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ASR: Adaptive Selective Replication for CMP Caches

Abstract

The large working sets of commercial and scientific 

workloads stress the L2 caches of Chip Multiprocessors (CMPs). 

Some CMPs use a shared L2 cache to maximize the on-chip cache 

capacity and minimize off-chip misses. Others use private L2 

caches, replicating data to limit the delay due to global wires and 

minimize cache access time. Recent hybrid proposals use selective 

replication to balance latency and capacity, but their static 

replication rules result in performance degradation for some 

combinations of workloads and system configurations.

This paper proposes Adaptive Selective Replication (ASR), a 

mechanism that dynamically monitors workload behavior to 

control replication. ASR replicates cache blocks only when it 

estimates the benefit of replication (lower L2 hit latency) exceeds 

the cost (more L2 misses). Full-system simulations of 8-processor 

CMPs show that ASR provides robust performance: improving 

performance by as much as 29% versus shared caches, 19% 

versus private caches, and 12% versus CMP-NuRapid [9] and 

Victim Replication [41]. Furthermore, while ASR does not 

improve the performance of all workloads, it provides 

performance stability by always performing at least comparably 

to the best alternative including Cooperative Caching [8].

1.  Introduction

As Chip Multiprocessors (CMPs) emerge in mainstream 

systems, they must provide good performance for a wide variety 

of workloads. Level-2 (L2) cache management presents a key 

challenge, especially in the face of the conflicting requirements of 

reducing off-chip misses (capacity) and managing slow global 

wires (latency). Current CMP systems, such as the IBM Power 5 

[27] and Sun Niagara [18], employ shared L2 caches to maximize 

the on-chip cache capacity by preventing replication. While 

shared caches usually minimize off-chip misses, they have higher 

access latencies since many requests cross global wires to reach 

distant L2 banks. In contrast, private L2 caches [19, 23] reduce 

average access latency by replicating data close to the requesting 

processor, but sacrifice effective capacity and incur more misses.

Recent hybrid cache designs seek to achieve a balance 

between latency and capacity by selectively replicating cache 

blocks. Cooperative Caching [8] and CMP-NuRapid [9] have 

nominally private L2 caches and restricts replication under certain 

criteria, while Victim Replication [41] has a nominal shared L2 

cache and allows replication under other criteria. These schemes 

perform better than private and shared caches for selected 

workloads and system configurations. However, CMP-NuRapid 

and Victim Replication each have static replication policies that 

cannot dynamically adapt to different workload behavior. 

Cooperative Caching uses a configurable probability to tradeoff 

replication with effective cache capacity, but does not propose a 

method to adjust the probability. 

Figure 1 illustrates the need for an adaptive replication 

policy. For the 16 MB CMP configuration (see Section 5.1), 

Cooperative Caching improves the performance of Apache by 

13% using minimum replication (CC 100%), but degrades the 

performance of Apsi by 27% at the same level. Furthermore, 

Section 6.2 shows that for some workloads the optimal replication 

level changes for different cache configurations. Clearly, some 

adaptive policy is needed to determine the best replication level 

for a given combination of workload and cache configuration.

This paper proposes Adaptive Selective Replication (ASR), a 

hardware mechanism that dynamically estimates the cost (extra 

misses) and benefit (lower hit latency) of replication and adjusts 

the replication level to minimize average access time. ASR 

monitors hits to remote L2 cache banks and (pseudo-)LRU cache 

blocks, to estimate the benefits and costs, respectively, of 

additional replication. ASR monitors hits to replica blocks and a 

novel Victim Tag Buffer to estimate the benefit of reducing 

replication. ASR maintains per-processor summaries of the costs 

and benefits, allowing independent localized replication decisions.

This paper makes the following contributions:

•We demonstrate that cache replication policies should focus on 
shared read-only blocks. For commercial workloads, shared 
read-only blocks account for 42-71% of L2 requests, but 
consume—without replication—only 10-21% of the L2 
capacity. Replicating relatively few shared read-only blocks 
significantly reduces L2 access time due to their tremendous 
locality: the top 3% of shared read-only blocks account for 70% 
of requests. Conversely, aggressive replication degrades some 
workloads’ performance due to increased off-chip misses.

•We introduce Selective Probabilistic Replication (SPR), a 
simple replication mechanism that exploits the fact that the 
most frequently requested L2 blocks are also the most 
frequently evicted L1 blocks. By using probabilistic filtering, 
SPR requires significantly less hardware than CMP-NuRapid 
and Cooperative Caching, and equivalent hardware to Victim 
Replication.
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•We propose ASR, the first hardware mechanism that 
dynamically controls replication. When applied to SPR, ASR 
provides a dynamically adaptive CMP cache hierarchy that 
improves performance by as much as 12% versus previous 
replication policies. Furthermore, ASR adds only 1.2% storage 
overhead to a future on-chip cache hierarchy.

Section 2 characterizes the CMP working sets of the 8 

evaluated workloads, Section 3 describes ASR and Section 4

describes SPR and the ASR implementation. Section 5 details the 

evaluation methodology, Section 6 presents simulation results, and 

Section 7 summarizes related work.
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Figure 1: Cooperative Caching (CC) Speedup: 

16 MB CMP configuration

2.  Characterizing CMP Working Sets

To understand the potential benefits and costs of replication, 

this section analyzes the sharing behavior of cache blocks during 

their on-chip lifetime; that is, the interval from when a miss brings 

a block on chip until it is replaced. In particular, the study 

simulates an eight-processor CMP executing various commercial 

and scientific workloads under the Solaris 9 operating system. To 

mitigate cold start effects, all simulations run long enough that 

total L2 cache misses significantly outnumber the L2 block frames. 

Section 5 describes the simulation environment and workloads in 

more detail.

2.1  Sharing Types: Requests vs. Capacity

The cost and benefit of replication depends on the cache 

block’s sharing behavior. We identify three distinct sharing types: 

1. Single Requestor blocks are accessed by a single processor, 2. 

Shared Read-Only blocks are read, but not written, by multiple 

processors, and 3. Shared Read-Write blocks are accessed by 

multiple processors, with at least one write. Single-requestor 

blocks cannot benefit from replication. Shared read-only and 

shared read-write blocks can, but the latter will incur extra delay 

on writes due to coherence invalidations. 

Table 1 shows—in general—that

Table 1: L2 Cache Request and L2 Cache Capacity Profile

Single Requestor Shared Read-Only Shared Read-Write

Benchmark
% of 

Requests
% of 

Capacity
% of 

Requests
% of 

Capacity
Avg. # of 
Sharers

% of 
Requests

% of 
Capacity

Avg. # of 
Sharers

apache     11%     51%     44%     20% 3.7     44%     29% 2.8

jbb 57 91 42 10 3.5   1 < 1    2.4

oltp   4 51 71 21 4.5 25 28 3.6

zeus 20 71 54 11 3.0 25 18 2.3

apsi >  99   > 99   < 1  < 1    7.3 < 1    < 1    2.8

art 53 71 46 29 3.0 < 1    < 1    2.3

barnes 19 93 74   4 3.2   7   3 2.1

ocean 94 98   1 < 1    4.7   5   1 2.1

 while many requests are to 

shared data, single-requestor blocks consume the majority of the 

cache capacity. Shared read-only blocks account for 42%-71% of 

requests for the four commercial workloads and two of the 

scientific workloads. Yet single-requestor blocks account for over 

50% of L2 cache capacity for all workloads and over 90% for Jbb, 

Apsi, Barnes, and Ocean. In comparison, shared read-only and 

shared read-write data consume relatively little capacity, with the 

maximum being less than 30%.

Replicating shared blocks to reduce access latency is 

attractive, since they are accessed frequently yet consume 

relatively little cache capacity. However, blind replication is 

dangerous, since the degree of sharing suggests that the capacity 

could increase significantly. Table 1 shows that shared read-only 

blocks in Apache, Jbb, Oltp, Zeus, and Art are requested by 3.0 to 

4.5 processors, on average, during their on-chip cache lifetimes. 

Fully replicating these blocks could increase the effective working 

set by 25-74%.

Fortunately, shared read-only blocks exhibit strong locality, 

especially for commercial workloads. Figure 2a plots the 

cumulative request distribution versus the cumulative capacity 

distribution for shared read-only blocks. For all commercial 

workloads, the top 20% of blocks account for over 90% of requests 

and the top 3% of blocks account for over 70% of requests. 

Conversely, Figure 2b illustrates that shared read-write blocks 

have much less locality: the top 20% of blocks only account for 

75% or less of requests. Further observation (not shown) shows 

that the top 3% of shared read-only blocks only consume 100-300 

KB. Thus, replicating these blocks would have relatively little 

impact on the total cache capacity. For this reason, we focus on 

replicating shared read-only blocks in this paper. 

2.2  Impact of Replication

While replicating blocks can reduce L2 hit latency, it also 

decreases the effective L2 cache size. If replicas displace too much 

of a workload’s working set, performance may degrade 

significantly. Figure 3 illustrates this risk by plotting the 

normalized hit ratios for fully-associative caches up to 32 MB. 

Normalized L2 Cache Hit Ratio
Hits within cache size α

Hits within a 32 MB L2 cache
----------------------------------------------------------------------=



3

This graph demonstrates the sensitivity that many workloads 

have to small changes in cache size. For example, Ocean and Art 

have critical working set sizes of 4 MB and 8 MB, respectively. 

Decreasing the effective cache capacity below these thresholds has 

a dramatic negative impact on performance. All of the scientific 

workloads exhibit clearly identifiable working set boundaries, 

while the commercial workloads have less pronounced transitions. 

Ideally, a replication policy would avoid decreasing capacity below 

these critical thresholds.     
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Figure 2: a) Request to Block Distribution: Shared 

Read-Only 

Figure 2: b) Request to Block Distribution: Shared 

Read-Write
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3.  ASR: Adaptive Selective Replication

ASR seeks the optimum replication level by balancing the 

benefits of replication against the costs. Section 3.1 introduces the 

simple memory system performance model underlying ASR and 

Section 3.2 describes ASR’s replication algorithm.

3.1  Replication and CMP Cache Performance

To the first order, L2 cache block replication improves 

memory system performance when it reduces the average L1 miss 

latency. The following equation describes the average cycles for 

L1 cache misses normalized by instructions executed:

L1 miss cycles

Instruction
---------------------------------

P
localL2 L

localL2×( )

Instructions L1misses⁄( )
--------------------------------------------------------- +=

P
remoteL2 L

remoteL2×( )

Instructions L1misses⁄( )
----------------------------------------------------------------

P
miss

L
miss

×( )

Instructions L1misses⁄( )
----------------------------------------------------------------+

Px is the probability of a memory request being satisfied by 

the entity x, where x is a local L2 cache, the remote L2 caches, or 

main memory and Lx equals the latency of each entity. Therefore, 

the combination of the localL2 and remoteL2 terms represent the 

memory cycles spent on L2 cache hits and the third term depicts 

the memory cycles spent on L2 cache misses. Replication 

increases the probability that L1 misses hit in the local L2 cache, 

thus the PlocalL2 term increases and the PremoteL2 term decreases. 

Because the latency of a local L2 cache hit is tens of cycles faster 

than a remote L2 cache hit, the net effect of increasing replication 

is a reduction in cycles spent on L2 cache hits. However, more 

replication devotes more capacity to replica blocks, thus fewer 

unique blocks exist on-chip, increasing the probability of L2 cache 

misses, Pmiss. If the probability of a miss increases significantly 

due to replication, the miss term will dominate, as the latency of 

memory is hundreds of cycles greater than the L2 hit latencies. 

Therefore, balancing these three terms is necessary to improve 

memory system performance.

Optimal performance often arises from an intermediate 

replication level. Figure 4 graphically depicts this tradeoff. The 

Replication Benefit curve, Figure 4a, illustrates the trend that 

increasing replication reduces L2 cache hit cycles. Due to the 

strong locality of shared read-only requests, a small degree of L2 

replication can significantly reduce L2 hit cycles by moving many 

previous remote L2 hits into the local cache. In contrast, increased 

replication gradually reduces L2 hit cycles because fewer unique 

blocks on-chip lead to fewer total L2 hits. The Replication Cost

curve, Figure 4b, illustrates that increasing L2 replication 

increases the memory cycles spent on off-chip misses. The 

Replication Effectiveness curve, Figure 4c, combines the benefit 

and cost curves and plots the total memory cycles. Because the 

benefit and cost curves are generally convex and have opposite 

slopes, the minimum of the Replication Effectiveness curve often 

lies between allowing all replications and no replications. ASR 

estimates the slopes of the benefit and cost curves to approximate 

the optimal replication level.

3.2  Balancing Replication via ASR

By dynamically monitoring the benefit and cost of 

replication, ASR attempts to achieve the optimal level of 

replication. ASR identifies discrete replication levels and makes a 

piecewise approximation of the memory cycle slope. Thus ASR Figure 3: Normalize L2 Cache Hit Ratios
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simplifies the analysis to a local decision of whether the amount of 

replication should be increased, decreased, or remain the same. 

Figure 4 illustrates the case where the current replication level, 

labeled C, results in HC hit cycles-per-instruction and MC miss 

cycles-per-instruction. ASR considers three alternatives: (i) 

increasing replication to the next higher level, labeled H, (ii) 

decreasing replication to the next lower level, labeled L, or (iii) 

leaving the replication unchanged. To make this decision, ASR not 

only needs HC and MC, but also four additional hit and miss 

cycles-per-instruction values: HH and MH for the next higher level 

and HL and ML for the next lower level.
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Figure 5: ASR Decision Table for Adjusting Replication

To simplify the collection process, ASR estimates only the 

four differences between the hit and miss cycles-per-instruction: 

(1) the benefit of increasing replication (decrease in L2 hit cycles, 

HC - HH); (2) the cost of increasing replication (increase in L2 

miss cycles, MH - MC); (3) the benefit of decreasing replication, 

(decrease in L2 miss cycles, MC - ML); and (4) the cost of 

decreasing replication (increase in L2 hit cycles, HL - HC).

By comparing these cost and benefit counters, ASR will 

increase, decrease, or leave unchanged the replication level. 

Figure 5 presents ASR’s decision table for adjusting replication. 

ΔIncrease  and ΔDecrease  summarize the cost and benefit 

counters: positive values indicate that increasing or decreasing 

replication, respectively, will improve performance. When both 

ΔIncrease  and ΔDecrease  are positive, ASR chooses the direction 

with the greater predicted benefit.

4.  Implementing ASR using SPR

Implementing ASR requires a CMP cache framework that 

supports multiple replication levels. Cooperative Caching [8] is 

one possibility, but this scheme requires an expensive central tag 

structure. Section 4.1 introduces the simpler Selective Probabilistic 

Replication (SPR) design which uses distributed state to make 

local replication decisions. Section 4.2 describes the additional 

hardware needed to implement ASR, with Beckmann’s 

dissertation [5] providing further detail. Finally, Section 4.3

summarizes ASR’s storage and energy overhead.

4.1  SPR: Selective Probabilistic Replication

Like most earlier replication proposals, SPR assumes private 

L2 caches and selectively limits replication on L1 evictions. SPR 

uses a non-inclusive Token Coherence broadcast protocol [22] and 

ring writebacks [30] to eliminate the need for a central tag 

structure (like Cooperative Caching) or a designated home node 

(like Victim Replication). While token coherence simplified SPR’s 

implementation, SPR is not dependent on token coherence and 

instead could have used a non-home-node directory protocol, e.g., 

AMD’s HyperTransport cache coherence protocol [2]. On an L1 

cache eviction, SPR writes a shared block back to its local L2 if (i) 

the block was already allocated in the local L2 or (ii) the 

replication policy (below) allocates a new block. Otherwise, SPR 

uses a ring writeback to merge the block with an existing remote 

L2 copy. Specifically, L1 writeback messages are passed clockwise 

between private L2 caches to search for an already allocated copy 

or an empty L2 block.

To avoid extra delay on writes due to coherence invalidations, 

SPR only replicates shared read-only data. To identify which cache 

blocks are shared and read-only, SPR uses the per-block dirty bit in 

combination with an extra per-block shared bit. The L1 and L2 

cache tags set the shared bit when receiving a request from a 

processor different than the current sharer. Similar to the dirty bit, 

once the shared bit set, it is not reset until the block is replaced. 

When the dirty bit is not set and shared bit is set, the block is 

considered shared read-only.

Table 2: SPR Replication Levels

Level 0 1 2 3 4 5

Probability 0 1/64 1/16 1/4 1/2 1

Threshold 0 4 16 64 128 256

On L1 cache writebacks, SPR uses probabilistic filtering to 

decide when to replicate a block. To simplify the replication 
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process, SPR supports six discrete replication levels (Table 2). 

Each replication level has a unique probability that a shared read-

only block will be replicated, with the lower replication levels 

permitting very few replications. When an L1 cache evicts a shared 

read-only block and the block is not found in the local L2 cache, 

the replication probability determines whether to replicate the 

block locally. Specifically, a linear feedback shift register [13] 

generates an 6-bit pseudo-random number which it compares to 

the current replication threshold (i.e., if random <  threshold, then 

replicate). Like all SPR logic, the pseudo-random number 

generator does not impact L2 cache access latency and is accessed 

only on replacement. The probabilistic policy biases replications to 

frequently requested blocks because frequently requested L2 

blocks are also those blocks frequently evicted from the L1 caches.

4.2  Implementing ASR

Determining whether to increase or decrease replication 

requires knowing whether a block would be replicated at the next 

higher or next lower level. ASR identifies these blocks by 

comparing the random number not just against the current 

replication threshold, but also against the thresholds for the next 

higher and lower levels. Note that because the thresholds are 

monotonic, all decisions to replicate a block at level i will also be 

made at level i+1. ASR uses the information about whether a block 

should be replicated at the current, next lower, or next higher levels 

to maintain the mechanisms described below. 

ASR uses four separate mechanisms to estimate the costs and 

benefits of replication and another mechanism to trigger a 

replication analysis that could change the replication level. 

Benefit of Increasing Replication (HC - HH). To determine the 

benefit of increasing replication, ASR identifies the blocks not 

replicated at the current replication level, but that would have been 

replicated with the next higher level. Specifically, each processor 

stores 8-bit partial tags [16] of the blocks that would have been 

replicated with the next higher replication level using separate 

16 K entry, 16-way set-associative buffers called the Next Level 

Hit Buffers (NLHBs). When a request hits in a remote L2 cache, 

the local NLHB is checked to determine if the request could have 

been a local hit if replication was increased. If so, ASR increments 

its (HC - HH) counter by the number of cycles that would be saved 

by a local L2 hit versus a remote L2 hit.

Cost of Increasing Replication (MH - MC). ASR estimates the 

cost of increasing the replication level by estimating the utilization 

of soon-to-be-evicted L2 cache blocks. In other words, these are 

the unique L2 blocks that would exist off-chip if replication was 

increased. Specifically, ASR monitors the last 1 K of least recently 

used L2 blocks. A monitor size greater than 1 K provides little 

additional benefit due to the low locality of these blocks. Because 

precisely determining the recently used cache blocks is 

prohibitively expensive in hardware, ASR uses way and set 

counters [32] to estimate which blocks are least recently used. 

Specifically, ASR breaks the L2 sets into 256 separate groups 

using the high order L2 cache index bits and relies on a 255-bit 

pseudo LRU binary tree [28] to estimate the LRU position of the 

requested set-group. If a request hits an L2 block not identified as a 

current replica and the block’s way and set-group position lies 

within the last 1 K of LRU blocks, the (MH -MC) counter is 

incremented by the off-chip memory latency. 

Benefit of Decreasing Replication (MC - ML). To predict the 

benefit of decreasing replication, ASR uses Victim Tag Buffers 

(VTBs) to track which L2 misses could have been avoided by 

reducing the replication level. Each VTB stores 16-bit partial tags 

of the most recently evicted blocks in a 1 K entry 16-way set 

associative buffer. The VTB only stores tags that were evicted due 

to the current replication level, but would not have been evicted 

with the next lower level. When a replication associated with the 

current replication level causes an L2 eviction, the VTB allocates 

the evicted tag. The VTB stores other L2 eviction tags only if they 

replace an existing valid entry. Subsequent off-chip misses that hit 

in the VTB, increment the (MC - ML) counter by the off-chip miss 

latency. When the SPR replication level decreases, ASR clears the 

VTB because the tags currently stored no longer correspond to the 

new lower replication level. 

Cost of Decreasing Replication (HL - HC). To estimate the cost 

of decreasing replication, ASR identifies blocks that are replicated 

at the current replication level, but would not be replicated at the 

next lower level. Specifically, an extra current replication bit 

marks these blocks in the local L2 cache tags. For local L2 hits that 

find the current replication bit set, ASR increments its (HL - HC) 

counter by the difference between a remote L2 hit and a local L2 

hit. When the SPR replication level increases, ASR clears the 

current replication bits because the bits no longer correspond to the 

new replication level.

Triggering a Cost-Benefit Analysis. Like all adaptive systems, 

ASR should respond quickly, but not too quickly, to changes in 

workload behavior. ASR does this using a two-step process. First, 

ASR waits until it observes enough events to ensure a fair 

cost/benefit comparison. Specifically, ASR triggers an evaluation 

when the number of local L2 replications or NLHB allocations 

exceed the 1 K entry monitor size. Thus, the time interval between 

replication evaluations is not fixed, nor do the evaluations require 

chip-wide coordination. Rather, the evaluation intervals depend 

only on the frequency of local replication opportunities. Upon 

triggering an evaluation, ASR performs the comparison described 

in Section 3.2 to determine if and how the replication level should 

be changed. Second, ASR provides hysteresis by waiting until four 

consecutive evaluation intervals predict the same change before 

making an actual change to the replication level. After each 

evaluation, all four counters are cleared.

4.3  Storage and Energy

ASR adds a small storage overhead to the on-chip cache 

hierarchy and should have minimal impact on energy 

consumption. For an eight processor CMP, Table 3 breaks down 

ASR’s storage requirement for two cache configurations: a 4 MB 

aggregate L2 cache with 16 KB L1 caches and a 16 MB aggregate 

L2 with 64  KB L1s. Table 3 demonstrates that ASR scales well to 

bigger caches because many of its structures are cache size 

independent. For instance, between the 4 MB and 16 MB 

configurations, ASR’s storage overhead only grows by 40 KB. 

ASR’s size is mostly independent of cache size because it only 

monitors the marginal benefits and costs of replication, instead of 

monitoring replication’s effectiveness across the entire cache. 

Later, Section 6.2 directly compares ASR’s storage overhead with 

the previous proposals [8, 9, 41].
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While ASR costs some bits, it doesn’t consume energy for 

passing messages between processors for coordinating replication 

level changes. Each L2 cache makes a local replication decision. 

SPR’s replication logic lies on the non-latency critical L1 

replacement decision and is a simple probabilistic choice. 

Additionally, ASR’s tables and counters are also non-latency 

critical and are only accessed on L1 and L2 misses. Therefore, 

ASR’s logic will be accessed relatively infrequently and can use 

high-Vt low-leakage transistors [25]. Also, ASR’s cost-benefit 

model could be extended to account for the dynamic power 

consumed by local versus remote L2 hits. We leave this for future 

work.

Table 3: ASR Storage Overhead

Overhead Bits

K Entries K Bytes

4 MB 
CMP

16 MB 
CMP

4 MB 
CMP

16 MB 
CMP

per L1 block 1 4 16        0.5     2

per L2 block 2 64 256   16   64

NLHBs 8 128 128 128 128

VTBs 16 8 8   16   16

Total KBytes (including counters)     161.5 211

% increase of on-chip cache capacity 3.7% 1.2%

Area (90 nm & 45 nm tech. respectively) ~ 3 mm2 ~ 1 mm2 

5.  Methodology

By using full-system simulation based on Simics [36] and the 

GEMS toolset [37], we evaluate ASR against alternative cache 

designs. This section describes the alternative caches, system 

parameters, and workloads that we use in our simulation study.

5.1  Alternative Cache Designs

Section 6 compares ASR against two baseline 

configurations—shared L2 and private L2 caches—and the 

previous replication proposals: Victim Replication [41], CMP-

NuRapid [9], and Cooperative Caching [8].

CMP-Shared. As illustrated in Figure 6a, the CMP-Shared design 

assumes a Non-Uniform Cache Architecture (NUCA) [17]. CMP-

Shared statically maps the addresses across all on-chip L2 banks, 

thus forming a shared cache with non-uniform latency. On an L1 

miss, a processor sends its request to the appropriate L2 bank 

which may forward the request to L1 sharers or memory. By 

disallowing L2 replication, the CMP-Shared achieves the best 

capacity, but by not exploiting the distance locality between 

processors and L2 banks, it incurs the highest access latency.

CMP-Private. The CMP-Private design (Figure 6b) assigns each 

cache bank private to a processor. Similar to the Itanium 2 

microprocessor [24], the closely integrated private L2 caches allow 

each processor to avoid the shared on-chip network and directly 

query the L2 cache tags in parallel with an L1 cache access. Unlike 

other baseline private cache designs [8], CMP-Private allows direct 

cache-to-cache transfers of clean data. L1 misses and replacements 

are directed to the local private L2 bank and other processors 

cannot allocate into a remote bank. Thus, CMP-Private migrates 

[6, 14] single requestor data and replicates all shared data without 

the storage overhead of home blocks associated with a distributed 

directory protocol. However, CMP-Private’s unrestricted 

replication of shared data can increase off-chip misses and 

coherence invalidations. 
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Figure 6: a) Layout of CMP-Shared 

Figure 6: b) Layout of CMP-Private

In addition to supporting ASR, SPR’s selective replication 

framework can support previously proposed replication policies 

with relatively simple changes. 

SPR-VR. Victim Replication [41] targets an on-chip directory 

protocol and statically assigns blocks to home nodes (like CMP-

Shared). Non-home nodes replicate blocks locally, except when a 

L2 cache set is already full of home blocks that have remote 

sharers. Using a random replacement policy, non-shared home 

blocks are evicted before replicas. SPR-VR implements Victim 

Replication’s replication policy by adding 1-bit per L2 cache block 

to identify replicas and by disallowing replications when the local 

cache set is filled with owner blocks with identified sharers. Victim 

Replication’s distributed directory protocol wastes significant 

storage by forcing home nodes to store cache blocks regardless if 

the home node actually used the block. Thus, replicating shared 

data overlapped with migrating single requestor data away from its 

home bank. Although it requires more bandwidth, SPR-VR should 

perform strictly better than the original Victim Replication 

implementation because the token broadcast protocol [22] removes 

the home node storage overhead.
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SPR-NR. CMP-NuRapid [9] maintains coherence using a shared 

bus and per-processor decoupled tag arrays with indirect data 

block pointers (6% overhead). CMP-NuRapid’s replication policy 

allocates a local L2 tag after the first request and then locally 

allocates the actual L2 data block upon a second request. SPR-NR 

removes the shared bus overhead and incorporates CMP-

NuRapid’s replication policy by storing a 1-bit counter per remote 

processor for each L2 block (1.4% overhead). A processor’s first 

request sets its associated bit; a second request by the same 

processor causes local allocation of the L2 block. 

SPR-CC. Cooperative Caching (CC) [8] uses a centralized 

duplicate tag structure to identify singlets, i.e., an L2 block with 

one on-chip copy, and biases replacements to evict non-singlets 

first. Cooperative Caching retains active singlets by spilling them 

to a remote L2 cache. SPR-CC models the centralized tag structure 

using an idealized distributed tag structure.

5.2  System Parameters

Table 4: Comparison of Configuration Parameters

Parameters Current CMP Future CMP

processor model / cycle time in-order / 1.4 GHz out-of-order / 5.0 GHz

split L1 I & D caches 16 KB each, 4-way, 2 cycles 64 KB each, 4-way, 3 cycles

aggregate L2 cache sizes 4 MB 16-way pseudoLRU [28] 16 MB 16-way pseudoLRU [28]

avg. shared L2 / local L2 / remote L2 latency 25 / 12 / 34 cycles 44 / 20 / 50 cycles

memory latency 150 cycles 500 cycles

memory bandwidth 28 GB/s 50 GB/s

Our evaluation studies two different SPARC V9 8-processor 

CMP configurations targeting current and future technology. The 

Sun Niagara [18, 20] inspired the first CMP configuration, (the 

second column of Table 4), and the second configuration presents a 

CMP assuming 2010 technology [12] (column 3 of Table 4). The 

15-stage out-of-order (OoO) cores of the Future CMP design are 

4-wide superscalar processors using 64-entry instruction 

scheduling windows with 128-entry ROBs. Each OoO core 

predicts branches using a 3.5 KB YAGS direct branch predictor, a 

256-entry cascaded indirect branch predictor, and a 64-entry return 

address stack predictor. Table 4 also includes the average load-to-

use latencies [1] for the shared cache, as well as, the local and 

remote banks in the private cache. Both configurations utilize 64-

byte cache blocks and 4 GB of DRAM.

All designs use writeback, write-allocate caches and 

implement sequential memory consistency. The intra-chip protocol 

allows for migratory sharing between L1 caches. The L2 cache is 

inclusive with the L1 caches and maintains up-to-date L1 sharer 

knowledge. All evaluated designs also incorporate strided 

prefetchers between the L1 and L2 caches, as well between the L2 

caches and memory. The prefetcher is based on the IBM Power 4 

[34], except it issues prefetches for both load and stores.

The intra-chip and inter-chip networks are modeled in detail, 

including all messages required to implement the coherence 

protocol. The on-chip links are 64-bytes wide and the off-chip 

bandwidth is specified in Table 4. Virtual cut-through routing is 

used with three message buffering at all switches except the 

buffers between the on-chip and off-chip networks are extended to 

20 entries to decouple the on-chip network from off-chip queueing 

delay.

5.3  Workloads

We studied the CMP cache designs using commercial and 

scientific workloads. Alameldeen et al. [3] described the first three 

commercial workloads and Xu et al. described Zeus [39]. We also 

studied four scientific workloads: two SPLASH2 benchmarks [38] 

Barnes (128 k-particle) and Ocean ( 514 514× ), and two 

SpecOMP benchmarks [4]: Apsi and Art. We used a work-related 

throughput metric to address multithreaded workload variability 

[3]. Thus for the commercial workloads, we measured transactions 

completed and for the scientific workloads, runs were completed 

after the cache warm-up period indicated in Table 5. However, for 

the SpecOMP workloads using the reference input sets, runs were 

too long to be completed in a reasonable amount of time. Instead, 

these loop-based benchmarks were split by main loop completion. 

This allowed us to evaluate all workloads using throughput 

metrics, rather than IPC. All simulations contain small random 

perturbations in the memory latency to account for the non-

determinism that exists in multi-threaded workloads. The error 

bars shown in Section 6.3 indicate the 95% confidence intervals. 

Table 5: Evaluation Methodology

Benchmark Fast Fwd. Warm-up Executed

Commercial Workloads (unit = transactions)

apache 2000000 2000 1000

jbb 200000 15000 10000

oltp 100000 300 200

zeus 2000000 2000 2000

Scientific Workloads (unit = billion instructions)

apsi 89 4.6 loop completion

art 121 3.2 loop completion

barnes NA 1.9 run completion

ocean NA 2.4 run completion

6.  Evaluation

6.1  Replication Capacity and Memory Cycles

The optimal replication point shifts depending on workload 

behavior and CMP configuration. Figure 7 displays the L2 hit 

cycles-per-instruction, L2 miss cycles-per-instruction, and the 

Total cycles-per-instruction curves for both CMP configurations. 

Each point on the curve corresponds to a static SPR replication 

level. 

For Current CMP, 6 of 8 workloads prefer either minimum or 

maximum replication, while Apache and Oltp prefer intermediate 

replication. The first row of graphs (Figure 7a-c) presents the 

results for the Current CMP configuration with a 4 MB aggregate 
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L2 cache capacity. The L2 hit cycles-per-instruction curves for the 

workloads: Apache, Jbb, Oltp, Zeus, and Barnes (Figure 7a) 

demonstrate how selective replication can exploit the request 

locality of shared read-only data. The slopes of these five convex 

curves show that limited replication attains most of the latency 

reduction possible with unlimited replication. For instance in 

Apache, devoting 10% of L2 capacity to replication reduces L2 hit 

cycles-per-instruction by 0.3, but allowing replicas to consume 

30% more capacity provides less than a 0.2 additional reduction. In 

contrast, Figure 7b illustrates the L2 miss cycles-per-instruction 

curves have a more consistent slope. For example, Apache’s miss 

cycles-per-instruction curve roughly increases by 0.1 for every 5% 

increase in replication capacity. The resulting total cycles-per-

instruction curves (Figure 7c) reveal the optimal point of 

replication for each workload using the Current CMP 

configuration. Replication has little effect on the scientific 

workloads Apsi, Art, and Barnes, while the workloads Jbb, Zeus, 

and Barnes prefer maximum replication. The most interesting 

cases, Apache and Oltp, prefer a replication capacity between the 

minimum and maximum. 
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Figure 7: d) L2 Hit Cycles / Instr. 

(Future CMP)

Figure 7: e) L2 Miss Cycles / Instr. 

(Future CMP)

Figure 7: f) Total Cycles / Instr. 

(Future CMP)

Figure 7: a) L2 Hit Cycles / Instr. 
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(Current CMP)

Figure 7: c) Total Cycles / Instr. 

(Current CMP)

For the Future CMP configuration, the second row of memory 

curves (Figure 7d-f) show that the optimal level of replication 

shifts towards less replication. For most workloads, the normalized 

L2 hit cycle curves (Figure 7d) maintain the same basic shape as 

those of Figure 7a. However, Art demonstrates how balancing 

replication becomes more important with larger caches [15] 

because its 8 MB working set (Figure 3) now fits in Future CMP’s 

larger cache. Figure 7e illustrates Future CMP’s slower memory 

latency causes the L2 miss cycle slopes to substantially increase 

with respect to those in Figure 7b. The result is the miss cycle 

curves have a greater impact on the total cycle curves. For instance 

the optimal replication level for Apache and Oltp shifted from 5% 

and 40%, respectively, for the Current CMP configuration, to 0% 

and 20% for the Future CMP configuration.

6.2  Adapting to Workload Behavior

By dynamically monitoring the changes in L2 hit and miss 

cycles, ASR matches the level of replication within each private L2 

cache to the behavior of each individual processor. Figure 8

illustrates SPR-ASR’s dynamic adjustment of each private L2 

cache’s replication level over time. These results use the Future 

CMP configuration, each processor’s replication level is initialized 

to level 4, and each point represents when SPR-ASR evaluated of 

its counters.

Figure 8a shows that the Apache workload benefits from 

SPR-ASR’s adaptability. For the first 200 million cycles the 

replication level fluctuates around 4, then drops to hover around 

levels 2 and 3 for the remainder of the execution, with a few 
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outliers either way. At this relatively low replication level, only 5% 

of the L2 cache contains replicas on average. Interestingly, 

Figure 9 shows that the low outliers are entirely due to processor 0, 

the one processor that executes almost exclusively OS code. 

Apparently, the OS’s large working set size largely eliminates the 

benefit of replication. Thus Apache demonstrates the benefit of 

maintaining SPR-ASR’s replication level on a per-processor basis.

100 200 300 400
Cycles (M)

0

1

2

3

4

5
R

ep
li

ca
ti

on
 L

ev
el

50 100 150 200
Cycles (M)

0

1

2

3

4

5

R
ep

li
ca

ti
on

 L
ev

el

Figure 8: a) Future CMP ASR Adaptability: Apache Figure 8: b) Future CMP ASR Adaptability: Oltp
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Figure 9: a) Future CMP: ASR Adaptability: Apache 

(Processor 0)

Figure 9: b) Future CMP: ASR Adaptability: Apache 

(Processors 1-7)

Conversely, a static, global replication level would suffice for 

the Oltp workload. As illustrated in Figure 8b, SPR-ASR quickly 

adjusts all processors to level 5, maximizing replication. The result 

is that replicas account for 52% of the L2 capacity on average.

As Figure 8a shows, SPR-ASR can require well over a 100 

million cycles to reach steady state, requiring several hours of 

simulation. To reduce simulation time, the remainder of this 

section initializes the replication levels to their steady-state value.

6.3  Comparison of Replication Schemes

Performance. For workloads where replication interferes with the 

active working set, SPR-ASR outperforms the alternative CMP 

cache designs. For workloads where replication capacity has little 

effect, SPR-ASR performs at least as well as the other designs. 

Figure 10 shows the normalized runtime of each CMP design 

executing the eight workloads. The two SPR-CC bars represent the 

best- and worst-performing Cooperative Caching percentages 

(where 100% maximizes replication and 0% minimizes it). For all 

workloads except Oltp, the private cache designs (excluding worst 

SPR-CC) exploit the relatively fast memory latency of the Current 

CMP configuration and improve performance by 0-29% versus 

CMP-Shared. For Oltp, SPR-ASR and best SPR-CC perform 

equivalently to CMP-Shared, while the other private cache designs 

degrade performance by 3-7%. SPR-ASR limits replication to 35% 

of L2 capacity, resulting in a 43% increase in off-chip cycles 

versus CMP-Shared. In contrast, the other private CMP designs 

devote as much as 64% of L2 capacity to replicas causing up to a 

96% increase in off-chip cycles versus CMP-Shared. Overall, the 

best performing SPR-CC percentage achieves similar performance 

to that of SPR-ASR. However, the best SPR-CC percentage varies 

by workload—Apache and Oltp do best at 70%, Zeus at 30%, and 

the others at 0%—illustrating the benefit of an adaptive policy.

To provide further insight, Figure 11 shows the memory 

system cycle breakdown for the Apache and Oltp workloads to 

indicate where the time is spent in the memory system. The ‘Local 

L1’ and ‘Local/Shrd L2’ segments display the fraction of the 

average memory access time contributed by local L1 and L2 hits 

respectively (for CMP-Shared ‘Local/Shrd L2’ indicates shared L2 

hits). The ‘Remote’ bar segment represents the cycles spent on 

requests satisfied by remote L1 or L2 caches. Finally, the ‘Off-

chip’ bar segment indicates the cycles spent on off-chip misses. 

As forecast by the total cycles-per-instruction curve 

(Figure 7c) the four private cache designs that restrict replication 

(SPR-VR, SPR-NR, SPR-CC, and SPR-ASR) attain better 

performance for Apache than CMP-Private, which allows all 
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replication. Specifically, SPR-ASR achieves the greatest 

performance improvement (24% and 19% versus CMP-Shared and 

CMP-Private respectively) by restricting replication to only 5% of 

L2 capacity, while SPR-VR and SPR-NR allow replicas to 

consume more than 38% of capacity. Figure 11 shows the limited 

replication capacity enforced by SPR-ASR exploits the strong 

locality of shared read-only requests. Specifically, SPR-ASR 

achieves almost as many local L2 hits as SPR-NR (82%), while 

SPR-ASR’s greater effective cache capacity reduces off-chip miss 

cycles by 20%.
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Figure 10: Current CMP Speedups 

(S: CMP-Shared, P: CMP-Private, V: SPR-VR, N: SPR-NR, C: SPR-CC, A: SPR-ASR)
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also improves the Future CMP configuration 

despite the fact that higher memory latency and out-of-order 

processors [26] change the performance tradeoff between shared 

and private caches. For Apache, Apsi, and Barnes, the performance 

advantage private cache designs exhibit over CMP-Shared 

diminishes by 12-23%, while the private cache performance 

advantage increases for Oltp and Ocean by 11-15%. Figure 13

breaks down the memory cycles for Apache and Oltp. Because 

Oltp’s working set better fits in Future CMP’s larger cache, the 

private cache organizations utilize replication to exploit the faster 

private L2 caches. Oltp’s frequently requested shared read-only 

working set (Table 1) especially benefits from replication, enabling 

the private cache designs to improve performance by 6-12% versus 

CMP-Shared. However, Apache’s larger working set (Figure 3) 

exposes Future CMP’s slower memory latency and all private 

cache designs except the best SPR-CC and SPR-ASR suffer 

substantial performance degradation versus CMP-Shared. 

Specifically, CMP-Private, SPR-VR, and SPR-NR suffer a 

performance degradation of 7-13% versus CMP-Shared, while 

SPR-ASR achieves the greatest performance improvement versus 

CMP-Shared—5%. Though SPR-CC with 100% performs 

similarly to SPR-ASR in Apache, SPR-CC with 0% suffers nearly 

the same performance degradation as SPR-VR and SPR-NR. 

Conversely, SPR-ASR does not require external tuning and 

dynamically identifies replication’s lack of benefit. The result is 

SPR-ASR increases off-chip misses by only 13% and improves 

performance by 2% versus CMP-Shared, 17% versus CMP-

Private, and 12% versus SPR-VR, and SPR-NR.

Performance Summary. Overall, SPR-ASR significantly 

improves performance for workloads where shared read-only 

replication conflicts with the active working set, e.g. Apache and 

Oltp. For other workloads, SPR-ASR always performs 

competitively, if not better than the best alternative. SPR-ASR’s 

performance stability ensures CMP caches will provide good 

performance to a wider variety of workloads.

Storage Overhead. SPR-ASR achieves better performance for 

less storage overhead than the previous hybrid cache designs 

because it relies on SPR’s probabilistic filtering rather than a more 

hardware intensive replication mechanism, such as those used by 

CMP-NuRapid and Cooperative Caching. Instead, SPR-ASR 

targets its storage overhead to dynamically monitoring 

replication’s cost and benefit. For the Current and Future CMP 

configurations, Table 6 compares the storage overhead of SPR-VR, 

SPR-NR, SPR-CC, and SPR-ASR. SPR-VR’s and SPR-ASR’s 

replication mechanisms add only one bit per L2 cache block for 

respectively identifying replica and shared blocks. Thus, these 

mechanisms scale well with increasing the aggregate L2 cache 

size. In comparison, CMP-NuRapid’s SPR implementation adds 7-

bits per L2 block—1-bit counter for each remote L2 cache—and 

Cooperative Caching’s SPR implementation requires a duplicate 

tag per L2 cache block.

7.  Related Work

7.1  Multiprocessor Memories

A large body of previous work exists in studying data 

replication in the context of flat multiprocessors [10]. Specifically, 

throughout the previous decade significant work has compared 

hardware solutions such as CC-NUMA and Flat COMA 

architectures [31, 42], along with software [7, 35] and hybrid 

hardware/software combinations [11, 29]. The Flat COMA 

protocol [29, 31] removed the slow ordered network of 

hierarchical COMA machines allowing data to migrate and 



11

replicate towards the requesting processor on an unordered 

network, similar to the evaluated private CMP cache designs. 

Related to ASR’s adaptive selective replication mechanism, 

Verghese et al. [35] proposed an OS mechanism that adapted the 

number of pages migrated and replicated to a processor’s local 

memory. Zhang et al. [42] studied the working sets of various 

workloads running on a NUMA system. Compared to our work in 

Section 2, they characterized data into three classes: replication, 

migration read-only, and migrating read/write.

Table 6: Storage Overhead Comparison

SPR Cache Design

Replication Mechanism Adaptive Mechanism

Current CMP Future CMP Current CMP Future CMP

Victim Replication     8 KB   32 KB Not Applicable Not Applicable

CMP-NuRapid   56 KB 224 KB Not Applicable Not Applicable

Cooperative Caching 255 KB 886 KB Not Applicable Not Applicable

ASR  8.5 KB   34 KB 153 KB 177 KB
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Figure 12: Future CMP Speedups 

(S: CMP-Shared, P: CMP-Private, V: SPR-VR, N: SPR-NR, C: SPR-CC, A: SPR-ASR)

 

7.2  Chip Multiprocessor Caches

There has also been significant recent work in evaluating the 

benefits and limitations of replication in CMP caches. Huh et al.

[14] investigated sharing in a CMP-NUCA cache and concluded 

allowing some replication between cache banks was advantageous. 

Liu et al. [21] evaluated the performance of managing the 

allocation of cache resources on a bus-based CMP and proposed a 

profile-driven approach to determine which cache banks to share 

between processors and which to reserve as private. In contrast, 

ASR dynamically analyzes workload behavior and adapts 

replication on a per block basis to match the current demand.

The most closely related proposals to Adaptive Selective 

Replication are the previously discussed Victim Replication [41], 

CMP-NuRapid [9], and Cooperative Caching [8] proposals. All 

three designs reduce replica blocks, but their static mechanisms 

tend to favor certain workloads and do not dynamically adjust to 

changes in workload behavior and system constraints. Cooperative 

Caching does introduce using probability to control replication, 

but does not propose a mechanism to actually adjust the 

probability. Through slight modification, ASR monitoring 

hardware could provide such a mechanism. Specifically, ASR’s 

NLHB could be modified to determine the cost of the evicted 

replica blocks and ASR’s VTB could be modified to determine the 

cost of the evicted singlet blocks. By comparing these costs to the 

estimated benefits of storing the current singlet and replica blocks, 

one could design an adaptive Cooperative Caching algorithm.

Finally, similar to ASR, Suh et al. [33] used set and way 

counters to monitor cache block utilization and Zhang et al. [40] 

used a miss tag buffer to track what cache misses could have been 

hits if the cache was full sized. However, the differences are Suh et 

al. used the monitoring information to dynamically partitioned 

ways in a set-associative cache among multiple threads and Zhang 

et al.’s miss tag buffer stored full size tags and was used to save 

energy in a automatically resizable cache.

8.  Conclusions
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Figure 13: Future CMP Memory Cycles 

(S: CMP-Shared, P: CMP-Private, V: SPR-VR, 
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Managing on-chip wire delay, while limiting off-chip misses, 

is essential in order to improve future CMP performance. A private 

CMP cache hierarchy offers lower access latency than a shared 

cache, but uncontrolled replication may cause significant 

performance degradation due to increased off-chip misses. In this 

paper, we observed for commercial workloads, shared read-only 

data is frequently requested and exhibits high request locality. We 

propose Adaptive Selective Replication, which dynamically adapts 
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shared read-only data replication to exploit the latency advantage 

of private caches without wasting cache capacity due to excessive 

replication. By performing an opportunity analysis, ASR adjusts 

the degree of replication to match the current workload behavior 

and system configuration. We showed ASR performs at least as 

well as the best alternative design and improves performance for 

commercial workloads with large working sets.
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