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ASPLUND SPACES AND DECOMPOSABLE
NONSEPARABLE BANACH SPACES

GILLES GODEFROY

ABSTRACT. We show that an Asplund space of density
character Nj is weakly compactly generated if and only if it
has a projectional resolution of identity for each equivalent
norm. We show that every nonseparable Asplund space has a
nonseparable subspace which has an equivalent strictly convex
norm. We give an example of a non-Asplund space such that
every bounded weakly closed subset is an intersection of finite
union of balls. We show the existence of an Eberlein compact
K such that (C(K),||.||cc) has no A-norming Markushevich
basis if A < 2.

0. Introduction. In this note we investigate some properties
of the nonseparable Banach spaces which admit a “decomposition”
into separable subspaces. We show, for instance, that there exists a
weakly compactly generated (wcg) Banach space X with no A-norming
Markushevich basis for A < 2, and in fact that there exists an Eberlein
compact K such that (C(K),||.||cc) has this property. This improves
some results from [18]. We also answer a question from [8].

Let us recall some notation. Let X be a Banach space of density
character dens(X) = u. A “decomposition” of X is a well-ordered
collection {P,;wo < a < p} of projections such that P,P3 = PP, =
P,ifa <B,P,=Idx, Ps(z) € {Pati(z);a < B} forall z € X and 3,
and dens (P, (X)) < |a] for all a. The decomposition {Py;wp < o < p}
is called a projectional resolution of identity (PRI) if ||P,|| < 1 for all
a. It is called a separable decomposition if (Py41 — P,)(X) is separable
for all o < p.

Jayne-Rogers selectors were shown to exist in [13] (see [2, Chapter
I.4]). They are multivalued maps from Asplund spaces X to the set
(X*)N of countable subsets of X*. We denote them by A. A subset
Y C X* is called (A)-norming if there exists A < co such that

||zl < Asup{|f(z)|; f € Y |[f]] < 1}
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for all + € X. The infimum of such \’s, denoted by r(Y)™!, is the
inverse of the Dixmier characteristic 7(Y) of Y.

A Markushevich basis (in short M-basis) of X is a subset {(zq, fo); @ €
A} of X x X* such that
span x40 € A} = X

and

M ker(fa) = {0}-

acA
An M-basis {(z4, fo); @ € A} is said to be Ad-norming if

r(span {fq;a € A}) > AL,

We refer, e.g., to [6, 9, 18, 19, 20] for recent results on M-basis.

A compact set K is called a Corson compact if there exists a set [
that is homeomorphic to a subset of

> (I) ={a: T — R; [{i;2(i) # 0} < N}

where Y (I) is equipped with the pointwise topology.

1. Asplund spaces and application of Jayne-Rogers selectors.
Our first statement should be compared to the main result of [3]. Its
proof actually uses techniques from [3].

Proposition 1.1. Let X be an Asplund space with dens (X) = Ny.
Then X is weakly compactly generated if and only if (X, ||.||) has a PRI
for each equivalent norm ||.|.

Proof. Any wcg space has a PRI [1], hence the “only if” part is clear.
Let us show the converse.

Let |.| be a given norm on X. By assumption, (X,|.|) has a PRI
{P,,0 < a <w;}. Clearly, (Py11 — Py)(X) is separable for all a < wy,
hence we can apply [5, Proposition 1.2] which states in particular the
existence of an equivalent norm ||.|| on X such that

(1) By = Bx-(||.|)) = convMl(€)
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where £ denotes the set of all points in Bx~ which are w*-strongly
exposed in Bx~«. Clearly, we have for all f € X*

f=w"— lim PI(f).

a—rwi

It follows that for all f € £, we have

lim || f — P3(f)[] =0,

a—rwi

and thus there exists o < w; such that f = PX(f). Now (1) implies
that

(2) x*= | Pix).

a<w]

We may now conclude the proof as in [3]. Let A = X — (X*)N be
a Jayne-Rogers selector. We let ag = By = 0. The set A(P,, (X)) is
norm-separable, hence by (2) there is op < a3 < w; such that

A(Pao (X)) C P5,(X7).
We find similarly o1 < as < w; such that
A(Po, (X)) C Pg,(X7).

Continuing in this way, we obtain an increasing sequence (a,) of
countable ordinals. Letting 51 = sup{a,}, we have (see [ 2, Lemma
VI1.3.1])

A(Pp, (X)) C P, (X7),

and in fact ([4]; see [2, Lemma VI.3.2])
(3) sparr (A (P, (X)) = P, (X).
We now construct by induction an increasing sequence of ordinals

{Bn;n > 1} such that (3) is satisfied with §,. If we now let v =
sup{f.}, we have (again by [2, Lemma VI.3.1 and 3.2])

i) = spa (AP, (0)in > 1)
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and therefore

erve T 1o o
(4) Pr(x*) =JP; (X7 .
We may now let v = f,, and proceed by transfinite induction to
construct a “shrinking” PRI on X, that is, a PRI {Pg;3 < w1} such

that (4) is satisfied for any sequence {3, } increasing to v. It is easy to
conclude that X is wcg, as in [2, Corollary V1.4.4]. i

Note that the assumption “X Asplund” is necessary in Proposition
1.1 since, for instance, there exist wcd spaces of density N; which are
not weg [15] and wed spaces have PRI’s in each norm (see [2, Theorem
VIL.2.5]).

Since R. Haydon’s fundamental work [10, 11], it is known that
there is an Asplund space X with dens X = ¥y, on which no “good”
renorming can be completed. Our next statement will imply that this
cannot take place hereditarily.

Proposition 1.2. Let X be an Asplund space. The following are
equivalent.

1) There exists a countable subset D of X* which separates X.
2) Every weakly compact subset W of X is weakly metrizable.

Proof. 1) = 2). By compactness, the topology o(X, D) of pointwise
convergence on D agrees on W with the weak topology, and o(X, D)
is metrizable since D is countable.

2) = 1). We assume now that no countable subset of X* separates
X.

We will construct by transfinite induction a weakly compact non-
metrizable subset W of X. We proceed as follows: pick any z; € X
with ||z1]] = 1. If the z,’s are constructed for all a < 8 < wy, set

D = span! 1 {A(span ! {z4; 0 < B})}

where A denotes as before a Jayne-Rogers selector. Clearly Dg is norm-
separable, hence according to our assumption we may pick zg € X with
[lzg]| =1 and f(zg) =0 for all f € Dg.
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We claim that the set W = {z,;a < w1} U {0} is weakly compact
in X. To prove this, it clearly suffices to show that if {a,;n > 1}
is a strictly increasing sequence of countable ordinals then {z,, }
weakly converges to 0. Let § = sup(ay). We let for all v, X, =
span | '{zy;a < 7}, By ([4]; see [2, Lemma VI.3.2]), we have

X = is(span {A(Xp)})

where i denotes the canonical quotient map from X* onto X 5. For
any f € X% and any ¢ > 0 there exists o] < ap < --- < o) < 8 and
r1,...,7r € R such that

- (gm)] <

with y; € A(Xa;). If o, > @), we now have by construction of the z,’s
that | f(za, )| < €, and this shows our claim.

The set (W, w) is homeomorphic to the one-point compactification of
a discrete set of cardinality N;. Hence it is not metrizable, and this
concludes the proof. O

Note that one cannot dispense with the assumption “X Asplund” in
Proposition 1.2, since for any set I',[;(T") has the Schur property and
therefore any weakly compact subset of /1 (T") is norm-compact and thus
is metrizable.

Corollary 1.3. Let X be a nonseparable Asplund space. Then X
contains a closed nonseparable subspace Y, which has an equivalent
strictly convex norm.

Proof. If there exists D = {f,;n > 1} which separates X, we let
Hell1> = [lll* + > 27"l fall 2 (fal))?
n=1

and |||.||| is an equivalent strictly convex norm on X. If such a set D
fails to exist, X contains by Proposition 1.2 a weakly compact norm
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metrizable subset W, and thus X contains a wcg nonseparable subspace
Y. Since any wcg space has a strictly convex norm (and even an lur
norm; see [2, Theorem VII.2.1]) the conclusion follows. o

It is not clear to me whether the assumption “X Asplund” is nec-
essary in Corollary 1.3. Note that Corollary 1.3 implies that an As-
plund space with no strictly convex norm (such as Haydon’s example
in [10]) contains a nonseparable WCG space (which in particular ad-
mits a Fréchet-differentiable norm).

We conclude this section with an observation which answers [8,
Question E,2]. We refer to [8] for basic results about the ball topology.

Proposition 1.4. There is an equivalent norm on the non-Asplund
space X =11 (IN) @la(c) such that the ball topology coincides on bounded
subsets of X with the weak topology; that is, such that any weakly closed
bounded set is an intersection of finite unions of balls. In particular,
X* contains no proper norming subspace.

Proof. The last statement is in fact a special case of [5, Corollary
2.8]. Indeed, since dens (X*) = dens (X) = ¢, we may apply [5] as in

the proof of Proposition 1.1 to obtain an equivalent norm ||.|| on X
such that
(1) Bx-(||-|I) = conv M/(€)

and clearly (1) implies that X™* contains no proper norming subspace.
Now observe that all f € £ are points of w*-to-norm continuity of the
identity map on Bx=. Then [7, Theorem 2.6] and (1) show that every
g € X* is ball-continuous on the ball of X, and the conclusion follows.
O

It is still unknown whether a space such that every closed convex
bounded set is an intersection of balls is an Asplund space. Proposition
1.4 and some results from [21] support the conjecture that the above
problem has a negative answer.

Remark 1.5. If X satisfies the conclusion of Proposition 1.4, then
there is no z € X**\{0} such that ||z — z|| = ||z + || for all z € X.



ASPLUND SPACES 1019

Indeed, the space ker(z) would then be a norming subspace of X*.
Proposition 1.4 is therefore related to an example produced in [15]; see
also [12, p. 489].

2. Norming Markushevich bases in WCG spaces. The
following statement is the main result of this note.

Theorem 2.1. There exists a Banach space X which is a direct
sum X = S @ R, with S separable and R reflexive, and which has no
A-norming Markushevich basis for A < 2.

Proof. 1) We let Z = I;(N) @ l2(c). The space Z has a separable
decomposition and clearly we have dens (Z) = dens (Z*) = c. It follows
now from [5, Corollary 2.8] and the computations made in [7, Proof of
Theorem 9] that for all n > 1, there exists an equivalent norm ||.||,, on
Z such that

r(Y)< -+

N | =
S|

for all closed proper subspaces Y of (Z*][.||%). It follows that if
{(2y,23);v € I'} is a A-norming M-basis of (Z,|.||») with A < (1/2 +
1/n)~1, then spﬁ”'”(z;) = Z*. We may and do assume that |[23]| <1
for all v. The operator 7' : Z — l(I') defined by T'(z) = (23(2))
takes its values into co(I'), and T (l;(I")) contains span{z3;y € I'}
and is therefore norm-dense. But then 7™* is one-to-one and thus
by [2, Corollary VI.5.4] Z is Asplund. But since Z contains I;(N),
this is a contradiction. Hence (Z, ||.||,) has no A-norming M-basis for

A< (1/24+1/n)7L,

We now set
x=(Seli)

The following lemma is a straightforward consequence of [20, Propo-
sition 4.6], and [19, Proposition 2.6] is a stronger statement. Yet we
outline the proof for completeness.

2

Lemma 2.2. Let V be a Banach space and Z be a subspace of V' such
that (Bz~,w*) is a Corson compact. If V has a A-norming M -basis,
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then so does Z.

Proof. Let {(v;, fi),% € I} be a A-norming M-basis of (V,||.||). If we
let
lvll] = sup{|f(v)[; f € span {fi}, [|f]| <1}

then |||.|]| is an equivalent norm on V such that for all v € V,

(5) Al < ol < (o]

We equip V, and its subspace Z as well, with |||.|||. We let g; = firz
and

Y =span "\({g;;i € I}).

The space Y is a one-norming subspace of (Z*,||.||*) and since {(v;, f;)}
is an M-basis, we have for all z € Z,

(6) [{i € I; 9i(2) # 0} < Ro.

Since (Bz+ 4+ ) is a Corson compact, Z has an M-basis [16, Proposition
4.1] {(zy,hy);y € T}. Any Corson compact is angelic, and it follows
easily from the Banach-Dieudonné theorem that, for all h € Z*,

(7) {7 € T3 h(z,) # 0} < Ro.

This applies in particular to h = g; for any ¢ € I. Now (6) and (7),
together with the fact that span {g;;7 € I} is (|||.|||) — 1-norming, imply
that (Z,]]|.]||) has a one-norming M-basis. This latter fact is shown in
[20, Theorem 2.3] by the techniques used in [2, Chapter VI] and in
particular in the proof of [2, Lemma VI.7.5].

Hence (Z,]||-]||) has a one-norming M-basis {(us,tq);a € A}. It
follows that (Z,||.||) has a A-norming M-basis. Indeed, for all z € X
with ||z|| = 1 and all ¢ > 0, we have by (5) |||z||| > A~! and thus there
exists f € span {to;a € A} with |||f]/|* < 1 and f(z) > A~! —¢. Since
[IF11* < IIf1I]*, the conclusion follows. u]

Since X is wcg, Bz~ is Eberlein and thus Corson compact for all
Z C X. Hence, by Lemma 2.2, X contains no A-norming M-basis if
A < 2. We now recall
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Fact 2.3. Let X = S® R, with S separable and R reflexive. Then X
is isometric to a direct sum X = Sy ® R, with Sy separable, Ry reflerive
and Sy is one-complemented in X.

Proof. The space X is clearly wcg, and thus (see [2, Lemma VI.2.4])
S is contained into a one-complemented separable subspace Sy of X.
Let m = X — Sy be a norm-one projection. We have

RO :kel"/er/So,

but there is a canonical quotient map from X/S ~ R onto X/Sy, and
thus Ry is reflexive. a

By Fact 2.3, we have for all n,
(Z,||-|n) = Sn ® Ry,

with S,, separable and (||.||,) — 1-complemented and R, reflexive. It

follows that
X~ <Z@Sn) @ (Z@Rn>
2 2

is of the prescribed form. This concludes the proof of Theorem 2.1.
O

It is still unknown whether there exists a wcg space with no norming
M-basis. However, the present approach will not suffice for answering
this question. Indeed, we have

Proposition 2.4. Let X be a Banach space which is a direct sum
X = S ® R, where S is separable and R is reflexive. Then X has a
four-norming Markushevich basis.

Proof. By Fact 2.3 we may assume without loss of generality that S
is one-complemented in X, with a projection 7 of kernel R.

Since S is separable, it has a one-norming Markushevich basis
{(zn, fn);n > 1} (see [14, p. 44]). The space R is reflexive and thus
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it has a Markushevich basis {(ya, 9o); @ € A} which is of course one-
norming since span’'!l(g,) = R*, by reflexivity. We set

B={{zn;n =1} U{ya; € A}}

and
B* = {{n*(fn)in 21} U{(I — 7*)(ga); o € A}}.

We claim that (B, B*) is a four-norming M-basis. Indeed, pick z =
1 + x2 with 1 € S, x2 € R. We have

]|

sup{||zoll, llz2[[} = =~
Let us assume that ||z1|| > ||z||/2. Pick any £ > 0. By the above,
there exists f € span (fy,) such that ||f|| <1 and (f,z1) > ||z]|/2 —&.

Since z; = w(x), we have 7*(f)(z) = f(z1) > ||z||/2 — ¢ and
[l fIl < 1.

Thus, in this case, z is (1/2)-normed by span (B*). If now ||z3|| >
||z||/2, we can proceed along the same lines and find g € span (g, ) with
|lgll <1 and (g,z2) > |[z]|/2 —e.

If we set h = (I — 7*)(g), we have (h,x) > ||z||/2 — ¢ and h €
span (B*), but this time we only have ||h|| < 2 since || — 7| < 2.
Therefore, in that case, z is (1/4)-normed by span (B8*). This concludes
the proof. a

I don’t know how to fill the gap between A = 2 and A = 4 (see
Theorem 2.1 and Proposition 2.4). We conclude with

Corollary 2.5. There exists an Eberlein compact K such that
(C(K),||-llcc) has no A-norming Markushevich basis if A < 2.

Proof. Let (X,||.]|) be the space provided by Theorem 2.1. Since X
is weg, K = (Bx~,w") is Eberlein compact.

Since X is isometric to a subspace of (C(K),||.||x), it follows from
Lemma 2.2 that (C(K),||-|lo) has no A-norming M-basis if A < 2.
O
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Note that it follows from Lemma 2.2 that (C(K),||.||sc) is not iso-
metrically contained into a space which has A-norming M-basis with
A <2
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