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ASpli2: Integrative analysis of splicing landscapes

through RNA-Seq assays

Estefania Mancini1, Andres Rabinovich1, Javier Iserte, Marcelo Yanovsky∗,
Ariel Chernomoretz∗

Buenos Aires, Argentina

Abstract

Genome-wide analysis of alternative splicing has been a very active field

of research since the early days of NGS (Next generation sequencing) tech-

nologies. Since then, ever-growing data availability and the development of

increasingly sophisticated analysis methods have uncovered the complexity

of the general splicing repertoire. However, independently of the considered

quantification methodology, very often changes in variant concentration pro-

files can be hard to disentangle. In order to tackle this problem we present

ASpli2, a computational suite implemented in R, that allows the identifica-

tion of changes in both, annotated and novel alternative splicing events, and

can deal with complex experimental designs.

Our analysis workflow relies on the analysis of differential usage of sub-

genic features in combination with a junction-based description of local splic-

ing changes. Analyzing simulated and real data we found that the consolida-

tion of these signals resulted in a robust proxy of the occurrence of splicing

alterations. While junction-based signals allowed us to uncover annotated
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as well and non-annotated events, bin-associated signals notably increased

recall capabilities at a very competitive performance in terms of precision.

Keywords: Alternative splicing, RNAseq,

1. Introduction1

The vast majority of protein coding genes in eukaryotic organisms are2

transcribed into precursor RNA messenger molecules (pre-mRNA) carrying3

protein coding regions (exons) interleaved by non-coding ones (introns). The4

later are removed in a co-transcriptional dynamical maturation process called5

splicing. Alternative splicing (AS) occurs whenever distinct splicing sites are6

selected in this process resulting in different mature mRNA molecules [1, 2].7

Far from being an exception, it was found that AS is a rather common8

mechanism of gene regulation that serves to expand the functional diversity9

of a single gene allowing the generation of multiple mRNA isoforms from a10

single genomic locus [3]. Five basic modes of AS are generally recognized: the11

skipping of a given exon (exon skipping, ES), the exon elongation/contrac-12

tion produced by the use of alternative 5’ donor (Alt5’) or 3’ acceptor (Alt3’)13

sites respectively, the retention of an intronic stretch in the mature mRNA14

form (intron retention IR), and the alternative use of mutually exclusive ex-15

ons (MEX). These canonical forms of AS are prevalent among eukaryotes,16

although their relative incidence might vary between them [4]. Despite their17

ubiquity, these simple patterns that mainly involve binary choices of exons,18

donor and acceptor sites, do not exhaust the splicing repertoire. On the con-19

trary, much more complex biologically relevant patterns could arise [5, 6]. In20

practice the study of AS faces many technical challenges that cause that every21
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quantitative approach typically suffers methodological limitations. Despite22

the use of different statistical approaches, some methods consider only pre-23

existing known annotation, some can exclusively handle canonical splicing24

events and some can only handle pairwise comparisons between conditions25

(for a comprehensive review see [7, 8, 9]).26

27

The analysis of AS at genomic scale started-in with microarray technolo-28

gies [10, 11] and nowadays is routinely probed using RNAseq assays [12, 13].29

Roughly speaking, there are three main computational approaches to study30

splicing diversity from RNAseq data. For one hand there are transcript re-31

construction methods, like MISO [14] or Cufflink [15] that aim to infer a32

probabilistic model of the frequency of each isoform from the read distribu-33

tion mapped to a given gene. In the same spirit, Kallisto [16] and Salmon[17]34

are two recently introduced methods that leverage on light-weight pseudo-35

alignment heuristics to quantify transcript abundances. For the other hand,36

methods like DEXSeq [18] , edgeR [19, 20], or voom-limma [21], focus on37

the analysis of differential usage of subgenic features (e.g. exons) between38

conditions. Finally, there are also methods like rMATS [22], MAJIQ [5] or39

LeafCutter [23] that leverage on junction information to infer both, anno-40

tated and novel splicing events.41

42

Differently form other approaches, ASpli2 was specifically designed to in-43

tegrate several independent signals in order to deal with the complexity that44

might arise in splicing patterns. Taking into account genome annotation in-45

formation, ASpli2 considers bin-based signals along with junction inclusion46

3
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indexes in order to assess for statistically significant changes in read cover-47

age. In addition, annotation-independent signals are estimated based on the48

complete set of experimentally detected splice junctions. Noticeably, ASpli249

can provide a comprehensive description of genome-wide splicing alterations50

even for non-trivial experimental designs. Our approach relies on a gener-51

alized linear model framework (as implemented in edgeR R-package [24]) to52

assess for the statistical analysis of specific contrasts of interest.53

In order to weigh ASpli2’s performance we compared it against three54

different state-of-the-art methodologies: rMATS [22], LeafCutter [23] and55

MAJIQ [5]. The first one is a widely used piece of software that can in-56

tegrate coverage and junction information to assess for changes in splicing57

patterns. Additionaly, LeafCutter and MAJIQ are two recently introduced58

methodologies that are widely used by the bioinformatics community. Both59

approaches focus on the analysis of clusters of junctions to study local splic-60

ing patterns of varying complexity. However, they differ in many technical61

and statistical aspects [5]. For instance, LeafCutter was not designed to han-62

dle intron retention events and considers a Dirichlet-multinomial generalized63

linear model to test for differential intron excision between two groups of64

samples. MAJIQ, on the other hand, relies on a bayesian estimation of the65

posterior Percent Selected Index to identify splicing affected junctions.66

Other methodolgies like DEXSeq [18], edgeR [24], or voom [21] are also67

widely considered for bioinformatics analysis as they are very versatile tools68

to analyse differential usage of exons from RNA-seq data. In fact, ASpli269

makes use of the genome-binning scheme originally presented in DEXseq to70

quantify read coverage signals (see Sup.Mat.8.1) and leverages on the statis-71
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tical framework developed in edgeR to estimate robust splicing signals (see72

Section 3.1). These methodologies constitute great toolboxes to implement73

ad-hoc analysis. However, as they do not intend to provide per se self-74

contained solutions that produces final reports starting from read-alignment75

input data they were not explicitly included in our analysis.76

The paper is organized as follows. In Section 2.2 we analyzed a simu-77

lated dataset in order to evaluate the specificity and sensitivity of ASpli278

discoveries. These results were contrasted against LeafCutter, MAJIQ and79

rMATS outcomes in order to analyse ASpli2 performance. In Section 2.3 we80

explored the ability of ASpli2 to uncover consistent splicing-patterns from81

two independent RNAseq assays that probed the same biology. We focused82

on the alterations of splicing patterns of A. thaliana transcriptome caused83

by the knock out of PRMT5, a methyl transferase that, among other pro-84

teins, targets several Sm spliceosomal proteins [25, 26, 27]. This analysis was85

also performed with the other considered methodologies in order to compare86

their capacity to generate reproducible results. In addition, we capitalized on87

ASpli2’s ability to handle complex experimental designs to produce a consol-88

idated data-set from the independent assays. In this section we also aimed to89

quantify the level of agreement of ASpli2, LeafCutter, MAJIQ and rMATS90

discoveries with qRT-PCR based alternative splicing evidence. To that end,91

we took advantage of two independent studies that analyzed splicing altered92

events in PRMT5 mutants using qRT-PCR assays [25, 28]. Finally, in Sec-93

tion 2.4, we considered a 28 samples paired-study of human prostate cancer94

[29]. Using this data-set we analyzed how the performance, time and memory95

requirements scaled with the number of considered samples in a paired exper-96
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imental design. Finally, we discussed our results in Section 4 and presented97

our conclusions in Section 5.98

2. Results99

2.1. ASpli2 workflow100

ASpli2 was designed as a flexible R package to carry out all the major101

tasks required for gene expression and splicing analysis. A typical ASpli2102

workflow involves: parsing the genome annotation into subgenic features103

called bins, overlapping read alignments against them, perform junction104

counting, fulfill inference tasks of differential bin and junction usage and,105

finally, report integrated splicing signals. A workflow diagram and a sum-106

mary of ASpli2 core functionality can be found as Supplementary Figures S1107

and S2 respectively. As shown in Figure S1, at every step ASpli2 generates108

self-contained outcomes that, if required, can be easily exported and inte-109

grated into other processing pipelines. Supplementary Figure S3 shows an110

example of the interactive html report generated as a final output. A detailed111

description of ASpli2 functionality is included in ASpli2’s R vignette, which112

is provided as Supplementary Material.113

114

2.2. Synthetic dataset115

Changes in splicing patterns were simulated in a treatment vs control116

setup for genes of the chromosome-one of the Arabidopsis thaliana plant117

genome (three samples per condition). In our simulations, the differential118
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usage of splicing variants affected 2451 genomic bins in 915 genes (see Ma-119

terial and Methods 3.3).120

121

The ASpli2 analysis pipeline provided three different cues to probe splic-122

ing occurrence. Statistically significative evidence is collected from: bin cov-123

erage differential signals, junction anchorage changes and variations inside124

junction clusters (see Material and Methods 3.1). We considered bin-coverage125

signals with statistically significant differential coverage changes (fdr< 0.05)126

that presented either a larger than three-fold coverage fold-change or, alter-127

natively, a change in bin-supporting junction inclusion indices larger than 0.2128

. For junction based signals, on the other hand, locale and anchorage indices129

were required to present statistically significant changes (fdr< 0.01) and also130

should display usage signal variations larger than a 0.3 level (see Material131

and Methods 3.2)132

133

In Table 1 we reported the number of correctly detected simulated events,134

number of false positives and number of events exclusively detected by each135

kind of signal: bin-coverage, junction-locale and junction-anchorage. Over-136

laps between discoveries reported by each kind of signal were graphically137

reported in panel (A) of Figure 1.138

It can be seen that ASpli2 correctly uncovered 974 (40%) of the 2451139

simulated bin events. Moreover, we found that most of the ASpli2 undetected140

simulated events (1341 out of 1477) took place in genes that did not present141

enough expression levels over the analysed conditions and therefore were142

filtered out before any statistical testing (see 3.2). In fact, only 136 out of143
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the 1110 events (12%) that did pass the gene-expression pre-filtering step144

were found to be false negative cases.145

About 95% of ASpli2 true discoveries were identified by the analysis of146

significant changes at the bin-coverage level. Junction-based detection, on147

the other hand, could correctly identified 574 simulated events (60% of true148

discoveries). The null overlap between locale and anchorage detection illus-149

trated that they probed complementary aspects of splicing events. Addi-150

tionally, it can be appreciated that 41% (399) of the true discoveries were151

only detected by bin-coverage signals, whereas junction-based analysis con-152

tributed only 5% (50) of specific detections. A graphical summary of the153

detection signal landscape can be appreciated in panel (A) of Figure 1.154

155

ASpli2 signal TP FP

bin coverage 924 (399) 42

junction locale 393 (35) 2

junction anchorage 182 (15) 6

overall 974 48

Table (1) Splicing detection performance of the three different ASpli2 signals. True

positive and false positive calls are shown in the second and third columns respectively.

The number of specific discoveries exclusively reported by each signal is reported between

brackets.

We decided to further characterized some aspects of bin-coverage detec-156

tion calls, as this signal provided the major number of discoveries. It can be157

seen in panel-(B) of Figure 1 that fold-change and junction-support signals158
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Figure (1) (a) Distribution of detection call produced by different ASpli2 signals. (b)

Graphical summary of bin-coverage detection calls. The sim set correspond to simulated

events. logFC and D-inclusion sets are associated to statistically significant discoveries

presenting large enough fold change and large bin-supporting junction inclusion signals

respectively. ROC and Precision-Recall curves, parameterized by the considered fold-

change threshold level, are shown for statistically significant bins in panels (c) and (d)

respectively.

9
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used in the bin-coverage analysis reported relevant and non-redundant infor-159

mation. Whereas the first one accounted for 37% of true positive instances160

exclusively detected by this signal, the second one accounted for the specific161

identification of 12% of the total number of true events. The impact of the162

selected fold-change threshold value, FC*, on specificity, precision and recall163

can be appreciated with the aid of the Receiver-Operator and Precision-164

Recall curves shown in panels (C) and (D) of Figure 1. It can be recognized165

from these figures that with the adopted 3-fold threshold ASpli2 achieved166

high recall and precision levels (∼ 80% and ∼ 95% respectively) laying at167

rather moderate levels of false positive rates (∼ 14%).168

169

method size precision recall

ASpli2 1022 (631) 0.95 (0.99) 0.40 (0.68)

ASpli2c 966 (591) 0.96 (0.99) 0.38 (0.64)

ASpli2j 583 (456) 0.99 (0.99) 0.23 (0.50)

LeafCutter 204 (163) 0.93 (0.91) 0.08 (0.16)

MAJIQ 538 (381) 0.84 (0.87) 0.18 (0.36)

rMATS 405 (352) 0.87 (0.91) 0.14 (0.35)

Table (2) Number of discoveries, precision and recall levels are reported for different

detection methodologies. ASplic and ASplij correspond to ASpli2 discoveries detected

using just coverage or just junction signals respectively. Values between parenthesis report

quantities estimated at gene-level.

In Table 2 we reported the detection performance of ASpli2 and the re-170

sults obtained by other state-of-the-art algorithms (see Sup Mat 8.2 and 8.3171
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for calculation details). Precision and recall values estimated at gene-level (in172

which a gene was reported as a discovery whenever at least one alternative-173

splicing event was detected within its genomic range) were reported between174

parenthesis. ASpli2 outcomes considering only coverage signal or just junc-175

tion signals were included in the table as ASpli2c and ASpli2j rows respec-176

tively.177

It can be seen from the table that even though all tested algorithm shown178

rather high precision values, ASpli2 benefited from larger recall scores than179

any other methodology. Moreover, it can be appreciated that ASpli2j dis-180

played only marginally larger recall levels than other methodologies implying181

that ASpli2 leveraged on coverage signals to increase this figure of merit. All182

of these results suggested that ASpli2 was capable of reliably detect the simu-183

lated splicing events achieving notably high recall values at very competitive184

levels of precision and specificity.185

2.3. Reproducibility Analysis186

As we mentioned in the introduction, PRMT5 is a methyl transferase187

that, among other proteins, targets several spliceosome proteins. Its deletion188

has been proved to provoke major splicing alterations [25, 26]. We analyzed189

two independent RNAseq assays that were conducted at different times prob-190

ing the same biology. Experiments A (GSE149429) and B (GSE149430) were191

originally carried out to analyze splicing alterations in the PRMT5 knock-192

out mutant in Arabidopsis thaliana. Both assays probed the PRMT5-KO193

and wild-type transcriptomes in Columbia ecotype plants as part of larger194

and different studies (see Material and Methods 3.4).195

The rationale behind our analysis was two-fold. For one hand we wanted196
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to assess for ASpli2 detection performance in a more realistic setup. For197

the other we wanted to take advantage of these datasets to quantitatively198

estimate the reproducibility of discoveries, i.e. we wanted to explore the199

consistency and robustness of experimentally identified alternatively splicing200

events in biologically related systems.201

2.3.1. Reproducibility assessment202

We analyzed RNAseq assays A and B with ASpli2 and the other consid-203

ered algorithms. For ASpli2, we used the same detection-call criteria specified204

in Section 2.2. Default parameters were considered to run the other tested205

methodologies (command lines used to execute them were included as Sup-206

plementary Material 8.2). For LeafCutter and rMATS we considered events207

presenting fdr corrected pvalues smaller than 0.05 and changes in junction208

inclussion indices larger than 0.1. For MAJIQ we sought for events present-209

ing a posterior probability larger than 0.95, of having a change in inclussion210

index larger than a 0.2 level. Overall, 6350, 951, 412 and 158 genomic regions211

affected by altered splicing patterns were reported by ASpli2, LeafCutter,212

MAJIQ and rMATS algorithms respectively in at least one experiment.213

214

In Table 3 we summarized reproducibility statistics for each examined215

methodology (a more in-depth comparison of discoveries was included as sup-216

plementary material in Section 8.5). Column universe of Table 3 reports the217

actual number of sub-genic regions that, upon passing different pre-filtering218

steps, were actually examined for statistically significant changes in splicing219

patterns. The extent of this background list was noticeably larger for ASpli2220

as our methodology tested not only junction-related signals but also alter-221
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ations in the usage of genomic bins. Columns A and B outline the number222

of regions reported as differentially spliced in each experiment and column223

A ∩ B, the discovery intersection size (i.e. number of sub-genic regions re-224

ported as differentially spliced in both data-sets). In parenthesis, we included225

the overlap coefficient value, defined as A ∩ B/min(A,B). Expected over-226

laps, fold enrichment (i.e. ratio between observed and expected overlaps)227

and p-values were estimated using the SuperExactTest R-package [30] and228

reported in EO,FE and pval columns respectively.229

Method universe A B A ∩ B EO FE pval

ASpli2 140191 4687 3904 2241 (0.57) 130.5 17.2 0.0e+00

leafCutter 8113 603 675 327 (0.54) 50.2 6.5 3.6e-219

MAJIQ 16441 277 284 149 (0.54) 4.8 31.1 9.5e-203

rMATS 2405 310 401 310 (1.00) 19.4 16.0 0.0e+00

Table (3) Reproducibility statistics. The numbers of statistically analyzed genes (after

prefiltering steps) for each algorithms are shown in the universe column. The number of

splicing events reported for each experiment and the number of concordant discoveries are

displayed at columns A, B, and A∩B respectively. The expected overlap, fold enrichment

level and significance pvalue are displayed in columns EO, FE and pval respectively

It can be seen from Table 3 that, for all the examined methods, the230

agreement between experiments was highly significant. In all cases, more231

than 50% of events detected in one experimental instance was also reported232

in the other. At the same time it can be appreciated that ASpli2 provided233

the largest (and highly significant) overlap-set. Noticeably, the total number234

of concordant splicing-affected genomic regions detected by ASpli2 presented235
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up to a 15-fold increase with respect to the size of concordant sets reported236

by others methodologies.237

238

Overall our analysis showed that results obtained at different and inde-239

pendent experimental instances were reproducible, in the sense that statis-240

tically significant agreement was found for every methodology. These re-241

sults were robust against using different overlap quantification criteria (see242

Sup.Mat 8.5). In this matter, and similarly to the results obtained on the243

synthetic dataset, our results on PRMT5 data showed that ASpli2 displayed244

high recall levels providing the largest list of concordant discoveries between245

experiments.246

2.3.2. Data consolidation247

Up to now, we focused on the analysis of the intersection of set of discov-248

eries as a measure of coherence of the results. Now we wanted to illustrate249

how ASpli2 capabilities to deal with complex experimental designs can be250

used to integrate experimental results in a more statistically sound way.251

ASpli2 was used to consolidate datasets A and B considering a simple

generalized linear model:

y ∼ experiment+ genotype+ experiment : genotype (1)

‘experiment’ was a fixed effect to cope with specific technical biases, and the252

‘genotype’ factor was meant to capture the PRMT5 vs wild-type effect. The253

third term was an interaction term, and was used to enforced the exclusion254

of non-coherent signals between experiments.255

ASpli2 detected 4360 genomic regions displaying strong evidence of a256
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genotype effect (fdr < 0.05). In addition, 99% of these PRMT5-related257

events (4314 out of 4360) passed a filtering step to enforce they presented no-258

detectable evidence of experiment-genotype interactions (experiment:genotype259

associated fdr > 0.5). These 4314 events defined the consolidated AB data260

set.261

We found that 99% (2209 out of 2241) of the concordant discoveries in-262

dependently detected in both assays were also included in the consolidated263

dataset (we included a Venn diagram of the discoveries reported for experi-264

ments A, B, and the consolidated data-set AB in Sup.Fig. S7). Noticeably,265

the consideration of the AB data-set allowed to almost double the number of266

detected genomic regions displaying robust evidence of differential splicing267

patterns.268

2.3.3. PRMT5 RT-PCR detected events269

The PRMT5 methyltransferase has been the target of many studies as270

deficiencies in this protein causes genomewide splicing alterations[26, 27, 28].271

In this section we focused on two specific works that provided independent272

RT-PCR validated lists of splicing alterations linked to PRMT5 in Arabidop-273

sis thaliana [25, 28].274

For one hand, Deng and collaborators studied PRMT5 mutant Ara-275

bidospis thaliana plants and presented a list of 12 RT-PCR validated intron276

retention events (see Fig 2 in [28]). On the other, using the same biological277

model, Sanchez and collaborators indentified changes in alternative splicing278

using a high-resolution qRTPCR panel that included several known alterna-279

tive splicing events [31]. They found that PRMT5 mutants had significant280

alterations in 44 events which included exon skipping, alternative donor and281
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acceptor splice sites, as well as intron retention events (Supplementary Table282

4 in [25]).283

We aimed to contrast these findings with the results reported by the dif-284

ferent methodologies on datasets A and B. In Table 4 we summarized, for285

each study, the number of concordant findings uncovered by different al-286

gorithms on datasets A and B. Quantities between brackets represent the287

number of ASpli2 discoveries reported by coverage and junction-based sig-288

nals respectively. It can be seen that ASpli2 recovered the largest number289

of events and that the majority of ASpli2 validated discoveries originated in290

differential coverage signal calls. Had we only considered junction related291

detection-signals, ASpli2 would have achieved similar levels of agreement292

than the other junction-based algorithms (for instance we got a similar per-293

formance than LeafCutter on Sanchez data-set for the consolidated case).294

295

In Table S2, included as supplementary material, we further character-296

ized the agreement between the 23 splicing events that ASpli2 uncovered for297

the consolidated AB case, and Sanchez qRT-PCR validated events. It can298

be seen that in 15 out of the 23 cases (65%), the very genomic region probed299

by the PCR analysis was recognized by ASpli2. For the other 8 cases, AS-300

pli2 detected actually occurrying changes in isoform usage but from splicing301

signals originating at genomic locations not probed by the PCR primers (See302

Supplementary Figures - TODO: ACA VAN SAHIMI PLOT DE EVENTOS303

PCR).304
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Method Deng 2010 Sanchez 2010

RT-PCR 12 44

ASpli2

AB 8 [8,4] 23 [21,13]

A 10 [8,5] 24 [19,7]

B 9 [8,2] 20 [18,6]

LeafCutter
A 3 16

B 3 17

MAJIQ
A 5 8

B 2 8

rMATS
A 1 12

B 1 3

Table (4)

2.4. ASpli2 scalability analysis305

In this section we leveraged on a mid-size RNAseq study presented by306

Ren and collabrators to characterize aberrant splicing patterns occurying307

in prostate cancer patients [29]. We aimed to analyze this sample-paired308

assay to see how ASpli2 performance (statistical power, precision ,time and309

memory requirements) scaled with the number of samples. In particular, we310

followed the approach suggested in [32] to characterize ASpli2 in terms of311

statistical power and expected false discovey rate for a varying number of312

samples.313
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2.4.1. Statistical power314

Ren and collaborators presented a comprehensive study of splicing alter-315

ations detected using RNAseq transcriptome profiles of 14 primary prostate316

cancers and their paired normal counterparts from the Chinese population317

[29]. On average, the 28 fastq files presented 34.6 ± 1.7 million reads per318

sample and 31.4 ± 1.6 millions of them were actually mapped to the EN-319

SEMBL HG38.98 version of the human genome (see Material and Methods320

3.6). The genome’s GTF and BAMs files were then used as inputs to drive321

an alternative splicing paired-sample analysis with ASpli2. We considered322

the following model to identify genomic regions differentially spliced in tumor323

samples compared to normal tissue controls:324

y ∼ patient+ tissue (2)

The ‘patient’ term served to pair tumor and normal tissue samples coming325

from the same individual. The two-level ‘tissue’ factor reported average326

differences between tumor and normal cases over the observed population of327

patients.328

In order to study the dependency of the statistical power on the number329

of samples, we sampled without replacement (10 times) subsets of 3, 5, 7 and330

10 individuals. For each case, we reported, in the first column of Table 5, the331

median (and standard error, in brackets) of the number of genomic regions332

found to be alternatively spliced between tumor and normal samples.333

In order to estimate false discovery rates we considered mock comparisons334

between normal samples (we sampled 10 times normal tissue samples of 3vs3,335

5vs5 and 7vs7 individuals). We then estimated FDR as the ratio between336
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the number of mock discoveries and the median number of discoveries found337

in true comparisons of the same number of samples. In the second column338

of Table 5 median and standard errors (in brackets) were reported.339

Samples
Splicing events Affected genes

number FDR number FDR

3x3 67 (155) 0.2 (0.4) 44 (113) 0.25 (0.03)

5x5 486 (387) 0.02 (0.002) 371 (218) 0.02 (0.002)

7x7 759 (220) 0.005 (0.02) 481 (131) 0.004 (0.0007)

10x10 850 (418) - 664 (191) -

14x14 1465 - 1030 -

Table (5) Summary of the 10-fold bootstrapped analysis of ASpli2 performance on the

prostate cancer data set. For each number of paired samples (first column) the median

number of genomic-regions displaying a statistically significant ‘tissue’ effect were included

in the second column. Median values of false discovery rate estimations obtained from

the analysis of normal-tissue samples were shown in the third column. Standard error

estimation were reported between brackets.

It can be seen from Table 5 that the median number of detected splicing340

events increased with the number of examined samples, up to a maximum of341

1465 events obtained when the 28 paired samples were considered. The large342

variability observed between bootstrap realizations was consistent with the343

large variability already observed across prostate cancer transcriptomes (see344

[29] and Supplementary Material 8.7). FDR estimated values showed a huge345

decrease with increasing number of samples, and for the 5x5 case seemed to346

have already leveled off. Similar trends were observed when splicing alter-347
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ations were reported at the level of hosting genes (data not shown).348

2.4.2. Time and memory requirements349

In Table 6 we reported median values and standard errors for the elapsed350

time and peak memory usage required for calculations (performed on single351

thread on an Intel Xeon Silver 4116 2.1GHz Lenovo ThinkSystem SR650)352

Samples time [min] memory peak[Gb]

3x3 67 (1) 20.25 (0.38)

5x5 111 (2) 22.15 (0.20)

7x7 156 (4) 24.13 (0.03)

10x10 231 (5) 26.57 (0.04)

14x14 348 30.07

Table (6) Summary of the 10-fold bootstrapped analysis of ASpli2 performance on the

prostate cancer data set. For each number of paired samples (first column) the median

number of genomic-regions displaying a statistically significant ‘tissue’ effect were included

in the second column. Median values of false discovery rate estimations obtained from the

analysis of normal-tissue samples were shown in the third column. Median time and

memory used in the analysis were reported in the last two columns. Standard error

estimation were reported between brackets.

Execution time scaled linearly with the number of paired samples at a353

rate of 25.5 minutes per pair of samples (about 90% of execution time was354

used for BAMs reading and feature counting). The memory peak column355

shows that RAM requirement linearly scaled with the number of samples at356

a rate of about 880Mb per sample pair. A simple extrapolation suggests that357

about 65Gb should be enough to handle 100 samples of the same sequencing358
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depth (∼ 3.5106 reads per sample).359

3. Material and Methods360

3.1. Differential analysis scheme361

ASpli2 leverages on the statistical framework developed by Smyth and362

collaborators, implemented in the edgeR R-package [24, 20], to assess for363

statistically significant changes in gene-expression, bin coverage and junction364

splicing signals. Under this approach, count data is modeled using a negative365

binomial model, and an empirical Bayes procedure is considered to moderate366

the degree of overdispersion across units.367

Differential expression signals. Differential expression signals are estimated368

via generalized linear models (GLM). This approach allows ASpli2 to deal369

with complex experimental designs, i.e. contrasts can be tested in experi-370

ments with multiple experimental factors. Using this statistical setting, for371

each gene, ASpli2 quantifies differential gene expression signals reporting the372

corresponding log-fold change, p-value, and FDR adjusted q-values.373

Differential splicing signals. In order to study splicing patterns, gene ex-374

pression changes should be deconvolved from overall count data. On a very375

general setting, what we are looking for is to test whether a given unit of a376

certain group of elements displays differential changes respect to the collec-377

tive or average behavior. ASpli2 uses this general idea to assess for statisti-378

cally significant changes in splicing patterns probed with different genomic379

features:380
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• bin-coverage signal: ASpli2 assesses for differential usage of bins com-381

paring bin’s log-fold-changes with the overall log-fold-change of the382

corresponding gene.383

• junction anchorage signal: For every experimentally detected junction,384

ASpli2 analyzes differential intron retention changes by considering log-385

fold-changes of a given experimental junction relative to changes in386

coverage of left and right junction flanking regions.387

• junction locale signal: In the same spirit than MAJIQ and LeafCutter,388

ASpli2 defines junction-clusters as sets of junctions that share at least389

one end with another junction of the same cluster (see Panel E of390

Figure S8). In order to characterize changes for a given junction along391

experimental conditions, ASpli2 weighs log-fold-change of the junction392

of interest relative to the mean log-fold-change of junctions belonging393

to the same cluster.394

ASpli2 makes use of the functionality implemented in the diffSpliceDGE395

function of the edgeR package to perform all of this comparisons within a uni-396

fied statistical framework. Given a set of elements (i.e. bins or junctions) of397

a certain group (i.e. genes, anchorage group or junction-cluster), a negative398

binomial generalized log-linear model is fit at the element level, considering399

an offset term that accounts for library normalization and collective changes.400

Differential usage is assessed testing coefficients of the GLM. At the single401

element-level, the relative log-fold-change is reported along with the associ-402

ated p-value and FDR adjusted q-values. In addition a group-level test is403

considered to check for differences in the usage of any element of the group404
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between experimental conditions (see diffSpliceDGE documentation included405

in edgeR package for details [24]).406

3.2. Filtering and detection criteria407

Statistical analysis of differential splicing is performed only on expressed408

genes (i.e. read counts spanning the gene genomic range should be larger409

than a minimal number of reads, 5 by default, across all the samples of the410

contrasted conditions). Furthermore, analyzed bins and junctions should411

present a minimal number of counts (5 by default) in every replicate of at412

least one contrasted condition. Additionally, marginally present junctions413

are filter-out looking at the maximal value of their participation coefficient,414

defined as the relative abundance of a given junction within its group for a415

given experimental condition.416

417

Besides statistical figures of merit, ASpli2 provides additional statistics418

and parameters in order to ease the identification of biologically relevant419

events. For instance, magnitude of change in inclusion or strength indices420

(see Table S1) between experimental conditions, are also reported in order to421

filter-out weak events. In this way, a bin is called differentially-used by ASpli2422

if it displays statistically significant coverage changes (fdr < 0.05, by default)423

and, additionally, one of the two supplementary conditions hold: either the424

bin fold-change level is greater than a given threshold (3 fold changes, by425

default) or changes in inclusion levels of bin-supporting junctions (∆PIR426

or ∆PSI according to the bin class, see Table S1) surpasses a predefined427

threshold (0.2 by default).428

Anchorage splicing signals, on the other hand, are reported whenever429
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statistically significant changes are found at the cluster level (cluster.fdr <430

0.05 by default) for the considered {J1, J2, J3} junction set (see upper panel431

of Fig S8-D) and, at the same time, |∆PIRJ3 | is larger than a given threshold432

(0.3 by default).433

Finally, junction locale differential splicing signals are reported when-434

ever statistically significant changes are found at the cluster level (cluster.fdr435

< 0.01 by default) for the analysed junction cluster {J1, ..., JS, ..., Jn} (see436

S8-E) and, at the same time, there is at least one junction JS within the437

cluster presenting statistically significant changes at the single unit level438

(junction.fdr < 0.05, by default) with |∆ParticipationJS | larger than a given439

threshold (0.3 by default). In the case that statistically significative changes440

were detected at the unit-level for more than one junction of a given clus-441

ter, the one displaying the largest participation change was considered and442

reported as the cluster’s representative junction.443

3.3. Splicing simulation444

We implemented a computational pipeline relying on the Flux Simulator445

(FS) software [33] in order to produce a controlled set of splicing events.446

We first used FS to generate a transcript abundance distribution template447

to spread 15× 106 molecules among the 10646 available transcript variants448

of the 8433 genes of chromosome-one of the Arabidospis thaliana genome.449

Then, we generated a ’treatment’ set of samples altering the original molecule450

distribution in order to simulate genome-wide differential changes in gene451

expression and splicing patterns.452

Finally we simulated biological replicates from these two seed transcrip-453

tomes, considering a Gamma distribution for molecule abundances to build454
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’control’ and ’treatment’ sample sets. We chose to work with a CV = 0.1455

level of variability in gene abundance between replicates. Therefore, we con-456

sidered shape (k = 100), and scale (θ = 0.01µ) parameter values, where µ457

was the gene expression level in the corresponding seed transcriptome used458

for replicate generation.459

Simulated changes in variant concentrations produce patterns of differ-460

ential usage at bin and junction levels according to the exonic architecture461

of the different gene variants. For instance, a splicing alteration that in-462

volves switching between Isoform 1 and Isoform 3 of the gene depicted in463

Figure S8-(A) is expected to produce differential usage signals for the first464

and third exonic bins. In our case we simulated changes in variants usage for465

915 genes that should altered, in principle, the coverage signal of 2451 bins.466

It is worth mentioning that as alternative splicing was modeled exclusively467

through differential variant usage, no intron retention events were simulated468

in the synthetic data set.469

Several examples of splicing simulated events are depicted in Sup. Figs470

S4,S6,S5. Examples, scripts and additional material to reproduce the ASpli2471

analysis over this dataset can be found at the gitlab repo: https://gitlab.com/ChernoLab/aspli2 sm.472

3.4. PRMT5 datasets473

The goal of these studies was to compare the transcriptional profile (RNA-474

seq) of wild type and PRMT5 Arabidopsis mutants plants grown under con-475

tinuous light at 22 degrees centigrades.476

Dataset A (GSE149429): WT (Col) and PRMT5 mutants seeds were477

grown on Murashige and Skoog medium containing 0.8% agarose, stratified478

for 4 d in the dark at 4 C, and then grown for fifteen days under continuous479
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white light at 22CWhole plants were harvested after 15 d. Total RNA was ex-480

tracted with RNeasy Plant Mini Kit (QIAGEN) following the manufacturers481

protocols. To estimate the concentration and quality of samples, NanoDrop482

2000c (Thermo Scientific) and gel electrophoresis were used, respectively. Li-483

braries were prepared following the TruSeq RNA Sample Preparation Guide484

(Illumina). Briefly, 3 g of total RNA was polyA-purified and fragmented,485

and first-strand cDNA synthesized by reverse transcriptase (SuperScript II;486

Invitrogen) and random hexamers. This was followed by RNA degradation487

and second-strand cDNA synthesis. End repair process and addition of a sin-488

gle A nucleotide to the 3 ends allowed ligation of multiple indexing adapters.489

Then, an enrichment step of 12 cycles of PCR was performed. Library vali-490

dation included size and purity assessment with the Agilent 2100 Bioanalyzer491

and the Agilent DNA1000 kit (Agilent Technologies)492

Dataset B (GSE149429): WT (Col accession) and PRMT5 mutant plants493

were grown for nine days under continuous white light at 22 degrees centi-494

grades or exposed for 1 or 24 h to 10C on the 9th day, before harvesting.495

Then the transcriptional profile of these plants was analyzed using RNA-seq.496

WT (Col) and PRMT5 mutants seeds were grown on Murashige and Skoog497

medium containing 0.8% agarose, stratified for 4 d in the dark at 4 C, and498

then grown for nine days under continuous white light at 22C. Whole plants499

were harvested after 9 d. Total RNA was extracted with RNeasy Plant Mini500

Kit (QIAGEN) following the manufacturers protocols. To estimate the con-501

centration and quality of samples, NanoDrop 2000c (Thermo Scientific) and502

gel electrophoresis were used, respectively. Libraries were prepared following503

the TruSeq RNA Sample Preparation Guide (Illumina). Briefly, 3 g of total504
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RNA was polyA-purified and fragmented, and first-strand cDNA synthesized505

by reverse transcriptase (SuperScript II; Invitrogen) and random hexamers.506

This was followed by RNA degradation and second-strand cDNA synthesis.507

End repair process and addition of a single A nucleotide to the 3 ends al-508

lowed ligation of multiple indexing adapters. Then, an enrichment step of 12509

cycles of PCR was performed. Library validation included size and purity510

assessment with the Agilent 2100 Bioanalyzer and the Agilent DNA1000 kit511

(Agilent Technologies).512

513

On average, 19.3 ± 5.3 million 100 long and 28.3 ± 7.7 million 150 long514

paired-end reads were generated per sample library for datasets A and B515

respectively. For both cases more than 96% of reads were uniquely mapped516

to TAIR10 Arapidopsis genome using STAR (command-line invocation was517

included in Sup Mat 8.2).518

3.5. Overlap analysis519

We followed the procedure outlined in Supplementary Material 8.3 to520

map events reported by each of the considered method to a common set of521

genomic coordinates. Overlaps were then estimated using the findOverlaps522

function of the IRanges package of R [34].523

3.6. Prostate cancer dataset524

Fifty-six paired fastq files from the E-MTAB-567 experiment were down-525

loaded from the ArrayExpress server. Reads were aligned against ENSEMBL526

HG38.98 reference genome using the STAR aligner with default parameters527

and a junction overhang=89.528
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3.7. Code availability529

ASpli2 package is freely available at https://gitlab.com/ChernoLab/aspli2,530

and will be part of the next Bioconductor release (October 2020). Examples,531

scripts and additional material to reproduce our analysis can be found at the532

gitlab repo: https://gitlab.com/ChernoLab/aspli2 sm.533

4. Discussion534

RNA high-throughput sequencing methods provide powerful means to535

study alternative splicing under multiple conditions in a genome-wide man-536

ner. However, the detection and understanding of general splicing patterns537

still present considerable technical challenges. Here we presented ASpli2, a538

computational suite to comprehensively test bin coverage and junction usage539

differential splicing signals.540

The analysis methodology implemented in ASpli2 came out as a result541

of several software maturation cycles of our in-house splicing analysis proce-542

dures. Over the last years, the presented core functionality has been exten-543

sively used in different projects to study: the role of AS in circadian rhythms544

and light response [35, 36, 37, 38, 39] as well as AS in spliceosome mutants545

[40, 41] in A.thaliana model organism. In addition, ASpli2 in-house versions546

have been used to study AS and rhythmic behavior in D.melanogaster [42]547

and to characterize AS in dengue’s viral infection in humans [43].548

549

In order to quantify ASpli2’s performance we compared it against three550

different state-of-the-art methodologies: LeafCutter [23], MAJIQ [44] and551

rMATS [22]. As a general rule we considered default parameters to run these552
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analysis pipelines for our intention was not to present here an extensive553

benchmark between bioinformatics approaches, nor to propose the definitive554

analysis methodology. Rather we wanted to establish whether ASpli2 pro-555

duced reasonable and competitive results.556

557

Different scenarios were considered to chart ASpli2 performance. We first558

analyzed a synthetic data-set and quantified the ability of each considered559

methodology to detect splicing changes in terms of precision and sensitiv-560

ity figures of merit. Using this controlled dataset we found that all the561

analysed methods presented rather high precision levels. However ASpli2562

systematically displayed larger recall values (∼ 40%), mainly because the563

use of coverage signals (see Fig 1). This is an important result as highlights564

the benefits of not loosing effective sequencing depth by relaying not only on565

junction information but on the complete set of reads of RNA-seq runs.566

567

We then aimed to outline ASpli2’s performance over more realistic setups.568

As no internal gold-standards are usually available for real world datasets569

we focused on the analysis of two independent RNAseq assays that probed570

the same biological conditions. This allowed us to quantify the consistence571

and coherence of outcomes produced by each methodology in terms of re-572

producibility of discoveries. Our results suggested that detection agreement573

between studies was highly significative for every methodology. However574

ASpli2 was far superior in terms of total number of concordant discoveries575

reported.576

It is worth noting that a necessary condition implicit in this analysis was577
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that biological variability largely exceeded possible technical biases between578

studies. Using ASpli2, we were able to consider a generalized linear model to579

define a consolidated dataset integrating data from both studies and verified580

that this was actually the case (Sec 2.4). In addition, the possibility to imple-581

ment a two-factor model greatly improved the statistical power to uncover582

consistent discoveries. We could identify 4314 events displaying a statis-583

tically significative genotype effect and no evidence of experiment-genotype584

interactions. This represented almost a two-fold increase in the number of re-585

producible discoveries when compared against the naive integrative approach586

that merely considered the 2241 splicing events simultaneously detected in587

both studies.588

589

An important aspect of the presented approach is that ASpli2’s core590

functionality is implemented along user-friendly functions that produce self-591

contained output results for each step of the analysis. This is an important592

feature from the user’s perspective. It provides the user valuable intermedi-593

ate information eventually facilitating the integration of ASpli2 with other594

analysis pipelines.595

5. Conclusions596

In this paper we presented ASpli2, a computational suite to study alter-597

native splicing events. It is implemented as a flexible R modular package598

that allows users to fulfill gene-expression and splicing analysis following a599

set of simple steps.600

Noticeably, ASpli2 can handle complex experimental designs using a uni-601
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fied statistical framework to assess for differential usage of sub-genic features602

and junctions. By combining statistical information from exons, introns, and603

splice junctions ASpli2 can provide an integrative view of splicing landscapes604

that might include canonical and non-canonical splicing patterns occurring605

in annotated as well as in novel splicing variants.606
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Rugnone, C. G. Simpson, J. W. Brown, X. Zhang, A. Chernomoretz,758

M. J. Yanovsky, The spliceosome assembly factor gemin2 attenuates759

the effects of temperature on alternative splicing and circadian rhythms,760

Proceedings of the National Academy of Sciences 112 (2015) 9382–9387.761

[42] E. J. Beckwith, C. E. Hernando, S. Polcowñuk, A. P. Bertolin,762

E. Mancini, M. F. Ceriani, M. J. Yanovsky, Rhythmic behavior is con-763

trolled by the srm160 splicing factor in drosophila melanogaster, Genet-764

ics 207 (2017) 593–607.765

[43] F. A. De Maio, G. Risso, N. G. Iglesias, P. Shah, B. Pozzi, L. G. Geb-766

hard, P. Mammi, E. Mancini, M. J. Yanovsky, R. Andino, et al., The767

dengue virus ns5 protein intrudes in the cellular spliceosome and mod-768

ulates splicing, PLoS pathogens 12 (2016).769

38

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 22, 2020. ; https://doi.org/10.1101/2020.06.21.162891doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.21.162891
http://creativecommons.org/licenses/by-nc-nd/4.0/


[44] J. Vaquero-Garcia, S. Norton, Y. Barash, Leafcutter vs. majiq and770

comparing software in the fast moving field of genomics, bioRxiv (2018).771

[45] S. Schafer, K. Miao, C. C. Benson, M. Heinig, S. A. Cook, N. Hubner,772

Alternative splicing signatures in rna-seq data: Percent spliced in (psi),773

Current Protocols in Human Genetics 87 (????) 11.16.1–11.16.14.774

39

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 22, 2020. ; https://doi.org/10.1101/2020.06.21.162891doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.21.162891
http://creativecommons.org/licenses/by-nc-nd/4.0/


7. Supplementary Figures775
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Figure (S1) ASpli workflow. Rounded boxes are objects created by ASpli functions.

Accesors and outputs are summarized in the right-most panel
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Figure (S2) Summary of ASpli core functionality.
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Figure (S3) Example of DT html interactive report generated by exportIntegratedSig-

nals() function
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Figure (S4) Examples of simulated IR-like splicing events. For each panel, the left layered

table shows the relative concentration of each variant simulated for condition A and B.

Orange boxes highlight the considered bin in each case.
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Figure (S5) Examples of simulated ES-like splicing events. For each panel, the left layered

table shows the relative concentration of each variant simulated for condition A and B.

Orange boxes highlight the considered bin in each case.
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Figure (S6) Examples of simulated Alternative start/end splicing events. For each panel,

the left layered table shows the relative concentration of each variant simulated for condi-

tion A and B. Orange boxes highlight the considered bin in each case.

45

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 22, 2020. ; https://doi.org/10.1101/2020.06.21.162891doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.21.162891
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure (S7) Venn diagram of alternative splicing events detected in experiments A, B,

and the consolidated data set AB (i.e. events displaying strong evidence of a genotype

effect (fdr< 0.05) and no-detectable evidence of experiment-genotype interaction (experi-

ment:genotype associated fdr> 0.5)).
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8. Supplementary Material776

8.1. Feature counting in ASpli777

8.1.1. Genomic feature extraction: binGenome()778

Sub-genic features are analyzed using user-provided annotation files. Exon779

and intron coordinates are extracted from annotation for multi-exonic genes.780

When more than one isoform exists, some exons and introns from different781

isoforms will generally overlap. In the same spirit of [18], exons and introns782

are then subdivided into non-overlapping sub-genic features dubbed bins, de-783

fined by the boundaries of different exons across transcript variants. In this784

way, these so defined bins are maximal sub-genic features entirely included785

or entirely excluded from any mature transcript.786

Bins are flagged as: exonic (E), intronic (I) or alternative-splicing (AS)787

bins, depending on the exonic/intronic character of the bin across variants .788

In addition, original intronic (Io) bins are defined for every intronic region of789

annotated isoforms (see panel A of Figure S8).790

As a general rule, the extreme portions of a transcript probed by RNAseq791

assays show a highly non-uniform coverage that might obscure differential792

usage analysis. ASpli flags bins that overlap with the beginning or ending of793

any transcript as external. An external bin of a transcript may overlap with794

a non-external one of another transcript. Whenever this happens the bin is795

still labelled as external. Additionally, in order to avoid confounding effects796

in the analysis of splicing events, ASpli identifies and flags loci where more797

than one gene is present in the genome.798

Local splicing classification model. Each AS bin is further classified consid-799

ering a three-bin minimum local gene model, that assigns splicing-event cat-800
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egories to a given bin based on the intronic/exonic character of the analyzed801

bin and its first neighbors (Figure S8, panel B).802

For genes presenting two isoforms, this model is able to unambiguously803

assign a well defined splicing event to the analyzed bin: exon skipping (ES),804

intron retention (IR), alternative five prime splicing site (Alt5’SS), or alter-805

native three prime splicing site (Alt3’SS) (see first row of panel B in Figure806

S8).807

When more than two isoforms are present, we still found it useful to use808

the three-bin local model to segment follow up analysis. For these cases ASpli809

identify splicing events that involve: intronic subgenic regions surrounded by810

exons in at least one isoform (bin labelled as IR*), exonic subgenic regions811

surrounded by two introns in at least one isoform (bin labelled as ES*), ex-812

onic regions surrounded by intronic and exonic neighbor bins (bin labelled813

as Alt5’SS* or Alt3’SS*). When it is not possible to get a clear splicing-type814

assignation (see rows 2-5 of Figure S8), bins are labeled as undefined AS815

(UAS).816

817

As a last step of the genomic feature extraction process, annotated junc-818

tions from all the transcripts are also identified. Junction coordinates are819

defined as the last position of the five prime exon (donor position) and the820

first position of the three prime exon (acceptor position).821

822

8.1.2. Annotation based feature counting: gbCounts()823

Reads are overlaid on features derived from annotation, and count tables824

are produced at different genomic levels: genes, bins, and intron flanking825
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Figure (S8) Panel (A) shows how bin-features are defined and classified as: exonic, in-

tronic or intron original bins using genome annotation. The local splicing classification

scheme is illustrated in panel (B). The definition of PSI and PIR metrics for bin features

are pictured in panel (C). Definition of junction PIR and PJU statistics are shown in panel

(D). Panel (E) shows a possible junction cluster and highlights the definition of type J1,

J2 and J3 junctions for the analysis of PJU statistics for the blue junction.
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regions used to identify and quantify intron retention events. Reads corre-826

sponding to annotated junctions are also tallied, along with genomic relevant827

information such as identity of spanned bins, and the existence of possible828

exintronic events [? ].829

8.1.3. De-novo junction counting: jCounts()830

ASpli takes advantage of experimentally detected splice junctions to per-831

form two different type of analysis. For one hand, junction data is considered832

in order to provide junction support to AS events detected through bin cov-833

erage analysis. For the other, it is used to quantify novel splicing events.834

Junction support of bin coverage statistics:. ASpli makes use of junction data835

as supporting evidence of alternative usage of bins. For a general differential836

splicing event affecting a given bin, it is always possible to define exclusion837

and inclusion junctions. The first class of junctions (noted as J3) pass over838

the bin of interest, whereas the second ones (note as J1 and/or J2) quantify839

and support the inclusion of start and/or end bin boundaries in the mature840

transcript. Panel C of Figure S8 illustrates this point for the different types of841

splicing events that could affect a given bin. ASpli considers for this analysis842

junctions that are completely included within a unique gene and have more843

than a minimum number of reads supporting them (by default this number844

is five).845

846

PSI (percent spliced in) [45] and PIR (percent of intron retention) metrics847

are two well known statistics that can be used to quantify the relative weight848

of inclusion evidence for different kind of splicing events (see Panel C of849
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Figure S8). For each bin, ASpli quantifies the inclusion strength in every850

experimental condition using the appropriate inclusion index (see Table S1).851

Only junctions that pass an abundance filter criterium (a minimum number852

of counts should be attained in all samples of at least one condition) are853

considered for the estimations.854

feature assesment index bin class

bin
inclusion

PIRir
J1+J2

J1+J2+2∗J3

UAS, I, I*, I0

PSIes UAS, E, E*

PSIalt5ss J1,2
J1,2+J3

Alt5ss, Alt5ss*

PSIalt3ss Alt3ss, Alt3ss*

junction

PIRjunc
J1+J2

J1+J2+2∗J3
-

usage
PJUJ1

J3
J1+J3

-

PJUJ2
J3

J2+J3
-

Table (S1) Junction usage and inclusion strength figure of merits for different bin classes

and for experimentally detected junctions. The definition of J1, J2 and J3 junction counts

is depicted in panels C and D of Figure S8 for annotated and experimentally detected

junctions respectively.

For each bin, a PIR or a PSI metric is calculated, according to the splicing855

event category assigned to that bin (see last column of table S1). If no splice856

event was assigned, meaning that the bin is not alternative, an exon will be857

considered to be involved in a putative exon skipping splicing event, and an858

intron will be considered to be involved in a putative intron retention splicing859

event.860
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Novel and non-canonical splicing patterns:. ASpli relies on the direct analysis861

of experimentally observed splicing junctions in order to study novel (i.e.862

non-annotated) splicing patterns.863

For every experimental junction, ASpli characterizes local splicing pat-864

terns considering two hypothetical scenarios. For one hand, assuming that865

every detected junction might be associated to a possible intron that could866

be potentially retained, a PIRjunc value is computed (panel D of Figure S8).867

868

On the other hand, every junction also defines potential 5’ and 3’ splic-869

ing sites. It can be the case that one (in an alternative 5’ or 3’ scenario),870

or both ends (in case of exon skipping) were shared by other junctions. In871

this context, it is informative to characterize the relative abundance of the872

analyzed junction (dubbed J3) with respect to the locally competing ones.873

ASpli estimates percentage junction-usage indices, PJUJ1 and PJUJ2 , in or-874

der to evaluate and quantify this quantities (see Panel D of figure S8 and875

Table S1). In order to illustrate this point, we show in Panel E of figure S8876

an hypothetical splicing scenario for a given junction of interest, J3. It can877

be appreciated that PJUJ1 quantifies the participation of this junction in878

the context of a splicing pattern involving the two orange competing junc-879

tions, whereas PJUJ2 reports on the usage of J3 in connection with the green880

competing junction.881

8.2. Command-line running arguments882

Command lines used to invoked algorithms and further calculation details:883

884
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• STAR aligner885

For PRMT5 datasets886

1 $ STAR −−runThreadN 30 −−genomeDir TAIR10 GENOME DIR −−twopassMode887

Basic −−outSAMtype BAM SortedByCoordinate −−888

outFilterMultimapNmax 2 −−outFi l te rType BySJout −−889

ou tSJ f i l t e rRead s Unique −−sjdbOverhang PARAM −−890

alignSJoverhangMin 6 −−alignSJDBoverhangMin 3 −−a l ignIntronMin891

20 −−al ignIntronMax 5000 −−r e adF i l e s I n . . /01 FASTQ/Col 3 1 . fq . .892

/01 FASTQ/Col 3 2 . fq −−outFi leNamePref ix Col 3/Col 3893

We used a sjdbOverhang parameter value equal to 99 and 149 for894

PRMT5 datasets A and B respectively.895

896

For the prostate dataset we aligned using default STAR parameters.897

1 $ STAR −−runThreadN 30 −−genomeDir ENSEMBL HG38 PATH −−898

readFilesCommand zcat −−twopassMode Bas ic −−outSAMtype BAM899

SortedByCoordinate −−sjdbOverhang 89 −−r e adF i l e s I n 1 . fq 2 . fq900

We used a sjdbOverhang parameter value equal to 99 and 149 for901

PRMT5 datasets A and B respectively.902

• LeafCutter (synthetic dataset)903

BAM files were first processed using the provided bam2junc.sh script.904

The generated juncfiles.txt was then used to build junction clusters via905

the provided python script906

1 $ python PATH l e a f c u t t e r c l u s t e r . py −j j u n c f i l e s . txt −m 30 − l 500000907

Finally, we used the provided leafcutter ds R-script to run the statistical908

analysis (min samples per intron=3).909

• rMATS Command line use to analyzer PRMT5 assays:910
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1 rMATS. 4 . 0 . 2 /rMATS−turbo−Linux−UCS4/rmats . py −−b1 bam prmt5 . txt −−b2911

bam co l . txt −−g t f /data1/genomeData/ath/Ensembl i l l um ina iGenomes/912

TAIR10/Annotation/Genes/genes . g t f −−od r l 150 −t pa i r ed −−nthread913

20 −−readLength 150 −−t s t a t 10914

• MAJIQ915

8.3. Splicing affected regions detected by different algorithms916

Each algorithm reports splicing altered genomic features in different ways.917

In order to standardize the identification of regions of interest we proceeded918

as follows:919

• LeafCutter: We first identified clusters presenting adjusted pvalues<920

0.05 as reported in ’leafcutter ds cluster significance.txt’ file. For each921

of these statistically significant clusters we considered the associated922

genomic-regions reported in ’leafcutter ds effect size.txt’ file with |∆Ψ| >923

0.1.924

• MAJIQ: We considered the genomic-region covering junction clusters925

presenting at least one junction with P (|∆Ψ| > 0.2) > 0.95.926

• rMATS: We considered the values reported in ’JCEC.txt’ files. This927

means that we considered a model that evaluated splicing with reads928

that spanned splicing junctions and reads on targets bins (i.e. alterna-929

tively spliced exons). We kept junctions presenting adjusted FDR< 0.0930

and inclusion signal larger than a 0.1 level. Genomic regions were then931

defined according the following rules:932
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– A3SS’ (A3SS.MATS.JCEC.txt file): We considered the genomic933

region between ’shortEE’ and ’longExonEnd’ coordinates for neg-934

ative strand and by ’longExonStart 0base’ and ’shortES’ for pos-935

itive strand cases.936

– A5SS’ (A5SS.MATS.JCEC.txt file): We considered the genomic937

region between ’shortEE’ and ’longExonEnd’ coordinates for pos-938

itive strand and by ’longExonStart 0base’ and ’shortES’ for neg-939

ative strand cases.940

– MXE (MXE.MATS.JCEC.txt file): We considered two regions941

per event defined by: ’1stExonStart 0base’, ’1stExonEnd’ and942

’2ndExonStart 0base’, ’2ndExonEnd’.943

– SE (SE.MATS.JCEC.txt file): We considered the regions between944

’exonStart 0base’ and ’exonEnd’.945

– RI (RI.MATS.JCEC.txt file): We considered the regions between946

’riExonStart 0base’ and ’riExonEnd’.947

8.4. Analysis of false positive calls in simulated dataset948

In our simulations a 20% level of random variability was added to variant949

concentration profiles. A splicing activation signal (SAS) value was then es-950

timated for each gene as the maximum absolute change in variant concentra-951

tion observed between conditions. The left-most first and second boxplots in952

Figure S9 depict the distribution of this quantity for the 915 genes for which953

a splicing event was simulated, and for the remaining 7518 genes respectively.954

On the other hand, the four right-most boxplots show the SAS distribution955

for false positive calls obtained with different methods. Non explicitely splic-956
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ing simulated changes were reported for 9, 4, 48 and 23 genes according to957

ASpli, LeafCutter, MAJIQ and rMATS algorithms respectively.958

Figure (S9) Splicing simulation.

8.5. Comparison of discoveries959

A comprehensive comparison of discoveries appeared at first-sight prob-960

lematic as each algorithm is focused on different genomic features in order961

to chart splicing landscapes.962

For instance, rMATS analyzes genomic regions flanked by upstream and963

downstream exons to examine canonical splicing events. MAJIQ and Leaf-964

Cutter, on the other hand, exclusively rely on clusters of split reads that965

share start or ending junction-ends. Finally ASpli considers both, junction966

clusters and bin features, i.e. genomic regions defined from disjoint ranges967

of annotated junctions.968
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In this context, a first coarse grained comparison could be established at969

gene-level, comparing the identity of genes housing splicing-altered patterns970

according to the different analyzed methods. Panel (A) of Figure S10 dis-971

plays a color-coded overlap matrix of affected genes in experiments A and B972

according to the four examined methodologies. Each cell reports the inter-973

section size and, in brackets, the corresponding overlap coefficient. At gene974

level, rMATS achieved the largest agreement factor (83% of genes identified975

in experiment B, were also reported in experiment A). However, it also976

produced the lowest number of discoveries (119). ASpli, on the other hand,977

presented a comparable level of agreement (71%), highlighting a significa-978

tively larger number of concordant genes (2109). Typically, more than 50%979

of genes identified by any methodology was also reported by ASpli (first and980

second rows of Figure S10). Moreover, the number of concordant discoveries981

between experiments considering a given methodology was comparable to the982

agreement level achieved between each experiment-metodology combination983

and the correpsonding ASpli result. Noticeably, more than 90% of MAJIQ’s984

genes were also spotted by ASpli.985

986

A more in-depth comparison could be established analyzing the overlap987

of identified genomic regions. In panels (b) and (c) of Figure S10 we informed988

the extent of the overlaps between genomic regions found to be affected by989

differential splicing patterns according to each algorithm (see Material and990

Methods 3.5) to map events reported by each method to a common set of991

genomic coordinates). While any kind of overlap was registered for panel (b),992

only complete inclusion of genomic regions identified by one method inside993
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Figure (S10) ASpli main functions.
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the ones identified by a second one was considered for panel (c). Statistically994

significant overlaps were marked with asterisks. Note that overlap coefficients995

(in brackets) exceeding unity were detected in between-experiments compar-996

isons for LeafCutter and rMATS as a result of the presence of one-to-many997

region mappings.998

For the loose overlap criterium we found statistically significant concor-999

dance between discoveries for almost every cell (Fig S10-b). Only specific1000

comparisons involving MAJIQ and rMATs failed the statistical significance1001

test. At the same time, overlap coefficient values were similar to the ones1002

estimated at the gene-level analysis. Noticeably, we recognised a sensible1003

reduction in this quantity for the MAJIQ vs ASpli comparison. This finding1004

highlighted that gene-level agreement should in general be considered with1005

caution. A more detailed examination at the sub-genic level might be neces-1006

sary to assess for discovery consistencies between algorithms. Results for the1007

most stringent overlap criterion are shown in Figure S10(c). As expected,1008

a major decrease on overlap coefficient values was observed . However, sta-1009

tistically significant agreement between results was still found as a general1010

rule. Only comparisons involving MAJIQ’s discoveries failed the statistical1011

assessments.1012

1013

8.6. PRMT5 PCR events1014

We characterized the agreement between the 23 splicing events that AS-1015

pli uncovered for the consolidated AB case, and the 44 Sanchez qRT-PCR1016

validated events in Table S2. For each assayed event we included the kind1017

of the original event and the reported qRT-PCR splicing signal value in the1018
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second and third columns respectively (Sanchez and collaborators calculated1019

the fraction of the shortest isoform in PRMT5 mutants and wildtype plants1020

detected by qRT-PCR, and used the relativized difference between them as1021

a quantitative proxy of splicing changes (Table 4 of [25])). In the fourth col-1022

umn we informed whether the PCR-interrogated genomic region overlapped1023

with the one signaled by ASpli. Finally, the type of splicing event detected1024

by ASpli was included in the last column of the table.1025

8.7. Prostate cancer dataset:Transcriptomic variability1026

In order to visualize the transcriptomic variability across patients at gene1027

expression levels we considered the 30% most variable genes across the 281028

expression profiles that presented more than 10 counts per million reads1029

in at least 3 samples. With this informative set of 1386 genes we built a1030

multidimensional scaling plot of distances between gene expression profiles1031

estimated with the edgeR package [24]. Results are shown in Fig S11. In this1032

kind of plot, samples lay on a two-dimensional scatterplot so that distances1033

on the plot approximate the typical log2 fold changes between the samples1034

(function plotMDS of edgeR [24]).1035

Emtpy and filled symbol correspond to tumor and normal tissue samples1036

respectively. Pair of points of a given patient are equally colored and joined1037

by a dashed edge.1038

It can be seen that tumor and normal samples were well separated across1039

the leading reduced dimension. The second largest projected dimension,1040

however, let us appreciate internal structure and some variability between1041

patients. There was a group of 5 patients (top left empty points) that dis-1042

played a rather homogeneous pattern of changes between tumor affected and1043
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Figure (S11) A.
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normal tissues. On the contrary, the 9 bottom-left tumor samples seemed1044

to segregate into a different cluster of transcriptomes. Moreover, the corre-1045

sponding patients presented different kinds of alterations between tumor and1046

control samples.1047
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Gene ID Event qRT-PCR signal Region overlap Detected event

1 AT1G53650 5’ss 18.93 yes IR (next to 5)

2 AT1G54360 5’ss 39.21 yes Alt5ss

3 AT1G76510 5’ss -28.00 yes Alt5ss

4 AT2G04790 5’ss 11.14 yes IR

5 AT2G15530 5’ss 21.12 yes Alt 5’/3’

6 AT2G33480 5’ss -27.16 yes IR

7 AT2G38880 5’ss -10.44 no IR

8 AT2G46790 5’ss 35.20 yes Alt5ss (plus additional IR)

9 AT3G01150 ES -13.70 no IR

10 AT3G12250 5’ss -16.29 no ES*

11 AT3G16800 IR/3’ss -31.59 yes IR,Novel Alt 5’/3’

12 AT3G19840 5’ss -26.20 no IR

13 AT3G20270 ES 8.51 no IR (next to ES)

14 AT3G23280 ES 18.21 yes ES

15 AT3G25840 ES 6.51 yes ES

16 AT4G02430 3’ss 27.45 no IR

17 AT4G24740 ES 16.07 no IR (next to ES)

18 AT4G31720 3’ss 12.37 no IR

19 AT4G32730 5’ss 30.93 yes Novel Alt 5’/3’

20 AT4G38510 5’ss 15.53 yes Alt5ss*,CSP

21 AT5G05550 ES 32.72 yes ES (plus additional IR)

22 AT5G25610 IR -71.69 yes IR

23 AT5G57630 5’ss 31.07 yes Novel Alt 5’/3’ (plus adjacent IR)

Table (S2)
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