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Abstract

Background

Breast cancer is a leading malignancy affecting the female population worldwide. Most

morbidity is caused by metastases that remain incurable to date. TGF-β1 has been identi-

fied as a key driving force behind metastatic breast cancer, with promising therapeutic

implications.

Methods and Findings

Employing immunohistochemistry (IHC) analysis, we report, to our knowledge for the first

time, that asporin is overexpressed in the stroma of most human breast cancers and is not

expressed in normal breast tissue. In vitro, asporin is secreted by breast fibroblasts upon

exposure to conditioned medium from some but not all human breast cancer cells. While

hormone receptor (HR) positive cells cause strong asporin expression, triple-negative

breast cancer (TNBC) cells suppress it. Further, our findings show that soluble IL-1β,

secreted by TNBC cells, is responsible for inhibiting asporin in normal and cancer-associ-

ated fibroblasts. Using recombinant protein, as well as a synthetic peptide fragment, we

demonstrate the ability of asporin to inhibit TGF-β1-mediated SMAD2 phosphorylation, epi-

thelial to mesenchymal transition, and stemness in breast cancer cells. In two in vivo murine

models of TNBC, we observed that tumors expressing asporin exhibit significantly reduced

growth (2-fold; p = 0.01) and metastatic properties (3-fold; p = 0.045). A retrospective IHC
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study performed on human breast carcinoma (n = 180) demonstrates that asporin expres-

sion is lowest in TNBC and HER2+ tumors, while HR+ tumors have significantly higher

asporin expression (4-fold; p = 0.001). Assessment of asporin expression and patient out-

come (n = 60; 10-y follow-up) shows that low protein levels in the primary breast lesion sig-

nificantly delineate patients with bad outcome regardless of the tumor HR status (area

under the curve = 0.87; 95% CI 0.78–0.96; p = 0.0001). Survival analysis, based on gene

expression (n = 375; 25-y follow-up), confirmed that low asporin levels are associated with a

reduced likelihood of survival (hazard ratio = 0.58; 95% CI 0.37–0.91; p = 0.017). Although

these data highlight the potential of asporin to serve as a prognostic marker, confirmation of

the clinical value would require a prospective study on a much larger patient cohort.

Conclusions

Our data show that asporin is a stroma-derived inhibitor of TGF-β1 and a tumor suppressor

in breast cancer. High asporin expression is significantly associated with less aggressive

tumors, stratifying patients according to the clinical outcome. Future pre-clinical studies

should consider options for increasing asporin expression in TNBC as a promising strategy

for targeted therapy.

Introduction

The tumor stroma, and especially cancer-associated fibroblasts (CAFs), is emerging as a key

element of cancer growth and metastasis. CAFs supply cancer cells with a plethora of growth

factors, energy substrates, and immune suppressors [1–3]. In most studies to date, the CAFs

and other stromal cells have been observed to support tumor growth. The reverse is naturally

less evident, as tumors inhibited by the stroma do not necessarily develop. Indeed, the inability

of malignant cells to properly activate the host fibroblasts and program them to serve their

needs would probably result in tumor failure [4–7]. However, it is far from clear how cancer

cells perform this very early reprogramming of the stroma, what the anti-tumor responses of

the stromal cells to these initial events are, and why, sometimes, the battle is lost against the

tumor. Our previous studies, aiming to recognize accessible tumor proteins in human renal

carcinoma [8] and colon [9], pancreas [10], and breast [11] adenocarcinomas, have consis-

tently identified an overexpression of several small leucine-rich proteoglycans (SLRPs). In the

current study, we aimed to explore asporin, a member of the class I SLRP family [12], which is

at present insufficiently researched in cancer.

Asporin is a secreted extracellular matrix protein that contains 380 amino acids. It was first

identified in human cartilage, and its overexpression has been associated with osteoarthritis

pathogenesis [13]. In normal tissues, asporin is found in articular cartilage, periodontal liga-

ments, the aorta, and the uterus [13,14], with no known protein isoforms reported to date.

Like other SLRP family members, asporin contains a highly conserved (putative) pro-peptide

sequence, has a series of leucine-rich repeats that are flanked by two cysteine residues in the C-

terminal region, and has four cysteine residues that form disulfide bonds in the N-terminal

domain [12]. Despite this similarity to other members of the SLRP family, in contrast to decorin

and biglycan, asporin cannot be considered a typical proteoglycan because it lacks the consensus

sequence necessary for glycosaminoglycan binding. Moreover, unlike other proteoglycans,

asporin contains an aspartic acid repeat in its N-terminal region, polymorphisms of which have
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been associated with osteoarthritis [13,15]. SLRPs have been shown to be involved in several sig-

naling pathways in which they bind to either ligands or receptors—such as bone morphogenic

protein-4 (BMP-4), Wnt-I-induced secreted protein-1 (WISP-1), platelet-derived growth factor

(PDGF), tumor necrosis factor-alpha (TNFα), and transforming growth factor-β1 (TGF-β1)—

in the extracellular compartment [14,15].

Thus far, in tumor, high expression of asporin protein has been confirmed in pancreas [10],

breast [11], prostate [16], and, recently, scirrhous gastric cancers [17]. We were intrigued by

the low expression of asporin in normal human tissues, its high expression in breast carcinoma,

and, particularly, its previously reported interaction with TGF-β1 in the context of osteoarthri-

tis [15,18]. Kou et al. [18], and previously Kizawa et al. [15], demonstrated that asporin was

able to bind to TGF-β1 and inhibit its ability to induce cartilage matrix gene expression. This

regulation was mediated by direct binding to TGF-β1 of amino acids 159–205 of the asporin

protein [18]. The reversibility of this interaction and, more importantly, its relevance in vivo to

diseases such as cancer remain yet to be defined and explored using appropriate animal mod-

els. TGF-β1 is a paramount cytokine that is a potent modulator of immune evasion [19], angio-

genesis [20], invasion [21], epithelial to mesenchymal transition (EMT) [22], metastasis [23],

and stem cell biology [24,25]. In malignant tumors, TGF-β1 is secreted by both cancer cells

and CAFs and has a demonstrated, and intriguing, dual role (pro- and anti-tumor) [26], sug-

gesting the intervention of a more complex regulatory mechanism to modulate the spatiotem-

poral activity of this cytokine.

Complementing the classic “seed and soil” theory, mounting evidence shows that cancer cells

actively adapt the stroma (“soil”), enabling the colonization of distant organs from the primary

tumor site [1,3]. Preventing the stroma from reprogramming into a tumor-supportive environ-

ment is therefore key to a successful anti-cancer therapy. However, to date, there are only a few

well-characterized stromal molecules that could serve as a basis for effective drug development

[1]. The present study contributes to the field by exploring the function of a new soluble stromal

protein in breast cancer growth and progression. Given its previously described TGF-β1-inhibit-

ing function in normal chondrocytes, we hypothesized that asporin may assume an important

multifaceted tumor-suppressor function in breast cancer.

Methods

Patient Samples

The ethical committee of the University Hospital Liège approved the use of human material in

the current study. All samples were obtained from the institutional biobank of the University

Hospital Liège, Belgium. According to Belgian law, patients were informed that the residual

material from surgical procedures could be used for research purposes, and consent is pre-

sumed as long as the patient does not oppose (opt out). CAFs were isolated from tumors of

three individual breast cancer patients (all female, mean age 55 y; tumors: estrogen receptor

[ER] positive/progesterone receptor [PR] positive/HER2 negative, grade 2, Ki67+ [40%–60%]).

For breast cancer, two collections of paraffin-embedded material and one set of freshly sampled

tumors with adjacent non-tumoral tissue were used. The analysis of asporin expression in dif-

ferent subtypes of breast ductal adenocarcinoma was conducted retrospectively on a series of

180 patients (45 per subgroup). The correlation of asporin with the patient outcome was exam-

ined using an additional set of 60 patients, who had an average follow-up of 10 y. In this cohort,

30 cases had developed distant metastases (referred to as poor outcome), whereas the remain-

der showed no evidence of disease progression (good outcome) following the removal of the

primary tumor. Other than as mentioned above, the same inclusion criteria were used for both

cohorts. The inclusion criteria were as follows: (i) tumor lesion of 0.5–50 mm diameter, (ii)
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tumor lesion confirmed to be a breast adenocarcinoma of grade 2 and 3 after histology analysis,

(iii) patient had no treatment before surgery, and (iv) patient had no metastasis at the time of

surgery. Pathological characteristics for both patient groups are outlined in S1 and S2 Tables.

Immunohistochemistry

Formalin-fixed paraffin-embedded tissue sections were prepared from primary breast cancer

lesions (see “Patient Samples” above) and from xenografted tumors (see “In Vivo Study”

below). Tissue samples were sliced from paraffin blocks (5-μm sections), deparaffinated three

times in xylene for 5 min and hydrated in a methanol gradient (100%, 95%, 70%, and 50%).

Blocking of unspecific peroxidase activity was performed for 30 min with 3% H2O2 and 90%

methanol. Citrate buffer (10 mM [pH 6]) was used for antigen retrieval. The following anti-

bodies were used: asporin (rabbit anti-ASPN, dilution 1:150, Sigma-Aldrich, catalog no.

HPA008435), IL-1β (dilution 1:80, Santa Cruz Biotechnology, catalog no. sc-7884), Ki67

(Ventana Medical Systems, catalog no. 790–4286), and vimentin (Ventana Medical Systems,

catalog no. 760–2512). The incubation with the primary antibody was performed overnight at

4°C. Following this, the slides were washed with PBS for 10 min. The biotinylated secondary

antibody was incubated initially for 30 min and subsequently with the avidin biotin complex

kit (Dako, catalog no. X0590) for an additional 30 min. 3,30-diaminobenzidine tetrachlorhy-

drate dihydrate (DAB) with 5% H2O2 was used for detection. The slides were counter-stained

with hematoxylin.

The quantification of protein expression was performed by two independent observers

(average values are reported) and according to previously published methodology [27] with

minor modifications to the scoring scale. Briefly, each immunohistochemistry (IHC) slide was

assessed for the intensity of the staining of the tumor stroma using the following scale: 0 = no

staining, 1 = weak, 2 = moderate, and 3 = strong. The tissue was further evaluated for the extent

of positivity (percent positive stroma in the tumor) using the following scale: 1 = 0%–25%,

2 = 25%–50%, 3 = 50%–75%, and 4 = 75%–100%. The values obtained by each of the two scales

were multiplied to yield a composite value called the IHC score. Pictures of representative fields

were taken under a Leica DMRB light microscope. The details on statistical analysis are out-

lined below.

Isolation of Primary Fibroblasts

NBFs were derived frommammary reduction specimens, whereas CAFs were collected from

ductal adenocarcinoma tissue material. Fibrous areas of normal breast tissue and breast tumors

were cut into small pieces and digested for 18 h at 37°C in Dulbecco’s Modified Eagle’s Medium

(DMEM, Lonza) supplemented with 10% FBS, 100 U/ml streptomycin, 100 μg/ml penicillin,

2.5 μg/ml Fungizone (Gibco BRL, Life Technologies), 150 U/ml hyaluronidase (Sigma-Aldrich),

and 200 U/ml collagenase type III (Gibco BRL). The digested tissue was centrifuged at 100g and

plated in T25 tissue culture flasks with DMEM and 20% FBS.

Cell Culture

Human epithelial breast cells MCF-7, T47D, ZR751, SKBR3, BT-474, MDA-MB-231, BT-549,

and MCF-10A were obtained from ATCC. MDA-MB-468 cells were a kind gift from Dr. Sebas-

tiano Andò (Laboratory of General Pathology, Department of Pharmacy and Health and

Nutritional Sciences, University of Calabria), and EpRAS murine breast cancer cells were a

kind gift of Dr. Sabine Macho-Maschler (Department of Molecular Genetics, Faculty of Veteri-

nary Medicine, University of Vienna). MCF-7 cells were maintained in Eagle’s Minimum

Essential Medium (Lonza) supplemented with 10% FBS, 1% Non-Essential Amino acid
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Solution (Lonza), and 2.5 mM L-glutamine (Lonza). T47D, ZR751, MDA-MB-231, and

MDA-MB-468 cells were maintained in DMEM (Lonza) supplemented with 10% FBS and 2.5

mM L-glutamine (Lonza). SKBR3 cells were maintained in McCoy’s medium (Lonza) supple-

mented with 10% FBS. BT-474 cells were maintained in RPMI 1640 (Lonza) supplemented

with 10% FBS and 1 mM sodium pyruvate, and BT-549 cells were maintained in RPMI 1640

(Lonza) supplemented with 10% FBS and 1 μg/ml bovine insulin (Sigma-Aldrich). EpRAS

cells were maintained in DMEM supplemented with 10% FBS and 1 mM sodium pyruvate

(Lonza). MCF-10A cells were maintained in DMEM containing 5% horse serum, 2.5 g/l glu-

cose, 20 ng/ml EGF, 100 ng/ml cholera toxin, 0.01 ng/ml insulin, and 0.5 μg/ml hydrocorti-

sone (all from Sigma-Aldrich). Normal breast fibroblasts (NBFs) and CAFs were maintained

in DMEM supplemented with 10% FBS and 2.5 mM L-glutamine. Sub-confluent cultures

(70%–90% confluence) of low passages (until passage 8) were utilized for all experiments.

Conditioned medium (CM) from breast cancer cell lines was obtained following 48 h of incu-

bation of 80% confluent cells in serum-free medium. For starvation, DMEM was used for all

the cell lines. Cancer cell CM was collected, centrifuged for 5 min at 150g at room tempera-

ture, and then added to NBF and CAF monolayers (both cell types were pre-starved in serum-

free medium for 24 h) for an additional 48 h. Following this, the NBF and CAF monolayers

were washed two times with PBS and then either lysed with RIPA buffer for Western blot

analysis or used for RNA extraction.

Western Blot Analysis and ELISA

The tissues were obtained immediately after surgery from patients undergoing breast cancer

resection or from primary tumors frommice. The samples were frozen in liquid nitrogen and

crushed into powder. CM samples were concentrated 10-fold using Amicon Ultra centrifugal fil-

ters (Millipore, catalog no. UFC500324). Total proteins from tissues or cells were extracted using

RIPA buffer (50 mM Tris-HCl [pH 7.5], 150 mMNaCl, 1% Triton X-100, 0.5% sodium deoxy-

cholate, 0.2% sodium dodecyl sulfate, and protease/phosphatase inhibitor cocktail; Thermo Sci-

entific, catalog no. 78440). The protein content was determined using the Pierce BCA Protein

Assay Kit (Thermo Scientific, catalog no. 23225). Twenty micrograms of proteins or concen-

trated CMwas supplemented with Laemmli buffer (0.1% 2-mercaptoethanol, 0.0005% bromo-

phenol blue, 10% glycerol, 2% SDS in 63 mM Tris-HCl [pH 6.8]) and were separated on 10%

polyacrylamide denaturing gel and transferred to nitrocellulose membranes. The following anti-

bodies were used: anti-ASPN pAb (dilution 1:500, Sigma-Aldrich, St. Louis, MO, USA, catalog

no. HPA008435), anti-SMAD2/3 mAb (dilution 1:1,000, Cell Signaling Technology, catalog no.

8685), anti-phospho-SMAD2/3 pAb (dilution 1:500, Cell Signaling Technology, catalog no.

8828), anti-E-cadherin mAb (dilution 1:1,000, BD, catalog no. 610181), anti-human vimentin

mAb (dilution 1:1,000, Sigma-Aldrich, catalog no. V6389), anti-mouse vimentin mAb (dilution

1:1,000, Cell Signaling Technology, catalog no. 5741), and anti-HSC70 mAb (dilution 1:30,000,

Santa Cruz Biotechnology, catalog no. sc-7298).

For ELISA assay, serum-free CM from cell lines was collected after 48 h of incubation, clari-

fied by centrifugation, and then activated and processed using the TGF-β1 ELISA kit (R&D

Systems, catalog no. DB100B) following the manufacturer’s instructions. Data were normalized

according to the number of cells.

Gene Expression Analysis

Total RNA was isolated with the High Pure RNA Isolation Kit (Roche, catalog no. 11828665001).

One microgram of total RNA was reverse-transcribed using the Transcriptor First Strand cDNA

Synthesis Kit (Roche, catalog no.04897030001) according to the manufacturer’s instructions. The
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cDNAs (100 ng) were mixed with primers (0.5 μM), human UPL-probe system (0.2 μM) (Roche,

catalog no. 04683633001), and 2× FastStart Universal Probe Master mix (Roche, catalog no.

04914058001) and analyzed in triplicate. Quantitative real-time PCR (qRT-PCR) was performed

using the LightCycler 480 system (Roche) and the corresponding manufacturer software. The fol-

lowing cycling conditions were used: 95°C for 10 min then 40 cycles of 95°C (15 s) and 60°C (1

min). Sequences of asporin primers were as follows: forward 50-GGTGGATAACTTCTACTTT

TAGGAGGA-30 and reverse 50-AAGAAGGGTTT-GGCAGAGC-30 and UPL probe #72. The

relative gene expression levels were normalized using 18S rRNA content (Life Technologies, cata-

log no. 4310893E).

Treatment with rTGF-β1, rASPN, ASPN Peptide Fragment, IL-1β, and
IL-1RA

Cells were starved in serum-free medium for 16 h and then treated for 15 min with a recombi-

nant active form of TGF-β1 (Roche, catalog no. 11412272001) and/or recombinant human

asporin (a kind gift of Targetome) and a synthetic peptide fragment of asporin protein (amino

acids 159–205, H-NQLSEIPLNLPKSLAELRIHENKVKKIQKDTFKGMNALHVLEMSA-

N-OH) (Bachem). TGF-β1, recombinant asporin, and asporin peptide were dissolved in PBS

and used at different concentrations according to the experimental setup (for respective con-

centrations and treatment times see figure captions). When used together, asporin peptide and

recombinant TGF-β1 were pre-incubated for 1 h at 37°C before being added to the cells.

Analysis of the EMT was conducted using Ras-transformed mammary epithelial cells

(EpRAS). The EMT induction was performed as previously described [28]. Briefly, 5 × 104

cells/well were plated in a six-well plate and were grown in the presence or absence of TGF-β1

and/or asporin peptide. Treatments were repeated every day, following medium change, and

the cells were cultured for 10 d. During this period the cells were re-plated every 3 d at 5 × 104

cells/well.

For IL-1β experiments, starved NBFs and CAFs were incubated with CM or serum-free

medium supplemented with 5 ng/ml TGF-β1 in the presence or absence of 0.1–0.5 ng/ml IL-1β

(Peprotech, catalog no. 200-01B) for 48 h. IL-1β activity was blocked by pretreating starved

NBFs with 40 ng/ml IL-1RA (Peprotech, catalog no. 200-01RA) for 1 h, followed by the addi-

tion of MDA-MB-231 CM to the pretreated NBFs for 48 h.

Migration Assay

EpRAS mouse breast cancer cells were pretreated for 10 d with TGF-β1 and/or asporin peptide

(P159–205), as described above. At the end of this period, 1 × 105 cells were suspended in

serum-free medium (0.1% BSA, 1% penicillin/streptomycin) and seeded into the upper part of

a Transwell filter (diameter 6.5 mm, pore size 8 μm; Costar, catalog no. 3422). The lower com-

partment was filled with DMEM containing 1% pen/strep and 10% FBS. Following 16 h of

incubation at 37°C, migrating cells were fixed and stained with Diff-Quick kit (Reagena, catalog

no. 102164). Pictures of each insert were taken at 5× magnification, and migrating cells were

counted using ImageJ software (US National Institutes of Health).

Quantification of Stem Cells

EpRAS cells. On the tenth day of treatment with TGF-β1 and/or asporin peptide, the cells

were harvested with trypsin, and 2.5 × 105 cells were suspended in 25 μl of PBS and labeled

with 1/100 (0.01 mg/ml) anti-CD24 (biotinylated; BioLegend, catalog no. 101803) for 1 h at

4°C. Following a wash, the cells were further labeled with 1/100 (0.01 mg/ml) anti-CD44 (PE-

labeled; eBioscience, catalog no. 12–0441) and 1/1,000 streptavidin-FITC (Invitrogen, catalog
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no. SA100-02) for 1 h at 4°C. Following this, the cells were washed two times, and 1/50 7-ami-

noactinomycin D (7-AAD; BD-Pharmingen, catalog no. 51-68981E) was added for 10 min.

The cell suspensions were analyzed using a FACSAria flow cytometer (BD Biosciences).

Stem cells were quantified by evaluating the percentage of 7-AADneg, CD44high/CD24low cell

population.

MDA-MB-468 xenografts. Tumors were removed from NOD-SCID mice 7 wk post-

implantation, minced, and digested in a solution of hyaluronidase (300 μg/ml) (Sigma-Aldrich,

catalog no. H-3506) and collagenase I (1.75 mg/ml) (Sigma-Aldrich, catalog no. C0130) in

HSSB (Life Technologies, catalog no. 14025–050) and incubated for 2 h at 37°C. 5 × 105 iso-

lated cells were assayed for ALDH activity using the Aldefluor kit (Stemcell Technologies,

catalog no. 01700), according to the supplied protocol. Human CD44 R-PE conjugate (Life

Technologies, catalog no. MHCD4404) and human CD24 PE-Alexa Fluor 610 conjugate (Life

Technologies, catalog no. MHCD2422) were incubated (both at 1/100 dilution) with the cell

suspension for 1 h at 4°C. Following this, the cells were washed two times and 1/50 7-AAD was

added for a further 10 min. The cell suspension was analyzed using a FACSAria flow cytometer

(BD Bioscences). Stem cells were quantified by evaluating the percentage of cell populations

characterized by two separate signatures: (i) 7-AADneg, ALDH+ and (ii) 7-AADneg, CD44high/

CD24low.

Stable Clones

The MDA-MB-468 cells and NBFs were modified to express luciferase and asporin (MDA-

MB-468-aspn; NBF-aspn) or green fluorescent protein (MDA-MB-468-ctrl; NBF-ctrl). Briefly,

pLenti6-IRES-Luciferase plasmid was generated by cloning IRES (Internal Ribosome Entry

Site) and firefly (Photinus pyralis) luciferase sequences into a lentiviral plasmid using the

pLenti6/V5 Directional TOPO Cloning Kit (Invitrogen) in order to allow the expression of the

luciferase gene under the control of CMV promoter. The 1,152 bp of theHomo sapiens asporin

(ASPN, transcript variant 1) cDNA (NM_017680.4) was synthetized by GenScript and then

cloned into pLenti6-IRES-Luciferase to obtain the pLenti6-ASPN-IRES-Luciferase plasmid for

dual ASPN and luciferase expression. Lenti-X 293T cells (Clontech, 632180) were co-trans-

fected with pSPAX2 (Addgene, plasmid #12260), a VSV-G-encoding vector, along with

pLenti6-IRES-Luciferase or pLenti6-ASPN-IRES-Luciferase plasmids. 48 h and 72 h post-

transfection, viral supernatants were collected, filtrated, and concentrated 100× by ultracentri-

fugation. The lentiviral vectors were then titrated with qPCR Lentivirus Titration Kit (ABM,

LV900). Finally, the MDA-MB-468 cells and NBFs were transduced with 30 viral vectors per

cell. After 48 h, positively transduced cells were selected with 10 μg/ml blasticidin (Invivogen,

ant-bl-1). The cell culture supernatants were checked for the absence of replication-competent

lentivirus before employing cells in vivo.

In Vivo Study

All experimental procedures used in the current work were performed in accordance with the

ARRIVE ethical guidelines [29] and were reviewed and approved by the Institutional Animal

Care and Ethics Committee of the University of Liège (Belgium). The experimentation adhered

to the Guide for the Care and Use of Laboratory Animals prepared by the Institute of Labora-

tory Animal Resources of the National Research Council and published by National Academies

Press, as well as to European and local legislation. NOD-SCID mice were purchased from Jan-

vier Labs and housed in the animal facility of the University of Liège under standard conditions

(12 h light/dark cycle, lights on at 7 A.M.). They were acclimated to the room 1 wk before the

beginning of the experiment. Food and water were provided ad libitum. Tumor development
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was monitored at weekly intervals using in vivo imaging and caliper volume measurement (pri-

mary experimental outcome). For in vivo imaging, an intra-peritoneal injection of luciferin

(Promega, catalog no. E1605) was given to the mice, and the signal was accrued using a Xeno-

gen IVIS 200 imaging system (Caliper Life Sciences). Tumor volumes were calculated by

acquiring the length (L), width (W), and height (H) of the xenografts and employing the for-

mula V = (L/2) × (W/2) × (H/2) × π × (4/3). For the follow-up (size-matched experiments), the

tumors were surgically removed at the target volume of 200–250 mm3 (reached in 6 to 12 wk,

depending on the experimental condition). For the surgical removal of the primary tumor,

mice were anaesthetized using 75 mg/kg of ketamine (Ceva) and 10 mg/kg of xylazine (Rom-

pun, Bayer). Lung metastases were quantified in necropsy material using either IHC (vimentin

staining) or Alu-PCR (see below), depending on the required sensitivity (secondary experi-

mental outcome). Quantification of IHC was performed in serial paraffin sections by evaluat-

ing two parameters: (i) the frequency of metastatic foci (each individual cell or group of cells

was counted as one deposit) and (ii) the size of the metastatic deposits (grouping them into

three categories: <10 cells, 10–20 cells, and>20 cells). Statistical analysis was performed as

described below.

Fibroblast/MDA-MB-468 co-injection xenografts. 5 × 105 luciferase-positive NBF-aspn

or-ctrl cells were mixed with 5 × 105 luciferase-positive MDA-MB-468 cells, suspended in cell

culture medium, mixed (1:1) with growth-factor-reduced Matrigel (BDBiosciences, catalog no.

356230), and inoculated subcutaneously into the flanks of 5-wk-old NOD-SCID mice. Mice

were randomly allocated to one of the two groups. Following tumor removal the mice were

monitored for metastasis development for an additional 2 wk. Twenty mice were used in total.

MDA-MB-468 xenografts. 2 × 106 million luciferase-positive MDA-MB-468-aspn or-ctrl

cells were suspended in cell culture medium, mixed (1:1) with growth-factor-reduced Matrigel

(BD Biosciences), and inoculated subcutaneously into the flanks of 5-wk-old NOD-SCID mice.

Mice were randomly allocated to one of the two groups. After the resection of the primary

tumor, the follow-up for metastasis development was conducted for an additional 3 wk. Eighty

mice were used in total.

qRT-PCR for Human Alu Sequences

Genomic DNA was extracted from 10 mg of lung tissue using the High Pure PCR Template

Preparation Kit (Roche, catalog no. 11796828001), according to the manufacturer’s instruc-

tions. A standard curve was generated by serially diluting MDA-MB-468 cells in 10 mg of nor-

mal mouse lung tissue, followed by DNA extraction. Next, 20 ng of DNA was mixed with

primers against human Alu sequences (forward 50-CATGGTGAAACCCCGTCTCTA-30 and

reverse 50-GCCTCAGCCTCCCGAGTAG-30) or with primers for human/mouse GAPDH,

which was used as a normalizator (forward 50-CAGCGACACCC-ACTCCTCCACCTT-30 and

reverse 50-CATGAGGTCCACCACCCTGTTGCT-30) [30]. All primers were used at 0.5 μM

final concentration. Finally, to the DNA/primer mix, 2× FastStart Universal SYBR Green Mas-

ter mix (Roche, catalog no. 04913850001) was added. The Alu sequences were amplified using

the LightCycler 480 system (Roche) and the following cycling conditions: 95°C for 10 min fol-

lowed by 40 cycles of 95°C (15 s) and 60°C (1 min).

Survival Analysis and Gene Expression Patterns

Kaplan-Meier survival curves were plotted with publicly deposited gene expression data (EGA

and TCGA) originating from 375 untreated breast cancer patients and using Kaplan-Meier

Plotter, which integrates statistical analysis (http://kmplot.com/analysis) [31]. All settings were
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left at default values except the following ones: gene symbol (ASPN; 219087_at), survival (OS),

auto select best cutoff (on), and include systemically untreated patients (on).

Expression of asporin at the mRNA level was quantified in 1,280 tumor samples from six dif-

ferent molecular subtypes using GOBO and publicly deposited gene expression datasets (http://

co.bmc.lu.se/gobo/gsa.pl) [32]. Asporin mRNA expression was also quantified in tumors of dif-

ferent grades (n = 1,411) using the same tool. Finally, GOBO was also used to estimate IL-1β

expression levels in different breast cancer cell lines (http://co.bmc.lu.se/gobo/gsa_cellines.pl).

All statistics concerning Kaplan-Meier Plotter and GOBO data analysis were reported as calcu-

lated by the respective software and are detailed elsewhere [31,32].

Statistical Analysis

Unless otherwise indicated, statistical analysis was performed using a two-sided, unpaired Stu-

dent’s t-test, assuming equal variances using GraphPad Prism (version 5.01, GraphPad Soft-

ware). The t-test was used because data followed a normal distribution (Shapiro-Wilk test,

threshold 0.05). For IHC evaluation, box plots were generated using SigmaPlot (version 11.0,

Systat). Testing of statistical significance was performed using a Mann-Whitney U test because

the data did not follow the normal distribution (Shapiro-Wilk test, threshold 0.05). The receiver

operating characteristic (ROC) curve was generated using GraphPad Prism.

Results

Asporin Has Low or No Expression in Most Normal Tissues and Is
Overexpressed in Breast Cancer

We analyzed a publicly available gene expression repository (BioGPS, Scripps Research Insti-

tute) and compared the gene expression profiles in normal tissues of asporin and two other

well-studied members of the SLRP family, biglycan and decorin (Fig 1A). The analysis showed

that both biglycan and decorin are expressed in many normal tissues, whereas asporin expres-

sion was very low or not detected in most normal tissues, except the uterus. Next, we analyzed

asporin expression using IHC in breast ductal adenocarcinoma (n = 30) as well as in adjacent

non-tumoral tissue and normal breast tissue from breast reduction surgery (n = 10) (Fig 1B).

Strong asporin expression was detectable in the stroma of the cancer lesions, with epithelial

cancer cells being negative for asporin expression. Adjacent non-tumoral tissue showed a mod-

erate positivity in the extracellular matrix and no positivity in non-tumoral epithelial cells.

Healthy breast tissue was negative for asporin expression. Western blot analysis on fresh tissue

extracts from matched tumoral and adjacent non-tumoral parts of the resected breast speci-

mens confirmed our IHC observations (Fig 1C).

Breast Fibroblasts Secrete Asporin after Their Activation by Cancer
Cells

Owing to the observations made above, in which asporin was found deposited in the extracellu-

lar matrix of the tumor, we sought to investigate which cells are responsible for producing the

protein. As demonstrated in Fig 2A, none of the human breast cancer cell lines tested showed

detectable asporin expression levels (both protein and mRNA). NBFs isolated from the mam-

mary tissue of healthy individuals responded to the CM of several breast cancer cell lines by

expressing asporin. The results indicated that tumorigenic and highly metastatic triple-negative

breast cancer (TNBC) cells of the basal-like subtype (e.g., MDA-MB-231 and MDA-MB-468)

[33–35] did not induce asporin expression in NBFs. This was different in noninvasive luminal-

like hormone receptor (HR) positive cell lines (e.g., T47D and MCF-7) [33–35], which
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Fig 1. Asporin is overexpressed in breast cancer tissues. (A) Tissue-specific pattern of mRNA
expression of asporin (ASPN), biglycan (BGN), and decorin (DCN). Source: BioGPS (http://biogps.org). The
data are presented as mean ± standard deviation (SD). (B) Representative IHC staining of asporin
expression in ductal carcinoma and adjacent non-tumoral breast tissue (left panel) and normal breast tissue
obtained from patients undergoing mammary reduction surgery (right panel). Asporin is almost exclusively
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activated very high asporin expression in NBFs. Both observations were confirmed at the pro-

tein and gene expression levels. Similar experiments with immortalized, non-transformed mam-

mary epithelial cells (MCF-10A) demonstrated that such cells are unable to induce asporin

expression in NBFs (Fig 2B). We next sought to examine whether CAFs would express asporin

following their isolation from cancer tissue and whether they would react similarly to NBFs

when exposed to the CM of breast cancer cells. We isolated CAFs from three breast cancer

patients and validated these as pure CAF populations, negative for cytokeratins and overexpres-

sing α-smooth muscle actin (Fig 2C). As shown in Fig 2D, CAFs isolated from HR+ tumors

expressed high levels of asporin, which they were able to maintain in vitro (for several weeks)

without the need to be in contact with cancer cells. However, CAFs challenged with the CM of

TNBC cells (MDA-MB-231) responded by lowering asporin expression. The CM of HR+ cells

(MCF-7) was unable to further increase asporin levels in CAFs.

TGF-β1 Induces Asporin Expression in Fibroblasts while IL-1β
Suppresses It

In order to further understand which soluble factors could modulate asporin expression in

fibroblasts, we first tested the cytokine TGF-β1. As shown in Fig 3A, TGF-β1 induced asporin

expression in NBFs, both under basal conditions and in the presence of CM fromMCF-7 cells.

In sharp contrast to this, the presence of CM fromMDA-MB-231 cells strongly inhibited the

ability of TGF-β1 to induce asporin in NBFs. Despite this, our measurements showed that

MDA-MB-231 cells, including other TNBC cells, are the highest producers of TGF-β1 among

different breast cancer cells (Fig 3B). These findings raised the question of the specific mecha-

nism by which TNBC cells inhibit asporin expression while still producing large quantities of

TGF-β1. To further clarify this, we used publicly deposited gene expression data (GEO datasets

GSE56265 [two replicates for each cell line] and GSE41445 [three replicates]) comparing the

mRNA expression of MDA-MB-231 and MCF-7 cells [36,37]. The summary of the results is

shown in Fig 3C. We identified 1,337 genes that were uniquely expressed in MDA-MB-231

cells. Considering that the CM of TNBC cells is able to convey the suppression of asporin

expression without the need for cell-to-cell contact, we hypothesized that the effect must be

mediated through a soluble protein. We therefore focused only on the genes whose products

are known to be soluble proteins. The analysis highlighted a strong cluster of interleukins that

were expressed in MDA-MB-231 cells. We next sought to verify which of the observed inter-

leukin genes would discriminate between HR+ (luminal) and TNBC (basal) cells. This analysis

was performed using GOBO [32], which compares the profiles of 51 breast cancer cell lines

representing different molecular subtypes [35]. The results indicated that IL-1β could be of

interest because it is highly expressed in cell lines of the basal-b subtype, which includes

MDA-MB-231 cells (Fig 3C, right panel). Encouraged by these in silico findings, we sought to

verify the expression of IL-1β in patient material from different breast tumor subtypes and

compare this with asporin expression. IHC analysis of ductal adenocarcinoma cases (n = 20)

demonstrated that IL-1β expression was significantly increased in TNBC compared to HR

+ tumors (Fig 3D). In contrast to this, asporin expression in serial sections of the same tissues

followed an inverse trend, with the highest expression in HR+ and the lowest in TNBC tumors.

expressed in breast cancer lesions, while a very low signal is detectable in the adjacent non-tumoral regions.
Normal breast tissues are negative. Images of representative fields were taken at 100× and 400×
magnification. (C) Western blot analysis of asporin expression in tumoral breast cancer tissues (T) and the
adjacent normal counterpart (AdN) of six ductal adenocarcinoma patients. Ponceau red staining was used as
loading control.

doi:10.1371/journal.pmed.1001871.g001
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Fig 2. Asporin is produced by breast fibroblasts in response to conditioned medium from breast cancer cells. (A) Western blot of total cell extracts
(upper panel) and qRT-PCR analysis for asporin expression (lower panel) in breast cancer cell lines and NBFs incubated for 48 h with CM collected from a
panel of breast cancer cells. (B) Western blot of total cell extracts (upper panel) and qRT-PCR analysis of asporin expression (lower panel) in non-cancerous
epithelial breast cell line MCF-10A cells and NBFs incubated for 48 h with CM collected fromMCF-10A. Fibroblasts treated with MCF-7 CM were used as the
positive control for asporin expression induction. (C) Validation of NBFs and CAFs isolated from patient material. MCF-7 and MDA-MB-231 cells were used
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Next we tested whether recombinant human IL-1β could suppress basal, MCF-7-induced, or

TGF-β1-induced asporin expression in NBFs. Supplementing CM with IL-1β readily blocked

asporin expression in NBFs and CAFs (Fig 3E). We also examined whether IL-1RA, a natu-

rally produced IL-1β inhibitor, would overcome the inhibition of asporin expression in

NBFs treated with the CM of MDA-MB-231 cells. Indeed, the pre-incubation of NBFs with

IL-1RA blocked the suppressive effect of CM from MDA-MB-231 cells on asporin expression

in NBFs (Fig 3F).

Asporin Inhibits TGF-β1-Mediated SMAD2 Activation and Induction of
the Epithelial to Mesenchymal Transition

Previous studies in chondrocytes [18] identified that the peptide region of asporin (residues

159 to 205) is relevant for the interaction with TGF-β1. We therefore tested whether recombi-

nant asporin and the synthetically produced peptide fragment were able to inhibit TGF-

β1-mediated activation of SMAD2 in breast cancer cells (Fig 4A and 4B). SMAD2 was effi-

ciently phosphorylated upon treatment of MDA-MB-468 cells with TGF-β1. The TGF-β1

activity was inhibited when the cytokine was pre-incubated for 1 h at 37°C with increasing

doses of recombinant asporin (Fig 4A). Cells treated with recombinant asporin alone showed

no modulation of SMAD2 phosphorylation. Analogously to the effects observed with the

recombinant protein, the peptide fragment of asporin showed an inhibitory effect on TGF-

β1-induced SMAD2 phosphorylation (Fig 4B). Further data showed that parallel treatment of

cancer cells with TGF-β1 and asporin peptide, without prior pre-incubation, failed to inhibit

SMAD2 phosphorylation. These results are in agreement with previous findings in normal

chondrocytes showing that asporin directly binds to TGF-β1, rather than acting as a competi-

tive inhibitor for TGF-β1 receptor [28,38]. To functionally test the ability of asporin to interfere

with TGF-β1-induced processes, we employed EpRAS, a murine mammary cancer cell line.

EpRAS cells have an established responsiveness to TGF-β1, especially with respect to EMT and

migration [28,38]. Similarly to the effects observed in MDA-MB-468 cells, asporin peptide was

able to block TGF-β1-mediated phosphorylation of SMAD2 in EpRAS cells (Fig 4C). EpRAS

cells are known for undergoing EMT upon stimulation with TGF-β1. Apart from the pheno-

typic appearance, the EMT switch can be readily observed through the up-regulation of vimen-

tin (VIM) (Fig 4D). TGF-β1-mediated induction of VIM was weaker when TGF-β1 was pre-

incubated with asporin peptide (Fig 4D). We further sought to investigate the ability of asporin

to interfere with TGF-β1-induced migration of EpRAS cells (Fig 4E). Treatment of EpRAS

cells with TGF-β1 induced significant cell migration, while pre-incubation of TGF-β1 with the

asporin peptide significantly curbed this effect. The EMT switch has been described as relevant

for the acquisition of the cancer stem cell (CSC) phenotype [24]. Therefore, we tested whether

TGF-β1-induced EMT would increase the CSC population in EpRAS cells and whether this

effect could be inhibited by asporin peptide (Fig 4F). Indeed, TGF-β1 treatment induced an

increase of CSCs in EpRAS cells, as evidenced by the established CD44high/CD24low breast can-

cer stemness signature [39]. The TGF-β1-induced increase of the CSC population was signifi-

cantly inhibited when asporin peptide was pre-incubated with TGF-β1.

as epithelial controls. (D) Western blot analysis of asporin expression in total cell extracts of CAFs obtained from three different patients and treated with the
CM of breast cancer cell lines. (A and B): The data are presented as mean ± SD. All panels: HSC70 was used as loading control; Western blots show
representative data of three independent experiments.

doi:10.1371/journal.pmed.1001871.g002
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Fig 3. Asporin expression is induced by TGF-β1 and suppressed by IL-1β. (A) Western blot analysis of asporin expression in NBFs treated for 24 h with
TGF-β1 with or without CM of MCF-7 and MDA-MB-231 breast cancer cells. (B) ELISA quantification of TGF-β1 levels secreted by human breast cancer cell
lines during 48 h. (C) Differential in silico analysis of MCF-7 and MDA-MB-231 gene expression identifies a cluster of interleukins that are uniquely expressed
in MDA-MB-231 cells (left panel). Analysis of IL-1βmRNA expression using GOBO (http://co.bmc.lu.se/gobo/gsa.pl) across a panel of breast cancer cell
lines [35] subdivided into three subtypes (right panel). (D) Representative IHC analysis (upper panel) of IL-1β and asporin expression in a cohort of breast
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Induction of Asporin Expression in Triple-Negative Breast Tumors
Reduces Growth and Metastasis In Vivo

In order to evaluate the impact of asporin expression on TNBC growth and progression, we

co-injected MDA-MB-468 cells and NBFs stably overexpressing asporin (NBF-aspn) subcuta-

neously in NOD-SCID mice (Fig 5A). The control group consisted of mice xenografted with

MDA-MB-468 cells with NBFs overexpressing GFP (NBF-ctrl). The growth of the tumors was

followed weekly, and the results indicated that the control tumors reached volumes of ~200

mm3 in 6 wk, whereas the asporin-overexpressing tumors grew significantly slower (day 42

post-engraftment: 78.9 mm3 smaller than control; 95% CI 24.3–123.4; p = 0.007) and required

8 wk to reach the same volume (Fig 5B and 5C). Following the resection of the primary tumor,

the ability of cancer cells to colonize the lungs was assessed in a follow-up experiment. Two

weeks after the removal of the primary tumors, mice were sacrificed and the lungs were col-

lected. Assessment of metastasis formation in the lungs was performed using the Alu-PCR

technique. The results evidenced a 3-fold, significant (p = 0.002) increase in the number of can-

cer cells present in the lung tissue of the control mice compared to the mice with asporin-over-

expressing NBFs (Fig 5D). Previously published studies using xenografts based on co-injection

of fibroblasts and epithelial cancer cells showed that human fibroblasts are rapidly displaced by

murine fibroblasts in vivo [40–42]. We thus sought to verify whether asporin expression

remained constant in the tumor during the present experiments. Western blot analysis of

tumor tissue extracts showed that asporin expression decreased starting from week 4, reaching

low levels at week 6 (Fig 5E). This result suggested the ongoing replacement of human xeno-

grafted fibroblasts by murine counterparts. This diminishing asporin expression may underes-

timate asporin’s effect on tumor growth and metastasis in vivo.

Therefore, we next sought to engraft asporin-overexpressing cancer cells that would main-

tain constant asporin expression in the tumor. This was performed with stably transduced

asporin-expressing MDA-MB-468 cells (Fig 6A). The control and asporin-expressing

MDA-MB-468 cells were implanted subcutaneously in NOD-SCID mice. Primary tumor

growth was monitored weekly. The results indicated that asporin-expressing tumors were sig-

nificantly smaller, reaching up to 2-fold lower volumes at 7 wk post-engraftment (day 49 post-

engraftment: 124.1 mm3 smaller than control; 95% CI 75.2–180.4; p = 0.001) (Fig 6B). Histo-

logical evaluation demonstrated invasive control tumors developing towards the muscle layers,

whereas this was not observed in asporin-expressing counterparts (Fig 6C). Further analysis of

asporin-expressing tumors evidenced extensive zones of tumor necrosis in the central areas

(Fig 6C), as well as numerous cells with condensed chromatin. In the control conditions necro-

sis was less pronounced, whereas transparent chromatin staining and the presence of nucleoli

further characterized tumor cells. The latter suggested a higher proliferation rate in control

tumors. The assessment of tumor proliferation based on Ki67 staining showed stronger and

more frequent nuclear positivity in the control tumors in comparison to the asporin-expressing

counterparts (Fig 6C). IHC evaluation of asporin expression in the experimental tumors evi-

denced the expected asporin overexpression.

Considering that asporin blocks TGF-β1 activity and EMT, processes known to enrich stem

cells, we hypothesized that the abundance of stem cells would be different in these two experi-

mental conditions. The evaluation of tumor stemness, using two different and independent

cancer patients, subdivided into two main subtypes (n = 20). Scoring and statistics (lower panel) were performed as outlined in the Methods section. (E)
Inhibition of basal, MCF-7 CM-induced, and TGF-β1-induced asporin expression by IL-1β treatment of NBFs and CAFs. (F) Reversion of MDA-MB-231 CM
inhibitory effect on asporin expression using IL-1β natural inhibitor IL-1RA. (B and D): The data are presented as mean ± SD. All panels: Western blots show
representative data of three independent experiments.

doi:10.1371/journal.pmed.1001871.g003
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Fig 4. Asporin binds to TGF-β1 and inhibits its downstream signaling and function. (A) Western blot analysis of phospho-SMAD2 (p-SMAD2) and
SMAD2 total protein extracts fromMDA-MB-468 breast cancer cells treated for 15 min with TGF-β1 and/or human recombinant asporin (Rec. ASPN). (B)
Western blot analysis of p-SMAD2 in total protein extracts fromMDA-MB-468 breast cancer cells treated with TGF-β1 and/or asporin peptide corresponding
to the 159–205 amino acid region (ASPNpep.). (C) Western blot analysis of p-SMAD2 and SMAD2 in total protein extracts from EpRAS cells treated for 15
min with TGF-β1 (5 ng/ml) and/or asporin peptide. (D) EMT induction in EpRAS cells in the presence of TGF-β1 and/or asporin peptide. EMT was monitored

Stromal Asporin Is TGF-β1 Inhibitor in Breast Cancer

PLOSMedicine | DOI:10.1371/journal.pmed.1001871 September 1, 2015 16 / 29



signatures, showed that asporin-expressing tumors had a significantly lower percentage of

stem cells (Fig 6D). As CSCs are essential for tumor survival and metastasis, we sought to eval-

uate tumor dissemination in mice following tumor resection. For this purpose the animal

experiments were divided into two separate cohorts: (i) time-matched and (ii) size-matched.

For the time-matched cohort, the tumorectomy was performed at week 7. For the size-matched

group, the tumorectomy was conducted at week 9 for control and at week 12 for asporin-

expressing tumors (Fig 6F). In both instances the mice were allowed to recover and were

observed for axial lymph node and lung metastases during an additional period of 3 wk. As

indicated by the time-matched data, control mice developed overt lung metastases, whereas

this was not observed in the asporin condition (Fig 6E). Control animals consistently devel-

oped frequent and large deposits in the lungs. Animals carrying asporin-expressing tumors

also showed lung metastases; however, they were less frequent and of smaller size. The notion

that asporin is interfering with the process of metastasis was further confirmed in the size-

matched experiments. In this cohort the tumor growth was followed for a longer period of time

(control mice 9 wk, asporin 12 wk), highlighting an overall 3-wk delay of tumor growth in

asporin-expressing mice. The results quantifying metastases 3 wk post-tumorectomy were sim-

ilar to those of the time-matched condition (Fig 6G). Collectively, the data obtained with both

xenograft models suggested that asporin expression inhibits tumor growth as well as metastatic

progression.

High Asporin Levels Delineate Breast Cancer Patients with Good
Clinical Outcome

Considering the in vitro and in vivo data, we expanded our observations using IHC to 180

breast cancer patients, subdivided in four categories with 45 cases each: (i) ER−/PR−/HER2−

(triple-negative), (ii) ER+/PR+/HER2+ (triple-positive), (iii) ER+/PR+/HER2− (HR+), and

(iv) ER−/PR−/HER2+ (HER2+) (Fig 7A; S1 Table). In our cohort, patients of all subgroups

had similar age and showed similar tumor size. Triple-negative and HER2+ cases had higher

tumor grade (Bloom 3 versus 2) and a stronger percentage of proliferating cells (Ki67+ cells:

~43% versus ~17%) than the other two subgroups. The frequency of metastasis was highest in

TNBC patients (22%), followed by HER2+ and triple-positive breast cancer patients, who dis-

played similar frequencies (~9%). The IHC results showed that HR+ tumors had a high asporin

expression, which was significantly elevated (up to 4-fold) in comparison to TNBC and HER2

+ tumors. The latter subgroups had low, and in some cases non-detectable, asporin expression.

Intrigued by these findings we aimed to examine the validity of our observations in more indi-

viduals. To do so, we used GOBO and publicly deposited mRNA expression data from breast

cancer patients [31]. Analysis of asporin mRNA expression in tumors from different molecular

subtypes (Fig 7B) confirmed the results obtained with IHC analysis, demonstrating that

asporin expression is high in luminal-A and low in basal-like subtypes (n = 1,280). Evaluation

of asporin mRNA expression in tumors of different pathological grades showed that its expres-

sion is higher in grade 1 and lower in grade 3 tumors (n = 1,411). This gradual decrease of

asporin expression with the grade of the tumor suggested a relationship between asporin

expression and breast cancer progression. Thus, we sought to verify how asporin expression

both at the phenotype level (upper panel) and usingWestern blot evaluation of VIM expression in total protein extracts from EpRAS cells (lower panel). (A–
D): HSC70 was used as loading control. (E) Transwell migration assay of EpRAS cells pretreated with TGF-β1 (5 ng/ml) and/or asporin peptide (10 μg/ml).
(F) Quantification of the CSC population in EpRAS cells following TGF-β1 and/or asporin peptide treatment. (E and F): The data are presented as
mean ± SD. All panels: statistical significance was calculated using the Student’s t-test (as described in the Methods section). Western blots show
representative data of three independent experiments.

doi:10.1371/journal.pmed.1001871.g004
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Fig 5. Co-injection of cancer cells and fibroblasts overexpressing asporin reduces primary breast cancer tumor growth and lungmetastasis
formation in vivo. (A) Western blot analysis of asporin expression in CM of MDA-MB-468 cells and in NBF stable clones used for subcutaneous injection in
mice. Ponceau red is shown as loading control. (B) Bioluminescence imaging of control and asporin-expressing xenografts at day 28 after tumor
engraftment. The color scale indicates the fluorescent intensity. (C) The volume (in cubic millimeters) of primary tumors measured weekly (from day 7
onwards). The data are presented as mean ± standard error of the mean (SEM) (n = 10 for each group). Statistical significance was calculated using
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correlates with breast cancer patient outcome. We assessed asporin protein expression retro-

spectively using IHC and tissues from 60 breast cancer patients with over 10-y follow-up (Fig

7C; S2 Table). The patients were divided into two groups: (i) good outcome (signified by no

metastatic disease in the follow-up period and following the resection of the primary tumor)

and (ii) poor outcome (patients who developed metastases). The two groups showed no major

difference in age, tumor size, tumor grade, and ER, PR, HER2, and Ki67 status. The IHC results

evidenced significantly higher levels of asporin in patients with good outcome than in patients

with poor outcome (2-fold; p = 0.001). The suitability of asporin as a biomarker candidate for

predicting metastasis in breast cancer patients was evaluated using a ROC curve. As indicated

in Fig 7C, the area under the curve was 0.87 (95% CI 0.78–0.96; p = 0.0001). These data war-

ranted further examination in a larger cohort of patients, with longer survival follow-up. We

therefore examined mRNA expression in breast cancers using Kaplan-Meier Plotter and pub-

licly deposited data [32], where the corresponding patients had a post-operative follow-up of

25 y and had no adjuvant treatment (n = 375). The Kaplan-Meier survival curve obtained from

these data confirmed the IHC results and demonstrated that low asporin mRNA expression is

significantly associated with decreased overall survival (hazard ratio = 0.58; 95% CI 0.37–0.91;

logrank p = 0.017) (Fig 7D).

Discussion

A tumor’s ability to successfully grow is increasingly regarded as proportional to the cancer

cells’ fitness to survive in a given environment. Their survival is facilitated by adaptation to the

environment as well as by actively adapting the environment to the needs of the cancer cell

[1,2]. This is in agreement with our key findings that tumor cells with known genetic differ-

ences as well as distinct tumorigenic and metastatic potentials have a heterogeneous ability to

induce or inhibit asporin expression in stromal fibroblasts. Molecular analysis of all breast can-

cer cell lines used in the current work [35] suggests that only HR+ cells can induce strong

asporin expression in fibroblasts. Contrary to this, CM from TNBC cells strongly inhibits

asporin expression in fibroblasts, even when it is induced exogenously by TGF-β1. This, in par-

ticular, underlines the evolutionary adaptation of aggressive breast cancer cells. They efficiently

exploit a potent cytokine like TGF-β1, yet suppress any unwanted reactions that may result

from it (e.g., expression of a natural inhibitor asporin by the stroma). The observations made

in vitro were further confirmed in patients, where triple-negative (mainly belonging to basal-

like molecular subtype [43]) and HER2+ tumors had the lowest asporin expression. Both are

known to be aggressive tumor subtypes with poor clinical outcome [44–46]. The highest

asporin levels were observed in the ER+/PR+/HER2− group, which consisted of patients whose

tumors were molecularly classified as mainly (~50%) luminal-A subtype [43], which is known

to have the best prognosis among all breast tumors [44–46]. Considering this, we were

intrigued to identify the mechanism by which TNBC cells manage to suppress asporin expres-

sion. Owing to previously published microarray data documenting the differences between tri-

ple-negative (e.g., MDA-MB-231) and HR+ (e.g., MCF-7) cells, we identified a strong cluster

of several interleukins that were uniquely expressed in TNBC cells. The findings were not sur-

prising, knowing that pro-inflammatory cytokines are essential for “smoldering” inflammation,

a key ingredient in cancer and metastasis. The notion that interleukin secretion is responsible

for the pro-cancer environment in the tumor stroma context is supported by data from the

Student’s t-test (**0.01 < p < 0.001; ***0.001 < p < 0.0001). (D) Human-specific Alu-PCR performed on genomic DNA isolated from dissected lungs was
used to detect human cancer cells. The data are presented as mean ± SD. (E) Western blot analysis of asporin expression in mice primary tumors monitored
for several weeks. HSC70 was used as loading control.

doi:10.1371/journal.pmed.1001871.g005
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Fig 6. Asporin reduces primary breast cancer tumor growth and lungmetastasis formation in vivo. (A) Western blot analysis of asporin expression in
the CM of MDA-MB-468 stable clones expressing asporin, used for subcutaneous injection in mice. Ponceau red is shown as loading control. (B)
Bioluminescence imaging of control and asporin-expressing xenografts at day 28 after tumor engraftment (left panel). The color scale indicates the
fluorescent intensity. The mean (± SEM) volume (in cubic millimeters) of primary tumors measured weekly (from day 14 onwards) for the time-matched cohort
is also shown (n = 20 for each group) (right panel). Statistical significance was calculated using Student’s t-test (**0.01 < p < 0.001; ***0.001 < p < 0.0001).
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literature. For example, CXCL1 and CXCL5, secreted by pancreas cancer cells, can activate

CXCR2 in fibroblasts to stimulate the production of connective tissue growth factor that, in

turn, fuels tumor progression [47]. In the current study we found that IL-1β secreted by

MDA-MB-231 cells is indeed responsible for asporin suppression in fibroblasts. The IL-1β pro-

tein expression in patient material was inversely correlated with asporin expression. IL-1 con-

sists of two family members, IL-1α and IL-1β, of which only IL-1β is secreted, whereas IL-1α is

cytosolic. Earlier studies showed that a single dose of IL-1β is sufficient to significantly increase

the number of lung metastases in a melanoma murine tumor model [48]. In line with this, IL-

1β expression is elevated in several human tumors (including breast cancer); thus, patients

with high IL-1β levels have generally bad clinical outcome [49]. IL-1β induces the expression of

several pro-metastatic and pro-angiogenic proteins, among them VEGFA, MMPs, TNFα, and

notably TGF-β1 [50]. The present study contributes to further clarifying the intricate mecha-

nism by which IL-1β subverts the tumor stroma into a pro-tumor environment. It does so

partly by promoting the expression of tumorigenic cytokines and suppressing their natural

inhibitors, in this case asporin, an inhibitor of TGF-β1 [50]. The current findings call for the

employment of different strategies to inhibit IL-1β, at least in TNBC. This could be rapidly

achieved by employing an anti-IL-1β antibody (canakinumab/Ilaris) or a naturally occurring

IL-1β inhibitor IL-1RA (used in vitro in the present work). Recombinant IL-1RA (anakinra/

Kineret) is already approved for rheumatoid arthritis treatment, and mounting evidence from

gastric [51] and breast cancer [52] research supports its application in treating tumors. A

recent phase 1 open-label study with human anti-IL-1 antibody (MABp1) in advanced cancer

patients showed encouraging results in terms of disease control, tolerance, and low side effects

[53]. Next to considering inhibitors of IL-1β, another axis of treatment could be supported

by the asporin peptide (159–205) responsible for TGF-β1 binding. In this work, we showed

that the asporin peptide is capable of suppressing different TGF-β1-promoted processes

including the acquisition of stem-like phenotype and migration. However, employing the pep-

tide in vivo necessitates further engineering to prevent degradation and increase tissue diffu-

sion. Care would also need to be taken to prevent, or at least diminish, the possibility of an

immune reaction against the peptide construct. Future work should certainly address these

issues and further explore the possibility of utilizing asporin-derived peptides for the treatment

of TNBC, with the aim of slowing progression, suppressing the growth of metastatic lesions, or

preventing metastatic dissemination.

Decorin and biglycan are other members of the SLRP family that have been shown to be

able to bind TGF-β1 [54,55]. Decorin has been labeled as a “guardian from the matrix” because

of its ability to sequester a number of cancer-relevant growth factors [56]. However, what

makes asporin unique in this context is that decorin and biglycan are expressed during devel-

opment and broadly expressed in various normal organs [57,58]. The current study under-

scores the limited expression of asporin in normal adult tissue, qualifying it also as a target for

antibody drug conjugates, and highlights its ability to inhibit TGF-β1 downstream signaling,

cancer cell migration, and EMT. The in vivo data outlined here support the idea that asporin

(C) Representative hematoxylin and eosin (H&E), asporin, and Ki67 IHC staining in MDA-MB-468 xenografts collected 7 wk post-engraftment. Control
xenografts consistently displayed an invasion in the muscle layer (M). An extended necrotic (N) area was present in the peri-tumoral zone of MDA-MB-468-
aspnmice tumors. (D) Quantification of the stem cell population in xenografted tumors expressing asporin using ALDH+ and CD44high/CD24low stemness
markers (7 wk post-engraftment). (E) Post-operative follow-up of mice that had primary tumors removed at the same time (time-matched). (F) Mean (± SEM)
volume (in cubic millimeters) of primary tumors measured weekly for the size-matched cohort (n = 20 for each group). (G) Post-operative follow-up of mice
that had primary tumors removed at the same volume (size-matched). (E and G): IHC evaluation of vimentin in lung necropsies and quantification of
metastatic deposits. All images of representative fields were taken at 40×, 100×, and 400× magnification. (D, E, and G): The data are presented as
mean ± SD. Statistical significance was calculated using Student’s t-test.

doi:10.1371/journal.pmed.1001871.g006
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Fig 7. High asporin expression in human breast cancer matches with luminal-like tumor type and good patient outcome. (A) Representative IHC
staining of asporin expression in human breast cancer tissues (upper panel). Box plots of asporin expression in 180 breast cancer patients with different
status of HER2, ER, and PR are also shown (lower panel). The black line denotes the median expression, and the red line the mean expression. Significant
differences in asporin expression were detected among all different subtypes of breast cancer. (B) Analysis of asporin mRNA expression in breast cancer
tumors from different molecular subtypes (n = 1,280) and evaluation of asporin mRNA expression in breast cancer of different pathological grades
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acts as a tumor suppressor in breast cancer. Asporin-expressing TNBC cells grow significantly

slower and are less invasive when xenografted in mice. Following tumor resection, animals

with tumors expressing asporin develop fewer and much smaller metastatic deposits in the

lungs. One of the possible explanations for this observation may be the interference of asporin

with the process of EMT, which is well known to promote tumor dissemination as well as to

induce stem cell phenotype [24]. Indeed, the evaluation of two independent and well-estab-

lished signatures of CSCs, namely ALDH positivity (general) and the abundance of the

CD44high/CD24low (breast cancer-specific) population, confirms that asporin-expressing

tumors have on average (two signatures together) 50% fewer CSCs. However, recent data on

asporin overexpression in gastric cancer show an opposite, pro-invasive function for this stro-

mal protein [17]. For as long as we do not understand all the facets of TGF-β1 biology, the liter-

ature may remain a collection of seemingly contradictory findings [59–65]. For example, TGF-

β1 inhibition has been previously reported to induce collective cancer cell invasion [66]; hence,

it is not surprising that asporin, as a natural inhibitor of TGF-β1, may under certain circum-

stances contribute to the growth of some tumor types. Therefore, future studies should neces-

sarily take into consideration not only the levels of TGF-β1 but also the expression of its

natural inhibitor asporin.

The present retrospective study in breast cancer patients with 10-y follow-up underlines the

importance of high asporin expression for good clinical outcome. All results obtained by IHC

analysis of protein expression levels are further confirmed by the results generated from pub-

licly deposited gene expression data. Collectively, these findings strongly suggest that asporin

should be considered as a future diagnostic and prognostic marker, having the potential to

stratify breast cancer patients and identify those who are in need for more clinical attention.

Therefore, future prospective studies in more patients are required to evaluate the clinical

potential of using asporin as a predictive biomarker in breast cancer.
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(n = 1,411). (C) Representative IHC staining of asporin expression (upper panel), box plot showing the IHC score (middle panel) in breast cancer tissues from
60 patients with different outcomes, and ROC curve analysis of data obtained from 60 patients with different outcome (lower panel). Scoring and statistics
were performed as outlined in the Methods section. (D) Kaplan-Meier survival curve based on asporin mRNA expression in untreated breast cancer with
post-operative follow-up of 25 y (n = 375). Images in panels were taken at 100× magnification. All analyses outlined in (B) and (D) were performed using
publicly deposited gene expression datasets [31,32] and according to procedures outlined in the Methods. AUC, area under the curve; HR, hazard ratio; SE,
standard error.
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Editors' Summary

Background

Breast cancer is the most common cancer in women worldwide. Nearly 1.7 million new

cases were diagnosed in 2012, and half a million women died from the disease. Breast can-

cer begins when cells in the breast that normally make milk (epithelial cells) acquire

genetic changes that allow them to divide uncontrollably and to move around the body

(metastasize). Uncontrolled cell division leads to the formation of a lump that can be

detected by mammography (a breast X-ray) or by manual breast examination. Breast can-

cer is treated by surgical removal of the lump or, if the cancer has started to spread, by

removal of the whole breast (mastectomy). After surgery, women often receive chemother-

apy or radiotherapy to kill any remaining cancer cells, and women whose tumors express

receptors for the female sex hormones estrogen and progesterone or for HER2, a growth

factor receptor, are treated with drugs that block these receptors; estrogen, progesterone,

and HER2 all control breast cell growth. Nowadays, the prognosis (outlook) for women

living in high-income countries who develop breast cancer is generally good—nearly 90%

of such women are still alive five years after diagnosis.

WhyWas This Study Done?

The cells surrounding cancer cells—cancer-associated fibroblasts and other components

of the stroma—support cancer growth and metastasis and are good targets for new cancer

therapies. But, although there is mounting evidence that cancer cells actively adapt the

stroma so that it produces various factors the tumor needs to grow and spread, very few

molecules produced by the stroma that might serve as targets for drug development have

been identified. Here, the researchers investigate whether a molecule called asporin might

represent one such target. Asporin, which is highly expressed in the stroma of breast

tumors, inhibits a growth factor called TGF-β1. TGF-β1 is involved in maintaining healthy

joints, but is also a key molecule in the development of metastatic breast cancer. Most par-

ticularly, it modulates an important step in metastasis called the epithelial to mesenchymal

transition and it regulates “stemness” in cancer cells. Stem cells are a special type of cell

that can multiply indefinitely; tumor cells often look and behave very much like stem cells.

What Did the Researchers Do and Find?

Using a technique called immunohistochemistry, the researchers first showed that asporin

is highly expressed in the stroma of most human breast cancers but not in normal breast

tissue. Next, they showed that breast fibroblasts secrete asporin when exposed to condi-

tioned medium from some human breast cancer cell lines (breast cancer cells adapted to

grow continuously in the laboratory; conditioned medium is the solution in which cells

have been grown). Specifically, conditioned medium from hormone receptor positive cells

induced strong asporin expression by breast fibroblasts, whereas medium from breast can-

cer cells not expressing estrogen or progesterone receptors or HER2 receptors (triple-nega-

tive breast cancer cells) suppressed asporin expression. Other experiments showed that

TGF-β1 secreted by breast cancer cells induces asporin expression in breast fibroblasts,

and that asporin, in turn, inhibits TGF-β1-mediated induction of the epithelial to mesen-

chymal transition and stemness in breast cancer cells. Triple negative breast cancers

appear to inhibit stromal expression of asporin at least in part via expression of the soluble
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signaling protein interleukin-1β. Notably, in mouse models of triple-negative breast can-

cer, tumors engineered to express asporin grew slower and metastasized less than tumors

not expressing asporin. Finally, among women with breast cancer, asporin expression was

low in triple-negative and HER2-positive tumors but significantly higher in hormone

receptor positive tumors, and low asporin levels in primary breast lesions were associated

with a reduced likelihood of survival independent of hormone receptor and HER2

expression.

What Do These Findings Mean?

These findings suggest that asporin is a stroma-derived inhibitor of TGF-β1 and a tumor

suppressor in breast cancer. Importantly, they also provide preliminary evidence that high

asporin expression is associated with less aggressive tumors (hormone receptor positive

tumors), whereas low asporin expression is associated with more aggressive tumors (triple

negative tumors and HER2-positive tumors). Thus, asporin expression might provide a

new prognostic marker for breast cancer. However, before asporin can be used as a bio-

marker to predict outcomes in women with breast cancer and to identify those women in

need of more aggressive treatment, these findings need to be confirmed in large prospec-

tive clinical studies. If these findings are confirmed, methods for increasing asporin

expression in the stromal tissues of triple negative breast cancer could be a promising

strategy for targeted therapy for this group of breast cancers, which currently have a poor

prognosis.

Additional Information

This list of resources contains links that can be accessed when viewing the PDF on a device

or via the online version of the article at http://dx.doi.org/10.1371/journal.pmed.1001871.

• The US National Cancer Institute provides comprehensive information about cancer (in

English and Spanish), including detailed information for patients and professionals

about breast cancer and an online booklet for patients

• Cancer Research UK, a not-for-profit organization, provides information about cancer;

its detailed information about breast cancer includes sections on tests for hormone

receptors and HER2, on treatments that target hormone receptors and treatments that

target HER2, and on triple negative breast cancer

• Breastcancer.org is a not-for-profit organization that provides up-to-date information

about breast cancer (in English and Spanish), including information on hormone

receptor status, HER2 status, and triple negative breast cancer

• The UK National Health Service Choices website has information and personal stories

about breast cancer; the not-for-profit organization Healthtalk.org also provides per-

sonal stories about dealing with breast cancer
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