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A remarkably large proportion of proteins in eukaryotic pro-
teomes lack folded globular structure and are intrinsically dis-
ordered under physiological conditions (Wright and Dyson, 1999; 
Dunker and Obradovic, 2001; Tompa, 2002; Dyson and Wright, 
2005). Intrinsically disordered proteins (IDPs) or intrinsically 
disordered regions (IDRs) play a central role in numerous cel-
lular processes and are directly implicated in human diseases 
that include cancer and neurodegenerative and amyloid dis-
eases. IDPs were originally identi�ed and characterized by bio-
chemical and spectroscopic methods (Kriwacki et al., 1996; 
Weinreb et al., 1996; Daughdrill et al., 1997), but can be readily 
identi�ed by sequence analysis because of their biased amino 
acid composition and, in particular, their low content of hydro-
phobic residues, which prevents them from folding spontane-
ously (Romero, P., Z. Obradovic, C. Kissinger, J.E. Villafranca, 
and A.K. Dunker. 1997. Proceedings of the International Con-
ference on Neural Networks. http://dx.doi.org/10.1109/ICNN 
.1997.611643; Xie et al., 1998; Romero et al., 2001; Vucetic 
et al., 2003; Dyson and Wright, 2005). Bioinformatic surveys 
of entire genomes reveal that disordered proteins are highly 
abundant in eukaryotes, with 40% of proteins in the human 

proteome containing long disordered regions (Ward et al., 2004; 
Pentony and Jones, 2010).

The proportion of proteins that contain disordered seg-
ments increases with increasing complexity of the organism 
(Dunker et al., 2002; Ward et al., 2004). Neural proteins and 
proteins involved in eukaryotic signal transduction or associ-
ated with cancer have an even higher propensity for intrinsic 
disorder; 60% of proteins in a human cancer protein database 
are predicted to be disordered over 50 or more contiguous resi-
dues (Iakoucheva et al., 2002). IDPs act as central hubs in sig-
naling networks; their abundance is tightly regulated to maintain 
signaling �delity, and changes in cellular levels are associated 
with pathologies (Gsponer et al., 2008; Vavouri et al., 2009).

Many IDRs contain short recognition motifs that mediate 
interactions with their cellular targets (Wright and Dyson, 1999; 
Dunker et al., 2005; Dyson and Wright, 2005; Mohan et al., 
2006). Such motifs are commonly amphipathic and fold into 
ordered elements of structure upon binding to a target protein 
(Wright and Dyson, 1999, 2009). Not all IDRs adopt folded 
structures. Some appear to function as �exible linkers between 
structured domains (Dyson and Wright, 2005), whereas others 
remain disordered even when bound to targets (Baker et al., 
2007; Mittag et al., 2008, 2010), forming complexes that have 
been described as “fuzzy” (Tompa and Fuxreiter, 2008).

In performing their regulatory and signaling functions, 
IDPs tend to make discrete interactions with binding partners, 
forming complexes with well-de�ned stoichiometry. However, 
in recent years, a new function has been recognized for a subset 
of IDPs that contain low-complexity regions in which many, 
but not all, of this subset can undergo large-scale association 
through homotypic or heterotypic multivalent interactions (see 
van der Lee et al., 2014). These IDPs can undergo phase transi-
tions, leading to separated liquid droplets, hydrogels, and pro-
tein aggregates or �brils (Vekilov, 2010). In this process, a 
homogenous protein solution separates into a dilute super-
natant, and a protein-rich phase formed through an extensive 
network of weak, multivalent protein–protein interactions. The 
physical chemistry of phase separation is well understood 
(Pappu et al., 2008), and the process is dependent upon protein 

The partitioning of intracellular space beyond membrane-
bound organelles can be achieved with collections of 
proteins that are multivalent or contain low-complexity,  
intrinsically disordered regions. These proteins can un-
dergo a physical phase change to form functional gran-
ules or other entities within the cytoplasm or nucleoplasm 
that collectively we term “assemblage.” Intrinsically dis-
ordered proteins (IDPs) play an important role in form-
ing a subset of cellular assemblages by promoting phase 
separation. Recent work points to an involvement of as-
semblages in disease states, indicating that intrinsic dis-
order and phase transitions should be considered in the 
development of therapeutics.
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assemblages formed by repetitive, low-complexity, IDP se-
quences is reversibility.

Protein–protein or protein–RNA interactions in an assem-
blage are multivalent and dynamic, and can be mediated by 
IDRs of low-complexity or multivalent folded protein domains 
(Fig. 1). IDPs play an important role in assemblages based upon 
their ability to dynamically associate either homotypically or 
heterotypically. The emergent properties that occur in response 
to a phase transition include the ability to bind RNA or protein 
in novel interactions (Fig. 1). Polymer physics, including the 
theories of P. Flory and W. Stockmayer, can contribute to the 
numerical modeling of assemblages (for a review and detailed 
discussion of analytical models, see Falkenberg et al., 2013). To 
discuss the phenomenon of assemblage, an understanding of the 
biochemical and biophysical underpinnings of phase transitions 
leading to separation is necessary.

Liquid–liquid demixing can lead to a type of phase transi-
tion, where microscopic liquid droplets that are rich in proteins 
or RNA separate from the cytoplasm or nucleoplasm (Fig. 1). 
The vast majority of demixing studies to date have involved  
in vitro systems, but in vivo evidence is growing. These phase tran-
sitions are driven by intermolecular interactions and are strongly 
dependent on the concentration of the protein and/or RNA mol-
ecules that partition into the liquid droplets. Early studies that 
identi�ed the macromolecular interactions that promote phase 
separation used synthetic elastin-like polypeptides (Martino 
et al., 2000; Meyer et al., 2001). In addition, microstate parti-
tioning models were developed with peptides such as polygluta-
mine, where as few as 15 glutamine residues cause the peptide 
to form a collapsed state with poor aqueous solubility (Pappu 
et al., 2008). Glutamine, as a hydrophilic amino acid, has excel-
lent water solubility as a monomer, but polyglutamine develops 
signi�cantly different properties based upon the number of glu-
tamine residues, the concentration, and the chemical environ-
ment. This relatively simple model allows the nonbiophysicist 
to begin to visualize how phase transitions occur as the composi-
tion of the polypeptide changes or its concentration increases. 
The critical concentration required for a change in phase of a 
protein depends upon its sequence and its environment; this is a 
key starting point for discussing the concept of phase transition 

concentration, the degree of multivalency, and the strength of 
the intermolecular interactions. Protein phase transitions have 
recently received much attention because of a growing body of 
evidence that phase separation plays a functional role in the  
microscopic organization of the cell (Weber and Brangwynne, 
2012; Kedersha et al., 2013; Tompa, 2013). These processes, 
their relationship to intrinsic protein disorder, and their connec-
tion to disease form the focus of this review.

IDPs promote phase separation to create 

intracellular partitions

Many cellular functions are performed within organelles that are 
enclosed within lipid membranes. However, other functions de-
pend upon assemblies of proteins and nucleic acids that are not 
membrane bound. Through a process of phase separation, bio-
logical macromolecules can form distinct compartments in ei-
ther the cytoplasm or nucleoplasm. These assemblies were �rst 
observed in cells as granules, but hardly distinguishable from 
metabolic granules, such as the lysosome, by electron micros-
copy (Novikoff, 1956). The functional compartmentalization of 
intracellular space can be considered parallel to lipid rafts that 
cause coalescence of transmembrane receptor proteins. André 
and Rouiller (1957) identi�ed and described dense material that 
lacked a membrane, often perinuclear or accompanied by mito-
chondria in Drosophila melanogaster germ cells, which they 
termed “nuage.” The term nuage, meaning “cloud” in French, 
has been used to describe not only the cytoplasmic regions of 
germ cells in Drosophila, but is also being extended to other or-
ganisms based upon investigation of homologous proteins.

There are many macromolecular assemblies that have 
been identi�ed in either the cytoplasm or nucleus, including 
cytoplasmic P granules, germ cell granules, and various nuclear 
bodies (nucleoli, Cajal bodies, PML bodies, speckles, etc.), but 
these particles lack a clear unifying terminology. Thus, we pro-
pose the unifying name of “assemblage” for all of these func-
tional particles that involve phase transitions, some of which 
are made up at least in part from IDPs. These particles exhibit 
liquid-like behavior, and their components are in constant and 
rapid exchange with the surrounding cytoplasm or nucleoplasm 
(Misteli, 2001; Brangwynne et al., 2009). A key property of 

Figure 1. Assemblage formation leads to emergent properties of protein and RNA binding. This series of panels (A–D) demonstrates that an increase in 
the local concentration of protein (yellow ribbons) in regions of a cell can result in a phase transition (yellow haze) to form an assemblage once a critical 
concentration has been reached. A phase separated assemblage can be formed through weak homotypic or heterotypic interactions and allows exchange 
of constituent molecules with the surrounding solution. This phase-separated material allows for the capture and interaction of other protein or RNA species 
(cyan molecule). (D) The final assemblage formation shows the sequestration of two RNA molecules.
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that are found in the hydrogels of FUS and EWS appear rela-
tively distinct and suggest a level of “speci�city” based upon a 
comparison of trapped mRNA identi�ed from reduction of ei-
ther FUS or EWS, or of both proteins (Han et al., 2012). DNA-
dependent protein kinase phosphorylation of serine leads to 
release of mRNA from the FUS hydrogel, which suggests that 
granule disassembly may be controlled by posttranslational 
modi�cation (Han et al., 2012). These �ndings provide a frame-
work for further investigations to identify the mechanistic and 
structural rationale for speci�city between RNA sequences and 
protein binding that occurs in assemblage.

Cytoplasmic bodies exhibit  

phase transitions

The cytoplasm contains RNP assemblages whose existence  
and function depend upon localized phase transitions that lead 
to phase separation. Intrinsically disordered, low-complexity 
amino acid sequences are critical to the phase transition of the 
PGL family of proteins that function in assembly of cytoplas-
mic RNP granules (Brangwynne et al., 2009; Updike et al., 
2011). Germline P granules, which are a type of RNP granule, 
are critical for the polarization that leads to asymmetric cell  
division of the one-cell embryo (for review see Gao and Arkov, 
2013). Phase separation accounts for the development of  
cell polarity by posterior localization of P granules. The P gran-
ules have the physical properties of liquid droplets and are in 
equilibrium with their soluble components (Brangwynne et al., 
2009). The granules do not move as an intact assemblage 
through the cytoplasm. Rather, movement occurs by rapid dis-
solution and condensation of the granule (Brangwynne et al., 
2009). Individual proteins that comprise the P granule do dif-
fuse through the cytoplasm. After symmetry breaking, concen-
tration gradients of the polarity proteins MEX-5 and PAR-1 
promote posterior localization of the granule. MEX-5 promotes 
granule dissolution, whereas PAR-1 antagonizes MEX-5 and 
effectively lowers the concentration required for phase separa-
tion of granule components through weak homotypic or hetero-
typic interactions. This dynamic process of local assembly and 
dissolution leads to the localization of P granules in one pole of 
the embryo before mitosis (Brangwynne, 2013), thereby estab-
lishing polarity.

Germ cell granules in amphibians are nucleated by the 
IDP Xvelo1 (Nijjar and Woodland, 2013) and in vertebrates by 
bucky ball, which contains IDRs (Marlow and Mullins, 2008; 
Bontems et al., 2009). Mammalian oocytes do not contain germ 
cell granules per se, and do not use the same mechanisms to  
establish polarity. However, many of the homologous proteins 
that compose germ cell granules, such as TNRC6A (also known 
as GW182), which is an IDP, are present in primordial mamma-
lian cells (Voronina et al., 2011). In HeLa cells, P granule (also 
known as stress granule) formation is caused by DYRK3 acti-
vation of mTORC1, in part through phosphorylation of the IDP 
PRAS40 (Wippich et al., 2013).

The concentration-dependent phase transitions of the as-
semblages result in liquid droplets with a signi�cantly higher 
density than the surrounding liquid cytoplasm or nucleoplasm. 
Some investigators refer to these higher-density liquids in cells 

leading to particle formation by phase separation. Advances 
in modeling of IDPs based upon the amino acid sequence 
will inform future understanding of in vivo assemblage for-
mation and the contribution of IDPs to this process (Mao et al.,  
2010; Müller-Späth et al., 2010; Das and Pappu, 2013; Soranno  
et al., 2014).

Although intrinsic protein disorder plays an important 
role in formation of cellular assemblages, these can also be 
formed by interactions between folded proteins that promote 
phase transitions. Phase separations can occur when the inter-
acting macromolecules reach a critical concentration and are 
aided by multivalency (Fromm et al., 2014). One model of as-
semblage formation was nicely demonstrated using engineered 
proteins containing 1–5 SH3 domains or 1–5 proline-rich motifs 
(PRMs; ligands for SH3 domains) that were mixed combinato-
rially to study the effects of concentration and valency on phase 
separation (Li et al., 2012). A valency of 4 signi�cantly low-
ers the threshold concentration, leading to a cooperative phase 
transition for PRM binding to SH3 domains (Li et al., 2012).  
A naturally occurring multiprotein system consisting of nephrin, 
NCK, and N-WASP con�rmed the importance of multivalency 
by showing that tyrosine phosphorylation increased the valency 
of the NCK SH2 domain binding to nephrin. This led to a local 
increase in the concentration of the SH3 domains of NCK, lead-
ing to N-WASP binding as the phase transition occurs. When 
the solution transitioned to gel phase, there was a large increase 
in the rate of Arp2/3-mediated actin assembly. This phase tran-
sition, however, occurred independently of Arp2/3 binding  
(Li et al., 2012).

Low-complexity IDPs, b-isox, and hydrogels

A biotinylated version of 5-aryl-isoxazole-3-carboxylamide 
(Sadek et al., 2008) with a saturated linker, now called b-isox, 
was serendipitously shown to reversibly precipitate proteins 
with low-complexity sequences, including FUS, EWS, TIA-1, 
ATXN2, FXR1, and other RNA-binding proteins (Kato et al., 
2012). Extensive studies of FUS showed that a low-complexity 
region of the sequence, containing 27 [G/S]Y[G/S] repeats, me-
diates a concentration-dependent phase transition to a hydrogel 
state. This hydrogel was capable of retaining FUS and other 
RNA-binding proteins, a property that was lost when the critical 
tyrosine residue was mutated to serine. Biophysical studies re-
vealed that the hydrogel state is composed of polymerized  
amyloid-like �bers (Kato et al., 2012). The authors hypothesized 
that the low-complexity sequences play a functional role in con-
trolling exchange of proteins into and out of subcellular gran-
ules through reversible formation of dynamic amyloid �bers. It 
is of note that the protein components of RNA granules are highly 
enriched in low-complexity [G/S]Y[G/S] sequences (Kato  
et al., 2012).

B-isox forms a crystal lattice that has long narrow pores 
that appear to entrap low-complexity sequences based upon 
their formation of �bers (Kato et al., 2012). These �bers are 
also responsible for the trapping of speci�c RNA species in the 
hydrogel. A highly signi�cant correlation exists between those 
mRNAs that are trapped in hydrogels compared with those pre-
cipitated by b-isox (Han et al., 2012). The mRNA molecules 
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Although FG repeats are a broad class of Nup, sequence 
variations such as FxFG and FLFG, along with FG, are differen-
tially distributed at the cytoplasmic, intra-NPC, or nucleoplas-
mic regions of the NPC (Atkinson et al., 2013). A mutagenesis 
analysis of the role of FG repeat Nups in yeast suggests that 
multiple pathways exist for transport through the nuclear pore 
(Strawn et al., 2004). The FG Nups are structurally heteroge-
neous, adopting a spectrum of disordered conformational states 
that range from collapsed coils to highly extended con�gu-
rations (Yamada et al., 2010), leading to a zonal model of the 
nuclear pore (Fig. 2). Additional investigations support a criti-
cal role for FG nucleoporins in the transport of mRNA, includ-
ing relative speci�cities for GLFG and FxFG repeat sequences 
(Terry and Wente, 2007).

Karyopherins, a class of nuclear transport proteins from 
multiple species from yeast to human, have been found to bind 
to FG repeats. The nature of the interactions of FG repeats with 
transporter proteins is highly dependent on their hydrophobic 
microenvironments; cells show diminished growth when FG 
repeats are disrupted by mutagenesis or by aliphatic alcohols 
(Patel et al., 2007). In vitro physical models of FG repeat pro-
teins demonstrate that phase transition occurs from liquid to  
hydrogel, in support of a phase separation model for the core of 
the nuclear pore (Frey and Görlich, 2007; Ader et al., 2010; 
Diesinger and Heermann, 2010). A detailed evaluation of nearly 
all Nups and their contribution to transport supports phase tran-
sition leading to assemblage formation in the nuclear pore com-
plex transport system (Yamada et al., 2010).

Model NPCs have been reconstituted from Xenopus lae-

vis egg extracts under near in vivo conditions, allowing direct 
measurements of the permeability over time (Hülsmann et al., 
2012). These experiments suggest a hydrogel-like phase transi-
tion that regulates the nuclear pore barrier based upon the local 
concentration of low-complexity residues in the NPC. In con-
trast, polarized �uorescence microscopy suggests a more struc-
turally ordered environment for NPCs within the cell, described 
as nematic ordering, in which molecules have no positional 
order but are self-aligned to have long-range directional order, 
with their long axes roughly parallel (Atkinson et al., 2013). 
Using high-resolution EM imaging, a dynamic picture of GLFG 

as hydrogels, based upon their physical appearance and properties 
in vitro (Han et al., 2012). As described earlier, these hydrogels 
can “intercept” other P granule components, such as the germ 
line helicase GLH-1 (Brangwynne et al., 2009). The size exclu-
sion “barrier,” or �lter, of the P granule is formed by incorpora-
tion of GLH proteins, which contain phenylalanine-glycine (FG) 
low-complexity repeats reminiscent of the nuclear pore complex 
(Updike et al., 2011). The protein PGL-1, which contains low-
complexity GYG repeat motifs, is critical for the GLH condensa-
tion and localization to the nuclear pore. The P granule barrier 
excludes proteins larger than 45 kD, thereby acting as a nuclear 
transport �lter (Updike et al., 2011). Thus, when a P granule as-
sociates with the nuclear pore complex, a size �lter to the nuclear 
transport of macromolecules can occur (Updike et al., 2011).

The nuclear pore complex: putative 

function of phase separation in transport

Although the shell of the nuclear pore is an ordered structure, 
the cytoplasmic surface of nuclear pores is surrounded by pro-
teins, such as Nup159, with low-complexity FG sequences that 
form �brillar extensions into the cytoplasm and act as a primary 
barrier for large molecular species (Patel et al., 2007). One of 
the critical functions of the nuclear pore is the regulated trans-
port of proteins into the nucleus, but how this occurs remains 
cryptic, despite multiple transport models (Rabut and Ellenberg, 
2001; Adams and Wente, 2013). Current understanding of nu-
clear pores describe three main types of proteins: transmem-
brane Nups that anchor the nuclear pore complex in the nuclear 
envelope, structural Nups that stabilize the nuclear envelope 
curvature and provide scaffolding, and intrinsically disordered 
FG Nups that contribute to the permeability barrier for nonspe-
ci�c transport and facilitate movement as direct binding sites 
for transport receptors (Adams and Wente, 2013).

Identi�cation of FG repeats as low-complexity secondary 
sequences in the nuclear pore complex, �rst in yeast (Wente  
et al., 1992; Wimmer et al., 1992), then in mammalian cells (Radu 
et al., 1995), was a critical step in modeling NPC transport. 
These FG repeats were experimentally validated as intrinsically 
disordered, and hypotheses concerning their roles in transport 
have evolved (Denning et al., 2003).

Figure 2. Phase transition caused by IDPs regulates transport in nuclear pore channels. (A) Sagittal plane of a nuclear pore that is populated with IDPs. 
FG proteins, and variants described in the text, contribute to the “filling” of space between structural protein components (gray). The architecture of the 
NPC creates zones of transport, indicated here as light red and light blue. (B) Transverse view of nuclear pore complex components (Nups) showing the 
localization of FG proteins and the transport zones. (C) Legend demonstrating the types of proteins found in the nuclear pore complex and their biophysical 
characteristics. This figure is based upon Saccharomyces cerevisiae FG Nups and is adapted from Yamada et al. (2010).
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low-complexity sequences) present in mutant TDP-43 (Arai  
et al., 2006; King et al., 2012), FUS (King et al., 2012), hnRNPA2B1, 
and hnRNPA1 (Kim et al., 2013). These proteins, whose func-
tion involves RNA binding, have IDRs and undergo phase tran-
sitions that lead to formation of granular assemblages (Malinovska 
et al., 2013). Pathogenicity is thought to derive in part through 
aberrant sequestration of RNA in these aggregates (Gitler and 
Shorter, 2011).

Mutant p53 is a well-recognized driver of cancer initia-
tion, progression, and maintenance of the cancer phenotype. 
The central region of wild-type p53 (p53C) can nucleate �bril 
formation, but this seldom happens under normal physiologi-
cal conditions (Ishimaru et al., 2003, 2004). Mutant p53, in 
particular the 30% of mutations that lead to unfolding of the 
protein, have a greater propensity for spontaneous �bril forma-
tion (Xu et al., 2011). These �brils can occur in the nucleus of 
cells with mutant p53, as demonstrated in breast carcinoma 
with R248Q (Ano Bom et al., 2012). Data suggest that p53 �-
brils can nucleate assemblage and even pass this nucleated as-
semblage onto other cells through micropinocytosis (Forget et al.,  
2013; Hofmann et al., 2013).

Protein phase transitions in disease: the 

cause and the cure?

Previous reviews have described IDPs as integral to pathogen-
esis in a wide spectrum of human disease (Midic et al., 2009). 
The potential reversibility of these pathogenic protein com-
plexes remains unresolved, and probes are needed to test revers-
ibility of the protein aggregates; these probes will both inform 
on the biochemistry of the interaction as well as provide insights 
into the contribution of the aggregates to pathogenesis.

The function of the TET (TLS [or FUS]-EWS-TAF15, 
also known as FET) family of proteins remained relatively 
obscure for many years after their discovery, in part because 
of their seemingly promiscuous involvement in biological 
processes via RNA binding (Lee, 2007). Proteomic analysis 
has identi�ed the interacting partners of TET proteins, which 
include proteins from all aspects of transcription and mRNA 
processing (Pahlich et al., 2009). These TET proteins can par-
ticipate in or drive pathological processes through three mech-
anisms. First, chromosomal translocation of EWS in Ewing 
sarcoma (ES) became recognized as a fusion partner in many 
cancer phenotypes bearing little phenotypic relationship to ES 
(Delattre et al., 1992; Kovar, 2011). Second, EWS or EWS-
FLI1 can participate in protein interactions, either by forma-
tion of de�ned complexes or putatively as an assemblage. 
EWS participation in splicing foci thus represents a potential 
biological example where phase separation is not yet proven, 
but may play a role in disease (Paronetto et al., 2011). Third, 
mutations in EWS that lead to protein aggregation in ALS are 
focusing attention on EWS as an aggregation-prone protein 
that can nucleate or become involved in aberrant cellular as-
semblages (Couthouis et al., 2012).

The intrinsically disordered, low-complexity region of EWS, 
like the other TET proteins, contains repeats of the [G/S]Y[G/S]  
motif as well as the sequence SYGQQS, a repetitive gluta-
mine-rich motif with prion-like properties (King et al., 2012; 

repeats shows movement in a concentration gradient–dependent 
fashion, but only in speci�c regions (Fiserova et al., 2014). In 
summary, these different paradigms of nuclear transport indi-
cate that IDP composition leading to phase transition is crucial 
for this essential cellular process (Adams and Wente, 2013).

Phase separation as a mechanism for 

protein interaction in disease

Biophysical studies have clearly documented phase transitions 
that lead to phase separation of proteins in vitro, whereas cellular 
studies demonstrate that phase separation with creation of as-
semblage occurs as part of critical biological processes in vivo. 
For example, a phase transition plays a central role in assembly 
of the myelin sheath, driving association of the intrinsically dis-
ordered myelin basic protein to form a mesh-like network on the 
inner lea�et of the membrane bilayer (Aggarwal et al., 2013). 
The low-complexity amino acid motifs that cause phase sepa-
ration may also drive pathology. Certain mutant proteins con-
sidered to be etiologic in neurodegenerative diseases and cancer 
have emergent properties that suggest that phase separation leads 
to aggregation. The �brillar aggregates in neurodegenerative 
disease are not considered reversible from a pathological stand-
point, or at least have not been shown to be at this time. The lack 
of reversibility in these terminal aggregates therefore does not 
fully �t within our de�nition of assemblage. We discuss these 
aggregates, however, because they clearly derive from IDPs and 
their formation is driven by phase transitions.

Huntington’s disease is a neurodegenerative disorder 
caused by polyglutamine repeat expansions in the huntingtin  
protein (Lee et al., 2014). The expansion of polyglutamine in 
mutant huntingtin (mHTT) results in formation of �brillar ag-
gregates that sequester and inhibit the transcriptional regula-
tory functions of CREB-binding protein (CBP; Nucifora et al., 
2001). mHTT aggregates also sequester and disrupt the func-
tions of additional regulatory proteins, including speci�city 
protein 1 (SP1), TATA box binding protein (TBP), the TFIID 
subunit TAFII130, the RAP30 subunit of the TFIIF complex, 
and the CAAT box transcription factor NF-Y (Kim et al., 2002; 
Labbadia and Morimoto, 2013). To probe the effect of increas-
ing the number of glutamine residues in huntingtin, terminal 
cyan and yellow �uorescent proteins were introduced into the 
N17 and polyproline regions that �ank the polyglutamine tract 
(Caron et al., 2013). When the length of the polyglutamine tract 
exceeded 37 residues, a decrease in Förster resonance energy 
transfer (FRET) was observed, which indicates conformational 
changes and disruption of interactions between the N17 and 
polyproline regions. Polyglutamine tracts have the ability to 
self-assemble into �brillar aggregates (Burke et al., 2003). Ag-
gregation of disordered, low-complexity polyglutamine tracts 
is thought to occur by a process of liquid–liquid demixing, 
leading to phase separation, and both the kinetics and aggrega-
tion propensity are modulated by the �anking regions (Fiumara  
et al., 2010; Crick et al., 2013).

Many other neuropathological diseases involve a type of 
assemblage called stress granules, and their role in disease has 
been recently reviewed (Li et al., 2013). These assemblages 
condense based upon prion-like sequences (also known as 
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Malinovska et al., 2013). The carboxy terminal of EWS con-
tains RNA-binding domains, homologous to those found in 
other RNA-binding proteins that form well-characterized as-
semblages (Han et al., 2012). The role of the intrinsically dis-
ordered low-complexity domains of EWS in the EWS-FLI1 
fusion protein was discussed for many years (Üren et al., 2004; 
Ng et al., 2007). Recent evidence suggests that polymerization 
of the low-complexity domains forms an assemblage that can 
aberrantly recruit other cellular proteins (Kwon et al., 2013). 
This assemblage is postulated on the basis of the GGAA  
microsatellite repeats that would drive a high local concentra-
tion of EWS-FLI1 through interactions with the DNA-binding  
domain of FLI1 (Fig. 3). Both the EWS domain and the carboxy-
terminal domain of FLI1 have low-complexity amino acid 
sequences that have the potential to create an assemblage at 
sites of transcription (Dunker and Uversky, 2010). Together 
with examples drawn from developmental biology, such as  
P granules (Feric and Brangwynne, 2013), and cancer biology 
such as TET proteins (Kwon et al., 2013), pathological assem-
blages may be dissolved (or allosterically inhibited) by pep-
tides or small molecules that mimic or block the interactions 
that drive phase transitions.

Small molecules as probes of phase 

separation function

The discovery of the small molecule b-isox was serendipitous, 
but led to the identi�cation of low-complexity intrinsically 
disordered motifs that mediate protein–protein interactions 
based upon phase transitions (Kato et al., 2012). In addition, 
IDRs are implicated in many diseases, from neuropathy to 
cancer. Therefore, there has been an effort to identify small 
molecules that could potentially disrupt assemblages and de-
velop them as probes, with the goal of creating novel thera-
peutics (Metallo, 2010; Cuchillo and Michel, 2012). Direct 
screening of IDPs has been performed with either protein or a 
small molecule immobilized on a surface (Kemp et al., 2012; 
Hong et al., 2014a). Examples of the small molecule targets 
that involve intrinsic protein disorder include p53, c-MYC, 
EWS-FLI1, and CBF (Yin et al., 2003; Vassilev et al., 2004; 
Gorczynski et al., 2007; Follis et al., 2008; Erkizan et al., 
2009; Mustata et al., 2009). These proteins all participate in 
canonical protein–protein complexes, and some appear to 
have emerging roles in assemblages. Thus, the pathological  
�bril formation that results from high local concentrations of 
these proteins and the dissolution potential of these �brillar 
complexes in cells is a future challenge.

Figure 3. DNA acts as a scaffold for EWS-FLI1 binding to GGAA repeats, 
leading to a putative phase transition based upon high concentration of 
EWS domains. A series of panels (A–D) shows sequential binding of EWS-FLI1 

(purple with helical region) to GGAA (red/green) repeats in the DNA. The 
high concentration of EWS domains that would occur as a result of multiple 
EWS-FLI1 proteins binding in a DNA microsatellite could lead to a phase 
transition based upon the intrinsically disordered low-complexity repeats. 
(E) The increased local concentration of these EWS domain subunits have 
emergent properties, at a critical concentration depicted here as five pro-
teins, because of a phase transition leading to the sequestration of RNA 
(cyan). The assemblage and its interaction with RNA could be part of the 
transcriptional or posttranscriptional machinery. The capture of RNA could 
tether this dynamic phase separated assemblage to the nascent pre-mRNA 
or to the posttranscriptional splicing complex.
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imaging technology, and intracellular biophysical measure-
ments will advance biology through a greater understanding 
of assemblages and their role in protein interactions. This en-
hanced ability to study and manipulate assemblages will lead  
to both deeper mechanistic understanding of biological pro-
cesses and the ability to extend this knowledge in order to im-
pact human health.
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