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Abstract
Domain-agnostic Automatic Speech Recognition (ASR) sys-
tems suffer from the issue of mistranscribing domain-specific
words, which leads to failures in downstream tasks. In this
paper, we present a post-editing ASR error correction method
using the Transformer model for entity mention correction and
retrieval. Specifically, we propose a novel augmented variant of
the Transformer model that encodes both the word and phoneme
sequence of an entity, and attends to phoneme information in
addition to word-level information during decoding to correct
mistranscribed named entities. We evaluate our method on both
the ASR error correction task and the downstream retrieval task.
Our method achieves 48.08% entity error rate (EER) reduc-
tion in ASR error correction task and 26.74% mean recipro-
cal rank (MRR) improvement for the retrieval task. In addi-
tion, our augmented Transformer model significantly outper-
forms the vanilla Transformer model with 17.89% EER reduc-
tion and 1.98% MRR increase, demonstrating the effectiveness
of incorporating phoneme information in the correction model.
Index Terms: speech recognition, error correction, entity re-
trieval, transformer

1. Introduction
In spite of the recent advancement in general-purpose ASR sys-
tems [1], recognizing domain-specific words remains a big chal-
lenge. Many of the words involve rare, non-idiomatic, or code-
switched proper nouns and acronyms that are out-of-vocabulary
of general-purpose ASR models. As a result, they are of-
ten mistranscribed to common words in the vocabulary. In a
task-oriented spoken dialog system, downstream tasks such as
Natural Language Understanding (NLU) and Entity Retrieval
(ER) rely on ASR transcripts, and ASR errors will propagate to
downstream stages, leading to unfulfilled user requests.

One solution to address this problem is using a domain-
specific ASR system [2]. However, such approach is usually
data hungry and computationally expensive. Another solution
is to enrich the ASR systems with more words and phrases with
a customized language model [3], but how to balance words
from each domain arises as a new challenge. Moreover, most
ASR systems will not scale well when each customized list of
domain-specific phrases contains hundreds of thousands of en-
tities in a huge catalog.

In a spoken dialogue system, NLU takes the ASR transcrip-
tions and performs domain/intent classification and Named En-
tity Recognition (NER). NER labels the entity mentions with
entity types. An Entity Retrieval (ER) component then takes an
entity mention as a query and searches the catalog based on the
intent and entity type to retrieve the most relevant real world
object for the entity mention. Consider a speech-based virtual
assistant that helps users explore places and local businesses,
for an utterance how long does it take to go to enloe hospital?,

NER labels enloe hospital as PlaceName, and then ER takes
this as a query and links to an entity in the catalog inventory,
returning the most relevant place to the user. Since “enloe” is
not a common word, “enloe hospital” may get mistranscribed
as “in lo hospital”, and the ER system in turn may end up re-
trieving nothing or an irrelevant place from its catalog, which
adversely affects customer experience. Therefore, being able
to handle such ASR errors before retrieval is important for ER
performance.

In this work, we tackle this challenge by proposing a do-
main specific post-editing model to correct ASR errors on en-
tity mentions before ER. While existing work generally uses a
text-based sequence to sequence model to correct such errors,
we propose a novel neural correction module that augments the
vanilla Transformer model [4] by deeply infusing and attend-
ing phonetic information of the entity mention. We demon-
strate significant improvement on two widely used domains for
a voice assistant system including shopping and local search.
Our main contribution includes two folds: (1) we propose a
novel augmented generalized variant of the Transformer model
that allows encoding different types or lengths of the input sig-
nals with the flexibility to control and balance the weight of
each. (2) we develop a domain-specific post-editing error cor-
rection system that leverages entity catalogs based on the aug-
mented Transformer with text and phoneme as input sequences,
and show that our system is able to effectively correct entity
errors and significantly improve ER performance.

2. Related Work
Previous work has explored error-corrective language modeling
or end-to-end ASR using various techniques [3, 5, 6, 7]. Oth-
ers focused on post-editing methods that target spelling errors
introduced by ASR [8, 9]. Reranking ASR n-best hypotheses
is also a popular topic for error recovery. In-domain and con-
textual information has shown to be effective in reranking ASR
n-best hypotheses [10, 11]. There are also joint learning efforts
[12, 13, 14] that show promises in incorporating upstream sig-
nals for downstream uses. To our knowledge, there are very few
correction methods that focus on entity retrieval as a target task.
[15] is highly relevant to our use case. It uses text and phoneme
similarities to make retrieval robust to ASR errors for person
names in their entity retrieval model.

Another relevant field is noisy natural language correction.
Some work in this field focuses on grammatical errors such as
article, verb tense and preposition [16]. Recent work [17] shows
promising results on tackling orthographic errors that deal with
spelling, non-idiomatic expression, or punctuation. However,
most of these approaches do not impact the retrieval results
for named entities because search engines are generally mature
enough to support fuzzy queries to handle minor errors includ-
ing spelling and grammatical errors.



3. Proposed Method
Our proposed augmented generalized transformer solution for
entity mention correction builds upon and extends the Trans-
former model [4] with a sequential attention mechanism to in-
fuse extra signal. Without loss of generality, we use phonetic
information as an example, which ties to our application of
ASR error correction. The model architecture is illustrated in
Figure 1. It is worth noting that our solution is applicable
to other transformer-based encoder-decoder architectures, with
other types of signals, and to other downstream tasks.

Figure 1: Augmented Transformer using different types of in-
formation with sequential attention in the decoder. Comparing
to the vanilla Transformer, the model conducts two attentions
sequentially on the text embedding and the phoneme embed-
ding. Three variants of the decoder architecture are introduced
in Section 3.2.

The input of the correction model is an entity mention de-
fined as a sequence of words w = {w1, w2, ...wN} tokenized
by sentencepiece tokenization [18] and a sequence of phonemes
p = {p1, p2, ...pM} representing the entity’s pronunciation.
The output of the model is expected to be a rewritten entity rep-
resented by a new sequence of words ŵ = {ŵ1, ŵ2, ...ŵN

′ }.

3.1. Encoder

The Transformer [4] model has become the new state-of-the-
art model in recent years and has been successfully adopted
by many NLP tasks [19]. In this work, we extend the model
by providing a second view based on the phonetic information.
The intuition is that ASR systems typically mistranscribe en-
tities to acoustically similar words. We use a stacked Trans-
former encoder to encode the text sequence w into a vector
space Hw = {hw

1 , h
w
2 , ...h

w
N}, and similarly another stacked

Transformer encoder to encode phoneme sequence p as Hp =
{hp

1, h
p
2, ...h

p
M}.

3.2. Decoder

Recall that there are two attention mechanisms in the Trans-
former decoder: self-attention and encoder-decoder attention.

We keep the self-attention part the same as the vanilla Trans-
former, and propose three approaches to use information from
the two sequences for the encoder-decoder attention.
• Sequential Attention: We conduct the encoder-decoder at-
tention twice in sequence to infuse information from the two
input signals. In our approach, at each Transformer layer of the
decoder, we first compute the attention output Aw between the
text encoder’s output Hw and decoder’s self-attention output
Hŵ by:

Aw = softmax(
(QwHw)(KwHw)T√

dk
)(V wHŵ) (1)

where Qw,Kw, V w ∈ Rdk×dk are the parameters of the
model, and dk is the dimension of the output from the self-
attention layer.

Similarly, we take the phoneme encoder’s output Hp and
compute the attention with previous output Aw:

Ap = softmax(
(QpHp)(KpHp)T√

dk
)(V pAw) (2)

where Qp,Kp, V p ∈ Rdk×dk are the parameters of the model.
In this approach, the second attention using the phoneme en-
coder’s output could also be treated as a phonetic regularization
on the first attention output (word-based).
• Concatenated Attention: Different from the above sequen-
tial approach, here we compute the second attention between
the phoneme encoder’s output Hp and the decoder’s self-
attention output Hŵ by:

Ãp = softmax(
(QpHp)(KpHp)T√

dk
)(V pHŵ) (3)

Then we concatenateAw and Ãp, followed by a dense layer
to project it back to the original model size dk.
• Pooled Attention: On top of the concatenated attention ap-
proach, we apply a max-pooling between Aw and Ãp to merge
the information from the two sources into a representation of
size dk.

All of these three approaches generate an encoder-decoder
attention representation. Same as the vanilla Transformer, the
attention output will be followed by a fully-connected feed-
forward layer with layer normalization to generate the output
of the current decoder layer. The output will be used either as
input to the next layer in the stacked decoder or as the repre-
sentation to predict the output. Note that because the lengths of
the input sequences do not always match (N 6= M ), we cannot
perform a positional level representation concatenation of the
outputs from the two encoders. In the future, we also plan to
explore concatenating the two encoded sequences, e.g., result-
ing in a sequence of length of N+M .

3.3. Training

Except for the changes on the attention mechanism for the de-
coder, we follow the same setup of the vanilla Transformer in-
cluding model architecture, positional encoding, and learning
rate. For our error correction task, we introduce two simple
changes in model training to (1) encourage the model to lever-
age phonetic information and (2) prevent the model from over
correcting error-free entity mentions.
• Text Input Dropout: In order to encourage the model
to leverage phoneme information to conduct error correction
rather than merely memorizing all the error patterns seen in
the training data, we apply a simple yet efficient technique:



dropout. The goal is to randomly drop out text input with a rate
ofα to ensure the model will learn from the phoneme input. The
text input will be masked as w = {mask1,mask2, ...maskN}
when an example is randomly picked to apply dropout to.
• Clean Input: In a real-world production system, the model
does not know whether the incoming ASR transcribed entity
contains ASR error or not, hence it is important that the model
does not over-correct error-free entity input. We guide the
model to learn this by randomly swapping a mistranscribed en-
tity with an error-free one with a probability of β.

4. Dataset Creation
4.1. Data Sources

We use public data from two domains to create benchmark
datasets to evaluate our model. We extract “product title” from
Amazon Review Dataset [20] to create a shopping product cat-
alog and use “name” from Yelp Open Dataset [21] to create a
local search catalog. This gives 15,651,951 unique shopping
entities and 133,637 unique local search entities. We de-noise
the catalog entries by keeping the named entities with fewer
than 10 tokens, and randomly sample 100,000 unique instances
from each catalog to form a dataset for each domain.

4.2. Error Simulator

To ingest ASR errors into the dataset, we adopt a text-level er-
ror simulator [22]. It is based on an n-gram confusion matrix
learned from hypothesis-reference pairs from a real dialog sys-
tem. One common drawback for such simulated data is that the
model might easily learn the reverse of the confusion matrix
by memorizing all error patterns, and cannot generalize well to
new error patterns. In order to avoid such an effect, we partition
the error patterns randomly into two partitions, and use one for
training and the other for testing. This assures that all the error
patterns in the test data are unseen in training data. For experi-
mental purpose, we simulate the errors in the datasets with the
following two approaches.

4.2.1. SIM1: Corpus Level Error Simulation

In this approach, we apply the error simulator to introduce er-
rors with a target WER of 8%-10% to create the test set. The
WER is similar to what we observe from commercial dialogue
systems, and thus we expect the experimental results on this
data to reflect the actual gain/loss on real use cases. The result-
ing WER on the test set is higher than the target WER because
the token length of our entity names is short. As for training,
in order to generate more data, we sample error 10 times for
each entity and collect all the unique error cases. This results
in higher WER than that of the test set, as well as higher En-
tity Error Rate (EER), defined as the percentage of the entities
having ASR errors. The summary statistics for training and test
data are shown in Table 1. In Table 2 we provide examples of
the simulation results.

Yelp business Amazon product

training test training test

# Instances 442,067 100,000 771,994 100,000
Avg length 3.65 3.24 6.61 6.01

WER 28.46% 15.43% 21.41% 12.67%
EER 79.05% 38.50% 88.83% 51.97%

Table 1: Summary statistics of SIM1.

Entity Text with ASR Error Ground Truth

Yelp rv penis rv phoenix
pooper roofing cooper roofing

Amazon speed soothing speed sewing
love right love riot

Table 2: Examples from the simulation results.

4.2.2. SIM2: Entity Level Error Simulation

Although the aforementioned error simulation approach tries to
loop through each entity and inject errors based on the target
WER, one entity might have no error and another might have
multiple errors so there is no guarantee that such probabilistic
approach will give the same WER for each entity. As a result,
a substantial amount of the entities do not have any simulated
error using the above method SIM1 (61.5% Yelp and 48.03%
Amazon), which prevents us from obtaining performance on
those entities. To solve this issue, we construct another dataset
by injecting exactly one error on one token probabilistically for
each entity. We randomly select a token from the named entity
and replace the token by an error token that is sampled prob-
abilistically from the confusion matrix. If the candidate error
list is empty, we randomly select another token from the named
entity and repeat this process. In the case that we exhaust all
the tokens of a named entity and all the candidate error lists are
empty, we exclude this entity from the test set (1.8% for shop-
ping and 5.4% for local search) for reporting purpose. Similar
to the previous approach to create the training data, in order to
have more error variations for the model to learn and generalize
better, we probabilistically sample 5 errors (at most) for each to-
ken within an entity, which yields a maximum of 5× (# tokens)
examples. Table 3 shows the statistics of this dataset.

Yelp business Amazon product

training test training test

# Instances 718,702 94,598 896,797 98,151
Avg length 3.63 3.35 6.28 6.08

WER 28.29% 30.73% 16.32% 16.78%
EER 100% 100% 100% 100%

Table 3: Summary statistics of SIM2.

5. Experiments
For all the experiments, we employ the same set of model hyper-
parameters. Both the encoder and decoder are composed of 4
identical layers of transformers with a hidden size of dk = 128,
and 8 attention heads. The size of the feed-forward layer is 512.
We apply the same optimizer as the original transformer with
a warm-up steps of 4,000. The batch size is 512 and we train
each model for 50 epochs. We did not conduct any experiment
to tune those hyper-parameters as that is not the main focus of
the work. Phoneme sequences are generated using CMU G2P
model [23] for each token within the dataset.

5.1. Text Rewrite and Entity Retrieval

In order to evaluate the performance of the rewrite, we calcu-
late two metrics: word error rate (WER) and entity error rate
(EER). WER is token-level error rate derived from the Leven-
shtein distance and reflects the token level performance. EER
is the percentage of incorrect entities and is an entity level met-
ric, which is more crucial to the downstream ER performance.



yelp business amazon product

WER EER Prec@1 MRR WER EER Prec@1 MRR

Original 15.43 38.50 80.29 82.69 12.73 51.97 94.46 95.00
Vanilla Trans 14.46 32.58 85.12 86.94 11.01 41.93 95.16 95.18

Augmented Trans 12.91 29.50 86.77 88.29 9.97 36.06 95.76 96.29
Table 4: Experiment results on SIM1, which uses the corpus level error simulation method described in 4.2.1.

yelp business amazon product

WER EER Prec@1 MRR WER EER Prec@1 MRR

Original 30.73 100.00 57.47 63.36 16.78 100.00 90.86 92.26
Vanilla Trans 23.09 63.23 74.22 78.74 10.86 58.54 95.35 96.10

Augmented Trans 19.60 51.92 76.73 80.30 10.55 53.15 95.54 96.14
Table 5: Experiment results on SIM2, which uses the entity level error simulation method described in 4.2.2.

We also measure the impact of the model on the target entity
retrieval task. As a popular approach adapted by many retrieval
systems, an Elastic search engine is set up and all the entities
within the catalog are ingested. We compare the retrieval per-
formance when using the original entity text versus the rewritten
entity text. We use Precision at 1 (Prec@1) and Mean Recipro-
cal Rank (MRR) as the evaluation metrics for our retrieval task.

The experiment results in Table 4 and 5 demonstrate that
our approach of adding phonetic information yields a signifi-
cant WER and EER reduction for both data sets. The SIM2 data
set has a relatively larger improvement compared to the SIM1
data set because in SIM2 all the entities have errors. Comparing
the improvement on Yelp business and Amazon product, we ob-
serve that the phonetic information plays a more important role
in error correction on relative shorter text. When there are fewer
tokens in the entity, an error is more fatal to the final ER result
as it could lead to a totally different retrieval result. For the
relatively longer entities in Amazon product, the search engine
itself may still be robust by relying on other words to conduct
the search correctly.

5.2. Detailed Analysis

First, we compare the setup in the above experiments with two
alternative decoder architectures described in Section 3.2 on the
SIM2 data set. From the results in Table 6, we can clearly
see the benefit of phonetic information used in our augmented
Transformer architectures. In addition, the sequential attention
approach achieves the best performance on both domains, out-
performing the other two methods of combining the word and
phonetic information in the decoder.

yelp business amazon product

WER ERR WER ERR

text only 23.09 63.23 10.86 58.54
concatenated 20.37 54.60 10.90 54.86

pooled 20.35 53.91 10.80 54.25
sequential 19.60 51.92 10.55 53.15

Table 6: Performance of different model architectures.
Next, we discuss the effect of hyper-parameter α and β

through experiments on SIM2 data set. From the results in Fig-
ure 2, we notice a substantial improvement by introducing the
text dropout hyper-parameter α since we encourage the model
to rely on the phonetic information for better generalization ca-
pability. However, increasing the dropout rate will eventually
lead to a performance drop as text information is also crucial to

the rewrite task. We find an α around 0.5 is efficient to balance
the two factors and obtain the optimal performance.

Figure 2: Model performance using different α.
We also measure the performance using different clean text

rate β. In this experiment, we evaluate the impact of this param-
eter on two data sets: (1) fully corrupted data and (2) fully clean
data (i.e., error-free entities). Ideally we would like the model to
conduct the right rewrite for corrupted input while keeping the
clean input unchanged. As shown in Figure 3, having a small β
will result in a conservative model that has a very low WER and
EER on the clean data, but also a large WER and EER on the
corrupted data. A large value of β, on the other hand, will make
the model to be more aggressive and achieve a better WER and
EER on the corrupted data, at a cost of a higher WER and EER
on the clean data. We find that a β around 0.5 is reasonable to
balance the performance on both data sets, but this parameter
can be tuned depending on the actual use case.

Figure 3: Model performance using different β.

6. Conclusion
In summary, we proposed a new solution to infuse additional
information into a Transformer-based sequence to sequence
model. With the proposed augmented Transformer with pho-
netic signals, we achieve significant improvement on noisy en-
tity text rewrite, which further improves the downstream entity
retrieval task. Our model architecture is flexible and can be used
to infuse input of other modalities for broader applications.
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