splic-
123 ing occurrence. Statistically significative evidence is collected from: bin cov-
e erage differential signals, junction anchorage changes and variations inside
125 junction clusters (see Material and Methods 3.1). We considered bin-coverage
16 signals with statistically significant differential coverage changes (fdr< 0.05)
127 that presented either a larger than three-fold coverage fold-change or, alter-
128 natively, a change in bin-supporting junction inclusion indices larger than 0.2
19 . For junction based signals, on the other hand, locale and anchorage indices
10 were required to present statistically significant changes (fdr< 0.01) and also
1 should display usage signal variations larger than a 0.3 level (see Material

132 and Methods 3.2)

134 In Table 1 we reported the number of correctly detected simulated events,
135 number of false positives and number of events exclusively detected by each
s kind of signal: bin-coverage, junction-locale and junction-anchorage. Over-
17 laps between discoveries reported by each kind of signal were graphically
138 reported in panel (A) of Figure 1.

139 It can be seen that ASpli2 correctly uncovered 974 (40%) of the 2451
1o simulated bin events. Moreover, we found that most of the ASpli2 undetected
11 simulated events (1341 out of 1477) took place in genes that did not present
12 enough expression levels over the analysed conditions and therefore were

13 filtered out before any statistical testing (see 3.2). In fact, only 136 out of
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e the 1110 events (12%) that did pass the gene-expression pre-filtering step
s were found to be false negative cases.

146 About 95% of ASpli2 true discoveries were identified by the analysis of
17 significant changes at the bin-coverage level. Junction-based detection, on
s the other hand, could correctly identified 574 simulated events (60% of true
ue discoveries). The null overlap between locale and anchorage detection illus-
10 trated that they probed complementary aspects of splicing events. Addi-
151 tionally, it can be appreciated that 41% (399) of the true discoveries were
12 only detected by bin-coverage signals, whereas junction-based analysis con-
153 tributed only 5% (50) of specific detections. A graphical summary of the
154 detection signal landscape can be appreciated in panel (A) of Figure 1.

155

ASpli2 signal TP FP
bin coverage 924 (399) 42
junction locale 393 (35) 2

junction anchorage 182 (15) 6
overall 974 48

Table (1) Splicing detection performance of the three different ASpli2 signals. True
positive and false positive calls are shown in the second and third columns respectively.
The number of specific discoveries exclusively reported by each signal is reported between

brackets.

156 We decided to further characterized some aspects of bin-coverage detec-
157 tion calls, as this signal provided the major number of discoveries. It can be

155 seen in panel-(B) of Figure 1 that fold-change and junction-support signals
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Figure (1) (a) Distribution of detection call produced by different ASpli2 signals. (b)
Graphical summary of bin-coverage detection calls. The sim set correspond to simulated
events. logFC and D-inclusion sets are associated to statistically significant discoveries
presenting large enough fold change and large bin-supporting junction inclusion signals
respectively. ROC and Precision-Recall curves, parameterized by the considered fold-
change threshold level, are shown for statifically significant bins in panels (¢) and (d)

respectively.
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159 used in the bin-coverage analysis reported relevant and non-redundant infor-
10 mation. Whereas the first one accounted for 37% of true positive instances
11 exclusively detected by this signal, the second one accounted for the specific
162 identification of 12% of the total number of true events. The impact of the
163 selected fold-change threshold value, FC*, on specificity, precision and recall
1« can be appreciated with the aid of the Receiver-Operator and Precision-
165 Recall curves shown in panels (C) and (D) of Figure 1. It can be recognized
166 from these figures that with the adopted 3-fold threshold ASpli2 achieved
167 high recall and precision levels (~ 80% and ~ 95% respectively) laying at
16s  rather moderate levels of false positive rates (~ 14%).

169

method size precision recall
ASpli2 1022 (631) 0.95 (0.99) 0.40 (0.68
ASpli2, 966 (591) 0.96 (0.99) 0.38 (0.64
ASpli2; 583 (456) 0.99 (0.99) 0.23 (0.50
LeafCutter 204 (163) 0.93 (0.91) 0.08 (0.16
(381) (0.87) (
(352) (0.91) (

MAJIQ 538 0.84 (0.87) 0.18 (0.36

)
)
)
)
)
rMATS 405 0.87 (0.91) 0.14 (0.35)

Table (2) Number of discoveries, precision and recall levels are reported for different
detection methodologies. ASpli. and ASpli; correspond to ASpli2 discoveries detected
using just coverage or just junction signals respectively. Values between parenthesis report

quantities estimated at gene-level.

170 In Table 2 we reported the detection performance of ASpli2 and the re-
1 sults obtained by other state-of-the-art algorithms (see Sup Mat 8.2 and 8.3

10
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w2 for calculation details). Precision and recall values estimated at gene-level (in
173 which a gene was reported as a discovery whenever at least one alternative-
17 splicing event was detected within its genomic range) were reported between
s parenthesis. ASpli2 outcomes considering only coverage signal or just junc-
17 tion signals were included in the table as ASpli2. and ASpli2; rows respec-
7 tively.

178 It can be seen from the table that even though all tested algorithm shown
o rather high precision values, ASpli2 benefited from larger recall scores than
10 any other methodology. Moreover, it can be appreciated that ASpli2; dis-
11 played only marginally larger recall levels than other methodologies implying
12 that ASpli2 leveraged on coverage signals to increase this figure of merit. All
183 of these results suggested that ASpli2 was capable of reliably detect the simu-
18« lated splicing events achieving notably high recall values at very competitive

15 levels of precision and specificity.

86 2.3. Reproducibility Analysis

187 As we mentioned in the introduction, PRMT5 is a methyl transferase
188 that, among other proteins, targets several spliceosome proteins. Its deletion
1o has been proved to provoke major splicing alterations [25, 26]. We analyzed
1o two independent RN Aseq assays that were conducted at different times prob-
01 ing the same biology. Experiments A (GSE149429) and B (GSE149430) were
12 originally carried out to analyze splicing alterations in the PRMT5 knock-
13 out mutant in Arabidopsis thaliana. Both assays probed the PRMT5-KO
s and wild-type transcriptomes in Columbia ecotype plants as part of larger
105 and different studies (see Material and Methods 3.4).

196 The rationale behind our analysis was two-fold. For one hand we wanted

11
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17 to assess for ASpli2 detection performance in a more realistic setup. For
108 the other we wanted to take advantage of these datasets to quantitatively
109 estimate the reproducibility of discoveries, i.e. we wanted to explore the
200 consistency and robustness of experimentally identified alternatively splicing

201 events in biologically related systems.

200 2.8.1. Reproducibility assessment

203 We analyzed RNAseq assays A and B with ASpli2 and the other consid-
204 ered algorithms. For ASpli2, we used the same detection-call criteria specified
205 in Section 2.2. Default parameters were considered to run the other tested
20s methodologies (command lines used to execute them were included as Sup-
207 plementary Material 8.2). For LeafCutter and rMATS we considered events
28 presenting fdr corrected pvalues smaller than 0.05 and changes in junction
200 inclussion indices larger than 0.1. For MAJIQ we sought for events present-
210 ing a posterior probability larger than 0.95, of having a change in inclussion
an index larger than a 0.2 level. Overall, 6350, 951,412 and 158 genomic regions
212 affected by altered splicing patterns were reported by ASpli2, LeafCutter,
a3 MAJIQ and rMATS algorithms respectively in at least one experiment.

214

215 In Table 3 we summarized reproducibility statistics for each examined
26 methodology (a more in-depth comparison of discoveries was included as sup-
27 plementary material in Section 8.5). Column universe of Table 3 reports the
218 actual number of sub-genic regions that, upon passing different pre-filtering
219 steps, were actually examined for statistically significant changes in splicing
20 patterns. The extent of this background list was noticeably larger for ASpli2

o1 as our methodology tested not only junction-related signals but also alter-

12
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22 ations in the usage of genomic bins. Columns A and B outline the number
23 of regions reported as differentially spliced in each experiment and column
20 AN B, the discovery intersection size (i.e. number of sub-genic regions re-
»s ported as differentially spliced in both data-sets). In parenthesis, we included
26 the overlap coefficient value, defined as A N B/ min(A, B). Expected over-
27 laps, fold enrichment (i.e. ratio between observed and expected overlaps)
»s and p-values were estimated using the SuperExactTest R-package [30] and

29 reported in KO, F'E and pval columns respectively.

Method | universe | A B ANB EO | FE pval
ASpli2 | 140191 | 4687 | 3904 | 2241 (0.57) | 130.5 | 17.2 | 0.0e4+00
leafCutter | 8113 603 | 675 | 327 (0.54) | 50.2 | 6.5 | 3.6e-219
MAJIQ | 16441 277 | 284 | 149 (0.54) 4.8 | 31.1 | 9.5e-203
rMATS | 2405 310 | 401 | 310 (1.00) | 19.4 | 16.0 | 0.0e400

Table (3) Reproducibility statistics. The numbers of statistically analyzed genes (after
prefiltering steps) for each algorithms are shown in the universe column. The number of
splicing events reported for each experiment and the number of concordant discoveries are
displayed at columns A, B, and AN B respectively. The expected overlap, fold enrichment

level and significance pvalue are displayed in columns EO, FE and pval respectively

230 It can be seen from Table 3 that, for all the examined methods, the
231 agreement between experiments was highly significant. In all cases, more
22 than 50% of events detected in one experimental instance was also reported
233 in the other. At the same time it can be appreciated that ASpli2 provided
24 the largest (and highly significant) overlap-set. Noticeably, the total number

235 of concordant splicing-affected genomic regions detected by ASpli2 presented
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236 up to a 15-fold increase with respect to the size of concordant sets reported
237 by others methodologies.

238

239 Overall our analysis showed that results obtained at different and inde-
20 pendent experimental instances were reproducible, in the sense that statis-
21 tically significant agreement was found for every methodology. These re-
22 sults were robust against using different overlap quantification criteria (see
23 Sup.Mat 8.5). In this matter, and similarly to the results obtained on the
24 Synthetic dataset, our results on PRMT5 data showed that ASpli2 displayed
25 high recall levels providing the largest list of concordant discoveries between

26 experiments.

a7 2.83.2. Data consolidation

218 Up to now, we focused on the analysis of the intersection of set of discov-

29 eries as a measure of coherence of the results. Now we wanted to illustrate

0 how ASpli2 capabilities to deal with complex experimental designs can be

1 used to integrate experimental results in a more statistically sound way.
ASpli2 was used to consolidate datasets A and B considering a simple

generalized linear model:
y ~ experiment + genotype + experiment : genotype (1)

2 ‘experiment’ was a fixed effect to cope with specific technical biases, and the
3 ‘genotype’ factor was meant to capture the PRMT5 vs wild-type effect. The
4 third term was an interaction term, and was used to enforced the exclusion
5 of non-coherent signals between experiments.

256 ASpli2 detected 4360 genomic regions displaying strong evidence of a

14
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7 genotype effect (fdr < 0.05). In addition, 99% of these PRMT5-related
28 events (4314 out of 4360) passed a filtering step to enforce they presented no-
20 detectable evidence of experiment-genotype interactions (experiment:genotype
20 associated fdr > 0.5). These 4314 events defined the consolidated AB data
261 set.

262 We found that 99% (2209 out of 2241) of the concordant discoveries in-
»%3  dependently detected in both assays were also included in the consolidated
¢ dataset (we included a Venn diagram of the discoveries reported for experi-
s ments A, B, and the consolidated data-set AB in Sup.Fig. S7). Noticeably,
6 the consideration of the AB data-set allowed to almost double the number of
7 detected genomic regions displaying robust evidence of differential splicing

268 patterns.

w0 2.3.3. PRMTS5 RT-PCR detected events

270 The PRMT5 methyltransferase has been the target of many studies as
o deficiencies in this protein causes genomewide splicing alterations[26, 27, 28|.
o2 In this section we focused on two specific works that provided independent
oz RT-PCR validated lists of splicing alterations linked to PRMT5 in Arabidop-
za  sis thaliana [25, 28].

275 For one hand, Deng and collaborators studied PRMT5 mutant Ara-
a6 bidospis thaliana plants and presented a list of 12 RT-PCR validated intron
27 retention events (see Fig 2 in [28]). On the other, using the same biological
s model, Sanchez and collaborators indentified changes in alternative splicing
279 using a high-resolution qRTPCR panel that included several known alterna-
20 tive splicing events [31]. They found that PRMT5 mutants had significant

21 alterations in 44 events which included exon skipping, alternative donor and
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22 acceptor splice sites, as well as intron retention events (Supplementary Table
23 4 in [25]).

284 We aimed to contrast these findings with the results reported by the dif-
s ferent methodologies on datasets A and B. In Table 4 we summarized, for
26 each study, the number of concordant findings uncovered by different al-
27 gorithms on datasets A and B. Quantities between brackets represent the
28 number of ASpli2 discoveries reported by coverage and junction-based sig-
280 nals respectively. It can be seen that ASpli2 recovered the largest number
200 of events and that the majority of ASpli2 validated discoveries originated in
a1 differential coverage signal calls. Had we only considered junction related
22 detection-signals, ASpli2 would have achieved similar levels of agreement
203 than the other junction-based algorithms (for instance we got a similar per-
20¢  formance than LeafCutter on Sanchez data-set for the consolidated case).
205

206 In Table S2, included as supplementary material, we further character-
207 ized the agreement between the 23 splicing events that ASpli2 uncovered for
208 the consolidated AB case, and Sanchez qRT-PCR validated events. It can
20 be seen that in 15 out of the 23 cases (65%), the very genomic region probed
s0 by the PCR analysis was recognized by ASpli2. For the other 8 cases, AS-
so0 pli2 detected actually occurrying changes in isoform usage but from splicing
32 signals originating at genomic locations not probed by the PCR primers (See
33 Supplementary Figures - TODO: ACA VAN SAHIMI PLOT DE EVENTOS
s¢ PCR).
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Method Deng 2010 Sanchez 2010
RT-PCR 12 44
AB 8 [84] 23 [21,13]
ASpli2 A 10[85 24 [19.7]
B 9[8,2] 20 [18,6]
A 3 16
LeafCutter
B 3 17
A 5 8
MAJIQ
B 2 8
1 12
rMATS
B 1 3
Table (4)

2.4. ASpli2 scalability analysis

In this section we leveraged on a mid-size RNAseq study presented by
Ren and collabrators to characterize aberrant splicing patterns occurying
in prostate cancer patients [29]. We aimed to analyze this sample-paired
assay to see how ASpli2 performance (statistical power, precision ,time and
memory requirements) scaled with the number of samples. In particular, we
followed the approach suggested in [32] to characterize ASpli2 in terms of
statistical power and expected false discovey rate for a varying number of

samples.
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su 2.4.1. Statistical power

315 Ren and collaborators presented a comprehensive study of splicing alter-
a6 ations detected using RNAseq transcriptome profiles of 14 primary prostate
si7 - cancers and their paired normal counterparts from the Chinese population
us [29]. On average, the 28 fastq files presented 34.6 4+ 1.7 million reads per
si9 sample and 31.4 4+ 1.6 millions of them were actually mapped to the EN-
20 SEMBL HG38.98 version of the human genome (see Material and Methods
21 3.6). The genome’s GTF and BAMs files were then used as inputs to drive
2 an alternative splicing paired-sample analysis with ASpli2. We considered
23 the following model to identify genomic regions differentially spliced in tumor

324 samples compared to normal tissue controls:

y ~ patient + tissue (2)

35 The ‘patient’ term served to pair tumor and normal tissue samples coming
16 from the same individual. The two-level ‘tissue’ factor reported average
27 differences between tumor and normal cases over the observed population of
38 patients.

329 In order to study the dependency of the statistical power on the number
30 of samples, we sampled without replacement (10 times) subsets of 3, 5, 7 and
s 10 individuals. For each case, we reported, in the first column of Table 5, the
;2 median (and standard error, in brackets) of the number of genomic regions
;3 found to be alternatively spliced between tumor and normal samples.

334 In order to estimate false discovery rates we considered mock comparisons
135 between normal samples (we sampled 10 times normal tissue samples of 3vs3,

16 Hvsh and Tvs7 individuals). We then estimated FDR as the ratio between
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;37 the number of mock discoveries and the median number of discoveries found
18 in true comparisons of the same number of samples. In the second column

10 of Table 5 median and standard errors (in brackets) were reported.

Splicing events Affected genes
number FDR number FDR
3x3 | 67 (155) 0.2 (0.4) 44 (113) 0.25 (0.03)
5x5 | 486 (387) 0.02 (0.002) 371 (218)  0.02 (0.002)
7X7 | 759 (220) 0.005 (0.02) 481 (131) 0.004 (0.0007)
10x10 | 850 (418) - 664 (191) -
14x14 1465 - 1030 -

Samples

Table (5) Summary of the 10-fold bootstrapped analysis of ASpli2 performance on the
prostate cancer data set. For each number of paired samples (first column) the median
number of genomic-regions displaying a statistically significant ‘tissue’ effect were included
in the second column. Median values of false discovery rate estimations obtained from
the analysis of normal-tissue samples were shown in the third column. Standard error

estimation were reported between brackets.

340 It can be seen from Table 5 that the median number of detected splicing
s events increased with the number of examined samples, up to a maximum of
s2 1465 events obtained when the 28 paired samples were considered. The large
s3  variability observed between bootstrap realizations was consistent with the
s large variability already observed across prostate cancer transcriptomes (see
15 [29] and Supplementary Material 8.7). FDR estimated values showed a huge
us  decrease with increasing number of samples, and for the 5x5 case seemed to

w7 have already leveled off. Similar trends were observed when splicing alter-
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1 ations were reported at the level of hosting genes (data not shown).

s 2.4.2. Time and memory requirements
350 In Table 6 we reported median values and standard errors for the elapsed

31 time and peak memory usage required for calculations (performed on single

32 thread on an Intel Xeon Silver 4116 2.1GHz Lenovo ThinkSystem SR650)

Samples | time [min] | memory peak|Gb]
3x3 | 67 (1) 20.25 (0.38)
5x5 | 111 (2) 22.15 (0.20)
X7 | 156 (4) 24.13 (0.03)
10x10 | 231 (5) 26.57 (0.04)
14x14 348 30.07

Table (6) Summary of the 10-fold bootstrapped analysis of ASpli2 performance on the
prostate cancer data set. For each number of paired samples (first column) the median
number of genomic-regions displaying a statistically significant ‘tissue’ effect were included
in the second column. Median values of false discovery rate estimations obtained from the
analysis of normal-tissue samples were shown in the third column. Median time and
memory used in the analysis were reported in the last two columns. Standard error

estimation were reported between brackets.

353 Execution time scaled linearly with the number of paired samples at a
3¢ rate of 25.5 minutes per pair of samples (about 90% of execution time was
35 used for BAMs reading and feature counting). The memory peak column
356 shows that RAM requirement linearly scaled with the number of samples at
37 a rate of about 880Mb per sample pair. A simple extrapolation suggests that
s about 65Gb should be enough to handle 100 samples of the same sequencing
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10 depth (~ 3.510° reads per sample).

;0 3. Material and Methods

ssv 3.1. Differential analysis scheme

362 ASpli2 leverages on the statistical framework developed by Smyth and
33 collaborators, implemented in the edgeR R-package [24, 20], to assess for
sa  statistically significant changes in gene-expression, bin coverage and junction
s splicing signals. Under this approach, count data is modeled using a negative
6 binomial model, and an empirical Bayes procedure is considered to moderate

w7 the degree of overdispersion across units.

w8 Differential expression signals. Differential expression signals are estimated
30 via generalized linear models (GLM). This approach allows ASpli2 to deal
s with complex experimental designs, i.e. contrasts can be tested in experi-
sn - ments with multiple experimental factors. Using this statistical setting, for
sz each gene, ASpli2 quantifies differential gene expression signals reporting the

sz corresponding log-fold change, p-value, and FDR adjusted g-values.

s Differential splicing signals. In order to study splicing patterns, gene ex-
a5 pression changes should be deconvolved from overall count data. On a very
s general setting, what we are looking for is to test whether a given unit of a
sz certain group of elements displays differential changes respect to the collec-
ws  tive or average behavior. ASpli2 uses this general idea to assess for statisti-
so cally significant changes in splicing patterns probed with different genomic

a0 features:

21
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381 e bin-coverage signal: ASpli2 assesses for differential usage of bins com-
382 paring bin’s log-fold-changes with the overall log-fold-change of the
383 corresponding gene.

384 e junction anchorage signal: For every experimentally detected junction,
385 ASpli2 analyzes differential intron retention changes by considering log-
386 fold-changes of a given experimental junction relative to changes in
387 coverage of left and right junction flanking regions.

388 e junction locale signal: In the same spirit than MAJIQ and LeafCutter,

389 ASpli2 defines junction-clusters as sets of junctions that share at least
390 one end with another junction of the same cluster (see Panel E of
301 Figure S8). In order to characterize changes for a given junction along
302 experimental conditions, ASpli2 weighs log-fold-change of the junction
303 of interest relative to the mean log-fold-change of junctions belonging
304 to the same cluster.

305 ASpli2 makes use of the functionality implemented in the diffSpliceDGE
w6 function of the edgeR package to perform all of this comparisons within a uni-
w7 fied statistical framework. Given a set of elements (i.e. bins or junctions) of
w8 a certain group (i.e. genes, anchorage group or junction-cluster), a negative
30 binomial generalized log-linear model is fit at the element level, considering
w0 an offset term that accounts for library normalization and collective changes.
w1 Differential usage is assessed testing coefficients of the GLM. At the single
w2 element-level, the relative log-fold-change is reported along with the associ-
w03 ated p-value and FDR adjusted g-values. In addition a group-level test is

ws  considered to check for differences in the usage of any element of the group

22
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ws between experimental conditions (see diffSplice DGE documentation included

ws in edgeR package for details [24]).

wr  3.2. Filtering and detection criteria

408 Statistical analysis of differential splicing is performed only on expressed
wo genes (i.e. read counts spanning the gene genomic range should be larger
a0 than a minimal number of reads, 5 by default, across all the samples of the
i contrasted conditions). Furthermore, analyzed bins and junctions should
a2 present a minimal number of counts (5 by default) in every replicate of at
a3 least one contrasted condition. Additionally, marginally present junctions
aa  are filter-out looking at the maximal value of their participation coefficient,
a5 defined as the relative abundance of a given junction within its group for a
a6 given experimental condition.

a7

a18 Besides statistical figures of merit, ASpli2 provides additional statistics
a0 and parameters in order to ease the identification of biologically relevant
w20 events. For instance, magnitude of change in inclusion or strength indices
a1 (see Table S1) between experimental conditions, are also reported in order to
w2 filter-out weak events. In this way, a bin is called differentially-used by ASpli2
w3 if it displays statistically significant coverage changes (fdr < 0.05, by default)
24 and, additionally, one of the two supplementary conditions hold: either the
w5 bin fold-change level is greater than a given threshold (3 fold changes, by
w6 default) or changes in inclusion levels of bin-supporting junctions (APIR
w2 or APSI according to the bin class, see Table S1) surpasses a predefined
28 threshold (0.2 by default).

420 Anchorage splicing signals, on the other hand, are reported whenever

23
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a0 statistically significant changes are found at the cluster level (cluster.fdr <
s 0.05 by default) for the considered {Ji, Js, J3} junction set (see upper panel
a2 of Fig S8-D) and, at the same time, |API R, is larger than a given threshold
s (0.3 by default).

a3 Finally, junction locale differential splicing signals are reported when-
a5 ever statistically significant changes are found at the cluster level (cluster.fdr
s < 0.01 by default) for the analysed junction cluster {Ji, ..., Js,..., J,} (see
s S8-E) and, at the same time, there is at least one junction Jg within the
a8 cluster presenting statistically significant changes at the single unit level
s (junction.fdr < 0.05, by default) with |AParticipation ;| larger than a given
s threshold (0.3 by default). In the case that statistically significative changes
a1 were detected at the unit-level for more than one junction of a given clus-
w2 ter, the one displaying the largest participation change was considered and

a3 reported as the cluster’s representative junction.

as 3.3, Splicing simulation

a5 We implemented a computational pipeline relying on the Flux Simulator
us  (FS) software [33] in order to produce a controlled set of splicing events.
a7 We first used FS to generate a transcript abundance distribution template
us  to spread 15 x 10% molecules among the 10646 available transcript variants
a9 of the 8433 genes of chromosome-one of the Arabidospis thaliana genome.
w0 Then, we generated a 'treatment’ set of samples altering the original molecule
ss1 distribution in order to simulate genome-wide differential changes in gene
2 expression and splicing patterns.

453 Finally we simulated biological replicates from these two seed transcrip-

s tomes, considering a Gamma distribution for molecule abundances to build
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ss5 ‘control’” and ’treatment’ sample sets. We chose to work with a C'V = 0.1
w6 level of variability in gene abundance between replicates. Therefore, we con-
57 sidered shape (k = 100), and scale ( = 0.01p) parameter values, where
w8 was the gene expression level in the corresponding seed transcriptome used
w0 for replicate generation.

460 Simulated changes in variant concentrations produce patterns of differ-
w1 ential usage at bin and junction levels according to the exonic architecture
w2 of the different gene variants. For instance, a splicing alteration that in-
w3 volves switching between Isoform 1 and Isoform 3 of the gene depicted in
we  Figure S8-(A) is expected to produce differential usage signals for the first
w5 and third exonic bins. In our case we simulated changes in variants usage for
w6 915 genes that should altered, in principle, the coverage signal of 2451 bins.
w7 It is worth mentioning that as alternative splicing was modeled exclusively
w8 through differential variant usage, no intron retention events were simulated
w0 in the synthetic data set.

470 Several examples of splicing simulated events are depicted in Sup. Figs
a 54,56,55. Examples, scripts and additional material to reproduce the ASpli2
a2 analysis over this dataset can be found at the gitlab repo: https://gitlab.com/ChernoLab/aspli2_sm.

as 3.4. PRMTYS datasets

ara The goal of these studies was to compare the transcriptional profile (RNA-
a5 seq) of wild type and PRMT5 Arabidopsis mutants plants grown under con-
a6 tinuous light at 22 degrees centigrades.

a7 Dataset A (GSE149429): WT (Col) and PRMT5 mutants seeds were
w8 grown on Murashige and Skoog medium containing 0.8% agarose, stratified

ao for 4 d in the dark at 4 C, and then grown for fifteen days under continuous
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w0 white light at 22C Whole plants were harvested after 15 d. Total RNA was ex-
s tracted with RNeasy Plant Mini Kit (QIAGEN) following the manufacturers
w2 protocols. To estimate the concentration and quality of samples, NanoDrop
43 2000c (Thermo Scientific) and gel electrophoresis were used, respectively. Li-
s braries were prepared following the TruSeq RNA Sample Preparation Guide
45 ([llumina). Briefly, 3 g of total RNA was polyA-purified and fragmented,
w6 and first-strand ¢cDNA synthesized by reverse transcriptase (SuperScript II;
sr  Invitrogen) and random hexamers. This was followed by RNA degradation
w8 and second-strand cDNA synthesis. End repair process and addition of a sin-
0 gle A nucleotide to the 3 ends allowed ligation of multiple indexing adapters.
a0 Then, an enrichment step of 12 cycles of PCR was performed. Library vali-
a1 dation included size and purity assessment with the Agilent 2100 Bioanalyzer
w2 and the Agilent DNA1000 kit (Agilent Technologies)

493 Dataset B (GSE149429): WT (Col accession) and PRMT5 mutant plants
sa  were grown for nine days under continuous white light at 22 degrees centi-
w5 grades or exposed for 1 or 24 h to 10C on the 9th day, before harvesting.
w6 Then the transcriptional profile of these plants was analyzed using RNA-seq.
w7 WT (Col) and PRMT5 mutants seeds were grown on Murashige and Skoog
w8 medium containing 0.8% agarose, stratified for 4 d in the dark at 4 C, and
w0 then grown for nine days under continuous white light at 22C. Whole plants
soo were harvested after 9 d. Total RNA was extracted with RNeasy Plant Mini
s Kit (QIAGEN) following the manufacturers protocols. To estimate the con-
s centration and quality of samples, NanoDrop 2000c (Thermo Scientific) and
03 gel electrophoresis were used, respectively. Libraries were prepared following

soe  the TruSeq RNA Sample Preparation Guide (Illumina). Briefly, 3 g of total
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sos RNA was polyA-purified and fragmented, and first-strand cDNA synthesized
ss by reverse transcriptase (SuperScript II; Invitrogen) and random hexamers.
sov ' This was followed by RNA degradation and second-strand cDNA synthesis.
sos  Eind repair process and addition of a single A nucleotide to the 3 ends al-
so0  lowed ligation of multiple indexing adapters. Then, an enrichment step of 12
s cycles of PCR was performed. Library validation included size and purity
su assessment with the Agilent 2100 Bioanalyzer and the Agilent DNA1000 kit
sz (Agilent Technologies).

513

514 On average, 19.3 + 5.3 million 100 long and 28.3 £ 7.7 million 150 long
si5. paired-end reads were generated per sample library for datasets A and B
si6 respectively. For both cases more than 96% of reads were uniquely mapped
sz to TAIR10 Arapidopsis genome using STAR (command-line invocation was

s included in Sup Mat 8.2).

s 3.5. Ouerlap analysis

520 We followed the procedure outlined in Supplementary Material 8.3 to
s21 map events reported by each of the considered method to a common set of
s22 genomic coordinates. Overlaps were then estimated using the findOverlaps

523 function of the IRanges package of R [34].

s 3.0. Prostate cancer dataset

525 Fifty-six paired fastq files from the E-MTAB-567 experiment were down-
s26 loaded from the ArrayExpress server. Reads were aligned against ENSEMBL
s27 - HG38.98 reference genome using the STAR aligner with default parameters

s and a junction overhang=89.
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s0  3.7. Code availability

530 ASpli2 package is freely available at https://gitlab.com/ChernoLab/aspli2,
sn  and will be part of the next Bioconductor release (October 2020). Examples,
52 scripts and additional material to reproduce our analysis can be found at the

s gitlab repo: https://gitlab.com/ChernoLab/aspli2_sm.

s 4. Discussion

535 RNA high-throughput sequencing methods provide powerful means to
s3  study alternative splicing under multiple conditions in a genome-wide man-
s ner. However, the detection and understanding of general splicing patterns
s3s  still present considerable technical challenges. Here we presented ASpli2, a
s3 computational suite to comprehensively test bin coverage and junction usage
ss0 differential splicing signals.

541 The analysis methodology implemented in ASpli2 came out as a result
se2  Of several software maturation cycles of our in-house splicing analysis proce-
sa3 dures. Over the last years, the presented core functionality has been exten-
sas - sively used in different projects to study: the role of AS in circadian rhythms
ses and light response [35, 36, 37, 38, 39] as well as AS in spliceosome mutants
ss  [40, 41] in A.thaliana model organism. In addition, ASpli2 in-house versions
sev have been used to study AS and rhythmic behavior in D.melanogaster [42]
ses and to characterize AS in dengue’s viral infection in humans [43].

549

550 In order to quantify ASpli2’s performance we compared it against three
s different state-of-the-art methodologies: LeafCutter [23], MAJIQ [44] and

s2 TMATS [22]. As a general rule we considered default parameters to run these
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53 analysis pipelines for our intention was not to present here an extensive
ss«  benchmark between bioinformatics approaches, nor to propose the definitive
55 analysis methodology. Rather we wanted to establish whether ASpli2 pro-
ss6 duced reasonable and competitive results.

557

558 Different scenarios were considered to chart ASpli2 performance. We first
ss0 analyzed a synthetic data-set and quantified the ability of each considered
ss0o methodology to detect splicing changes in terms of precision and sensitiv-
se1 ity figures of merit. Using this controlled dataset we found that all the
se2  analysed methods presented rather high precision levels. However ASpli2
ss  systematically displayed larger recall values (~ 40%), mainly because the
s« use of coverage signals (see Fig 1). This is an important result as highlights
sss  the benefits of not loosing effective sequencing depth by relaying not only on
se6 junction information but on the complete set of reads of RNA-seq runs.

567

568 We then aimed to outline ASpli2’s performance over more realistic setups.
s As no internal gold-standards are usually available for real world datasets
s we focused on the analysis of two independent RNAseq assays that probed
s the same biological conditions. This allowed us to quantify the consistence
s» and coherence of outcomes produced by each methodology in terms of re-
s73 - producibility of discoveries. Our results suggested that detection agreement
s between studies was highly significative for every methodology. However
s5 ASpli2 was far superior in terms of total number of concordant discoveries
st6  reported.

577 It is worth noting that a necessary condition implicit in this analysis was
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s.s  that biological variability largely exceeded possible technical biases between
st studies. Using ASpli2, we were able to consider a generalized linear model to
ss0 define a consolidated dataset integrating data from both studies and verified
se1  that this was actually the case (Sec 2.4). In addition, the possibility to imple-
ss2 ment a two-factor model greatly improved the statistical power to uncover
ss3  consistent discoveries. We could identify 4314 events displaying a statis-
ssa  tically significative genotype effect and no evidence of experiment-genotype
sss interactions. This represented almost a two-fold increase in the number of re-
sss  producible discoveries when compared against the naive integrative approach
ss7  that merely considered the 2241 splicing events simultaneously detected in
sss  both studies.

589

590 An important aspect of the presented approach is that ASpli2’s core
s functionality is implemented along user-friendly functions that produce self-
s2  contained output results for each step of the analysis. This is an important
s03 feature from the user’s perspective. It provides the user valuable intermedi-
so« ate information eventually facilitating the integration of ASpli2 with other

sos analysis pipelines.

s B. Conclusions

507 In this paper we presented ASpli2, a computational suite to study alter-
se¢ native splicing events. It is implemented as a flexible R modular package
so0 that allows users to fulfill gene-expression and splicing analysis following a
s00 set of simple steps.

601 Noticeably, ASpli2 can handle complex experimental designs using a uni-
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02 fied statistical framework to assess for differential usage of sub-genic features
03 and junctions. By combining statistical information from exons, introns, and
s0a splice junctions ASpli2 can provide an integrative view of splicing landscapes
s that might include canonical and non-canonical splicing patterns occurring

s 1N annotated as well as in novel splicing variants.
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Figure (S4) Examples of simulated IR-like splicing events. For each panel, the left layered
table shows the relative concentration of each variant simulated for condition A and B.

Orange boxes highlight the considered bin in each case.
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Figure (S5) Examples of simulated ES-like splicing events. For each panel, the left layered
table shows the relative concentration of each variant simulated for condition A and B.

Orange boxes highlight the considered bin in each case.
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Figure (S6) Examples of simulated Alternative start/end splicing events. For each panel,
the left layered table shows the relative concentration of each variant simulated for condi-

tion A and B. Orange boxes highlight the considered bin in each case.
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Figure (S7) Venn diagram of alternative splicing events detected in experiments A, B,
and the consolidated data set AB (i.e. events displaying strong evidence of a genotype
effect (fdr< 0.05) and no-detectable evidence of experiment-genotype interaction (experi-

ment:genotype associated fdr> 0.5)).
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776 8. Supplementary Material

777 8.1. Feature counting in ASpli

s 8.1.1. Genomic feature extraction: binGenome()

779 Sub-genic features are analyzed using user-provided annotation files. Exon
70 and intron coordinates are extracted from annotation for multi-exonic genes.
71 When more than one isoform exists, some exons and introns from different
752 isoforms will generally overlap. In the same spirit of [18], exons and introns
73 are then subdivided into non-overlapping sub-genic features dubbed bins, de-
7a  fined by the boundaries of different exons across transcript variants. In this
75 way, these so defined bins are maximal sub-genic features entirely included
786 or entirely excluded from any mature transcript.

787 Bins are flagged as: exonic (E), intronic (I) or alternative-splicing (AS)
7 bins, depending on the exonic/intronic character of the bin across variants .
70 In addition, original intronic (Io) bins are defined for every intronic region of
90 annotated isoforms (see panel A of Figure S8).

701 As a general rule, the extreme portions of a transcript probed by RNAseq
792 assays show a highly non-uniform coverage that might obscure differential
793 usage analysis. ASpli flags bins that overlap with the beginning or ending of
704 any transcript as external. An external bin of a transcript may overlap with
75 a non-external one of another transcript. Whenever this happens the bin is
796 still labelled as external. Additionally, in order to avoid confounding effects
707 in the analysis of splicing events, ASpli identifies and flags loci where more

796 than one gene is present in the genome.

790 Local splicing classification model. Each AS bin is further classified consid-

g0 ering a three-bin minimum local gene model, that assigns splicing-event cat-
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s egories to a given bin based on the intronic/exonic character of the analyzed
s bin and its first neighbors (Figure S8, panel B).

803 For genes presenting two isoforms, this model is able to unambiguously
s assign a well defined splicing event to the analyzed bin: exon skipping (ES),
sos intron retention (IR), alternative five prime splicing site (Alt5’SS), or alter-
sos native three prime splicing site (Alt3’SS) (see first row of panel B in Figure
o7 S8).

808 When more than two isoforms are present, we still found it useful to use
oo the three-bin local model to segment follow up analysis. For these cases ASpli
s identify splicing events that involve: intronic subgenic regions surrounded by
s exons in at least one isoform (bin labelled as IR*), exonic subgenic regions
g2 surrounded by two introns in at least one isoform (bin labelled as ES*), ex-
13 onic regions surrounded by intronic and exonic neighbor bins (bin labelled
s as Alt5’SS* or Alt3’SS*). When it is not possible to get a clear splicing-type
g5 assignation (see rows 2-5 of Figure S8), bins are labeled as undefined AS
as (UAS).

817

818 As a last step of the genomic feature extraction process, annotated junc-
s19  tions from all the transcripts are also identified. Junction coordinates are
0 defined as the last position of the five prime exon (donor position) and the
ez first position of the three prime exon (acceptor position).

822

g3 8.1.2. Annotation based feature counting: gbCounts()
824 Reads are overlaid on features derived from annotation, and count tables

g5 are produced at different genomic levels: genes, bins, and intron flanking
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Figure (S8) Panel (A) shows how bin-features are defined and classified as: exonic, in-
tronic or intron_original bins using genome annotation. The local splicing classification
scheme is illustrated in panel (B). The definition of PSI and PIR metrics for bin features
are pictured in panel (C). Definition of junction PIR and PJU statistics are shown in panel
(D). Panel (E) shows a possible junction cluster and highlights the definition of type Ji,

Jo and Js junctions for the analysis of PJU statistics for the blue junction.
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26 regions used to identify and quantify intron retention events. Reads corre-
sz sponding to annotated junctions are also tallied, along with genomic relevant
228 information such as identity of spanned bins, and the existence of possible

20 exintronic events [7 |.

g0 8.1.3. De-novo junction counting: jCounts()

831 ASpli takes advantage of experimentally detected splice junctions to per-
sz form two different type of analysis. For one hand, junction data is considered
g3 in order to provide junction support to AS events detected through bin cov-

g3« erage analysis. For the other, it is used to quantify novel splicing events.

35 Junction support of bin coverage statistics:. ASpli makes use of junction data
36 as supporting evidence of alternative usage of bins. For a general differential
s37  splicing event affecting a given bin, it is always possible to define exclusion
g3 and inclusion junctions. The first class of junctions (noted as J3) pass over
s30  the bin of interest, whereas the second ones (note as J; and/or J;) quantify
s00 and support the inclusion of start and/or end bin boundaries in the mature
san  transcript. Panel C of Figure S8 illustrates this point for the different types of
sz splicing events that could affect a given bin. ASpli considers for this analysis
a3 junctions that are completely included within a unique gene and have more
s than a minimum number of reads supporting them (by default this number
a5 1s five).

846

847 PST (percent spliced in) [45] and PIR (percent of intron retention) metrics
sas  are two well known statistics that can be used to quantify the relative weight

g0 of inclusion evidence for different kind of splicing events (see Panel C of
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g0 Figure S8). For each bin, ASpli quantifies the inclusion strength in every
st experimental condition using the appropriate inclusion index (see Table S1).
s> Only junctions that pass an abundance filter criterium (a minimum number
53 of counts should be attained in all samples of at least one condition) are

ssa  considered for the estimations.

feature assesment index bin class
PIR;, . UAS, I, T*, I
1 2
PSI., Sl UAS, B, B
bin
inclusion | PS15ss s Alt5ss, Althss™*
PS1 545 Satds Alt3ss, Alt3ss™
Ji+J
PIRjune | 55557 -
junction PJU,, 7 ‘fj -
usage IJ .
PJU,, "t -

Table (S1) Junction usage and inclusion strength figure of merits for different bin classes
and for experimentally detected junctions. The definition of .J;, Jo and Js junction counts
is depicted in panels C and D of Figure S8 for annotated and experimentally detected

junctions respectively.

855 For each bin, a PIR or a PSI metric is calculated, according to the splicing
g6 event category assigned to that bin (see last column of table S1). If no splice
ss7  event was assigned, meaning that the bin is not alternative, an exon will be
sss  considered to be involved in a putative exon skipping splicing event, and an
5o intron will be considered to be involved in a putative intron retention splicing

sso event.
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ss1  Novel and non-canonical splicing patterns:. ASpli relies on the direct analysis
s> of experimentally observed splicing junctions in order to study novel (i.e.
g3 non-annotated) splicing patterns.

864 For every experimental junction, ASpli characterizes local splicing pat-
sss terns considering two hypothetical scenarios. For one hand, assuming that
sss every detected junction might be associated to a possible intron that could
s7  be potentially retained, a PI Ry, value is computed (panel D of Figure S8).
868

869 On the other hand, every junction also defines potential 5’ and 3’ splic-
o ing sites. It can be the case that one (in an alternative 5’ or 3’ scenario),
s or both ends (in case of exon skipping) were shared by other junctions. In
sz this context, it is informative to characterize the relative abundance of the
s analyzed junction (dubbed J3) with respect to the locally competing ones.
srs  ASpli estimates percentage junction-usage indices, PJU;, and PJUy,, in or-
g5 der to evaluate and quantify this quantities (see Panel D of figure S8 and
srs Table S1). In order to illustrate this point, we show in Panel E of figure S8
sz an hypothetical splicing scenario for a given junction of interest, Js. It can
srs  be appreciated that PJUj quantifies the participation of this junction in
sro the context of a splicing pattern involving the two orange competing junc-
sso tions, whereas PJU, reports on the usage of J3 in connection with the green

ss1 competing junction.

sz 8.2. Command-line running arguments

883 Command lines used to invoked algorithms and further calculation details:

884

52


https://doi.org/10.1101/2020.06.21.162891
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.21.162891; this version posted June 22, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

885 e STAR aligner

886 For PRMT5 datasets

887 1 $ STAR —runThreadN 30 ——genomeDir TAIR10_GENOME_DIR —twopassMode
888 Basic —outSAMtype BAM SortedByCoordinate —

889 outFilterMultimapNmax 2 —outFilterType BySJout —

890 outSJfilterReads Unique —sjdbOverhang PARAM —

891 alignSJoverhangMin 6 —alignSJDBoverhangMin 3 —alignIntronMin

892 20 —alignIntronMax 5000 —readFilesIn ../01_FASTQ/Col_3_1.fq

893 /01 _FASTQ/Col_3_2.fq —outFileNamePrefix Col_3/Col_3

804 We used a sjdbOverhang parameter value equal to 99 and 149 for
805 PRMTS5 datasets A and B respectively.

896

897 For the prostate dataset we aligned using default STAR parameters.
808 1 $ STAR —runThreadN 30 —genomeDir ENSEMBL_HG38_PATH —

899 readFilesCommand zcat —twopassMode Basic —outSAMtype BAM

900 SortedByCoordinate —sjdbOverhang 89 —readFilesIn 1.fq 2.fq

901 We used a sjdbOverhang parameter value equal to 99 and 149 for
902 PRMTS5 datasets A and B respectively.

903 e LeafCutter (synthetic dataset)

904 BAM files were first processed using the provided bamZ2junc.sh script.
905 The generated juncfiles.tzt was then used to build junction clusters via
906 the provided python script

907 1‘ $ python PATH leafcutter _cluster.py —j juncfiles.txt —m 30 —1 500000
908 Finally, we used the provided leafcutter_ds R-script to run the statistical
900 analysis (min_samples_per_intron=3).

910 e rMATS Command line use to analyzer PRMT5 assays:
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911 1{rMATS.4.0.2 /tMATS-turbo—Linux—UCS4/rmats.py —bl bam_prmt5.txt —b2
912 bam_col.txt —gtf /datal/genomeData/ath/Ensembl_illumina _iGenomes/
913 TAIR10/Annotation/Genes/genes. gtf ——od rl150 —t paired —nthread
914 20 —readLength 150 —tstat 10

as e MAJIQ

ae  8.3. Splicing affected regions detected by different algorithms

017 Each algorithm reports splicing altered genomic features in different ways.

9

prt

¢ In order to standardize the identification of regions of interest we proceeded

o0 as follows:

s

920 o LeafCutter: We first identified clusters presenting adjusted pvalues<
921 0.05 as reported in ’leafcutter_ds_cluster_significance.txt’ file. For each
022 of these statistically significant clusters we considered the associated
923 genomic-regions reported in 'leafcutter_ds_effect_size.txt’ file with |AW| >
924 0.1.

925 e MAJIQ: We considered the genomic-region covering junction clusters
926 presenting at least one junction with P(|AV| > 0.2) > 0.95.

927 e TMATS: We considered the values reported in 'JCEC.txt’ files. This

028 means that we considered a model that evaluated splicing with reads
929 that spanned splicing junctions and reads on targets bins (i.e. alterna-
930 tively spliced exons). We kept junctions presenting adjusted FDR< 0.0
031 and inclusion signal larger than a 0.1 level. Genomic regions were then
932 defined according the following rules:

o4
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933 — A3SS’ (A3SS.MATS.JCEC.txt file): We considered the genomic
034 region between 'shortEE’” and "longExonEnd’ coordinates for neg-
935 ative strand and by 'longExonStart_Obase’ and ’shortES’ for pos-
036 itive strand cases.

937 — A5SS’ (A5SS.MATS.JCEC.txt file): We considered the genomic
038 region between ‘shortEE’ and 'longExonEnd’ coordinates for pos-
930 itive strand and by ’longExonStart_Obase’ and ’shortES’ for neg-
040 ative strand cases.

041 — MXE (MXE.MATS.JCEC.txt file): We considered two regions
042 per event defined by: ’lstExonStart_Obase’, 'IstExonEnd’ and
043 2ndExonStart_Obase’, 2ndExonkEnd’.

044 — SE (SE.MATS.JCEC.txt file): We considered the regions between
o5 ‘exonStart_Obase” and ’exonknd’.

946 — RI (RILMATS.JCEC.txt file): We considered the regions between
047 'riExonStart_Obase’ and "riExonEnd’.

wus  8.4. Analysis of false positive calls in simulated dataset

049 In our simulations a 20% level of random variability was added to variant
90 concentration profiles. A splicing activation signal (SAS) value was then es-
1 timated for each gene as the maximum absolute change in variant concentra-
ss2  tion observed between conditions. The left-most first and second boxplots in
ss3  Figure S9 depict the distribution of this quantity for the 915 genes for which
4 a splicing event was simulated, and for the remaining 7518 genes respectively.
s On the other hand, the four right-most boxplots show the SAS distribution

w6 for false positive calls obtained with different methods. Non explicitely splic-
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o7 ing simulated changes were reported for 9,4,48 and 23 genes according to

s ASpli, LeafCutter, MAJIQ and rMATS algorithms respectively.
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Figure (S9) Splicing simulation.
wo 8.5, Comparison of discoveries
960 A comprehensive comparison of discoveries appeared at first-sight prob-

s1 lematic as each algorithm is focused on different genomic features in order
w2 to chart splicing landscapes.

963 For instance, rMATS analyzes genomic regions flanked by upstream and
sws downstream exons to examine canonical splicing events. MAJIQ and Leaf-
ss Cutter, on the other hand, exclusively rely on clusters of split reads that
w6 share start or ending junction-ends. Finally ASpli considers both, junction
o7 clusters and bin features, i.e. genomic regions defined from disjoint ranges

ws Of annotated junctions.
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969 In this context, a first coarse grained comparison could be established at
oo gene-level, comparing the identity of genes housing splicing-altered patterns
on according to the different analyzed methods. Panel (A) of Figure S10 dis-
o2 plays a color-coded overlap matrix of affected genes in experiments A and B
a3 according to the four examined methodologies. Each cell reports the inter-
aa  section size and, in brackets, the corresponding overlap coefficient. At gene
o5 level, rIMATS achieved the largest agreement factor (83% of genes identified
o6 in experiment B, were also reported in experiment A). However, it also
o7 produced the lowest number of discoveries (119). ASpli, on the other hand,
os  presented a comparable level of agreement (71%), highlighting a significa-
oo tively larger number of concordant genes (2109). Typically, more than 50%
0 of genes identified by any methodology was also reported by ASpli (first and
o1 second rows of Figure S10). Moreover, the number of concordant discoveries
w2 between experiments considering a given methodology was comparable to the
se3 agreement level achieved between each experiment-metodology combination
ss and the correpsonding ASpli result. Noticeably, more than 90% of MAJIQ’s
s genes were also spotted by ASpli.

986

087 A more in-depth comparison could be established analyzing the overlap
oss  of identified genomic regions. In panels (b) and (c) of Figure S10 we informed
s the extent of the overlaps between genomic regions found to be affected by
oo differential splicing patterns according to each algorithm (see Material and
91 Methods 3.5) to map events reported by each method to a common set of
92 genomic coordinates). While any kind of overlap was registered for panel (b),

o3 only complete inclusion of genomic regions identified by one method inside

o7
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9 the ones identified by a second one was considered for panel (c). Statistically
s significant overlaps were marked with asterisks. Note that overlap coefficients
s (in brackets) exceeding unity were detected in between-experiments compar-
o7 isons for LeafCutter and rMATS as a result of the presence of one-to-many
ws Tegion mappings.

999 For the loose overlap criterium we found statistically significant concor-
o dance between discoveries for almost every cell (Fig S10-b). Only specific
w01 comparisons involving MAJIQ and rMATS failed the statistical significance
w2 test. At the same time, overlap coefficient values were similar to the ones
w3 estimated at the gene-level analysis. Noticeably, we recognised a sensible
e reduction in this quantity for the MAJIQ vs ASpli comparison. This finding
wos highlighted that gene-level agreement should in general be considered with
ws caution. A more detailed examination at the sub-genic level might be neces-
w07 sary to assess for discovery consistencies between algorithms. Results for the
s most stringent overlap criterion are shown in Figure S10(c). As expected,
we & major decrease on overlap coefficient values was observed . However, sta-
0 tistically significant agreement between results was still found as a general
o1 rule. Only comparisons involving MAJIQ’s discoveries failed the statistical
12 assessments.

1013

s 8.6. PRMTS PCR events

1015 We characterized the agreement between the 23 splicing events that AS-
e pli uncovered for the consolidated AB case, and the 44 Sanchez qRT-PCR
w17 validated events in Table S2. For each assayed event we included the kind

s of the original event and the reported qRT-PCR splicing signal value in the
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9 second and third columns respectively (Sanchez and collaborators calculated
w0 the fraction of the shortest isoform in PRMT5 mutants and wildtype plants
1wz detected by qRT-PCR, and used the relativized difference between them as
1022 a quantitative proxy of splicing changes (Table 4 of [25])). In the fourth col-
w23 umn we informed whether the PCR-interrogated genomic region overlapped
124 with the one signaled by ASpli. Finally, the type of splicing event detected
1025 by ASpli was included in the last column of the table.

we 8.7. Prostate cancer dataset: Transcriptomic variability

1027 In order to visualize the transcriptomic variability across patients at gene
1028 expression levels we considered the 30% most variable genes across the 28
20 expression profiles that presented more than 10 counts per million reads
00 in at least 3 samples. With this informative set of 1386 genes we built a
01 multidimensional scaling plot of distances between gene expression profiles
02 estimated with the edgeR package [24]. Results are shown in Fig S11. In this
w3 kind of plot, samples lay on a two-dimensional scatterplot so that distances
1034 on the plot approximate the typical log2 fold changes between the samples
s (function plotMDS of edgeR [24]).

1036 Emtpy and filled symbol correspond to tumor and normal tissue samples
37 respectively. Pair of points of a given patient are equally colored and joined
w3 by a dashed edge.

1039 It can be seen that tumor and normal samples were well separated across
w0 the leading reduced dimension. The second largest projected dimension,
wa  however, let us appreciate internal structure and some variability between
2 patients. There was a group of 5 patients (top left empty points) that dis-

w3 played a rather homogeneous pattern of changes between tumor affected and

60


https://doi.org/10.1101/2020.06.21.162891
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.21.162891; this version posted June 22, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

o | e
O, ..... .
w —
S o ot
o e L
E
3 :
o
2
(=)
2 &1
g 8
g
(e ik ®
i )
B -
! I | | !
-1.0 -0.5 0.0 0.5 1.0

Leading logFC dim 1

Figure (S11) A.

61


https://doi.org/10.1101/2020.06.21.162891
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.21.162891; this version posted June 22, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

1044

1045

1046

1047

available under aCC-BY-NC-ND 4.0 International license.

normal tissues. On the contrary, the 9 bottom-left tumor samples seemed
to segregate into a different cluster of transcriptomes. Moreover, the corre-
sponding patients presented different kinds of alterations between tumor and

control samples.
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Gene 1D Event qRT-PCR signal Region overlap Detected event
1 AT1G53650  5'ss 18.93 yes IR (next to 5)
2 AT1G54360 5’ss 39.21 yes Altbss
3 AT1G76510  5’ss -28.00 yes Altbss
4  AT2G04790 5'ss 11.14 yes IR
5 AT2G15530 5’ss 21.12 yes Alt 5°/3
6 AT2G33480 5’ss -27.16 yes IR
7 AT2G38880  5ss -10.44 no IR
8 AT2G46790  5ss 35.20 yes Alt5ss (plus additional IR)
9 AT3G01150 ES -13.70 no IR
10 AT3G12250 5’ss -16.29 no ES*
11 AT3G16800 IR/3’ss -31.59 yes IR,Novel Alt 5/3
12 AT3G19840  5’ss -26.20 no IR
13 AT3G20270 ES 8.51 no IR (next to ES)
14 AT3G23280 ES 18.21 yes ES
15 AT3G25840 ES 6.51 yes ES
16 AT4G02430 3’ss 27.45 no IR
17 AT4G24740 ES 16.07 1no IR (next to ES)
18 AT4G31720  3’ss 12.37 no IR
19 AT4G32730  5’ss 30.93 yes Novel Alt 5/3’
20 AT4G38510 5’ss 15.53 yes Altbss*,CSP
21  AT5G05550 ES 32.72 yes ES (plus additional IR)
22  AT5G25610 IR -71.69 yes IR
23 AT5G5H7630  5’ss 31.07 yes Novel Alt 5°/3" (plus adjacent II
Table (S2)
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