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ABSTRACT

Traditionaltext independentspeakerrecognitionsystemsarebased
on GaussianMixture Models (GMMs) trainedglobally over all
speechfrom a given speaker. In this paper, we describealterna-
tive methodsfor performingspeaker identificationthatutilize do-
maindependentautomaticspeechrecognition(ASR) to provide a
phoneticsegmentationof the test utterance.Whenevaluatedon
YOHO, several of theseapproacheswereableoutperformprevi-
ouslypublishedresultsonthespeaker ID task.Onamoredifficult
conversationalspeechtask,we wereableto usea combinationof
classifiersto reduceidentificationerror rateson single testutter-
ances.Over multiple utterances,the ASR dependentapproaches
performedsignificantlybetterthantheASRindependentmethods.
Usinganapproachwecall speaker adaptivemodellingfor speaker
identification,we wereableto reducespeaker identificationerror
ratesby 39%over a baselineGMM approachwhenobservingfive
testutterancesfrom a speaker.

1. INTRODUCTION

The mostcommonapproachto speaker recognitiontoday is the
useof globalGaussianmixturemodels(GMM) [1]. Theprimary
benefitof the GMM approachis that speaker identificationcan
be performedin a completelytext independentfashion(i.e., no
knowledgeof thewordsspokenby thespeaker is required).How-
ever, becausethis approachignoresknowledgeof the underlying
phoneticcontentof the speech,it doesnot take advantageof all
availableinformation.

In this paperwe strive to improve uponthe GMM approach
by combiningit with otherclassificationtechniqueswhich utilize
informationaboutthephoneticcontentof thespeech.Oneof the
disadvantagesof theGMM’sglobalmodelis thattheacousticvari-
ability of phoneticeventsin thetestutteranceis not takeninto ac-
countwhencomparingdifferentspeakers. Although it hasbeen
shown thatsomephoneticclasseshavehigherspeaker distinguish-
ing capabilitiesthan others[2], muchof this information is lost
whenall enrollmentdatais mappedto a singleacousticmodel.In
ourwork weutilize aspeechrecognitionengineto hypothesizethe
phoneticcontentof thetestutterance.Wethenusethisknowledge
duringspeaker identificationby applyingrefinedphonedependent
modelsin placeof aglobalGMM. Webelievethatthisapproachis
feasiblein domaindependentapplicationswherea reliablespeech
recognitionengineis available.
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In additionto exploring thesespeechrecognitionbasedscor-
ing techniques,weintroduceatwo-stagescoringframework which
reducescomputationaldemandspresentedbymorerefinedspeaker
models.This framework alsoallows usto easilycombinetheout-
put of severaldifferentclassifiers.

Finally, weinvestigatetheeffectof performingspeaker identi-
ficationover multiple utterances.Traditionallyspeaker identifica-
tion systemshavefocusedonthegoalof maximizingidentification
ratesover individual, shortutterances(1-3 seconds).While this is
a reasonablemetric for password driven verificationtasks,recent
researchhasalso focusedon data taskswherespeaker recogni-
tion is performedover a collective setof utterancesfrom a target
speaker [3, 4]. Forensicspeaker identification,rich transcriptionof
conversationaldata,andverificationin transactionalapplications
are all scenarioswherea systemwould have accessto multiple
utterancesprior to makingadecision.

Therestof thepaperis organizedasfollows. First we discuss
the implementationof two baselineapproachesthatarebasedon
the well-known GMM approachintroducedby Reynolds. Next,
we detail two newer approacheswhich make useof speechrecog-
nition on the testutterance.Following that,we give a description
of thecorporaandconditionsfor ourexperiments.Finally, wedis-
cussour resultsandgive futuredirectionsfor ourwork.

2. IMPLEMENTATION

We distinguishbetweentraditional text independentapproaches
which we classifyasASR independent,andASR dependentap-
proacheswhich make useof speechrecognitionduring speaker
identification. For eachof the differentapproaches,we usedthe
samesetof front-endacousticfeatures.

2.1. ASR Independent

2.1.1. Gaussian Mixture Models

Our baselinesystemwasclosely-baseduponReynolds’GMM ap-
proach[1]. For eachinputwaveform,14-dimensionmeannormal-
izedMFCCvectorswerecomputedat a framerateof 10ms.From
theMFCCs,112-dimensioninput featurevectorswerecreatedby
concatenatingaveragesof MFCCsfrom eight differentsegments
surroundingthecurrentframe.Principalcomponentsanalysiswas
thenusedto reducethedimensionalityof thesefeaturevectorsto
50 dimensions.Global GMM modelswerethentrainedfor each
speaker usingall non-silenceframesin their enrollmentdata.
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Fig. 1. PhoneticallyStructuredGMM scoringframework

2.1.2. Phonetically Structured GMMs

A recentvariantof thetraditionalGMM approachis theso-called
“phonetically-structured”GMM methodwhichhasbeenproposed
by Faltlhauseret al. [5]. This methodtrainssmaller“granular”
GMMs on separatephoneticclassesfor eachspeaker, thencom-
binestheminto a larger singlemodelwhich is usedfor identifi-
cation. By combiningthe variousphoneticmodelsusinga glob-
ally determinedweighting,thismethodis lesssensitiveto phonetic
biasespresentin the enrollmentdataof individual speakers. Ex-
amplesof thephoneticclassesthatwereusedare: vowels,strong
fricatives, liquids, etc. In total, eight phoneticclasseswereused
for training. During identification,all speechframesfrom thetest
utterancearescoredagainstthecombinedmodel,asillustratedin
Figure1.

2.2. ASR Dependent

Thefollowing two approachesrequireaspeechrecognitionengine
in orderto generatea hypothesizedphoneticsegmentationof the
testutterance.The generationof this hypothesisis describedin
Section2.3.

2.2.1. Phonetic Classing

Theuseof separatephoneticmannerclassesfor speakermodelling
wasstudiedpreviously by Sarma[6]. This techniqueis similar to
theuseof phoneticallystructuredGMMs in that training is iden-
tical. PhoneticclassGMMs weretrainedfor eachspeaker, but in-
steadof beingcombinedinto a singlespeaker model,the individ-
ual classeswereretained.During identification,eachtestvector
wasassignedto a phoneticclassusingthephoneticsegmentation
hypothesisprovided by the speechrecognizer. The appropriate
phoneclassmodelwasthenusedto scorethevector. This scoring
procedureis illustratedin Figure2.
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Fig. 2. PhoneticClassscoringframework

Since test vectorswere scoreddirectly againstthe granular
GMMs, thisapproachis similar to the“multigrained”methodpro-
posedby Chaudhariet al. [7]. However, by usingthephoneclass
assignmentprovidedby thespeechrecognizer, thisapproachelim-
inatesthe needto scoreagainstevery model in the speaker’s li-
brary, asis requiredby themultigrainedmethod.

2.2.2. Speaker Adaptive Scoring

Theprevious two approachesattemptto improve upontheglobal
GMM approachby usingbroadphoneticclassmodelswhich are
more refinedthan the global GMM. At a further level of granu-
larity, modelscanbe built for specificphoneticevents. Unfortu-
nately, theenrollmentdatasetsfor eachspeaker in typicalspeaker
ID tasksarenot large enoughto build robust speaker dependent
phonetic-level models. To compensatefor this problem,we can
draw upontechniquesusedin the speaker adaptationfield. This
allows us to build modelsthat learnthecharacteristicsof a phone
for a given speaker whensufficient trainingdatais available,and
rely moreon generalspeaker independentmodelsin instancesof
sparsetrainingdata.

In thisapproach,speakerdependentsegment-basedspeechrec-
ognizersweretrainedfor eachspeaker. During identification,the
hypothesizedphoneticsegmentationwasusedto generatethebest
path speaker dependentscore,which was then interpolatedwith
therecognizer’s speaker independentscore.This methodapprox-
imatesthe MAP strategy for speaker adaptation[8]. Mathemati-
cally, if theword recognitionhypothesisassignseachtestvector �
to a phone� , thenthescorefor speaker � is givenby

�	��
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where # ��� �
, # � arethespeaker dependentandspeaker indepen-

dentmodelsfor phone� , and
���$� �

is aninterpolationfactorgiven
by ����� �0
 1 ��� �1 ��� �2&43
In this equation,1 ��� � is thenumberof training tokensof phone�
for speaker � , and

3
is anempiricallydeterminedtuningparameter

thatwasthesameacrossall speakersandphones.
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2.3. Two Stage Scoring

In oursystem,weutilizeda two-stagemethodto calculatespeaker
scores.This framework is illustratedin Figure3. In thefirst stage,
the test utteranceis passedin parallel through a speechrecog-
nition moduleanda GMM speaker ID module,which is imple-
mentedusingthebaselineapproach.Thespeechrecognitionmod-
ule producesa time-alignedphonetichypothesis,while theGMM
speaker ID moduleproducesanN-bestlist of hypothesizedspeak-
ers.Theseresultsarethenpassedto thenext stage,whereasecond
classifierrescoreseachspeaker in theN-bestlist usingoneof the
refinedtechniquesdescribedabove.

This two-stagescoringmethodis usefulin a numberof ways.
First, by using the GMM speaker ID modulefor fast-match,we
reducepost-recognitionlatency by limiting the searchspaceof
speakerspresentedto thesecondstage.Identificationperformance
is not significantlyaffectedsincetheprobabilityof N-bestexclu-
sionof thetargetspeaker by theGMM modulecanbemadearbi-
trarily low by increasingN. Furthermore,thereis little increasein
pre-identificationlatency for theASRdependentapproachessince
theGMM scoringproceedsin parallelwith wordrecognition.An-
other advantageof this framework is that scoresfrom multiple
classifierscanbeusedandcombinedin thesecondstage.

3. EXPERIMENTS

3.1. Corpora

For evaluation,we usedtwo significantlydifferentcorpora. The
first corpus,YOHO, consistedof 138 speakers readingsix digit
combinationlock phrases,andwasrecordedin a low noiseoffice
environment[9]. Althoughrecordingwasdoneon a high-quality
telephonehandset,thespeechwasnot passedthrougha telephone
channel.Trainingdatais madeup of 96enrollmentphraseswhich
areidenticalover all speakers. On average,eachspeaker hasap-
proximately180secondsof speechtrainingdata.

Tosimulateamoredifficult variableconditiontask,wecreated

Error Rate (%)
Method YOHO MERCURY

BaselineGMM 0.83 22.4
PhoneticallyStructuredGMM (PS) 0.31 21.3

PhoneClassing(PC) 0.40 21.6
Speaker Adaptive (SA) 0.31 27.8

Multiple Classifiers(GMM+SA) 0.53 19.0
Multiple Classifiers(PS+SA) 0.25 18.3

Table 1. Comparisonof identificationerror ratesfor eachap-
proachon YOHOandMERCURY datasets

a secondcorpusout of speaker-labelleddatataken from theMIT
MERCURY airline travel informationsystem[10]. TheMERCURY

datasetconsistedof variablelengthspontaneousspeechutterances
gatheredfrom 38 speakersacrossa varietyof telephonechannels
andhandsets.Trainingdatais limited to approximately50variable
lengthutterancesperspeaker. Thetotalamountof trainingdataper
speaker rangesfrom 30 secondsto 90secondsof actualspeech.

3.2. Experimental Conditions

For both corporawe useddomaindependentimplementationsof
the MIT SUMMIT speechrecognizer[11]. On the YOHO data
set, the vocabulary was limited to allow only the setof possible
numericalcombinationlock phrases.On the MERCURY dataset,
therecognizerwaslimited to a 2200word vocabulary for conver-
sationalqueriesregardingairline travel. Empirically determined
parameterssuchasclassifiercombinationweightsandinterpola-
tion parameterswere found by tuning on an independentset of
MERCURY developmentdata.

4. RESULTS

For this project,we choseto confineour experimentsto the task
of closed-setidentificationratherthan speaker verification. The
motivation for doing so wasto comparethe relative speaker dis-
tinguishingcapabilityof eachsystemwithout having to consider
the effect of differentbackgroundmodel normalizationschemes
requiredfor verificationtasks.

We first computedresultsfor theclosedsetidentificationtask
over individual utterances,which are shown in Table 1. When
comparingtheperformanceof thedifferentclassifiers,weobserved
thaterror rateson theYOHO corpuswereuniformly low. In par-
ticular, we notedthat our bestresultson the YOHO corpusout-
performedthe bestpublishedresultsfor this task [9]. With the
exceptionof systemsinvolving the GMM baseline,eachof the
classifiersproducedbetween14 and 22 total errorsout of 5520
testutterances,makingthe differencesbetweentheseapproaches
stasticallyinsignificant.

On the MERCURY dataset, the comparative performanceof
eachsystemis more evident. Both the phoneticallystructured
GMM systemand the phoneticclassingsystemgive slight im-
provementsover the baseline,while the speaker adaptive system
hasa highererror ratethanany of the otherapproaches.Across
all systems,we observedthaterrorratesweresignificantlyhigher
on the MERCURY taskthanon YOHO, clearly illustrating the in-
creaseddifficultiesassociatedwith spontaneousspeech,noise,and
variablechannelconditions. Thesefactorsalso led to a higher



Error Rate (%)
Method 1 Utt 3 Utt 5 Utt

Baseline(GMM) 22.4 14.3 13.1
PS 21.3 15.6 14.3
PC 21.6 14.9 13.8
SA 27.8 10.3 7.4

GMM+SA 19.0 9.7 7.5
PS+SA 18.3 11.2 8.0

Table 2. ID errorratesover 1, 3, and5 utteranceson MERCURY

word error rateon the MERCURY data,which partially explains
why the recognitionaidedsystemsdid not yield improvements
over the baselineGMM methodasobserved with YOHO. How-
ever, we saw thatby combiningtheoutputsof multiple classifiers,
lower overall errorrateswereachievedonbothcorpora.

In order to test the performanceof thesemethodson multi-
pleutterances,we performedadditionalexperimentson theMER-
CURY corpus.Identificationerrorratesover 1, 3, and5 utterances
areshown in Table2. For all methods,scoringovermultipleutter-
ancesresultedin significantreductionsin errorrates.Weobserved
that the speaker adaptive approachattainedthe lowesterror rates
amongthe individual classifiersas the numberof testutterances
wasincreased(Figure4). Moreover, asthenumberof utterances
wasincreasedpast3, theperformanceof thecombinedclassifiers
exhibitedno significantgainsover thespeaker adaptive approach.
Whencomparedto thenext bestindividual classifier, thespeaker
adaptive approachyielded relative error rate reductionsof 28%,
39%,and53%on3, 5, and10utterancesrespectively.

5. CONCLUSIONS

In this paper, we evaluatedspeaker modelling techniqueswhich
make useof speechrecognition. By focusingon domaindepen-
denttasksandusinga two-stagescoringsystem,we wereableto
implementthesetechniquesin a computationallyfeasiblemanner.
On theYOHO corpus,we wereableto useclassifiercombination
to attainextremelylow identificationerrorrates.For themoredif-
ficult MERCURY task,we alsoobserved significantimprovement
on singleutterancesby usingclassifiercombination. Over mul-
tiple utterances,however, we foundthat speaker adaptive scoring
yieldedthegreatestgainswhencomparedto theotherapproaches.

6. FUTURE WORK

We plan to further investigatethe useof speaker adaptive scor-
ing in extendedspeakerverificationtasksby implementingaback-
groundmodelscoringscheme.Oneusefulapplicationof thistech-
nique would be in the MERCURY domain,whereusersidentify
themselvesat thebeginningof thesession,but usuallygo through
severalnon-criticalqueriesbeforeattemptingto performa secure
transaction,suchasticket purchase.In this type of scenario,the
systemwould have accessto several utterancesfrom the target
speaker prior to makinga verificationdecision.

In additionto thespeaker modellingapproachesdiscussedin
this paper, we plan to incorporatethe useof noiserobust mea-
surements,suchasformantlocations,fundamentalfrequency, and
durationinto thefeaturesetusedfor speaker identification.
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