
†Work performed while a Ph.D. student at Wisconsin.
This work is supported in part by the National Science Foundation (NSF), with grants
CNS-0205286 and CCR-0324878, as well as donations from Intel and Sun Microsys-
tems. Wood has significant financial interest in Sun Microsystems. The views
expressed herein are not necessarily those of the NSF, Intel, or Sun Microsystems.

Appears in the proceedings of the
39th Annual IEEE/ACM Symposium on Microarchitecture (MICRO-39), 2006

1

ASR: Adaptive Selective Replication for CMP Caches

Abstract

The large working sets of commercial and scientific

workloads stress the L2 caches of Chip Multiprocessors (CMPs).

Some CMPs use a shared L2 cache to maximize the on-chip cache

capacity and minimize off-chip misses. Others use private L2

caches, replicating data to limit the delay due to global wires and

minimize cache access time. Recent hybrid proposals use selective

replication to balance latency and capacity, but their static

replication rules result in performance degradation for some

combinations of workloads and system configurations.

This paper proposes Adaptive Selective Replication (ASR), a

mechanism that dynamically monitors workload behavior to

control replication. ASR replicates cache blocks only when it

estimates the benefit of replication (lower L2 hit latency) exceeds

the cost (more L2 misses). Full-system simulations of 8-processor

CMPs show that ASR provides robust performance: improving

performance by as much as 29% versus shared caches, 19%

versus private caches, and 12% versus CMP-NuRapid [9] and

Victim Replication [41]. Furthermore, while ASR does not

improve the performance of all workloads, it provides

performance stability by always performing at least comparably

to the best alternative including Cooperative Caching [8].

1. Introduction

As Chip Multiprocessors (CMPs) emerge in mainstream

systems, they must provide good performance for a wide variety

of workloads. Level-2 (L2) cache management presents a key

challenge, especially in the face of the conflicting requirements of

reducing off-chip misses (capacity) and managing slow global

wires (latency). Current CMP systems, such as the IBM Power 5

[27] and Sun Niagara [18], employ shared L2 caches to maximize

the on-chip cache capacity by preventing replication. While

shared caches usually minimize off-chip misses, they have higher

access latencies since many requests cross global wires to reach

distant L2 banks. In contrast, private L2 caches [19, 23] reduce

average access latency by replicating data close to the requesting

processor, but sacrifice effective capacity and incur more misses.

Recent hybrid cache designs seek to achieve a balance

between latency and capacity by selectively replicating cache

blocks. Cooperative Caching [8] and CMP-NuRapid [9] have

nominally private L2 caches and restricts replication under certain

criteria, while Victim Replication [41] has a nominal shared L2

cache and allows replication under other criteria. These schemes

perform better than private and shared caches for selected

workloads and system configurations. However, CMP-NuRapid

and Victim Replication each have static replication policies that

cannot dynamically adapt to different workload behavior.

Cooperative Caching uses a configurable probability to tradeoff

replication with effective cache capacity, but does not propose a

method to adjust the probability.

Figure 1 illustrates the need for an adaptive replication

policy. For the 16 MB CMP configuration (see Section 5.1),

Cooperative Caching improves the performance of Apache by

13% using minimum replication (CC 100%), but degrades the

performance of Apsi by 27% at the same level. Furthermore,

Section 6.2 shows that for some workloads the optimal replication

level changes for different cache configurations. Clearly, some

adaptive policy is needed to determine the best replication level

for a given combination of workload and cache configuration.

This paper proposes Adaptive Selective Replication (ASR), a

hardware mechanism that dynamically estimates the cost (extra

misses) and benefit (lower hit latency) of replication and adjusts

the replication level to minimize average access time. ASR

monitors hits to remote L2 cache banks and (pseudo-)LRU cache

blocks, to estimate the benefits and costs, respectively, of

additional replication. ASR monitors hits to replica blocks and a

novel Victim Tag Buffer to estimate the benefit of reducing

replication. ASR maintains per-processor summaries of the costs

and benefits, allowing independent localized replication decisions.

This paper makes the following contributions:

•We demonstrate that cache replication policies should focus on
shared read-only blocks. For commercial workloads, shared
read-only blocks account for 42-71% of L2 requests, but
consume—without replication—only 10-21% of the L2
capacity. Replicating relatively few shared read-only blocks
significantly reduces L2 access time due to their tremendous
locality: the top 3% of shared read-only blocks account for 70%
of requests. Conversely, aggressive replication degrades some
workloads’ performance due to increased off-chip misses.

•We introduce Selective Probabilistic Replication (SPR), a
simple replication mechanism that exploits the fact that the
most frequently requested L2 blocks are also the most
frequently evicted L1 blocks. By using probabilistic filtering,
SPR requires significantly less hardware than CMP-NuRapid
and Cooperative Caching, and equivalent hardware to Victim
Replication.

Bradford M. Beckmann†

Windows Server Performance

Microsoft Corporation

Bradford.Beckmann@microsoft.com

Michael R. Marty and David A. Wood

Computer Sciences Department

University of Wisconsin—Madison

{mikem, david}@cs.wisc.edu

2

•We propose ASR, the first hardware mechanism that
dynamically controls replication. When applied to SPR, ASR
provides a dynamically adaptive CMP cache hierarchy that
improves performance by as much as 12% versus previous
replication policies. Furthermore, ASR adds only 1.2% storage
overhead to a future on-chip cache hierarchy.

Section 2 characterizes the CMP working sets of the 8

evaluated workloads, Section 3 describes ASR and Section 4

describes SPR and the ASR implementation. Section 5 details the

evaluation methodology, Section 6 presents simulation results, and

Section 7 summarizes related work.

0.6

0.8

1.0

S
pe

ed
up

 0%
CC

30%
CC

70%
CC

100%
CC

apache
 0%
CC

30%
CC

70%
CC

100%
CC

apsi

Figure 1: Cooperative Caching (CC) Speedup:

16 MB CMP configuration

2. Characterizing CMP Working Sets

To understand the potential benefits and costs of replication,

this section analyzes the sharing behavior of cache blocks during

their on-chip lifetime; that is, the interval from when a miss brings

a block on chip until it is replaced. In particular, the study

simulates an eight-processor CMP executing various commercial

and scientific workloads under the Solaris 9 operating system. To

mitigate cold start effects, all simulations run long enough that

total L2 cache misses significantly outnumber the L2 block frames.

Section 5 describes the simulation environment and workloads in

more detail.

2.1 Sharing Types: Requests vs. Capacity

The cost and benefit of replication depends on the cache

block’s sharing behavior. We identify three distinct sharing types:

1. Single Requestor blocks are accessed by a single processor, 2.

Shared Read-Only blocks are read, but not written, by multiple

processors, and 3. Shared Read-Write blocks are accessed by

multiple processors, with at least one write. Single-requestor

blocks cannot benefit from replication. Shared read-only and

shared read-write blocks can, but the latter will incur extra delay

on writes due to coherence invalidations.

Table 1 shows—in general—that

Table 1: L2 Cache Request and L2 Cache Capacity Profile

Single Requestor Shared Read-Only Shared Read-Write

Benchmark
% of

Requests
% of

Capacity
% of

Requests
% of

Capacity
Avg. # of
Sharers

% of
Requests

% of
Capacity

Avg. # of
Sharers

apache 11% 51% 44% 20% 3.7 44% 29% 2.8

jbb 57 91 42 10 3.5 1 < 1 2.4

oltp 4 51 71 21 4.5 25 28 3.6

zeus 20 71 54 11 3.0 25 18 2.3

apsi > 99 > 99 < 1 < 1 7.3 < 1 < 1 2.8

art 53 71 46 29 3.0 < 1 < 1 2.3

barnes 19 93 74 4 3.2 7 3 2.1

ocean 94 98 1 < 1 4.7 5 1 2.1

 while many requests are to

shared data, single-requestor blocks consume the majority of the

cache capacity. Shared read-only blocks account for 42%-71% of

requests for the four commercial workloads and two of the

scientific workloads. Yet single-requestor blocks account for over

50% of L2 cache capacity for all workloads and over 90% for Jbb,

Apsi, Barnes, and Ocean. In comparison, shared read-only and

shared read-write data consume relatively little capacity, with the

maximum being less than 30%.

Replicating shared blocks to reduce access latency is

attractive, since they are accessed frequently yet consume

relatively little cache capacity. However, blind replication is

dangerous, since the degree of sharing suggests that the capacity

could increase significantly. Table 1 shows that shared read-only

blocks in Apache, Jbb, Oltp, Zeus, and Art are requested by 3.0 to

4.5 processors, on average, during their on-chip cache lifetimes.

Fully replicating these blocks could increase the effective working

set by 25-74%.

Fortunately, shared read-only blocks exhibit strong locality,

especially for commercial workloads. Figure 2a plots the

cumulative request distribution versus the cumulative capacity

distribution for shared read-only blocks. For all commercial

workloads, the top 20% of blocks account for over 90% of requests

and the top 3% of blocks account for over 70% of requests.

Conversely, Figure 2b illustrates that shared read-write blocks

have much less locality: the top 20% of blocks only account for

75% or less of requests. Further observation (not shown) shows

that the top 3% of shared read-only blocks only consume 100-300

KB. Thus, replicating these blocks would have relatively little

impact on the total cache capacity. For this reason, we focus on

replicating shared read-only blocks in this paper.

2.2 Impact of Replication

While replicating blocks can reduce L2 hit latency, it also

decreases the effective L2 cache size. If replicas displace too much

of a workload’s working set, performance may degrade

significantly. Figure 3 illustrates this risk by plotting the

normalized hit ratios for fully-associative caches up to 32 MB.

Normalized L2 Cache Hit Ratio
Hits within cache size α

Hits within a 32 MB L2 cache
--=

3

This graph demonstrates the sensitivity that many workloads

have to small changes in cache size. For example, Ocean and Art

have critical working set sizes of 4 MB and 8 MB, respectively.

Decreasing the effective cache capacity below these thresholds has

a dramatic negative impact on performance. All of the scientific

workloads exhibit clearly identifiable working set boundaries,

while the commercial workloads have less pronounced transitions.

Ideally, a replication policy would avoid decreasing capacity below

these critical thresholds.

20 40 60 80 100
Cum. % of Shared R Only Blocks

0

20

40

60

80

100
C

u
m

.
%

 o
f

S
h

ar
ed

 R
 O

n
ly

 R
eq

u
es

ts

apache

jbb

oltp

zeus

apsi

art

barnes

ocean

20 40 60 80 100
Cum. % of Shared RW Blocks

0

20

40

60

80

100

C
u
m

.
%

 o
f

S
h
ar

ed
 R

W
 R

eq
u
es

ts

apache

jbb

oltp

zeus

apsi

art

barnes

ocean

Figure 2: a) Request to Block Distribution: Shared

Read-Only

Figure 2: b) Request to Block Distribution: Shared

Read-Write

<1/8 1/4 1/2 1 2 4 8 16 32
L2 Size (MB)

0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

al
iz

ed
 L

2
 H

it
 R

at
io apache

jbb

oltp

zeus

apsi

art

barnes

ocean

3. ASR: Adaptive Selective Replication

ASR seeks the optimum replication level by balancing the

benefits of replication against the costs. Section 3.1 introduces the

simple memory system performance model underlying ASR and

Section 3.2 describes ASR’s replication algorithm.

3.1 Replication and CMP Cache Performance

To the first order, L2 cache block replication improves

memory system performance when it reduces the average L1 miss

latency. The following equation describes the average cycles for

L1 cache misses normalized by instructions executed:

L1 miss cycles

Instruction

P
localL2 L

localL2×()

Instructions L1misses⁄()
--- +=

P
remoteL2 L

remoteL2×()

Instructions L1misses⁄()
--

P
miss

L
miss

×()

Instructions L1misses⁄()
--+

Px is the probability of a memory request being satisfied by

the entity x, where x is a local L2 cache, the remote L2 caches, or

main memory and Lx equals the latency of each entity. Therefore,

the combination of the localL2 and remoteL2 terms represent the

memory cycles spent on L2 cache hits and the third term depicts

the memory cycles spent on L2 cache misses. Replication

increases the probability that L1 misses hit in the local L2 cache,

thus the PlocalL2 term increases and the PremoteL2 term decreases.

Because the latency of a local L2 cache hit is tens of cycles faster

than a remote L2 cache hit, the net effect of increasing replication

is a reduction in cycles spent on L2 cache hits. However, more

replication devotes more capacity to replica blocks, thus fewer

unique blocks exist on-chip, increasing the probability of L2 cache

misses, Pmiss. If the probability of a miss increases significantly

due to replication, the miss term will dominate, as the latency of

memory is hundreds of cycles greater than the L2 hit latencies.

Therefore, balancing these three terms is necessary to improve

memory system performance.

Optimal performance often arises from an intermediate

replication level. Figure 4 graphically depicts this tradeoff. The

Replication Benefit curve, Figure 4a, illustrates the trend that

increasing replication reduces L2 cache hit cycles. Due to the

strong locality of shared read-only requests, a small degree of L2

replication can significantly reduce L2 hit cycles by moving many

previous remote L2 hits into the local cache. In contrast, increased

replication gradually reduces L2 hit cycles because fewer unique

blocks on-chip lead to fewer total L2 hits. The Replication Cost

curve, Figure 4b, illustrates that increasing L2 replication

increases the memory cycles spent on off-chip misses. The

Replication Effectiveness curve, Figure 4c, combines the benefit

and cost curves and plots the total memory cycles. Because the

benefit and cost curves are generally convex and have opposite

slopes, the minimum of the Replication Effectiveness curve often

lies between allowing all replications and no replications. ASR

estimates the slopes of the benefit and cost curves to approximate

the optimal replication level.

3.2 Balancing Replication via ASR

By dynamically monitoring the benefit and cost of

replication, ASR attempts to achieve the optimal level of

replication. ASR identifies discrete replication levels and makes a

piecewise approximation of the memory cycle slope. Thus ASR Figure 3: Normalize L2 Cache Hit Ratios

4

simplifies the analysis to a local decision of whether the amount of

replication should be increased, decreased, or remain the same.

Figure 4 illustrates the case where the current replication level,

labeled C, results in HC hit cycles-per-instruction and MC miss

cycles-per-instruction. ASR considers three alternatives: (i)

increasing replication to the next higher level, labeled H, (ii)

decreasing replication to the next lower level, labeled L, or (iii)

leaving the replication unchanged. To make this decision, ASR not

only needs HC and MC, but also four additional hit and miss

cycles-per-instruction values: HH and MH for the next higher level

and HL and ML for the next lower level.

H

H

CL H

C

H

H
L

L C H

L
2

 M
is

s
 C

y
c
le

s
 /

 I
n

s
tr

.

M
L

M
C

M
H

HCL

optimal

T
o

ta
l
C

y
c
le

s
 /

 I
n

s
tr

.

L
2

 H
it
 C

y
c
le

s
 /

 I
n

s
tr

.

% Replicas% Replicas % Replicas

Figure 4: b) Replication Cost Figure 4: c) Replication EffectivenessFigure 4: a) Replication Benefit

In
c
re

a
s
e

In
c
re

a
s
e

Decrease Decrease

C H HIncrease = (H − H) − (M − M)C

C L LDecrease C= (M − M) − (H − H)

Definitions

<= 0> 0

<
=

 0
>

 0 if (>)

else

Replication

Decrease Do

Nothing

Increase

Decrease Replication

Increase Replication

Replication

Increase Decrease

Figure 5: ASR Decision Table for Adjusting Replication

To simplify the collection process, ASR estimates only the

four differences between the hit and miss cycles-per-instruction:

(1) the benefit of increasing replication (decrease in L2 hit cycles,

HC - HH); (2) the cost of increasing replication (increase in L2

miss cycles, MH - MC); (3) the benefit of decreasing replication,

(decrease in L2 miss cycles, MC - ML); and (4) the cost of

decreasing replication (increase in L2 hit cycles, HL - HC).

By comparing these cost and benefit counters, ASR will

increase, decrease, or leave unchanged the replication level.

Figure 5 presents ASR’s decision table for adjusting replication.

ΔIncrease and ΔDecrease summarize the cost and benefit

counters: positive values indicate that increasing or decreasing

replication, respectively, will improve performance. When both

ΔIncrease and ΔDecrease are positive, ASR chooses the direction

with the greater predicted benefit.

4. Implementing ASR using SPR

Implementing ASR requires a CMP cache framework that

supports multiple replication levels. Cooperative Caching [8] is

one possibility, but this scheme requires an expensive central tag

structure. Section 4.1 introduces the simpler Selective Probabilistic

Replication (SPR) design which uses distributed state to make

local replication decisions. Section 4.2 describes the additional

hardware needed to implement ASR, with Beckmann’s

dissertation [5] providing further detail. Finally, Section 4.3

summarizes ASR’s storage and energy overhead.

4.1 SPR: Selective Probabilistic Replication

Like most earlier replication proposals, SPR assumes private

L2 caches and selectively limits replication on L1 evictions. SPR

uses a non-inclusive Token Coherence broadcast protocol [22] and

ring writebacks [30] to eliminate the need for a central tag

structure (like Cooperative Caching) or a designated home node

(like Victim Replication). While token coherence simplified SPR’s

implementation, SPR is not dependent on token coherence and

instead could have used a non-home-node directory protocol, e.g.,

AMD’s HyperTransport cache coherence protocol [2]. On an L1

cache eviction, SPR writes a shared block back to its local L2 if (i)

the block was already allocated in the local L2 or (ii) the

replication policy (below) allocates a new block. Otherwise, SPR

uses a ring writeback to merge the block with an existing remote

L2 copy. Specifically, L1 writeback messages are passed clockwise

between private L2 caches to search for an already allocated copy

or an empty L2 block.

To avoid extra delay on writes due to coherence invalidations,

SPR only replicates shared read-only data. To identify which cache

blocks are shared and read-only, SPR uses the per-block dirty bit in

combination with an extra per-block shared bit. The L1 and L2

cache tags set the shared bit when receiving a request from a

processor different than the current sharer. Similar to the dirty bit,

once the shared bit set, it is not reset until the block is replaced.

When the dirty bit is not set and shared bit is set, the block is

considered shared read-only.

Table 2: SPR Replication Levels

Level 0 1 2 3 4 5

Probability 0 1/64 1/16 1/4 1/2 1

Threshold 0 4 16 64 128 256

On L1 cache writebacks, SPR uses probabilistic filtering to

decide when to replicate a block. To simplify the replication

5

process, SPR supports six discrete replication levels (Table 2).

Each replication level has a unique probability that a shared read-

only block will be replicated, with the lower replication levels

permitting very few replications. When an L1 cache evicts a shared

read-only block and the block is not found in the local L2 cache,

the replication probability determines whether to replicate the

block locally. Specifically, a linear feedback shift register [13]

generates an 6-bit pseudo-random number which it compares to

the current replication threshold (i.e., if random < threshold, then

replicate). Like all SPR logic, the pseudo-random number

generator does not impact L2 cache access latency and is accessed

only on replacement. The probabilistic policy biases replications to

frequently requested blocks because frequently requested L2

blocks are also those blocks frequently evicted from the L1 caches.

4.2 Implementing ASR

Determining whether to increase or decrease replication

requires knowing whether a block would be replicated at the next

higher or next lower level. ASR identifies these blocks by

comparing the random number not just against the current

replication threshold, but also against the thresholds for the next

higher and lower levels. Note that because the thresholds are

monotonic, all decisions to replicate a block at level i will also be

made at level i+1. ASR uses the information about whether a block

should be replicated at the current, next lower, or next higher levels

to maintain the mechanisms described below.

ASR uses four separate mechanisms to estimate the costs and

benefits of replication and another mechanism to trigger a

replication analysis that could change the replication level.

Benefit of Increasing Replication (HC - HH). To determine the

benefit of increasing replication, ASR identifies the blocks not

replicated at the current replication level, but that would have been

replicated with the next higher level. Specifically, each processor

stores 8-bit partial tags [16] of the blocks that would have been

replicated with the next higher replication level using separate

16 K entry, 16-way set-associative buffers called the Next Level

Hit Buffers (NLHBs). When a request hits in a remote L2 cache,

the local NLHB is checked to determine if the request could have

been a local hit if replication was increased. If so, ASR increments

its (HC - HH) counter by the number of cycles that would be saved

by a local L2 hit versus a remote L2 hit.

Cost of Increasing Replication (MH - MC). ASR estimates the

cost of increasing the replication level by estimating the utilization

of soon-to-be-evicted L2 cache blocks. In other words, these are

the unique L2 blocks that would exist off-chip if replication was

increased. Specifically, ASR monitors the last 1 K of least recently

used L2 blocks. A monitor size greater than 1 K provides little

additional benefit due to the low locality of these blocks. Because

precisely determining the recently used cache blocks is

prohibitively expensive in hardware, ASR uses way and set

counters [32] to estimate which blocks are least recently used.

Specifically, ASR breaks the L2 sets into 256 separate groups

using the high order L2 cache index bits and relies on a 255-bit

pseudo LRU binary tree [28] to estimate the LRU position of the

requested set-group. If a request hits an L2 block not identified as a

current replica and the block’s way and set-group position lies

within the last 1 K of LRU blocks, the (MH -MC) counter is

incremented by the off-chip memory latency.

Benefit of Decreasing Replication (MC - ML). To predict the

benefit of decreasing replication, ASR uses Victim Tag Buffers

(VTBs) to track which L2 misses could have been avoided by

reducing the replication level. Each VTB stores 16-bit partial tags

of the most recently evicted blocks in a 1 K entry 16-way set

associative buffer. The VTB only stores tags that were evicted due

to the current replication level, but would not have been evicted

with the next lower level. When a replication associated with the

current replication level causes an L2 eviction, the VTB allocates

the evicted tag. The VTB stores other L2 eviction tags only if they

replace an existing valid entry. Subsequent off-chip misses that hit

in the VTB, increment the (MC - ML) counter by the off-chip miss

latency. When the SPR replication level decreases, ASR clears the

VTB because the tags currently stored no longer correspond to the

new lower replication level.

Cost of Decreasing Replication (HL - HC). To estimate the cost

of decreasing replication, ASR identifies blocks that are replicated

at the current replication level, but would not be replicated at the

next lower level. Specifically, an extra current replication bit

marks these blocks in the local L2 cache tags. For local L2 hits that

find the current replication bit set, ASR increments its (HL - HC)

counter by the difference between a remote L2 hit and a local L2

hit. When the SPR replication level increases, ASR clears the

current replication bits because the bits no longer correspond to the

new replication level.

Triggering a Cost-Benefit Analysis. Like all adaptive systems,

ASR should respond quickly, but not too quickly, to changes in

workload behavior. ASR does this using a two-step process. First,

ASR waits until it observes enough events to ensure a fair

cost/benefit comparison. Specifically, ASR triggers an evaluation

when the number of local L2 replications or NLHB allocations

exceed the 1 K entry monitor size. Thus, the time interval between

replication evaluations is not fixed, nor do the evaluations require

chip-wide coordination. Rather, the evaluation intervals depend

only on the frequency of local replication opportunities. Upon

triggering an evaluation, ASR performs the comparison described

in Section 3.2 to determine if and how the replication level should

be changed. Second, ASR provides hysteresis by waiting until four

consecutive evaluation intervals predict the same change before

making an actual change to the replication level. After each

evaluation, all four counters are cleared.

4.3 Storage and Energy

ASR adds a small storage overhead to the on-chip cache

hierarchy and should have minimal impact on energy

consumption. For an eight processor CMP, Table 3 breaks down

ASR’s storage requirement for two cache configurations: a 4 MB

aggregate L2 cache with 16 KB L1 caches and a 16 MB aggregate

L2 with 64 KB L1s. Table 3 demonstrates that ASR scales well to

bigger caches because many of its structures are cache size

independent. For instance, between the 4 MB and 16 MB

configurations, ASR’s storage overhead only grows by 40 KB.

ASR’s size is mostly independent of cache size because it only

monitors the marginal benefits and costs of replication, instead of

monitoring replication’s effectiveness across the entire cache.

Later, Section 6.2 directly compares ASR’s storage overhead with

the previous proposals [8, 9, 41].

6

While ASR costs some bits, it doesn’t consume energy for

passing messages between processors for coordinating replication

level changes. Each L2 cache makes a local replication decision.

SPR’s replication logic lies on the non-latency critical L1

replacement decision and is a simple probabilistic choice.

Additionally, ASR’s tables and counters are also non-latency

critical and are only accessed on L1 and L2 misses. Therefore,

ASR’s logic will be accessed relatively infrequently and can use

high-Vt low-leakage transistors [25]. Also, ASR’s cost-benefit

model could be extended to account for the dynamic power

consumed by local versus remote L2 hits. We leave this for future

work.

Table 3: ASR Storage Overhead

Overhead Bits

K Entries K Bytes

4 MB
CMP

16 MB
CMP

4 MB
CMP

16 MB
CMP

per L1 block 1 4 16 0.5 2

per L2 block 2 64 256 16 64

NLHBs 8 128 128 128 128

VTBs 16 8 8 16 16

Total KBytes (including counters) 161.5 211

% increase of on-chip cache capacity 3.7% 1.2%

Area (90 nm & 45 nm tech. respectively) ~ 3 mm2 ~ 1 mm2

5. Methodology

By using full-system simulation based on Simics [36] and the

GEMS toolset [37], we evaluate ASR against alternative cache

designs. This section describes the alternative caches, system

parameters, and workloads that we use in our simulation study.

5.1 Alternative Cache Designs

Section 6 compares ASR against two baseline

configurations—shared L2 and private L2 caches—and the

previous replication proposals: Victim Replication [41], CMP-

NuRapid [9], and Cooperative Caching [8].

CMP-Shared. As illustrated in Figure 6a, the CMP-Shared design

assumes a Non-Uniform Cache Architecture (NUCA) [17]. CMP-

Shared statically maps the addresses across all on-chip L2 banks,

thus forming a shared cache with non-uniform latency. On an L1

miss, a processor sends its request to the appropriate L2 bank

which may forward the request to L1 sharers or memory. By

disallowing L2 replication, the CMP-Shared achieves the best

capacity, but by not exploiting the distance locality between

processors and L2 banks, it incurs the highest access latency.

CMP-Private. The CMP-Private design (Figure 6b) assigns each

cache bank private to a processor. Similar to the Itanium 2

microprocessor [24], the closely integrated private L2 caches allow

each processor to avoid the shared on-chip network and directly

query the L2 cache tags in parallel with an L1 cache access. Unlike

other baseline private cache designs [8], CMP-Private allows direct

cache-to-cache transfers of clean data. L1 misses and replacements

are directed to the local private L2 bank and other processors

cannot allocate into a remote bank. Thus, CMP-Private migrates

[6, 14] single requestor data and replicates all shared data without

the storage overhead of home blocks associated with a distributed

directory protocol. However, CMP-Private’s unrestricted

replication of shared data can increase off-chip misses and

coherence invalidations.

Bank 3
L2

L2

L2

L2 L2

L2

L2

L2

Bank 5Bank 2

Bank 1

Bank 0 Bank 7

Bank 6

Bank 4

tags

tags tags

tagstags

tags

tags tags

I $
L1

L1
D$

I $
L1

CPU 2

L1
D$

I $
L1

L1
D$

I $
L1

CPU 0

L1
D$

CPU 1

CPU 3 CPU 4

L1
I $

$D
L1

L1
I $

$D
L1

L1
I $

$D
L1

L1
I $

$D
L1

CPU 6

CPU 5

CPU 7

Private
tags

Private

Private Private

Private Private

tags

tags

tags tags

tags

tags

Private Private

L2

L2

L2

L2 L2

L2

L2

L2

tags

I $
L1

L1
D$

I $
L1

CPU 2

L1
D$

I $
L1

L1
D$

I $
L1

CPU 0

L1
D$

CPU 1

CPU 3 CPU 4

L1
I $

$D
L1

L1
I $

$D
L1

L1
I $

$D
L1

L1
I $

$D
L1

CPU 6

CPU 5

CPU 7

Figure 6: a) Layout of CMP-Shared

Figure 6: b) Layout of CMP-Private

In addition to supporting ASR, SPR’s selective replication

framework can support previously proposed replication policies

with relatively simple changes.

SPR-VR. Victim Replication [41] targets an on-chip directory

protocol and statically assigns blocks to home nodes (like CMP-

Shared). Non-home nodes replicate blocks locally, except when a

L2 cache set is already full of home blocks that have remote

sharers. Using a random replacement policy, non-shared home

blocks are evicted before replicas. SPR-VR implements Victim

Replication’s replication policy by adding 1-bit per L2 cache block

to identify replicas and by disallowing replications when the local

cache set is filled with owner blocks with identified sharers. Victim

Replication’s distributed directory protocol wastes significant

storage by forcing home nodes to store cache blocks regardless if

the home node actually used the block. Thus, replicating shared

data overlapped with migrating single requestor data away from its

home bank. Although it requires more bandwidth, SPR-VR should

perform strictly better than the original Victim Replication

implementation because the token broadcast protocol [22] removes

the home node storage overhead.

7

SPR-NR. CMP-NuRapid [9] maintains coherence using a shared

bus and per-processor decoupled tag arrays with indirect data

block pointers (6% overhead). CMP-NuRapid’s replication policy

allocates a local L2 tag after the first request and then locally

allocates the actual L2 data block upon a second request. SPR-NR

removes the shared bus overhead and incorporates CMP-

NuRapid’s replication policy by storing a 1-bit counter per remote

processor for each L2 block (1.4% overhead). A processor’s first

request sets its associated bit; a second request by the same

processor causes local allocation of the L2 block.

SPR-CC. Cooperative Caching (CC) [8] uses a centralized

duplicate tag structure to identify singlets, i.e., an L2 block with

one on-chip copy, and biases replacements to evict non-singlets

first. Cooperative Caching retains active singlets by spilling them

to a remote L2 cache. SPR-CC models the centralized tag structure

using an idealized distributed tag structure.

5.2 System Parameters

Table 4: Comparison of Configuration Parameters

Parameters Current CMP Future CMP

processor model / cycle time in-order / 1.4 GHz out-of-order / 5.0 GHz

split L1 I & D caches 16 KB each, 4-way, 2 cycles 64 KB each, 4-way, 3 cycles

aggregate L2 cache sizes 4 MB 16-way pseudoLRU [28] 16 MB 16-way pseudoLRU [28]

avg. shared L2 / local L2 / remote L2 latency 25 / 12 / 34 cycles 44 / 20 / 50 cycles

memory latency 150 cycles 500 cycles

memory bandwidth 28 GB/s 50 GB/s

Our evaluation studies two different SPARC V9 8-processor

CMP configurations targeting current and future technology. The

Sun Niagara [18, 20] inspired the first CMP configuration, (the

second column of Table 4), and the second configuration presents a

CMP assuming 2010 technology [12] (column 3 of Table 4). The

15-stage out-of-order (OoO) cores of the Future CMP design are

4-wide superscalar processors using 64-entry instruction

scheduling windows with 128-entry ROBs. Each OoO core

predicts branches using a 3.5 KB YAGS direct branch predictor, a

256-entry cascaded indirect branch predictor, and a 64-entry return

address stack predictor. Table 4 also includes the average load-to-

use latencies [1] for the shared cache, as well as, the local and

remote banks in the private cache. Both configurations utilize 64-

byte cache blocks and 4 GB of DRAM.

All designs use writeback, write-allocate caches and

implement sequential memory consistency. The intra-chip protocol

allows for migratory sharing between L1 caches. The L2 cache is

inclusive with the L1 caches and maintains up-to-date L1 sharer

knowledge. All evaluated designs also incorporate strided

prefetchers between the L1 and L2 caches, as well between the L2

caches and memory. The prefetcher is based on the IBM Power 4

[34], except it issues prefetches for both load and stores.

The intra-chip and inter-chip networks are modeled in detail,

including all messages required to implement the coherence

protocol. The on-chip links are 64-bytes wide and the off-chip

bandwidth is specified in Table 4. Virtual cut-through routing is

used with three message buffering at all switches except the

buffers between the on-chip and off-chip networks are extended to

20 entries to decouple the on-chip network from off-chip queueing

delay.

5.3 Workloads

We studied the CMP cache designs using commercial and

scientific workloads. Alameldeen et al. [3] described the first three

commercial workloads and Xu et al. described Zeus [39]. We also

studied four scientific workloads: two SPLASH2 benchmarks [38]

Barnes (128 k-particle) and Ocean (514 514×), and two

SpecOMP benchmarks [4]: Apsi and Art. We used a work-related

throughput metric to address multithreaded workload variability

[3]. Thus for the commercial workloads, we measured transactions

completed and for the scientific workloads, runs were completed

after the cache warm-up period indicated in Table 5. However, for

the SpecOMP workloads using the reference input sets, runs were

too long to be completed in a reasonable amount of time. Instead,

these loop-based benchmarks were split by main loop completion.

This allowed us to evaluate all workloads using throughput

metrics, rather than IPC. All simulations contain small random

perturbations in the memory latency to account for the non-

determinism that exists in multi-threaded workloads. The error

bars shown in Section 6.3 indicate the 95% confidence intervals.

Table 5: Evaluation Methodology

Benchmark Fast Fwd. Warm-up Executed

Commercial Workloads (unit = transactions)

apache 2000000 2000 1000

jbb 200000 15000 10000

oltp 100000 300 200

zeus 2000000 2000 2000

Scientific Workloads (unit = billion instructions)

apsi 89 4.6 loop completion

art 121 3.2 loop completion

barnes NA 1.9 run completion

ocean NA 2.4 run completion

6. Evaluation

6.1 Replication Capacity and Memory Cycles

The optimal replication point shifts depending on workload

behavior and CMP configuration. Figure 7 displays the L2 hit

cycles-per-instruction, L2 miss cycles-per-instruction, and the

Total cycles-per-instruction curves for both CMP configurations.

Each point on the curve corresponds to a static SPR replication

level.

For Current CMP, 6 of 8 workloads prefer either minimum or

maximum replication, while Apache and Oltp prefer intermediate

replication. The first row of graphs (Figure 7a-c) presents the

results for the Current CMP configuration with a 4 MB aggregate

8

L2 cache capacity. The L2 hit cycles-per-instruction curves for the

workloads: Apache, Jbb, Oltp, Zeus, and Barnes (Figure 7a)

demonstrate how selective replication can exploit the request

locality of shared read-only data. The slopes of these five convex

curves show that limited replication attains most of the latency

reduction possible with unlimited replication. For instance in

Apache, devoting 10% of L2 capacity to replication reduces L2 hit

cycles-per-instruction by 0.3, but allowing replicas to consume

30% more capacity provides less than a 0.2 additional reduction. In

contrast, Figure 7b illustrates the L2 miss cycles-per-instruction

curves have a more consistent slope. For example, Apache’s miss

cycles-per-instruction curve roughly increases by 0.1 for every 5%

increase in replication capacity. The resulting total cycles-per-

instruction curves (Figure 7c) reveal the optimal point of

replication for each workload using the Current CMP

configuration. Replication has little effect on the scientific

workloads Apsi, Art, and Barnes, while the workloads Jbb, Zeus,

and Barnes prefer maximum replication. The most interesting

cases, Apache and Oltp, prefer a replication capacity between the

minimum and maximum.

0 20 40 60
% L2 Capacity for Replication

0.0

0.5

1.0

1.5

L
2
 H

it
 C

y
c
le

s
 /

 I
n
s
tr

. apache

jbb

oltp

zeus

apsi

art

barnes

ocean

0 20 40 60
% L2 Capacity for Replication

0

1

2

3

4

M
is

s
 C

y
c
le

s
 /

 I
n
s
tr

. apache

jbb

oltp

zeus

apsi

art

barnes

ocean

0 20 40 60
% L2 Capacity for Replication

0

1

2

3

4

5

T
o
ta

l
C

y
c
le

s
 /

 I
n
s
tr

. apache

jbb

oltp

zeus

apsi

art

barnes

ocean

0 20 40 60
% L2 Capacity for Replication

0.0

0.5

1.0

1.5

L
2
 H

it
 C

y
c
le

s
 /

 I
n
s
tr

. apache

jbb

oltp

zeus

apsi

art

barnes

ocean

0 20 40 60
% L2 Capacity for Replication

0

1

2

3

4

M
is

s
 C

y
c
le

s
 /

 I
n

s
tr

. apache

jbb

oltp

zeus

apsi

art

barnes

ocean

0 20 40 60
% L2 Capacity for Replication

0

1

2

3

4

5

T
o

ta
l

C
y

c
le

s
 /

 I
n

s
tr

. apache

jbb

oltp

zeus

apsi

art

barnes

ocean

Figure 7: d) L2 Hit Cycles / Instr.

(Future CMP)

Figure 7: e) L2 Miss Cycles / Instr.

(Future CMP)

Figure 7: f) Total Cycles / Instr.

(Future CMP)

Figure 7: a) L2 Hit Cycles / Instr.

(Current CMP)

Figure 7: b) L2 Miss Cycles / Instr.

(Current CMP)

Figure 7: c) Total Cycles / Instr.

(Current CMP)

For the Future CMP configuration, the second row of memory

curves (Figure 7d-f) show that the optimal level of replication

shifts towards less replication. For most workloads, the normalized

L2 hit cycle curves (Figure 7d) maintain the same basic shape as

those of Figure 7a. However, Art demonstrates how balancing

replication becomes more important with larger caches [15]

because its 8 MB working set (Figure 3) now fits in Future CMP’s

larger cache. Figure 7e illustrates Future CMP’s slower memory

latency causes the L2 miss cycle slopes to substantially increase

with respect to those in Figure 7b. The result is the miss cycle

curves have a greater impact on the total cycle curves. For instance

the optimal replication level for Apache and Oltp shifted from 5%

and 40%, respectively, for the Current CMP configuration, to 0%

and 20% for the Future CMP configuration.

6.2 Adapting to Workload Behavior

By dynamically monitoring the changes in L2 hit and miss

cycles, ASR matches the level of replication within each private L2

cache to the behavior of each individual processor. Figure 8

illustrates SPR-ASR’s dynamic adjustment of each private L2

cache’s replication level over time. These results use the Future

CMP configuration, each processor’s replication level is initialized

to level 4, and each point represents when SPR-ASR evaluated of

its counters.

Figure 8a shows that the Apache workload benefits from

SPR-ASR’s adaptability. For the first 200 million cycles the

replication level fluctuates around 4, then drops to hover around

levels 2 and 3 for the remainder of the execution, with a few

9

outliers either way. At this relatively low replication level, only 5%

of the L2 cache contains replicas on average. Interestingly,

Figure 9 shows that the low outliers are entirely due to processor 0,

the one processor that executes almost exclusively OS code.

Apparently, the OS’s large working set size largely eliminates the

benefit of replication. Thus Apache demonstrates the benefit of

maintaining SPR-ASR’s replication level on a per-processor basis.

100 200 300 400
Cycles (M)

0

1

2

3

4

5
R

ep
li

ca
ti

on
 L

ev
el

50 100 150 200
Cycles (M)

0

1

2

3

4

5

R
ep

li
ca

ti
on

 L
ev

el

Figure 8: a) Future CMP ASR Adaptability: Apache Figure 8: b) Future CMP ASR Adaptability: Oltp

100 200 300 400
Cycles (M)

0

1

2

3

4

5

R
ep

li
ca

ti
on

 L
ev

el

100 200 300 400
Cycles (M)

0

1

2

3

4

5

R
ep

li
ca

ti
on

 L
ev

el

Figure 9: a) Future CMP: ASR Adaptability: Apache

(Processor 0)

Figure 9: b) Future CMP: ASR Adaptability: Apache

(Processors 1-7)

Conversely, a static, global replication level would suffice for

the Oltp workload. As illustrated in Figure 8b, SPR-ASR quickly

adjusts all processors to level 5, maximizing replication. The result

is that replicas account for 52% of the L2 capacity on average.

As Figure 8a shows, SPR-ASR can require well over a 100

million cycles to reach steady state, requiring several hours of

simulation. To reduce simulation time, the remainder of this

section initializes the replication levels to their steady-state value.

6.3 Comparison of Replication Schemes

Performance. For workloads where replication interferes with the

active working set, SPR-ASR outperforms the alternative CMP

cache designs. For workloads where replication capacity has little

effect, SPR-ASR performs at least as well as the other designs.

Figure 10 shows the normalized runtime of each CMP design

executing the eight workloads. The two SPR-CC bars represent the

best- and worst-performing Cooperative Caching percentages

(where 100% maximizes replication and 0% minimizes it). For all

workloads except Oltp, the private cache designs (excluding worst

SPR-CC) exploit the relatively fast memory latency of the Current

CMP configuration and improve performance by 0-29% versus

CMP-Shared. For Oltp, SPR-ASR and best SPR-CC perform

equivalently to CMP-Shared, while the other private cache designs

degrade performance by 3-7%. SPR-ASR limits replication to 35%

of L2 capacity, resulting in a 43% increase in off-chip cycles

versus CMP-Shared. In contrast, the other private CMP designs

devote as much as 64% of L2 capacity to replicas causing up to a

96% increase in off-chip cycles versus CMP-Shared. Overall, the

best performing SPR-CC percentage achieves similar performance

to that of SPR-ASR. However, the best SPR-CC percentage varies

by workload—Apache and Oltp do best at 70%, Zeus at 30%, and

the others at 0%—illustrating the benefit of an adaptive policy.

To provide further insight, Figure 11 shows the memory

system cycle breakdown for the Apache and Oltp workloads to

indicate where the time is spent in the memory system. The ‘Local

L1’ and ‘Local/Shrd L2’ segments display the fraction of the

average memory access time contributed by local L1 and L2 hits

respectively (for CMP-Shared ‘Local/Shrd L2’ indicates shared L2

hits). The ‘Remote’ bar segment represents the cycles spent on

requests satisfied by remote L1 or L2 caches. Finally, the ‘Off-

chip’ bar segment indicates the cycles spent on off-chip misses.

As forecast by the total cycles-per-instruction curve

(Figure 7c) the four private cache designs that restrict replication

(SPR-VR, SPR-NR, SPR-CC, and SPR-ASR) attain better

performance for Apache than CMP-Private, which allows all

10

replication. Specifically, SPR-ASR achieves the greatest

performance improvement (24% and 19% versus CMP-Shared and

CMP-Private respectively) by restricting replication to only 5% of

L2 capacity, while SPR-VR and SPR-NR allow replicas to

consume more than 38% of capacity. Figure 11 shows the limited

replication capacity enforced by SPR-ASR exploits the strong

locality of shared read-only requests. Specifically, SPR-ASR

achieves almost as many local L2 hits as SPR-NR (82%), while

SPR-ASR’s greater effective cache capacity reduces off-chip miss

cycles by 20%.

SPR-ASR

0.6

0.8

1.0

1.2
S

p
ee

d
u
p

S PVN

 0

%

C
 7

0
%

CA

apache

S PVN

1
0

0
%

C

 0

%

CA

jbb

S PVN

 0

%

C

 7
0

%

CA

oltp

S PVN

1
0

0
%

C

 3
0

%

CA

zeus

S PVN

1
0

0
%

C

 0

%

CA

apsi

S PVN

 3
0

%

C

 0

%

CA

art

S PVN

1
0

0
%

C

 0

%

CA

barnes

S PVN

 7
0

%

C

 0

%

CA

ocean

Figure 10: Current CMP Speedups

(S: CMP-Shared, P: CMP-Private, V: SPR-VR, N: SPR-NR, C: SPR-CC, A: SPR-ASR)

0.0

0.5

1.0

N
o
rm

.
M

e
m

o
ry

 C
y
c
le

s

Local L1

Local/Shrd L2

Remote

Off-chip

S P V N
 0%
C

 70%
C A

apache

S P V N
 0%
C

 70%
C A

oltp

Figure 11: Current CMP Memory Cycles

(S: CMP-Shared, P: CMP-Private, V: SPR-VR,

N: SPR-NR, C: SPR-CC, A: SPR-ASR)

also improves the Future CMP configuration

despite the fact that higher memory latency and out-of-order

processors [26] change the performance tradeoff between shared

and private caches. For Apache, Apsi, and Barnes, the performance

advantage private cache designs exhibit over CMP-Shared

diminishes by 12-23%, while the private cache performance

advantage increases for Oltp and Ocean by 11-15%. Figure 13

breaks down the memory cycles for Apache and Oltp. Because

Oltp’s working set better fits in Future CMP’s larger cache, the

private cache organizations utilize replication to exploit the faster

private L2 caches. Oltp’s frequently requested shared read-only

working set (Table 1) especially benefits from replication, enabling

the private cache designs to improve performance by 6-12% versus

CMP-Shared. However, Apache’s larger working set (Figure 3)

exposes Future CMP’s slower memory latency and all private

cache designs except the best SPR-CC and SPR-ASR suffer

substantial performance degradation versus CMP-Shared.

Specifically, CMP-Private, SPR-VR, and SPR-NR suffer a

performance degradation of 7-13% versus CMP-Shared, while

SPR-ASR achieves the greatest performance improvement versus

CMP-Shared—5%. Though SPR-CC with 100% performs

similarly to SPR-ASR in Apache, SPR-CC with 0% suffers nearly

the same performance degradation as SPR-VR and SPR-NR.

Conversely, SPR-ASR does not require external tuning and

dynamically identifies replication’s lack of benefit. The result is

SPR-ASR increases off-chip misses by only 13% and improves

performance by 2% versus CMP-Shared, 17% versus CMP-

Private, and 12% versus SPR-VR, and SPR-NR.

Performance Summary. Overall, SPR-ASR significantly

improves performance for workloads where shared read-only

replication conflicts with the active working set, e.g. Apache and

Oltp. For other workloads, SPR-ASR always performs

competitively, if not better than the best alternative. SPR-ASR’s

performance stability ensures CMP caches will provide good

performance to a wider variety of workloads.

Storage Overhead. SPR-ASR achieves better performance for

less storage overhead than the previous hybrid cache designs

because it relies on SPR’s probabilistic filtering rather than a more

hardware intensive replication mechanism, such as those used by

CMP-NuRapid and Cooperative Caching. Instead, SPR-ASR

targets its storage overhead to dynamically monitoring

replication’s cost and benefit. For the Current and Future CMP

configurations, Table 6 compares the storage overhead of SPR-VR,

SPR-NR, SPR-CC, and SPR-ASR. SPR-VR’s and SPR-ASR’s

replication mechanisms add only one bit per L2 cache block for

respectively identifying replica and shared blocks. Thus, these

mechanisms scale well with increasing the aggregate L2 cache

size. In comparison, CMP-NuRapid’s SPR implementation adds 7-

bits per L2 block—1-bit counter for each remote L2 cache—and

Cooperative Caching’s SPR implementation requires a duplicate

tag per L2 cache block.

7. Related Work

7.1 Multiprocessor Memories

A large body of previous work exists in studying data

replication in the context of flat multiprocessors [10]. Specifically,

throughout the previous decade significant work has compared

hardware solutions such as CC-NUMA and Flat COMA

architectures [31, 42], along with software [7, 35] and hybrid

hardware/software combinations [11, 29]. The Flat COMA

protocol [29, 31] removed the slow ordered network of

hierarchical COMA machines allowing data to migrate and

11

replicate towards the requesting processor on an unordered

network, similar to the evaluated private CMP cache designs.

Related to ASR’s adaptive selective replication mechanism,

Verghese et al. [35] proposed an OS mechanism that adapted the

number of pages migrated and replicated to a processor’s local

memory. Zhang et al. [42] studied the working sets of various

workloads running on a NUMA system. Compared to our work in

Section 2, they characterized data into three classes: replication,

migration read-only, and migrating read/write.

Table 6: Storage Overhead Comparison

SPR Cache Design

Replication Mechanism Adaptive Mechanism

Current CMP Future CMP Current CMP Future CMP

Victim Replication 8 KB 32 KB Not Applicable Not Applicable

CMP-NuRapid 56 KB 224 KB Not Applicable Not Applicable

Cooperative Caching 255 KB 886 KB Not Applicable Not Applicable

ASR 8.5 KB 34 KB 153 KB 177 KB

0.6

0.8

1.0

S
p
ee

d
u
p

S PVN

 0

%

C

1
0

0
%

CA

apache

S PVN

1
0

0
%

C

 0

%

CA

jbb

S PVN

 0

%

C

1
0

0
%

CA

oltp

S PVN

 0

%

C

 3
0

%

CA

zeus

S PVN

1
0

0
%

C

 0

%

CA

apsi

S PVN

 0

%

C

 3
0

%

CA

art

S PVN

 0

%

C

1
0

0
%

CA

barnes

S PVN

 7
0

%

C

 0

%

CA

ocean

Figure 12: Future CMP Speedups

(S: CMP-Shared, P: CMP-Private, V: SPR-VR, N: SPR-NR, C: SPR-CC, A: SPR-ASR)

7.2 Chip Multiprocessor Caches

There has also been significant recent work in evaluating the

benefits and limitations of replication in CMP caches. Huh et al.

[14] investigated sharing in a CMP-NUCA cache and concluded

allowing some replication between cache banks was advantageous.

Liu et al. [21] evaluated the performance of managing the

allocation of cache resources on a bus-based CMP and proposed a

profile-driven approach to determine which cache banks to share

between processors and which to reserve as private. In contrast,

ASR dynamically analyzes workload behavior and adapts

replication on a per block basis to match the current demand.

The most closely related proposals to Adaptive Selective

Replication are the previously discussed Victim Replication [41],

CMP-NuRapid [9], and Cooperative Caching [8] proposals. All

three designs reduce replica blocks, but their static mechanisms

tend to favor certain workloads and do not dynamically adjust to

changes in workload behavior and system constraints. Cooperative

Caching does introduce using probability to control replication,

but does not propose a mechanism to actually adjust the

probability. Through slight modification, ASR monitoring

hardware could provide such a mechanism. Specifically, ASR’s

NLHB could be modified to determine the cost of the evicted

replica blocks and ASR’s VTB could be modified to determine the

cost of the evicted singlet blocks. By comparing these costs to the

estimated benefits of storing the current singlet and replica blocks,

one could design an adaptive Cooperative Caching algorithm.

Finally, similar to ASR, Suh et al. [33] used set and way

counters to monitor cache block utilization and Zhang et al. [40]

used a miss tag buffer to track what cache misses could have been

hits if the cache was full sized. However, the differences are Suh et

al. used the monitoring information to dynamically partitioned

ways in a set-associative cache among multiple threads and Zhang

et al.’s miss tag buffer stored full size tags and was used to save

energy in a automatically resizable cache.

8. Conclusions

0.0

0.5

1.0

N
o
rm

a
li

z
e
d
 M

is
se

s

Local L1

Local/Shrd L2

Remote

Off-chip

S P V N
 0%
C

100%
C A

apache

S P V N
 0%
C

100%
C A

oltp

Figure 13: Future CMP Memory Cycles

(S: CMP-Shared, P: CMP-Private, V: SPR-VR,

N: SPR-NR, C: SPR-CC, A: SPR-ASR)

Managing on-chip wire delay, while limiting off-chip misses,

is essential in order to improve future CMP performance. A private

CMP cache hierarchy offers lower access latency than a shared

cache, but uncontrolled replication may cause significant

performance degradation due to increased off-chip misses. In this

paper, we observed for commercial workloads, shared read-only

data is frequently requested and exhibits high request locality. We

propose Adaptive Selective Replication, which dynamically adapts

12

shared read-only data replication to exploit the latency advantage

of private caches without wasting cache capacity due to excessive

replication. By performing an opportunity analysis, ASR adjusts

the degree of replication to match the current workload behavior

and system configuration. We showed ASR performs at least as

well as the best alternative design and improves performance for

commercial workloads with large working sets.

Acknowledgements

We thank Luke Yen, Dan Gibson, the Wisconsin Computer

Architecture Affiliates, Virtutech AB, the Wisconsin Condor

group, the Wisconsin Computer Systems Lab, and the anonymous

reviewers for their comments on this work.

References
[1] V. Agarwal, S. W. Keckler, and D. Burger. The Effect of Technology

Scaling on Microarchitectural Structures. Technical Report TR-00-02,
Department of Computer Sciences, UT at Austin, May 2001.

[2] A. Ahmed, P. Conway, B. Hughes, and F. Weber. AMD Opteron
Shared Memory MP Systems. In Proc. of the 14th HotChips
Symposium, Aug. 2002.

[3] A. R. Alameldeen, et al. Simulating a $2M Commercial Server on a
$2K PC. IEEE Computer, 36(2):50–57, Feb. 2003.

[4] V. Aslot, M. Domeika, R. Eigenmann, G. Gaertner, W. Jones, and
B. Parady. SPEComp: A New Benchmark Suite for Measuring
Parallel Computer Performance. In Workshop on OpenMP
Applications and Tools, pages 1–10, July 2001.

[5] B. M. Beckmann. Managing Wire Delay in Chip Multiprocessor
Caches. PhD thesis, University of Wisconsin, 2006.

[6] B. M. Beckmann and D. A. Wood. Managing Wire Delay in Large
Chip-Multiprocessor Caches. In Proc. of the 37th Annual IEEE/ACM
International Symposium on Microarchitecture, Dec. 2004.

[7] R. Chandra, S. Devine, B. Verghese, A. Gupta, and M. Rosenblum.
Scheduling and Page Migration for Multiprocessor Compute Servers.
In Proc. of ASPLOS-6, Oct. 1994.

[8] J. Chang and G. S. Sohi. Cooperative Caching for Chip
Multiprocessors. In Proceedings of the 33nd Annual International
Symposium on Computer Architecture, June 2006.

[9] Z. Chishti, M. D. Powell, and T. N. Vijaykumar. Optimizing
Replication, Communication, and Capacity Allocation in CMPs. In
Proceedings of the 32nd Annual International Symposium on
Computer Architecture, June 2005.

[10] F. Dahlgren and J. Torrellas. Cache-Only Memory Architectures.
IEEE Computer, 32(6):72–79, June 1999.

[11] B. Falsafi and D. A. Wood. Reactive NUMA: A Design for Unifying
S-COMA and CC-NUMA. In Proceedings of the 24th Annual
International Symposium on Computer Architecture, pages 229–240,
June 1997.

[12] I. T. R. for Semiconductors. ITRS 2005 Edition. Semiconductor
Industry Association, 2005.
http://www.itrs.net/Common/2005ITRS/Home2005.htm.

[13] S. W. Golumb. Shift Register Sequences. Aegean Park Press, revised
edition, 1982.

[14] J. Huh, C. Kim, H. Shafi, L. Zhang, D. Burger, and S. W. Keckler. A
NUCA Substrate for Flexible CMP Cache Sharing. In Proceedings of
the 19th International Conference on Supercomputing, June 2005.

[15] A. Jaleel, M. Mattina, and B. Jacob. Last Level Cache (LLC)
Performance of Data Mining Workloads On a CMP: A Case Study of
Parallel Bioinformatics Workloads. In Proceedings of the 12th IEEE
Symposium on High-Performance Computer Architecture, Feb. 2006.

[16] R. E. Kessler, R. Jooss, A. Lebeck, and M. D. Hill. Inexpensive
Implementations of Set-Associativity. In Proc. of the 16th Annual
International Symposium on Computer Architecture, May 1989.

[17] C. Kim, D. Burger, and S. W. Keckler. An Adaptive, Non-Uniform
Cache Structure for Wire-Dominated On-Chip Caches. In Proc. of
ASPLOS-10, Oct. 2002.

[18] P. Kongetira. A 32-way Multithreaded SPARCÆ Processor. In
Proceedings of the 16th HotChips Symposium, Aug. 2004.

[19] K. Krewell. UltraSPARC IV Mirrors Predecessor. Microprocessor
Report, pages 1–3, Nov. 2003.

[20] J. Laudon. Performance/Watt: The New Server Focus. In Workshop
on Design, Architecture and Simulation of Chip Multi-Processors,
Nov 2005.

[21] C. Liu, A. Sivasubramaniam, and M. Kandemir. Organizing the Last
Line of Defense before Hitting the Memory Wall for CMPs. In
Proceedings of the Tenth HPCA, Feb. 2004.

[22] M. R. Marty, J. D. Bingham, M. D. Hill, A. J. Hu, M. M. K. Martin,
and D. A. Wood. Improving Multiple-CMP Systems Using Token
Coherence. In Proceedings of the Eleventh HPCA, Feb. 2005.

[23] C. McNairy and R. Bhatia. Montecito: A Dual-Core Dual-Thread
Itanium Processor. IEEE Micro, 25(2):10–20, March/April 2005.

[24] C. McNairy and D. Soltis. Itanium 2 Processor Microarchitecture.
IEEE Micro, 23(2):44–55, March/April 2003.

[25] S. Mutoh and et al. 1-V Power Supply High-Speed Digital Circuit
Technology with Multithreshold-Voltage CMOSS. IEEE Journal of
Solid-State Circuits, 30(8):847–854, Aug 1995.

[26] V. S. Pai. Exploiting Instruction-Level Parallelism for Memory
System Performance. PhD thesis, Rice University, 2000.

[27] B. Sinharoy, R. Kalla, J. Tendler, R. Eickemeyer, and J. Joyner.
Power5 System Microarchitecture. IBM Journal of Research and
Development, 49(4), 2005.

[28] K. So and R. N. Rechtschaffen. Cache Operations by MRU Change.
IEEE Transactions on Computers, 37(6):700–709, June 1988.

[29] V. Soundararajan, M. Heinrich, B. Verghese, K. Gharachorloo,
A. Gupta, and J. Hennessy. Flexible Use of Memory for
Replication/Migration in Cache-Coherent DSM Multiprocessors. In
Proceedings of the 25th Annual International Symposium on
Computer Architecture, pages 342–355, June 1998.

[30] E. Speight, H. Shafi, L. Zhang, and R. Rajamony. Adaptive
Mechanisms and Policies for Managing Cache Hierarchies in Chip
Multiprocessors. In Proceedings of the 32nd Annual International
Symposium on Computer Architecture, June 2005.

[31] P. Stenström, T. Joe, and A. Gupta. Comparative Performance
Evaluation of Cache-Coherent NUMA and COMA Architectures. In
Proceedings of the 19th Annual International Symposium on
Computer Architecture, May 1992.

[32] G. E. Suh, S. Devadas, and L. Rudolph. A New Memory Monitoring
Scheme for Memory-Aware Scheduling and Partitioning. In
Proceedings of the Eighth HPCA, Feb. 2002.

[33] G. E. Suh, L. Rudolph, and S. Devadas. Dynamic Cache Partitioning
for CMP/SMT Systems. Journal of Supercomputing, pages 7–26,
2004.

[34] J. M. Tendler, S. Dodson, S. Fields, H. Le, and B. Sinharoy.
POWER4 System Microarchitecture. IBM Server Group Whitepaper,
Oct. 2001.

[35] B. Verghese, S. Devine, A. Gupta, and M. Rosenblum. Operating
System Support for Improving Data Locality on CC-NUMA Compute
Servers. In Proc. of ASPLOS-7, Oct. 1996.

[36] Virtutech AB. Simics Full System Simulator.
http://www.simics.com/.

[37] Wisconsin Multifacet GEMS Simulator.
http://www.cs.wisc.edu/gems/.

[38] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The
SPLASH-2 Programs: Characterization and Methodological
Considerations. In Proceedings of the 22nd Annual International
Symposium on Computer Architecture, pages 24–37, June 1995.

[39] M. Xu, R. Bodik, and M. D. Hill. A Regulated Transitive Reduction
(RTR) for Longer Memory Race Recording. In Proc. of ASPLOS-12,
Oct. 2006.

[40] M. Zhang and K. Asanovic. Miss Tags for Fine-Grain CAM-Tag
Cache Resizing. In Proceedings of the International Symposium on
Low Power Electronics and Design, Aug. 2002.

[41] M. Zhang and K. Asanovic. Victim Replication: Maximizing
Capacity while Hiding Wire Delay in Tiled Chip Multiprocessors. In
Proceedings of the 32nd Annual International Symposium on
Computer Architecture, June 2005.

[42] Z. Zhang and J. Torrellas. Reducing Remote Conflict Misses: NUMA
with Remote Cache versus COMA. In Proceedings of the Third IEEE
Symposium on High-Performance Computer Architecture, Feb. 1997.

	1. Introduction
	Figure 1: Cooperative Caching (CC) Speedup: 16 MB CMP configuration

	2. Characterizing CMP Working Sets
	2.1 Sharing Types: Requests vs. Capacity
	Table 1: L2 Cache Request and L2 Cache Capacity Profile

	2.2 Impact of Replication
	Figure 2: a) Request to Block Distribution: Shared Read-Only

	3. ASR: Adaptive Selective Replication
	3.1 Replication and CMP Cache Performance
	3.2 Balancing Replication via ASR
	Figure 4: b) Replication Cost
	Figure 5: ASR Decision Table for Adjusting Replication

	4. Implementing ASR using SPR
	4.1 SPR: Selective Probabilistic Replication
	Table 2: SPR Replication Levels

	4.2 Implementing ASR
	Benefit of Increasing Replication (HC - HH)
	Cost of Increasing Replication (MH - MC)
	Benefit of Decreasing Replication (MC - ML)
	Cost of Decreasing Replication (HL - HC)
	Triggering a Cost-Benefit Analysis

	4.3 Storage and Energy
	Table 3: ASR Storage Overhead

	5. Methodology
	5.1 Alternative Cache Designs
	CMP-Shared
	CMP-Private
	Figure 6: a) Layout of CMP-Shared

	SPR-VR
	SPR-NR
	SPR-CC

	5.2 System Parameters
	Table 4: Comparison of Configuration Parameters

	5.3 Workloads
	Table 5: Evaluation Methodology

	6. Evaluation
	6.1 Replication Capacity and Memory Cycles
	Figure 7: d) L2 Hit Cycles / Instr. (Future CMP)

	6.2 Adapting to Workload Behavior
	Figure 8: a) Future CMP ASR Adaptability: Apache
	Figure 9: a) Future CMP: ASR Adaptability: Apache (Processor 0)

	6.3 Comparison of Replication Schemes
	Performance.
	Figure 10: Current CMP Speedups (S: CMP-Shared, P: CMP-Private, V: SPR-VR, N: SPR-NR, C: SPR-CC, A: SPR-ASR)
	Figure 11: Current CMP Memory Cycles (S: CMP-Shared, P: CMP-Private, V: SPR-VR, N: SPR-NR, C: SPR-CC, A: SPR-ASR)

	Performance Summary
	Storage Overhead.

	7. Related Work
	7.1 Multiprocessor Memories
	Table 6: Storage Overhead Comparison
	Figure 12: Future CMP Speedups (S: CMP-Shared, P: CMP-Private, V: SPR-VR, N: SPR-NR, C: SPR-CC, A: SPR-ASR)

	7.2 Chip Multiprocessor Caches

	8. Conclusions
	Figure 13: Future CMP Memory Cycles (S: CMP-Shared, P: CMP-Private, V: SPR-VR, N: SPR-NR, C: SPR-CC, A: SPR-ASR)

	Acknowledgements
	References
	Figure 3: Normalize L2 Cache Hit Ratios

