
228 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 31, NO. 2, FEBRUARY 2012

Assembling 2-D Blocks into 3-D Chips
Johann Knechtel, Student Member, IEEE, Igor L. Markov, Senior Member, IEEE, and

Jens Lienig, Senior Member, IEEE

Abstract—Despite numerous advantages of 3-D integrated
circuits (ICs), their commercial success remains limited. In part,
this is due to the wide availability of trustworthy intellectual
property (IP) blocks developed for 2-D ICs and proven through
repeated use. Block-based design reuse is imperative for heteroge-
neous 3-D ICs where memory, logic, analog, and microelectrome-
chanical systems dies are manufactured at different technology
nodes and circuit modules cannot be partitioned among several
dies. In this paper, we show how to integrate 2-D IP blocks into
3-D chips without altering their layout. Experiments indicate
that the overhead of proposed integration is small, which can
help accelerate industry adoption of 3-D integration.

Index Terms—3-D IC design styles, 3-D integrated circuits
(ICs), floorplan optimization, intellectual property (IP) blocks,
through-silicon via (TSV) planning, TSV islands.

I. Introduction

3
-D INTEGRATION is a promising design option to keep

pace with steadily increasing demands on functionality and

performance of electronic circuits. It is motivated by applica-

tions combining heterogeneous manufacturing processes, sep-

arate die testing for increased yield, shorter and lower-power

interconnects, as well as a smaller form factor. Originating

with vertical stacked dies in a system-in-package (SiP), wire

bonding is used to interconnect separate dies, as illustrated by

the Apple A4 package that places two DRAM dies on a ARM

logic die. However, wire-bonding interconnect can become

a bottleneck in such an SiP, and the next logical step is to

provision for direct die-to-die interconnect without package-

level detours, resulting in 3-D integrated circuits (ICs) (Fig. 1).

Such interconnects are implemented using through-silicon vias

(TSVs)—vertical plugs that connect two silicon dies. The

use of TSVs enables chip-level integration, which promises

shorter global interconnect while retaining the benefits of

package-level integration. Recently, S. Borkar [1] presented

an energy-efficient, high-performance 80-core system with

stacked SRAM.

Manuscript received June 13, 2011; revised August 14, 2011; accepted
October 21, 2011. Date of current version January 20, 2012. The work of J.
Knechtel was supported by the German Research Foundation, under Project
1401/1. This paper was recommended by Associate Editor C.-K. Koh.

J. Knechtel and J. Lienig are with the Institute of Electromechanical
and Electronic Design, Dresden University of Technology, Dresden 01062,
Germany (e-mail: knechtel@ieee.org; jens@ieee.org).

I. L. Markov is with the Department of Electrical Engineering and
Computer Science, University of Michigan, Ann Arbor, MI 48109 USA
(e-mail: imarkov@eecs.umich.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2011.2174640

The 2009 edition of the International Technology Roadmap

for Semiconductors prominently features 3-D IC integration

in the section on interconnect and the section on assembly

and packaging [2]. Industry analysts are forecasting that the

global 3-D IC market will reach $5.2B by 2015 [3]. However,

the progress in commercial applications of 3-D ICs is cur-

rently limited, despite these forecasts and apparent benefits.

Academic research in this field is pursuing 3-D floorplanning

[4]–[9], thermal management [5], [6], [8]–[11], TSV planning

[12]–[17], and cost-effective design-space exploration [18].

Recent studies also address TSV-induced-stress analysis and

accurate TSV alignment [19]–[21], the impact of intradie

variation [22], and signal-integrity analysis for 3-D ICs [23].

Existing publications often neglect important obstacles to

3-D IC integration. One is given by design constraints and

overhead associated with TSVs. At the 45 nm technology node,

the area footprint of a 10μm×10μm TSV is comparable to

that of about 50 gates [24]. Furthermore, manufacturability

demands landing pads and keep-out zones [21] which fur-

ther increase TSV area footprint. Previous work in physical

design often neglects this area overhead [5], [7]–[9]. Some

studies explicitly consider thermal TSV insertion but not signal

TSVs [11], [25]. Tsai et al. [14] observed that previous work

also neglects the impact of TSV locations on wirelength

estimates for floorplanning.

While the usage of TSVs is generally expected to reduce

wirelength, Kim et al. [24] reported that wirelength reduction

varies depending on the number of TSVs and their character-

istics. Their case studies show that this tradeoff is controlled

by the granularity of interdie partitioning. The wirelength

typically decreases for moderate (blocks with 20–100 mod-

ules) and coarse (block-level partitioning) granularities, but

increases for fine (gate-level partitioning) granularities.

Depending on the technology choices, TSVs block some

subset of layout resources. Via-first TSVs are manufactured

before metallization, thus occupy the device layer and result

in placement obstacles. Via-last TSVs are manufactured after

metallization and pass through the chip. Thus, they occupy

both the device and metal layers, resulting in placement and

routing obstacles [24].

A further impediment to 3-D IC integration is more subtle.

It is related to feasible design styles and principles for 3-D

integration. To achieve higher overall yield and reduce costs,

separate testing of independent dies is essential [26], as

also emphasized in a recent Intel study [1]. However, tight

integration between adjacent active layers in 3-D ICs entails a

significant amount of interconnect between different sections

0278-0070/$26.00 c© 2011 IEEE

KNECHTEL et al.: ASSEMBLING 2-D BLOCKS INTO 3-D CHIPS 229

of the same circuit module that were partitioned to different

dies. Aside from the massive overhead introduced by required

TSVs, sections of such a module, e.g., a multiplier, demand

for new testing approaches [26], [27]. Additionally, recent

work [22] points out that intradie variation becomes a first-

order effect for 3-D IC integration, while being only a second-

order effect for 2-D chips.1 The authors estimated that a 3-D

layout will yield more poorly than the same circuit laid out in

2-D, contrary to the original promise of 3-D IC integration.

These wide-ranging considerations suggest that a successful

and effective approach to 3-D IC integration must rely on

proven and effective design methodologies. To this end, we

make the following contributions.

1) We describe and compare several design styles, in partic-

ular the legacy 2-D (L2D) style which integrates existing

2-D intellectual property (IP) blocks not designed for

3-D IC integration (Section II).

2) Next, we extend the L2D style to L2D style with

TSV islands (L2Di), where TSVs are clustered into

TSV islands rather than placed in a spread-out manner

(Section III). This technique can limit the overhead of

TSVs, but does not necessarily exclude single TSVs.

3) To support the L2Di style, we propose a methodology

and novel algorithms for net clustering, TSV-island

insertion, and related tasks (Section V). The overall

approach promises faster industry acceptance of 3-D IC

integration.

4) We empirically validate our methodology, demonstrating

3-D IC integration of L2D IP blocks (Section VI).

The remainder of this paper is structured as follows. In

Section II, we describe and compare several 3-D design styles.

In Section III, we discuss options to connect blocks placed on

separate dies. Additionally, we evaluate common wirelength-

estimation techniques. The problem formulation for our L2Di

style is given in Section IV. Our methodology is presented in

Section V. In addition to proposing new techniques for 3-D

integration, we also point out related results from graph theory.

In Section VI, we present experimental results, validating our

methodology. Our conclusions are given in Section VII.

II. 3-D IC Design Styles

3-D integration originated with package-level integration,

which connects multiple 2-D chips through bonding pads,

as illustrated by the quad-core variant of the Intel Core 2

processor. Finer granularity of 3-D integration is enabled by

connecting dies with TSVs, which results in 3-D ICs [28].

In this paper, we consider signal TSVs. Simultaneously plan-

ning signal, power/ground and thermal TSVs requires further

considerations [17]. Also, we consider face-to-back (F2B)

stacking for 3-D IC integration. Next, we contrast gate-

level and block-level integration styles for 3-D ICs (Fig. 2).

Gate-level integration faces multiple challenges and currently

appears less practical than block-level integration.

1When a die experiences process variation, all transistors become faster (or
slower), perhaps at a different rate; the variations in transistor performance are
therefore a second-order effect. However, several stacked dies may experience
systematic variations in opposite directions—a first-order effect.

Fig. 1. 3-D IC containing three active layers, stacked using F2B technology.
TSVs must not obstruct IP blocks and are therefore placed between them.
Layer bonding can be realized with microbumps or direct bonding. Please
note that routing interlayer nets through TSVs still requires vias in the metal
layers. Also, connecting signals through bumps to the package requires a
redistribution layer.

Fig. 2. Integration levels for 3-D ICs. TSVs are illustrated as solid, red
boxes, and related landing pads as dashed, red boxes. (a) Gate-level integra-
tion, enlarged for illustration. This style is based on placing separate gates on
multiple dies, likely resulting in a huge number of required TSVs. (b) Block-
level integration relies on (2-D) blocks, which are partitioned between multiple
dies and connected through global routes, thus limiting required TSVs.

A. Gate-Level Integration

One approach to 3-D integration is to partition standard

cells between multiple dies in a 3-D assembly and use TSVs

in routes that connect cells spread among active layers. This

integration style promises significant wirelength reduction and

great flexibility [6].

Its adverse effects include the massive number of neces-

sary TSVs for random logic (Section I). The study by Kim

et al. [24] revealed that partitioning gates between multi-

ple dies may undermine wirelength reduction unless circuit

modules of certain minimal size are preserved. A recent

study [29] pointed out that layout effects can largely influence

performance for highly regular blocks such as SRAM registers;

a mismatch between TSV and cell dimensions may introduce

wirelength disparities while routing regular structures to TSVs.

Also, partitioning a design block across multiple dies requires

new prebond testing approaches [26], [27].

Furthermore, gate-level 3-D integration requires to redesign

all available IP, since existing IP blocks and electronic design

automation (EDA) tools do not provision for 3-D integration.

Even when 3-D place-and-route tools appear on the market, it

will take many years for IP vendors to upgrade their extensive

IP portfolios for 3-D integration.

230 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 31, NO. 2, FEBRUARY 2012

Fig. 3. Block-level integration for 3-D ICs. (a) Redesigned 2-D (R2D) style
uses predefined TSV sites (small red boxes) within the block footprint.
(b) L2D style places scattered TSVs preferably between blocks, thus limits
stress for gates.

B. Block-Level Integration

Design blocks subsume most of the netlist connectivity and

are linked by a smaller number of global interconnects [30].

Therefore, block-level integration promises to reduce TSV

overhead. As pointed out in [29], TSVs may not scale at the

same rate as transistors, thus the TSV-to-cell mismatch will

likely remain for future nodes and may increase. The best

option to limit the overhead of TSVs is to reduce their count

by assigning only global interconnects to them.

Sophisticated 3-D systems combining heterogeneous dies

are projected in a recent Cadence whitepaper [31]. Such

systems require distinct manufacturing processes at different

technology nodes for fast and low-power random logic, sev-

eral memory types, analog, and radio frequency circuits, on-

chip sensors, microelectromechanical systems (MEMS), and

nanoelectromechanical systems. Thus, block-level integration

appears crucial for future 3-D integration.

From an industrial perspective, 3-D integration will re-

quire 3-D-aware tools only for partitioning and thermal anal-

ysis [32]. Separate dies will be designed using (adapted)

2-D tools and 2-D blocks [32]. This is motivated by the

broad availability of reliable IP blocks, as discussed later on.

Furthermore, modern chip design often requires last-minute

engineering changes. Restricting the impact of such changes

to single dies is essential to limit additional cost.

When assigning entire blocks to separate dies and connect-

ing them with TSVs, we distinguish two design styles (Fig. 3).

1) R2D style: 2-D blocks designed for 3-D integration

(TSVs included within the footprints).

2) L2D style: 2-D blocks not designed for 3-D integration

(TSVs preferably placed between blocks).

Depending on available blocks, mixing both styles may

be practical. These styles promise a good tradeoff between

necessary TSV usage and wirelength reduction, as discussed

in Section I. However, the R2D style may be more constrained.

For back-to-back (B2B) stacking, blocks may be required

to align according to their predefined TSV locations, which

would naturally increase placement complexity. This may

further complicate design closure, e.g., due to congestion

around densely packed obstacles. TSV-induced silicon stress

increases the overhead of TSVs inside blocks, favoring TSVs

between blocks.

Fig. 4. L2Di style for 3-D integration. TSVs are grouped into TSV islands,
which may include scan chains for test purposes and multiplex spare TSVs
for redundancy. TSV island are illustrated as brown, dashed boxes containing
TSVs (solid, red boxes). Related landing pads are illustrated as dashed, red
boxes. Islands provide a beneficial option to connect blocks between several
layers, but may also be difficult to insert into deadspace.

Several other important benefits of the R2D and L2D styles

are described next. Design-for-testability (DFT) structures are

a key component of existing (2-D) IP blocks and can therefore

be used to realize prebond and postbond testing for the L2D

style [26]. In general, test pins can be provisioned on each

die and multiplexed/shared with other pins for prebond and

postbond testing [33]. Block-level integration may be used to

efficiently reduce critical paths, thus simultaneously allows

limiting signal delay, increasing performance and reducing

power consumption [34]. In [35], the authors propose optimal

matching of slow and fast dies, based on accurate delay models

with process variations considered. This approach assumes

that dies can be delay-tested before 3-D stacking—a strong

argument for block-level 3-D integration.

Another aspect of block-level integration styles deals with

design effort (Section II-A). Modern chip design mostly relies

on predesigned and optimized IP blocks; analysts at Gartner

Dataquest point out that the IP market is still growing and will

reach $2.3B by 2014. Existing IP blocks must be redesigned

for use with the R2D style, despite their successful track record

in applications and at the marketplace. Such a redesign would

require new EDA tools for physical design and verification,

increasing risks of design failures and being late to market.

It is more convenient to use available L2D IP blocks and

to place the mandatory TSVs in the deadspace between the

blocks, as provisioned by the L2D style. An extreme form

of design IP reuse possible with the L2D style is block-level

mask reuse with changes only required for global routes at

high metal layers—TSVs placed in deadspace do not modify

silicon layers of the blocks.

III. Connecting 2-D Blocks in 3-D ICs

To connect 2-D blocks placed among multiple active layers,

required TSVs can be inserted in several ways. First, one could

use single, spread out TSVs [Fig. 3(b)]. The second option is

to place TSVs on a gridded structure. The third option groups

several TSVs into TSV islands, as required for the L2Di style.

Depending on the manufacturing process, TSV insertion might

be required to account for minimum TSV density, pitch, and

spacing.

Fig. 4 illustrates TSV islands as blocks with densely placed

TSVs. Optimizing the layout of TSV islands leads to several

KNECHTEL et al.: ASSEMBLING 2-D BLOCKS INTO 3-D CHIPS 231

benefits, as explained below. However, single TSVs can also

be instantiated when necessary.

A study by Kim et al. [16] compared placing TSVs on

a grid (regular placement) to placing scattered TSVs (irreg-

ular placement). The study revealed that irregular placement

performs better in terms of wirelength reduction and design

runtime. Since TSVs are placed near the blocks they are

connected to, there is no need for a separate TSV-assignment

process.

However, viewing TSVs as purely geometric objects would

neglect several key technology issues. These include: 1) silicon

stress in the neighborhood of TSVs, which alters transis-

tor properties and motivates keep-out zones; 2) reliability

and fault-tolerance issues in the TSVs themselves; and 3)

complexities of connecting dies manufactured at different

technology nodes, e.g., analog, digital logic, and memory

dies. Regular TSV structures can be designed to address

these concerns by optimizing spacing between TSVs, pos-

sibly sharing keep-out zones, performing electrothermal and

mechanical simulations before layout, etc. In contrast, single

TSVs would require greater care during layout. To this end,

regular placement helps manufacturing reliable TSVs [13],

[36], which favors assembling multiple TSVs into TSV

islands.

A. TSV Islands

Grouping several TSVs into TSV islands of appropriate

sizes is beneficial for several reasons, discussed below.

1) TSVs introduce stress in surrounding silicon which

affects nearby transistors [21], but TSV islands do not

need to include active gates. The layout of these islands

can be optimized in advance; regular island structures

help to limit stress below the yielding strength of cop-

per [19]. Furthermore, using TSV islands limits stress to

particular design regions [37]. Placing islands between

blocks may thus limit stress on blocks’ active gates.

2) TSV islands facilitate redundancy architectures [13],

[20], where failed TSVs are shifted within a chain

structure or dynamically rerouted to spare TSVs. Fig. 4

illustrates islands of four TSVs, including a spare.

3) Grouping TSVs can reduce area overhead. TSVs can be

packed densely within TSV islands, possibly reducing

keep-out zones without increasing stress-induced impact

on active gates [37].

4) Regular, lithography-optimized layouts of predesigned

TSV islands improve manufacturability by increasing

exposure quality during optical lithography [13].

5) Each TSV experiences significant mechanical pressure

(several hundred MPa [19]) which may affect even tung-

sten vias2 over time, especially due to slight misalign-

ments. The thinner the TSVs, the greater the pressure,

and single TSVs are riskier than TSV islands that may

balance out misalignments. For similar reasons, archi-

tectural pillars and columns usually appear in groups.

2Both copper and tungsten are used for TSV manufacturing. Currently, cop-
per is more popular, but requires thicker TSVs due to its inferior mechanical
properties (yield strength 600 MPa [19]).

Fig. 5. Wirelength estimates for 3-D ICs based on bounding-box construc-
tion. Net pins are labeled pn, projected pins as p′

n. (a) Considering only
net pins provides lowest-accuracy estimation. Wirelength is calculated as
NBB-3D-HPWL = w + h. (b) Using both net pins and the TSV location
increases estimation accuracy. Wirelength is calculated as BB-3D-HPWL =
w′ + h′. (c) Most accurate estimation is achieved by separately considering
net pins and TSVs on each die. Wirelength is calculated as BB-2D3D-HPWL
=

∑
(wl + hl) for all related, active layers l ∈ L.

6) Many designs suitable for 3-D integration, such as

networks-on-chip, connect their modules by multibit

buses. When such buses cross between adjacent dies,

they will naturally form TSV islands.

Using TSV islands has some downsides. Connecting blocks

through TSV islands can introduce wire detours, increase

interconnect delays (also by coupling between TSVs), and

increase the demand for routing resources. Large TSV islands

may complicate floorplanning and placement. To address these

challenges, we develop sophisticated algorithms for net assign-

ment and TSV-island insertion.

The relevance of TSV islands may depend on technology

details, which currently vary significantly among different

manufacturers. We allow trivial TSV islands with only one

TSV as well. This subsumes the straightforward handling

of TSVs as a special case, thus our proposal is not restric-

tive.

B. Wirelength Estimation

Tsai et al. [14] showed that using TSVs not only affects

the final wirelength but may also decrease the accuracy of

wirelength estimation during floorplanning, if not appropri-

ately addressed. As mentioned in Section I, previous work on

3-D integration mostly ignores TSV footprints and locations.

232 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 31, NO. 2, FEBRUARY 2012

Fig. 6. Net clustering and TSV-island insertion. (a) Interlayer nets n1, n2, and n3 need to be connected through TSVs. (b) Pins pn are mapped to a virtual
die as p′

n and corresponding net bounding boxes are constructed. Intersections of bounding boxes mark cluster regions c1, c2, and c3 (intersection corners are
pointed to). (c) Region c3 is not obstructed by blocks and provides sufficient area, thus allows TSV-island insertion providing shortest routes for all nets.

Subsequently, TSV placement is likely to be hindered due to

inappropriately distributed deadspace. The well-known metric

half-perimeter wirelength (HPWL) of net bounding boxes is

insufficient for 3-D ICs, due to possibly lacking deadspace

for TSV insertion. However, this estimation technique using

net pins provides a reference value for optimal TSV inser-

tion. We refer to it as NBB-3D-HPWL [Fig. 5(a)]. Tsai et

al. [14] proposed to extend it by considering TSV locations

during bounding-box construction. We refer to this estimation

technique as BB-3D-HPWL [Fig. 5(b)]. However, Tsai et

al. neglected that using TSVs implies connecting blocks to

TSV locations on all associated layers. To estimate resulting

wirelength more precisely, Kim et al. [16] introduced net split-

ting. They construct bounding boxes on each layer separately

and sum up resulting HPWLs. We refer to this technique as

BB-2D3D-HPWL [Fig. 5(c)].

These estimation techniques assume only one TSV placed

in each layer while connecting a net. However, for high-

degree nets, e.g., those carrying enable signals, using multiple

TSVs may be helpful for reducing wirelength and power

consumption. Recently, Zhao et al. [38] proposed clock-

tree-generation algorithms allowing multiple TSVs in each

layer. Such techniques must simultaneously consider TSV

capacitance and resistance, desired power savings, and wire-

length tradeoff. Previously discussed wirelength-estimation

techniques are unsuitable for such complex scenarios.

As mentioned in Section III-A, using TSV islands may

require interconnect detours. To estimate them, one could

compare BB-2D3D-HPWL to NBB-3D-HWPL wirelength.

However, more reasonable is to compare BB-2D3D-HPWL

wirelength for using TSV islands versus using single TSVs.

IV. Problem Formulation

For 3-D integration considering our L2Di style, the follow-

ing input is assumed.

1) Active layers, denoted as set L. Each layer l ∈ L has

dimensions (hl, wl) such that every block assigned to l

can fit in the outline without incurring overlap.

2) Rectangular IP blocks, denoted as set B. Each block

b ∈ B has dimensions (hb, wb) and pins, denoted as

set Pb. Each pin p ∈ Pb of block b is defined by

its offset (δx
p, δy

p) with respect to the block’s geometric

center (origin).

3) Netlist, denoted as set N . A net n ∈ N describes a

connection between two or more pins.

4) TSV-island types, denoted as set T . Each type t ∈ T has

dimensions (ht, wt) and capacity κt . Since predesigned

TSV-island types may incorporate spare TSVs, κt defines

the number of nets that can be routed through t.

5) 3-D floorplan, denoted as set F . Each block b is as-

signed a location (xb, yb, lb) such that no blocks overlap.

The coordinate of the block’s origin is denoted as

(xb, yb) and lb denotes the assigned layer.

As mentioned in Section I, previous work on 3-D floorplan-

ning often neglects design constraints and overhead associated

with TSVs. However, these studies promise to provide opti-

mized floorplans in terms of, e.g., minimal wirelength and

thermal distribution. Therefore, 3-D integration following the

L2Di style addresses the omission of TSV planning. It seeks

to cluster interlayer nets into TSV islands without incurring

excessive overhead. Such TSV islands, as well as single TSVs,

are then inserted into deadspace around floorplan blocks. If

TSV-island insertion is impossible due to lack of deadspace,

blocks can be shifted from their initial locations without

disturbing their ordering. Additional deadspace can be inserted

when necessary.

V. Methodology

To connect blocks on different dies following the L2Di

style, we need to know the locations of TSV islands. However,

placing TSV islands, i.e., fixing these locations, must account

for routing demand and routability, so as to avoid unnecessary

detours. In order to solve this chicken-and-egg problem, we

develop the following techniques.

1) Net clustering: groups nets to localize and estimate

global routing demand.

2) TSV-island insertion: uses these groups to appropriately

insert TSV islands.

Net clustering uses net bounding boxes, i.e., minimal rect-

angles containing net pins, which contain all shortest-path con-

KNECHTEL et al.: ASSEMBLING 2-D BLOCKS INTO 3-D CHIPS 233

nections in the absence of obstacles. The intersection of several

net boxes forms a cluster region for respective nets. Placing

TSV islands within the cluster regions facilitates shortest-path

connections for all considered nets. Assigning nets to clusters

furthermore helps to select the type and capacity of each TSV

island. To formalize the clustering process, we consider a

virtual die—the minimum rectangle containing projections of

active-layer outlines.

TSV-island insertion utilizes cluster regions to determine

where to insert TSV islands. This depends on available

island types, deadspace, and obstruction (by blocks or other

islands) of cluster regions. Also, given that net clustering

determines different groups of nets, our proposed TSV-island

insertion selects the most suitable cluster for each net to

facilitate routing of all nets. Furthermore, our techniques

can be extended to perform subsequent deadspace-related

tasks like buffer insertion. Fig. 6 illustrates net clustering and

TSV-island insertion for two dies.

In the following discussion, we refer to interlayer nets

as just nets. Details of our techniques are discussed in

Sections V-B–V-D, the overall flow is illustrated in Fig. 7.

Please note that our methodology is performed stepwise

for multiple active layers, as illustrated in Fig. 7(a). Key

parameters used in our algorithms are defined in Table I

(Section VI) along with their values.

A. Background on Intersections of Bounding Boxes

We provide the following definitions, lemmata, and theo-

rems to discuss intersections of bounding boxes in detail. The

discussion is related to a study by Imai and Asano [39] on

intersections of axis-aligned rectangles in the plane.

Definition 1: The intervals A[xA
min, x

A
max] and B[xB

min, x
B
max]

overlap if xA
min ≤ xB

min ≤ xA
max or xB

min ≤ xA
min ≤ xB

max.

Lemma 1: Given two overlapping intervals, their set-

intersection is also an interval.

Note: For an axis-aligned rectangle A[xA
min, x

A
max] ×

[yA
min, y

A
max] its projections onto the x-axis and y-axis are

intervals [xA
min, x

A
max] and [yA

min, y
A
max], respectively.

Definition 2: Two axis-aligned rectangles A[xA
min, x

A
max]

× [yA
min, y

A
max] and B[xB

min, x
B
max] × [yB

min, y
B
max] overlap

iff their x-projections overlap and their y-projections

overlap.

Lemma 2: Given two overlapping axis-aligned rectangles,

their set-intersection is also an axis-aligned rectangle. Given

n axis-aligned rectangles, if their set-intersection is nonempty,

then it is an axis-aligned rectangle.

In their study, Imai and Asano proved that n axis-aligned

rectangles (e.g., bounding boxes) have a single nonempty

n-way intersection iff each pair of these rectangles overlap.

Theorem 1: Consider n axis-aligned rectangles. They over-

lap pairwise iff their n-way set-intersection is nonempty [39].

We will say that such rectangles overlap n-way.

Thus, rather than check all subsets of overlapping bound-

ing boxes, we may search for cliques in a suitably defined

intersection graph. This graph represents bounding boxes by

vertices and connects overlapping boxes by edges.

Imai and Asano also provided an O(n log n)-time algorithm

for finding the maximum clique in intersection graphs with n

Fig. 7. Our methodology for 3-D IC integration. (a) Given a 3-D floorplan
with |L| active layers, global iterations start with the lowest layer and
perform net clustering and TSV-island insertion stepwise for all layers.
Best solutions refer to solutions where TSV islands inserted in layer li
result in smallest estimated wirelength. Clustering-grid tiles are resized in
iterations, as explained in Section V-B. Assuming successful execution of
TSV-island insertion on each layer, our techniques provide a 3-D floorplan
with suitably placed TSV islands. (b) First, net clustering localizes global
routing demand while determining cluster regions, described by intersections
of net bounding boxes. Second, TSV-island insertion into cluster regions is
iteratively attempted, based on dynamic scores, available TSV-island types,
and deadspace.

vertices, in spite of the fact that this problem is NP-hard for

general graphs [40].

Theorem 2: Consider n axis-aligned rectangles where at

least two rectangles do not overlap. A largest k-element subset

of rectangles that overlap k-way can be found in O(n log n)

time [39].

In our context, however, determining a single (maximum)

clique is insufficient. In general, such large cliques may exceed

the capacity of the largest available TSV island. Several

TSV islands can be combined to implement such a clique,

but this increases routing congestion and mechanical stress,

and aggravates signal integrity problems [21], [22]. Another

234 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 31, NO. 2, FEBRUARY 2012

Fig. 8. Grid structures. (a) Uniform clustering grid G on the virtual die.
According to projected bounding boxes, we link nets to covered tiles. The
intersection of boxes must be explicitly checked during clustering. In tile
(1, 2), e.g., net bounding boxes bbn1

, bbn3
and bbn3

, bbn4
do not overlap

pairwise, but all four nets are linked to the tile. (b) In order to determine
deadspace, a nonuniform grid D (and G only for illustration purpose) is
constructed on the active layer. The per-tile ratio of deadspace is determined,
as denoted in the last row. Deadspace is then annotated on each tile of G.

problem with using large cliques is that corresponding (small)

intersections of net bounding boxes may not include any

deadspace, preventing the insertion of a TSV island. On the

other hand, a smaller clique would imply fewer bounding

boxes and a larger intersection that is more likely to admit

TSV-island insertion. Thus, we seek to partition the edges in

the intersection graph into a small set of cliques, which is the

NP-complete clique cover problem [41]. Our algorithm, based

on sophisticated analysis of bounding boxes, is presented next.

B. Net Clustering

The following algorithm is performed for subsets

{li, . . . , l|L|} of active layers, where li denotes the lower layer.

In order to identify clusters (cliques) of appropriate size, a

uniform clustering grid G is constructed on the virtual die

[Fig. 8(a)]. A clustering grid links each net n to each tile

� ∈ G covered by its net bounding box bbn, and thus results in

size-limited (appropriate) clusters. Nets connecting blocks on

li to blocks on layers li+1, . . . , l|L| have to be considered. In this

context, nets spanning three or more layers have to be adapted

for following global iterations [Fig. 7(a)], as explained for

TSV-island insertion (Section V-C). To calculate the amount

of deadspace on li, a nonuniform grid D is constructed. Grid

lines are drawn through the four edges of each block. Grid

tiles not covered by blocks define deadspace. For m blocks

overlapping with a particular tile �, deadspace detection runs

in O(m2) time [11], which is not prohibitively expensive

because typically m < 50. In the uniform grid G, tiles with

insufficient deadspace (< �d
min) are marked as obstructed.

For the uniform grid G, grid-tile size f influences per-

tile net count. For example, quartering f in Fig. 8(a) would

decrease the maximum per-tile net count from four to two.

Having fewer nets per tile reduces the cluster size, increasing

chances of TSV-island insertion. Therefore, we wrap our

methodology into an outer loop [Fig. 7(a)], which iteratively

decreases f from an upper bound fmax to a lower bound

fmin (Table I). Afterward, the valid solution providing smallest

estimated wirelength is chosen. The impact of grid-tile size on

wirelength and success rate is discussed in Section VI-A.

Our clustering algorithm is illustrated in Fig. 9 (see also

Fig. 7). In Phase 1, the virtual die and grid structures are

Fig. 9. Our net clustering algorithm. Input data are described in Section IV.

constructed. Then, each net is linked to each grid tile within

the net’s projected bounding box [Fig. 8(a)]. In Phase 2, for

each unobstructed grid tile the largest cluster is determined

in procedure DETERMINE− CLUSTER—each linked net is

considered as long as the resulting intersection of bounding

boxes is nonempty.3 Moreover, we impose a lower bound

�min on the overlap area between the intersection and tiles,

in order to assure the intersection is covering the unobstructed

tile to some minimal degree and to maintain a minimal

cluster size. An upper bound Onets of nets assigned to each

cluster c must not be exceeded. Each net n can be associated

with at most Olink clusters. We note that intersections in

general can overlap more than one tile, depending on the

bounding boxes. Therefore, we allow cluster regions to be

extended within procedure UPDATE−CLUSTER−REGION

in cases where clusters are spread across several tiles.

Next, we attempt to cluster yet-unclustered nets in proce-

dure DETERMINE−FURTHER−CLUSTER. Nets are consid-

ered for clustering independent of related tiles, thus several

combinations of nets are considered. Besides that, cluster-

ing is performed as described for procedure DETERMINE−

CLUSTER. Since this step allows one-net clusters, all nets

3 For example, consider the second row from top of the clustering grid in
Fig. 8(a). Note that tiles (0, 2) and (3, 2) are not used for cluster determination,
since they are obstructed [Fig. 8(b)]. Clustering for tile (1, 2) results in c1 with
c1.nets = {n1, n2, n4}, and for tile (2, 2) in c2 with c2.nets = {n2, n4}.

KNECHTEL et al.: ASSEMBLING 2-D BLOCKS INTO 3-D CHIPS 235

Fig. 10. Our TSV-island insertion algorithm. Input data are described in
Section IV.

are guaranteed to be clustered afterward. In Phase 3, available

deadspace is determined for each cluster region. It is summed

up over available deadspace of related grid tiles while consid-

ering the particular intersection of the cluster region and tile.

C. TSV-Island Insertion

After running our net clustering algorithm, we now select

cluster regions where TSV islands can be inserted in active

layer li. Not all clusters need to have TSV islands inserted

to allow routing all nets through TSVs—according to the

bound Olink, each net may be associated with several clusters.

Depending on the order of selecting clusters for TSV-island

insertion, some clusters may become infeasible as island sites;

deadspace accounted for a particular cluster may be shared

with another cluster. Furthermore, clusters containing nets

linked to obstructed tiles need to consider nearby deadspace.

Both may result in TSV islands blocking each other.

Our TSV-island insertion algorithm (Fig. 10, see also Fig. 7)

thus accounts for deadspace while iteratively assigning nets to

clusters and inserting TSV islands. In the following discussion,

we refer to nets assigned to a (inserted) TSV island as inserted

nets, and to nets assigned to a (associated) cluster as assigned

nets. In Phase 4, our algorithm sorts all nets by their total

deadspace of associated clusters. Nets associated with clusters

with little available deadspace are considered first, since corre-

sponding TSV islands are difficult to insert. In Phase 5, associ-

ated clusters of each unassigned net are analyzed (Fig. 11). The

highest-scored cluster with respect to a dynamic cluster score

ϒ(c) = c.deadspace÷|c.assigned nets| (deadspace of cluster

region divided by number of nets to be assigned) is chosen.

Calculation of ϒ for each cluster is performed dynamically

within procedure FIND−HIGHEST−SCORED−CLUSTER. In

order to facilitate TSV-island insertion, the cluster to be

chosen must provide a minimal amount of deadspace nd
min for

each net to be assigned to it. Then, each (unassigned) net

Fig. 11. Net assignment and cluster selection (refer to Fig. 8 for correspond-
ing grid structures). In Phase 5, nets are assigned to clusters according to a
score ϒ(c). Not that there is no feasible cluster available for n3, thus its
bounding box defines a new cluster c6. In Phase 6, TSV-island insertion is
attempted using (sorted) clusters c2, c6, and c4.

associated with the highest-scored cluster is assigned to this

cluster, since it is most suitable for TSV-island insertion. Nets

remaining unassigned after cluster analysis are assigned to

one-net clusters, where the cluster region is defined by the net’s

bounding box. In Phase 6, TSV-island insertion for a largest

cluster (in terms of ϒ(c)−1 = |c.assigned nets|÷c.deadspace)

is iteratively attempted—TSV-island insertion for clusters with

many assigned nets and little available deadspace is difficult,

thus these clusters are considered first. The procedure stops

after inserting a TSV island for one largest cluster. Within

the procedure, a local search over the cluster regions iden-

tifies contiguous regions with appropriate shapes. Therefore,

the search aims to determine regions where a TSV island

with sufficient capacity to connect all assigned nets can be

inserted. Initially, deadspace is considered only within the

cluster regions. If no contiguous regions of deadspace can

be found, a second iteration expands the cluster regions by

factors cx
ext, c

y
ext (in terms of die dimensions) to widen the

search. If no contiguous regions are found again for any

cluster, iterative block shifting can be performed to increase

deadspace (Section V-D). Therefore, the cluster providing

maximal amount of deadspace is chosen first to minimize the

total amount of shifting. After successful TSV-island insertion,

inserted nets are marked as handled, and all noninserted nets

are unassigned from remaining clusters—according to ϒ, each

noninserted net may be assigned to different clusters now.

Furthermore, inserted nets connecting blocks on layer li to

blocks on layers li+2, . . . , l|L| (spanning three or more layers)

have to be adapted. The center of each related TSV island

defines a virtual net pin, which is considered as respective net

pin for following net-clustering iterations. Iterations continue

with Phase 5 until all nets are inserted.

D. Deadspace Insertion and Redistribution

TSV-island insertion can fail because deadspace is unavail-

able where it is needed. To address these failures, we propose

techniques to insert and redistribute deadspace.

236 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 31, NO. 2, FEBRUARY 2012

Fig. 12. Deadspace-channel insertion. TSV island are illustrated as brown,
dashed boxes containing TSVs (solid, red boxes). Related landing pads are
illustrated as dashed, red boxes. (a) Some floorplans exhibit only narrow
channels between blocks. This obstructs insertion of buffers, glue logic,
and TSV islands. (b) Inserting channels between blocks provides needed
deadspace at the cost of larger chip area.

Fig. 13. Block shifting. (a) A given 3-D chip layout may provide sufficient,
but inappropriately distributed deadspace. (b) Shifting blocks within the layout
outline facilitates TSV-island insertion.

1) Deadspace-channel insertion provides regions to insert

TSV islands (in case of too compact floorplans) and may

facilitate routing (Fig. 12).

2) Block shifting allows to redistribute available deadspace

to facilitate TSV-island insertion (Fig. 13).

Deadspace-channel insertion is often applied in industrial

chip designs to facilitate routing, enable placement of buffers

and glue logic, and increase flexibility of TSV-island insertion.

However, this is less appropriate for compact floorplans.

Block shifting, on the other hand, facilitates compact floor-

plans (floorplan outlines are maintained) and TSV-island inser-

tion. This approach is more complex, and success in gaining

a sufficient amount of continuous deadspace is dependent on

the actual floorplan. We develop two block-shifting techniques

that rely on similar baseline algorithms: 1) initial shifting, and

2) iterative shifting (Fig. 14). Initial shifting performs block

shifting once before our methodology is applied, as explained

later on. Iterative shifting is performed during TSV-island

insertion (INSERT−TSV−ISLAND, Fig. 10) when necessary.

Our algorithm for block shifting is based on the concept

of spatial slack in floorplanning [42] and performs analysis

of cluster regions. Slacks (for x-dimension and y-dimension)

describe maximal possible displacement of a block within the

floorplan outline. When blocks do not overlap, slacks are ≥ 0.

We determine slacks for each layer separately and use standard

linear-time traversals of floorplan constraint graphs [43], not

unlike those in static timing analysis [44]. Floorplan modifica-

tions based on constraint graphs are discussed in detail in [45].

Fig. 14. Proposed flow for block shifting.

Fig. 15. Slack-based block shifting. (a) Connecting pins p1, p2, and p3 to an
adjacent layer (not illustrated) requires another TSV island. Related x-slacks
are determined (labeled as xn). (b) Slacks are then annotated on the constraint
graphs (only the relevant part of the horizontal constraint graph is illustrated).
(c) Cluster c (corners are pointed to) contains the deadspace region Rd (white
dots); its area is too small for a TSV island. (d) Based on available slacks,
block b1 is shifted to resize Rd such that TSV-island insertion can succeed.

To calculate x-slacks, we: 1) pack blocks to the left boundary,

and, independently, 2) pack blocks to the right boundary, both

are invoked when dealing with constraint graphs. The x-slack

for each block is computed as the difference of the block’s

x-coordinates in these two packings. The y-slack is calculated

in the same way. Note that previously placed TSV islands are

considered fixed obstacles. Allowing for TSV-island shifting

might significantly increase wirelength, since our proposed

TSV-island insertion aims for minimal wirelength.

An example for slack-based block shifting is given in

Fig. 15. First, we determine slacks [Fig. 15(a)] and annotate

them on the constraint graphs [Fig. 15(b)]. For iterative

shifting, we determine the largest (rectangular) region Rd

of deadspace for the cluster of interest [Fig. 15(c)]. If no

KNECHTEL et al.: ASSEMBLING 2-D BLOCKS INTO 3-D CHIPS 237

deadspace is found, we nominally consider the center of the

cluster region as Rd . We then seek to consolidate additional

deadspace around Rd by shifting away the blocks adjacent

to Rd [Fig. 15(d)]. The distance by which each block is

shifted cannot exceed its slack in the respective direction.

Furthermore, the sum of such displacements in each direction

cannot exceed the floorplan slack (the largest slack of any

one block). Shifting a block may require shifting its abutting

neighbors and other blocks. To this end, we maintain the floor-

plan configuration using constraint graphs. If Rd cannot be

increased sufficiently, we choose another region of deadspace

within the cluster region.

For initial shifting, we independently determine available

slacks of blocks on all active layers and shift blocks such

that they are centered according to slacks. This may facilitate

TSV-island insertion around blocks since they are likely to be

distributed toward the center of the die afterward, resulting

in deadspace around them. Initial shifting is performed once

before applying our methodology.

VI. Empirical Validation

We obtain 3-D floorplans by running state-of-the-art soft-

ware [7]4 and configure the software to allow 10% deadspace

on each active layer. We construct two sets of rectangular

TSV islands, each containing via-first TSVs with footprints of

100 μm2 and 50 μm2, respectively. Each set contains islands

with capacities for 1–30 nets while providing one redundant

TSV, which is sufficient for practical TSV-failure rates [13]. Is-

lands are designed by packing single TSVs in all possible con-

figurations resulting in rectangular blocks. Packing accounts

for practical spacing between adjacent TSVs of 10 μm [19].

This facilitates manufacturing, the use of keep-out-zones and

landing pads, and limits coupling between TSVs [46].

We implemented our algorithms using C++/STL, compiled

them with g++ 4.4.3, and ran on a 32-bit Linux system with

a 2.4 GHz AMD Opteron processor (using one processing

unit) and 4 GB RAM. We configure parameters discussed

in Section V according to Table I. We initially set cx
ext =

c
y
ext = 10%. In cases where our algorithm terminates with

no solution, we increase the value of both variables by 10%,

and repeat the experiment until we obtain a valid solution or

reach the maximum value of 50%. Table II reports results on

representative GSRC benchmarks. As indicated in previous

work [14], these benchmarks contain artificial, small blocks.

To address this issue without modifying the floorplanner,

every block was inflated by five times before floorplanning.

After subsequently applying our methodology, active layers are

contracted to the original size again to facilitate comparison

with similar work. Thus, footprints of considered TSVs are

implicitly shrunk to 4 μm2 and 2 μm2, respectively, in the

contracted, final layouts. The benchmarks do not provide pin

offsets, therefore we assume net bounding boxes to be defined

by the bounding boxes of incident blocks. Since the used

floorplanning software does not allow to account for I/O pins,

nets connecting to such pins are not included in wirelength

4We thank the authors of [7] and Y. Chen for sharing their infrastructure
for 3-D floorplanning.

TABLE I

Parameters for Net Clustering and TSV-Island Insertion

Algorithms, Along with Their Values

Metric Meaning Value

�min Min overlap area between cluster region 25%
and grid tile (tile size)

�d
min Min deadspace per clustering-grid tile 70%

(tile size)
Onets Max nets per cluster 30
Olink Max clusters per net 5

nd
min Min deadspace per net in a cluster 110%

(TSV footprint and keep-out zone)

cx
ext, c

y
ext Extension of cluster region to search variable

for nearby deadspace (die dimensions) (10–50%)
fmax Max clustering-tile size 15
fmin Min clustering-tile size 5

Fig. 16. Estimated wirelength (BB-2D3D-HPWL) over grid-tile size for
L2Di integration of two dies. Results are obtained using initial shifting to
redistribute deadspace. Note that intralayer nets are not considered.

estimates. We consider intralayer nets by summing up the

HPWL of their bounding box and include them in wire-

length estimates. Since we do not perform net assignment to

particular TSVs within islands, reported wirelength estimates

consider the center of TSV islands to determine bounding

boxes (resulting in pessimistic wirelength estimates). We also

report runtime for our algorithms and methodology (summed

up for global iterations), values for cx
ext and c

y
ext, TSV count,

and the area of the final layouts (defined as the product of the

maximal height and maximal width over all active layers).

We consider two design configurations; one with guaranteed

channels, one without channels. To insert channels between the

blocks without modifying the floorplanner, every block was

inflated (block dimensions by 5%) before floorplanning and

contracted to the original size after floorplanning. However,

this increases floorplan size (by 10.25%). An alternative is to

pack blocks without channels, but carefully redistribute dead-

space to facilitate TSV-island insertion. While more complex,

this approach produces much more compact floorplans.

A. Impact of Grid-Tile Size

As mentioned in Section V-B, our methodology is wrapped

into a loop which iteratively decreases the grid-tile size f from

an upper bound fmax to a lower bound fmin (Table I). Fig. 16

indicates that the density of valid solutions may increase with

238 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 31, NO. 2, FEBRUARY 2012

TABLE II

L2Di Integration

Deadspace Redistributing Deadspace by
Dies and TSV Metrics Deadspace-Channel Insertion Initial Block Shifting Iterative Block Shifting

Footprint n100 n200 n300 n100 n200 n300 n100 n200 n300

10% BB-2D3D-HPWL 130 825 302 344 446 973 131 589 540 324‡ 414 126 149 473† 482 071‡ 530 096†

2 μm2 TSVs 378 888 1162 420 941 1285 399 985 1294
Runtime (s) 19.22 173.97 471.26 76.69 4075.93 1219.95 118.49 794.63 2689.91

10% BB-2D3D-HPWL 133 085 345 474 455 082 143 039 543 962‡ 442 638 151 272† 487 974‡ 740 244‡

2 4 μm2 TSVs 378 895 1154 422 943 1233 402 945 1209
Runtime (s) 19.78 295.22 503.46 86.627 4698.35 1346.74 124.73 2030.43 1835.08

Avg BB-2D3D-HPWL 131 955 323 909 451 028 137 314 542 143 428 382 150 373 485 023 635 170
Normalized avg BB-2D3D-HPWL 0.961 0.597 1.053 1 1 1 1.095 0.895 1.483

Area (mm2) 0.1326 0.1301 0.2203 0.1203 0.1180 0.1998 0.1203 0.1180 0.1998

10% BB-2D3D-HPWL 125 263 254 756 349 766 107 556 260 285 329 024 134 568 297 761 354 223

2 μm2 TSVs 534 1034 1480 541 1094 1467 582 1081 1519
Runtime (s) 123.21 628.22 2124.44 222.39 2216.5 3268.41 146.05 701.43 1619.91

10% BB-2D3D-HPWL 130 358 288 970 361 890 116 611 422 582‡ 381 228 140 626 320 208 409 382

3 4 μm2 TSVs 539 1038 1425 568 3809 1455 573 1055 1485
Runtime (s) 126.37 1167.69 2166.21 172.13 3404.6 2977.85 144.91 518.07 1612.56

Avg BB-2D3D-HPWL 127 811 271 863 355 828 112 084 341 434 355 126 137 597 308 985 381 803
Normalized avg BB-2D3D-HPWL 1.140 0.796 1.002 1 1 1 1.228 0.905 1.075

Area (mm2) 0.1036 0.0979 0.1408 0.0939 0.0888 0.1277 0.0939 0.0888 0.1277

10% BB-2D3D-HPWL 113 884 235 542 312 764 112 720 245 816 313 033 136 135 270 877 329 745

2 μm2 TSVs 654 1182 1597 696 1281 1700 698 1246 1758
Runtime (s) 141.22 670.97 1590.08 269.25 1608.07 1295.67 181.35 593.72 1458.01

10% BB-2D3D-HPWL 116 956 407 526‡ 341 536 130 925 273 112 366 571 147 328 369 895‡ 376 833

4 4 μm2 TSVs 652 2257 1569 705 1252 1659 719 2018 1710
Runtime (s) 147.2 1346.6 2316.36 383.66 2692.46 1576.98 154.36 1992.46 1415.2

Avg BB-2D3D-HPWL 115 420 321 534 327 150 121 823 259 464 344 933 141 732 320 386 353 289
Normalized avg BB-2D3D-HPWL 0.947 1.239 0.948 1 1 1 1.163 1.235 1.024

Area (mm2) 0.0653 0.0741 0.1177 0.0593 0.0673 0.1068 0.0593 0.0673 0.1068

Values for cx
ext and c

y
ext are 10% unless otherwise noted († for 20% and ‡ for 50%).

decreasing grid-tile size. Small tiles limit the per-tile net count,

thus also limiting the cluster size. In practice, smaller tiles

lead to fewer nets being assigned per cluster, larger cluster

regions, and easier TSV-island insertion. This also reduces

wirelength, as expected. However, there is a lower bound for

these relations. Very small tiles result in many clusters with

few assigned nets, thus many small TSV islands might be

inserted. Since placed TSV islands are fixed obstacles, this

may complicate iterative block shifting. Also, our local search

over cluster regions identifies contiguous deadspace for TSV-

island insertion greedily. Therefore, determining appropriate

regions for clusters considered late during TSV-island insertion

is more likely to fail; there are already many TSV islands

spread out within deadspace regions.

After confirming these trends in different experimental

configurations, we set global iteration variables fmax = 15 and

fmin = 5.

B. Results of TSV-Island Insertion

First, we evaluate our techniques for deadspace insertion

and redistribution. Recall that deadspace-channel insertion

increases floorplan’s deadspace by inflating blocks (and con-

tracting after floorplanning), which simultaneously increases

floorplan area by 10.25%. In contrast, block shifting retains

the floorplan’s outline. Comparing wirelength estimates in Ta-

ble II, we observe that deadspace-channel insertion on average

is superior to iterative shifting, but inferior to initial shifting.

On average, iterative shifting results in larger wirelength

TABLE III

L2Di Integration for Three Dies Using Only Square TSV Islands

Deadspace and
TSV Footprint Metric n100 n200 n300

10% BB-2D3D-HPWL 114 795 Fail 413 472

2 μm2 Normalized 1.067 – 1.257

10% BB-2D3D-HPWL 151 528 Fail Fail

4 μm2 Normalized 1.157 – –

Initial block shifting is used to redistribute deadspace. Values are
normalized to Table II.

compared to initial shifting. During TSV-island insertion,

previously placed islands represent fixed obstacles. Thus, the

success of iterative shifting is undermined by decreased slacks

compared to initial shifting. We therefore prefer initial block

shifting for L2Di integration.

Second, we analyze the impact of die count. We observe

that wirelength estimates decrease on average for increasing

die count. As expected, TSV counts increase on average.

Third, we analyze the impact of available TSV-island

types, considering their capacity and dimensions. As expected,

smaller TSVs simplify TSV-island insertion (Table II). Shape-

flexible TSV islands increase chances for successful TSV-

island insertion significantly; one particular setup using only

square TSV islands is illustrated in Table III.

Fourth, we evaluate the overhead of TSV islands. Islands

with more than a single TSV require larger continuous

deadspace. On the other hand, the intersection of several

KNECHTEL et al.: ASSEMBLING 2-D BLOCKS INTO 3-D CHIPS 239

Fig. 17. L2Di integration of the GSRC benchmark n200. TSV footprints
are 4 μm2, and initial shifting is used to redistribute deadspace. TSV islands
are shown as red dots. To enhance clarity, landing pads (red dots) are only
illustrated on the uppermost layer.

TABLE IV

L2Di Integration for Four Dies Using ‘‘Trivial’’ TSV Islands

(Single TSVs), Resulting in L2D Integration

Deadspace and
TSV Footprint Metric n100 n200 n300

10% BB-2D3D-HPWL 110 047 223 880 277 914

2 μm2 Normalized 0.976 0.911 0.888

10% BB-2D3D-HPWL 119 145 243 076 323 556

4 μm2 Normalized 0.91 0.89 0.882

Initial block shifting is used to redistribute deadspace. Values are
normalized to Table II.

net bounding boxes may be small in practice, depending

upon net selection. However, our methodology accounts for

sufficient deadspace while determining clusters and assigning

nets to clusters in order to facilitate TSV-island insertion.

Still, deadspace may be obstructed by iteratively placed TSV

islands, which cannot be accounted for during net clustering.

Therefore, using TSV islands may entail additional overhead

in terms of increased wirelength. Table IV reports wirelength

estimates for L2Di integration using trivial TSV islands (single

TSVs) for a particular configuration. Here, we do not account

for the possibly increased footprint of single TSVs (due to

increased keep-out-zones in comparison to packed TSV arrays)

and the loss of redundancy offered by TSV islands containing

one spare TSV. These estimates are at least 91% (on average)

of those in earlier experiments (Table II). Other configurations

produced similar results. We conclude that the overhead of

TSV islands is moderate and can be tolerated given their

benefits (Section III-A).

Fifth, Fig. 17 illustrates an example of successful L2Di

integration for the benchmark n200 using four active layers.

VII. Conclusion

Our work seeks to streamline the transition from existing

practice in 2-D chip design to 3-D integration. Numerous tech-

nical challenges in this transition were pointed out in Sections I

and II, as well as by Borkar [1] (Intel) and Topaloglu [47]

(Global Foundries). TSVs tend to disrupt conventional layouts,

each impacting several dies at once. Manufacturing of 3-D-

enabled dies is complicated by considerations of yield for

TSVs and thinned dies, as well as cost-effective testing.

EDA tools need to support both 3-D path-finding efforts

and comprehensive layout optimization, in particular TSV

management. Power delivery, DFT, and reliability verification

are further challenges for tool development.

The lack of commercial 3-D EDA tools hinders a cost-

effective transition, and even when such tools become widely

available, upgrading extensive 2-D IP portfolios for 3-D in-

tegration may take years. A key insight in our paper is that

many of the benefits provided by 3-D ICs can be obtained

while reusing existing 2-D IP blocks. In fact, such reuse is

required for heterogeneous 3-D system-on-chips where circuit

modules cannot be split between memory, digital, analog,

and MEMS dies. Therefore, we analyze feasible design styles

for 3-D integration of 2-D blocks. We introduce the design

style L2Di, where TSVs can be clustered into TSV islands

rather than always placed individually. This style appears

most promising and least risky for 3-D IC design in the next

5–8 years.

To enable the L2Di style, we draw on graph-theoretical

results to contribute novel techniques for net clustering and

TSV-island insertion. We also develop techniques to insert

and redistribute deadspace. Experiments validate the feasi-

bility and efficiency of our methodology. Typically, initial

block shifting is the most promising technique to redistribute

deadspace.

Initial experiments conducted at the outset of our research

indicated that naive algorithms for L2Di integration lead to

very high interconnect overhead. The ISPD 2011 version of

this paper reported smaller, but still significant overhead of

roughly 13–17%. However, the highly optimized techniques

developed in the course of our research reduce this overhead

down to ≈9% for block-level interconnect, making it tolerable.

Extensions of our core algorithms to 3-D ICs with more

than two active layers appear in this paper for the first time.

Compared to the entire interconnect stack, the wirelength

overhead is negligible because the majority of wires are

contained within individual blocks [30].

240 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 31, NO. 2, FEBRUARY 2012

References

[1] S. Borkar, “3D integration for energy efficient system design,” in Proc.

Des. Automat. Conf., 2011, pp. 214–219.
[2] ITRS. (2009). International Technology Roadmap for Semiconductors

[Online]. Available: http://www.itrs.net/Links/2009ITRS/Home2009.
htm

[3] Global Industry Analysts, Inc. (2010). 3D Chips (3D IC): A Global Mar-

ket Report [Online]. Available: http://www.prweb.com/releases/3D
chips/3D IC/prweb4400904.htm

[4] L. Cheng, L. Deng, and M. D. F. Wong, “Floorplanning for 3-D VLSI
design,” in Proc. Asia South Pacific Des. Automat. Conf., 2005, pp. 405–
411.

[5] J. Cong, J. Wei, and Y. Zhang, “A thermal-driven floorplanning algorithm
for 3D ICs,” in Proc. Int. Conf. Comput.-Aided Des., 2004, pp. 306–313.

[6] J. Cong and Y. Ma, “Thermal-aware 3D floorplan,” in Integrated Circuits

and Systems. New York: Springer, 2010, ch. 4, pp. 63–102.
[7] P. Zhou, Y. Ma, Z. Li, R. P. Dick, L. Shang, H. Zhou, X. Hong, and Q.

Zhou, “3D-STAF: Scalable temperature and leakage aware floorplanning
for three-dimensional integrated circuits,” in Proc. Int. Conf. Comput.-

Aided Des., Nov. 2007, pp. 590–597.
[8] Z. Li, X. Hong, Q. Zhao, S. Zeng, J. Bian, H. Yang, and C. K.

Cheng, “Integrating dynamic thermal via planning with 3D floorplanning
algorithm,” in Proc. Int. Symp. Phys. Des., 2006, pp. 178–185.

[9] X. Li, Y. Ma, and X. Hong, “A novel thermal optimization flow using
incremental floorplanning for 3D ICs,” in Proc. Asia South Pacific Des.

Automat. Conf., 2009, pp. 347–352.
[10] P. Jain, P. Zhou, C. H. Kim, and S. S. Sapatnekar, “Thermal and power

delivery challenges in 3D ICs,” in Integrated Circuits and Systems. New
York: Springer, 2010, ch. 3, pp. 33–61.

[11] E. Wong and S. K. Lim, “Whitespace redistribution for thermal via
insertion in 3D stacked ICs,” in Proc. Int. Conf. Comput.-Aided Des.,
2007, pp. 267–272.

[12] M. Pathak, Y.-J. Lee, T. Moon, and S. K. Lim, “Through-silicon-via
management during 3D physical design: When to add and how many?”
in Proc. Int. Conf. Comput.-Aided Des., 2010, pp. 387–394.

[13] A.-C. Hsieh, T.-T. Hwang, M.-T. Chang, M.-H. Tsai, C.-M. Tseng, and
H.-C. Li, “TSV redundancy: Architecture and design issues in 3D IC,”
in Proc. Des. Automat. Test Eur., 2010, pp. 166–171.

[14] M.-C. Tsai, T.-C. Wang, and T. T. Hwang, “Through-silicon via planning
in 3-D floorplanning,” IEEE Trans. Very Large Scale Integr. Syst.,
vol. 19, no. 8, pp. 1448–1457, Aug. 2011.

[15] Y.-J. Lee, M. Healy, and S. K. Lim, “Co-design of reliable signal and
power interconnects in 3D stacked ICs,” in Proc. Int. Interconn. Technol.

Conf., 2009, pp. 56–58.
[16] D. H. Kim, K. Athikulwongse, and S. K. Lim, “A study of through-

silicon-via impact on the 3D stacked IC layout,” in Proc. Int. Conf.

Comput.-Aided Des., 2009, pp. 674–680.
[17] Y.-J. Lee, R. Goel, and S. K. Lim, “Multi-functional interconnect co-

optimization for fast and reliable 3D stacked ICs,” in Proc. Int. Conf.

Comput.-Aided Des., 2009, pp. 645–651.
[18] A. K. Coskun, A. B. Kahng, and T. S. Rosing, “Temperature- and cost-

aware design of 3D multiprocessor architectures,” in Proc. Euromicro

Conf. Digit. Syst. Des., 2009, pp. 183–190.
[19] M. Jung, J. Mitra, D. Z. Pan, and S. K. Lim, “TSV stress-aware full-

chip mechanical reliability analysis andoptimization for 3D IC,” in Proc.

Des. Automat. Conf., Jun. 2011, pp. 188–193.
[20] I. Loi, S. Mitra, T. H. Lee, S. Fujita, and L. Benini, “A low-overhead

fault tolerance scheme for TSV-based 3D network on chip links,” in
Proc. Int. Conf. Comput.-Aided Des., Nov. 2008, pp. 598–602.

[21] J.-S. Yang, K. Athikulwongse, Y.-J. Lee, S. K. Lim, and D. Z. Pan,
“TSV stress aware timing analysis with applications to 3D-IC layout
optimization,” in Proc. Des. Automat. Conf., Jun. 2010, pp. 803–806.

[22] S. Garg and D. Marculescu, “3D-GCP: An analytical model for the
impact of process variations on the critical path delay distribution of 3D
ICs,” in Proc. Int. Symp. Qual. Elec. Des., 2009, pp. 147–155.

[23] C. Liu, T. Song, and S. K. Lim, “Signal integrity analysis and optimiza-
tion for 3D ICs,” in Proc. Int. Symp. Qual. Elec. Des., 2011, pp. 42–49.

[24] D. H. Kim, S. Mukhopadhyay, and S. K. Lim, “Through-silicon-via
aware interconnect prediction and optimization for 3D stacked ICs,” in
Proc. Int. Workshop Syst.-Level Interconn. Pred., 2009, pp. 85–92.

[25] Z. Li, X. Hong, Q. Zhou, J. Bian, H. H. Yang, and V. Pitchumani,
“Efficient thermal-oriented 3D floorplanning and thermal via planning
for two-stacked-die integration,” ACM Trans. Des. Automat. Elec. Syst.,
vol. 11, no. 2, pp. 325–345, Apr. 2006.

[26] H.-H. S. Lee and K. Chakrabarty, “Test challenges for 3D integrated
circuits,” Des. Test Comput., vol. 26, no. 5, pp. 26–35, 2009.

[27] D. L. Lewis and H.-H. S. Lee, “Test strategies for 3D die stacked
integrated circuits,” in Proc. Workshop 3D Integr. Technol. Architecture

Des. Autom. Test in Conjunction with Des. Autom. Test Eur., Nice,
France, Apr. 2009.

[28] R. Fischbach, J. Lienig, and T. Meister, “From 3D circuit technologies
and data structures to interconnect prediction,” in Proc. Int. Workshop

Syst.-Level Interconn. Pred., 2009, pp. 77–84.
[29] V. S. Nandakumar and M. Marek-Sadowska, “Layout effects in fine-

grain 3-D integrated regular microprocessorblocks,” in Proc. Des. Au-

tomat. Conf., 2011, pp. 639–644.
[30] D. Sylvester and K. Keutzer, “A global wiring paradigm for deep

submicron design,” IEEE Trans. Comput.-Aided Des. Integr. Circuits

Sys., vol. 19, no. 2, pp. 242–252, Feb. 2000.
[31] Cadence Design Systems, Inc. (2010). 3D ICs with TSVs: Design

Challenges and Requirements [Online]. Available: http://www.cadence.
com/rl/Resources/white papers/3DIC wp.pdf

[32] L. K. Scheffer, “CAD implications of new interconnect technologies,”
in Proc. Des. Automat. Conf., 2007, pp. 576–581.

[33] L. Jiang, Q. Xu, K. Chakrabarty, and T. M. Mak, “Layout-driven test-
architecture design and optimization for 3D SoCs under pre-bond test-
pin-count constraint,” in Proc. Int. Conf. Comput.-Aided Des., Nov.
2009, pp. 191–196.

[34] G. H. Loh, Y. Xie, and B. Black, “Processor design in 3D die-
stacking technologies,” IEEE Micro, vol. 27, no. 3, pp. 31–48, May–Jun.
2007.

[35] C. Ferri, S. Reda, and R. I. Bahar, “Strategies for improving the
parametric yield and profits of 3D ICs,” in Proc. Int. Conf. Comput.-

Aided Des., 2007, pp. 220–226.
[36] M. B. Healy, K. Athikulwongse, R. Goel, M. M. Hossain, D. H. Kim,

Y.-J. Lee, D. L. Lewis, T.-W. Lin, C. Liu, M. Jung, B. Ouellette, M.
Pathak, H. Sane, G. Shen, D. H. Woo, X. Zhao, G. H. Loh, H. S. Lee,
and S. K. Lim, “Design and analysis of 3D-MAPS: A many-core 3D
processor with stacked memory,” in Proc. Custom Integr. Circuits Conf.,
Sep. 2010, pp. 1–4.

[37] K. Lu, X. Zhang, S.-K. Ryu, J. Im, R. Huang, and P. S. Ho, “Thermo-
mechanical reliability of 3-D ICs containing through silicon vias,” in
Proc. Electron. Compon. Technol. Conf., May 2009, pp. 630–634.

[38] X. Zhao, J. Minz, and S. K. Lim, “Low-power and reliable clock
network design for through-silicon via (TSV) based 3D ICs,” IEEE

Trans. Compon., Packag., Manuf. Technol., vol. 1, no. 2, pp. 247–259,
Feb. 2011.

[39] H. Imai and T. Asano, “Finding the connected components and a
maximum clique of an intersection graph of rectangles in the plane,”
J. Algorith., vol. 4, no. 4, pp. 310–323, 1983.

[40] C. H. Papadimitriou and K. Steiglitz, Combinatorial Optimization:

Algorithms and Complexity. New York: Dover, 1998.
[41] R. Fowler, “Optimal packing and covering in the plane are NP-

complete,” Inform. Process. Lett., vol. 12, no. 3, pp. 133–137, 1981.
[42] S. N. Adya and I. L. Markov, “Consistent placement of macro-blocks

using floorplanning and standard-cell placement,” in Proc. Int. Symp.

Phys. Des., 2002, pp. 12–17.
[43] A. B. Kahng, J. Lienig, I. L. Markov, and J. Hu, VLSI Physical Design:

From Graph Partitioning to Timing Closure. New York: Springer, 2011.
[44] S. S. Sapatnekar, Timing. Norwell, MA: Kluwer, 2004.
[45] M. D. Moffitt, J. A. Roy, I. L. Markov, and M. E. Pollack, “Constraint-

driven floorplan repair,” ACM Trans. Des. Automat. Electron. Syst.,
vol. 13, no. 4, pp. 1–13, 2008.

[46] D. H. Kim, S. Mukhopadhyay, and S. K. Lim, “TSV-aware interconnect
length and power prediction for 3D stacked ICs,” in Proc. Int. Interconn.

Technol. Conf., 2009, pp. 26–28.
[47] R. Topaloglu, “Applications driving 3-D integration and correspond-

ing manufacturingchallenges,” in Proc. Des. Automat. Conf., 2011,
pp. 214–219.

Johann Knechtel (S’11) received the M.S.
(Diploma) degree in information systems engineer-
ing from the Dresden University of Technology,
Dresden, Germany, in 2010. Currently, he is pursu-
ing the Ph.D. degree from the Institute of Electrome-
chanical and Electronic Design, Dresden University
of Technology.

In 2010, he was a Visiting Research Student with
the Department of Electrical Engineering and Com-
puter Science, University of Michigan, Ann Arbor.
His current research interests include very large-

scale integrated physical design automation with emphasis on 3-D integration.

KNECHTEL et al.: ASSEMBLING 2-D BLOCKS INTO 3-D CHIPS 241

Mr. Knechtel received a scholarship from the German Academic Exchange
Service in 2010. He is a fellow and a Ph.D. Scholarship Holder of the research
group Nano and Biotechnologies for Packaging of Electronic Systems, funded
by the German Research Foundation.

Igor L. Markov (S’97–M’01–SM’05) received the
Ph.D. degree in computer science from the Univer-
sity of California at Los Angeles, Los Angeles.

Currently, he is an Associate Professor of electrical
engineering and computer science at the University
of Michigan, Ann Arbor. He has co-authored three
books and more than 180 refereed publications.
His current research interests include computers that
make computers.

Prof. Markov was the recipient of a DAC Fel-
lowship, an ACM SIGDA Outstanding New Faculty

Award, an NSF CAREER Award, an IBM Partnership Award, a Microsoft
A. Richard Newton Breakthrough Research Award, and the inaugural IEEE
CEDA Early Career Award. Some of his publications have received the Best
Paper Awards at the Design Automation and Test in Europe (DATE), the
International Symposium on Physical Design, and the IEEE Transactions
on Computer-Aided Design conferences. In the 2011 redesign of the ACM
Computing Classification System, he led the effort on the hardware tree. He
is an Executive Board Member of ACM SIGDA. He is an Editorial Board
Member of the Communications of ACM and IEEE Design and Test, as
well as several ACM and IEEE transactions. He has chaired tracks at DAC,
ICCAD, ICCD, DATE, and GLSVLSI.

Jens Lienig (M’97–SM’10) received the M.S.
(Diploma), Ph.D. (Dr.-Ing.), and Habilitation degrees
in electrical engineering from the Dresden Univer-
sity of Technology, Dresden, Germany, in 1988,
1991, and 1996, respectively.

He is currently a Full Professor of electrical en-
gineering at the Dresden University of Technology,
where he is also the Director of the Institute of Elec-
tromechanical and Electronic Design. From 1999 to
2002, he was a Tool Manager with Robert Bosch
GmbH, Reutlingen, Germany. From 1996 to 1999,

he was with Tanner Research, Inc., Pasadena, CA. From 1994 to 1996,
he was a Visiting Assistant Professor with the Department of Computer
Science, University of Virginia, Charlottesville. From 1991 to 1994, he was a
Post-Doctoral Fellow with Concordia University, Montréal, QC, Canada. His
current research interests include physical design automation of very large-
scale integrated circuits, multichip modules, and printed circuit boards, with
a special emphasis on electromigration avoidance in physical design, 3-D
design, and constraint-driven design methodologies.

Prof. Lienig has served on the Technical Program Committee of the DATE,
SLIP, and ISPD conferences.

