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Many pathogens persist in multihost systems, making

the identification of infection reservoirs crucial for

devising effective interventions. Here, we present a con-

ceptual framework for classifying patterns of incidence

and prevalence, and review recent scientific advances

that allow us to study and manage reservoirs simulta-

neously. We argue that interventions can have a crucial

role in enriching our mechanistic understanding of how

reservoirs function and should be embedded as quasi-

experimental studies in adaptive management frame-

works. Single approaches to the study of reservoirs are

unlikely to generate conclusive insights whereas the

formal integration of data and methodologies, involving

interventions, pathogen genetics, and contemporary

surveillance techniques, promises to open up new

opportunities to advance understanding of complex

multihost systems.

Advancing our understanding of reservoirs

Most disease-causing organisms, including many impor-

tant human, livestock, and wildlife pathogens, are capable

of infecting multiple hosts [1–3]. Therefore, determining

how hosts enable persistence [4] and which hosts are

crucial for the persistence of these multihost pathogens

[5] is essential for the design of effective control measures.

Failure to establish this understanding can hamper policy

formulation and lead to ineffective or counter-productive

control measures with costly implications for socially,

economically, or ecologically important populations.

Reservoirs of infection can be ecologically complicated

structures comprising one or more interacting populations

or species (Box 1 [5]). Although a range of developments

has led to better theoretical conceptualisation of reservoirs

[5–9], their empirical characterisation remains a chal-

lenge. In this article, we review methods currently used

to characterise each of the components that comprise a

reservoir according to the framework in Box 1. Specifically,

we first present a conceptual approach for classifying

patterns of incidence and prevalence (see Glossary) that

result from the connectivity between source and target

populations (black arrows in Figure I in Box 1). We then

review methods that allow us to identify maintenance or

nonmaintenance populations (squares or circles in Figure

I, Box 1), how they are connected (arrows in Figure I, Box

1), and the role that each of these populations has in

maintaining the pathogen (i.e., reservoir capacity).

Long-term ecological data on multihost systems are

sparse and challenging to collect [10–12]; this, combined

with the inherent difficulty of identifying reservoirs of

infection, means that each data set or approach in isolation

is unlikely to result in a sufficient evidence base to inform

control strategies. Here, we further discuss how to enrich
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Glossary

Basic reproduction number (R0): expected number of secondary cases caused

by a single infectious individual in a fully susceptible population.

Critical community size (CCS): host population size below which a disease

cannot persist in the long term.

Effective reproductive number: expected number of secondary cases caused

by each infectious individual in a partially immune population.

Endemic: an infection is endemic in a population when it is maintained without

the need for external introductions.

Force of infection: hazard rate of infection from a defined source to susceptible

host individuals in a defined population.

Incidence: number of new cases in a particular time interval.

Maintenance community: any set of connected host (sub)populations that

together can maintain a pathogen over the long term. A minimal maintenance

community is a maintenance community of which all subsets are nonmainte-

nance. Trivially, a maintenance population is also a (minimal) maintenance

community.

Maintenance population: single host population capable of maintaining a

pathogen over the long term.

Metapopulation: set of populations that are connected by transmission. It can

comprise structured populations of the same species (e.g., in space),

populations of different species, or a combination thereof.

Patch value: measure of the contribution of individual populations to the

reservoir capacity of a metapopulation.

Prevalence: proportion of positive cases in a population at a particular time

point.

Reservoir capacity: measure of the potential of a host metapopulation to

support long-term pathogen persistence in the absence of external imports.

Reservoir of infection: one or more epidemiologically connected populations

or environments in which a pathogen can be permanently maintained and

from which infection is transmitted to the target population.

Stuttering chain: pattern of cases in the form of short chains when

transmission among hosts occurs but is too weak to support endemic or

epidemic transmission.
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this evidence base. Almost inevitably, the need to inter-

vene will precede adequate understanding of the dynamics

of reservoir-target systems. Our central thesis is that

interventions that are meticulously planned to optimise

both the immediate short-term benefits to the target pop-

ulation and the longer-term understanding of how reser-

voirs function, applied together with a formal integration

of data and methods [13], can provide powerful new oppor-

tunities for studying complex multihost systems (e.g., [14]).

Patterns of incidence and prevalence in the target

Data on patterns of incidence and prevalence provide indi-

rect information on the connectivity between source and

target populations (i.e., black arrows in Figure I, Box 1).

Building upon the ‘community-epidemiology continuum’

framework developed by Fenton and Pedersen [15], specific

patterns can be assigned to ‘zones’ (Figure 1 and Table 1)

defined in relation to the relative magnitudes of the force of

infection from one or more source(s) (x-axis in Figure 1;

thickness of arrows in Figure I, Box 1), and R0,T, the basic

reproduction number of the pathogen within the target.

If the target population is a ‘dead-end’ host from which

transmission does not occur, then R0,T = 0. For a sufficient-

ly low force of infection, the interval between cases in the

target host is longer than the infectious period of single

cases (Figure 1, zone A) and cases are not directly linked.

As the force of infection from alternative sources increases,

we observe cases in the target population with increasing

frequency. At higher values, cases can overlap in time and

space but remain epidemiologically unlinked and, as long

as variability in the pathogen is high enough, genetically

distinct (Figure 1, zone B).

Box 1. Disease reservoirs framework

Our study of epidemiology is usually motivated by the need to control

disease in a particular host population or a subset of a population.

Following Haydon et al. [5], we refer to this as the ‘target population’.

Populations that are direct sources of infection for the target are

termed ‘source populations’. A ‘reservoir of infection’ is defined with

respect to a target population as ‘one or more epidemiologically

connected populations or environments in which a pathogen can be

permanently maintained and from which infection is transmitted to

the target population’ [5]. Some reservoirs can be simple and

comprise a single nontarget host population (Figure IA). However,

they can comprise a more structured set of connected host

subpopulations termed ‘maintenance community’ (Figure IB–D).

Individually, some of these populations can maintain the pathogen

(‘maintenance populations’), whereas others cannot (‘nonmainte-

nance populations’).

Thus, infection reservoirs can be constituted in a variety of ways.

Reservoirs can be wildlife species [e.g., possums (Eichosurus

vulpecula) as a reservoir of bovine TB in cattle in New Zealand; or

wildebeest (Connochaetes taurinus) as a reservoir of malignant

catarrh fever for cattle in Tanzania]; domesticated species (e.g., dogs

as a reservoir of rabies for humans in many developing countries;

cattle as a reservoir of Escherichia coli 0157 for humans in the UK), or

subsets of the same species (e.g., adults as a reservoir of respiratory

syncytial virus for children, men as an element of the reservoir of

human papillomavirus for women).

Other definitions of reservoirs have been proposed [7,55]. Although

Ashford’s [7] definition is appealing for its generality, and Drexler

et al.’s [55] for its evolutionary perspective, we use Haydon et al.’s [5]

due to not only its acceptance within the epidemiological literature,

but also its direct application for designing interventions.
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Figure I. Illustrative examples of reservoir–target systems. Arrow thickness denotes rate of transmission. In (A), the reservoir comprises a single source maintenance

population that transmits to a nonmaintenance target population. In (B), the reservoir comprises two connected nonmaintenance populations (of which one is the

source) that together form a maintenance community. In (C), the target is a maintenance population and a source of infection and, thus, is part of the reservoir. In (D),

the reservoir comprises three nonmaintenance populations, together forming two minimal maintenance communities each capable of maintaining the pathogen;

together, these form a larger maintenance community. In (E), the reservoir comprises a maintenance community of multiple connected nonmaintenance populations,

four of which are source populations. Modified from [5].
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Target populations in which limited transmission can

occur but R0,T <1 will, when the force of infection from the

source is low, exhibit the classic ‘stuttering chain’ dynam-

ics (Figure 1, zone C) in which outbreak sizes follow an

overdispersed distribution [16]. As R0,T !1, these out-

breaks can become large. However, as the interval between

introductions becomes shorter than the average duration

of outbreaks, we observe a pseudo-endemic pattern in

which the target population can appear to be a mainte-

nance population even when it is not (Figure 1, zone D).

Systems in which R0,T is close to 1 present particular

threats because small changes in their epidemiology with-

in the target population, through either pathogen evolu-

tion or changes in the target population structure, can

cause R0,T to exceed 1 and lead to an endemic situation

and/or epidemic behaviour [17].

If R0,T >1 then any spill-over events can give rise to

substantial epidemics. Stochastic extinction will still occur

frequently if R0,T is only slightly greater than 1 (Figure 1,

zone E); however, if the outbreak ‘takes off’ or R0,T >>1,

then there are three broad possible outcomes: (i) the target

population sustains a major epidemic after which the

pathogen becomes extinct in the target population [e.g.,

distemper virus in wolves (Canis lupus) and harbour seals

(Phoca vitulina)]; (ii) the target population sustains a

major epidemic after which the pathogen proceeds towards

an endemic state in the target population (e.g., HIV; the

target population is then a square in Figure I, Box 1); (iii)

control measures within the target population reduce R0,T

to below 1, so a major epidemic is averted and the pathogen

becomes extinct in the target population (e.g., severe acute

respiratory syndrome). If R0,T >1 and the force of infection

from the reservoir is large (Figure 1, zone F), fadeout is

unlikely (e.g., Southern African Territories strains of foot-

and-mouth disease in cattle in sub-Saharan Africa).

Dynamics ranging from pseudo-endemicity to true en-

demicity lie on an ascending diagonal from right to left

(Figure 1, arrow), along which increasing R0,T compensates

for a declining force of infection from the reservoir. These

different situations are likely to be hard to distinguish

using patterns of incidence and prevalence alone. Howev-

er, higher resolution spatiotemporal data and pathogen

genetic sequence data, together with sophisticated analyt-

ical techniques such as state-space modelling, can provide

some of the necessary tools to examine these patterns (See

‘Connectivity within the reservoir’).

Analysis of serology data

Given the challenges of isolating pathogens from wildlife

populations, patterns of incidence and prevalence are typi-

cally obtained from longitudinal seroprevalence surveys or

age-seroprevalence curves. These have been used to inves-

tigate infection dynamics of various multihost systems,

such as canine distemper virus (CDV) in carnivore com-

munities of the Serengeti [18,19], Kenya [20], and Yellow-

stone [21], Trypanosoma cruzi in wildlife hosts in the USA

[22] and hepatitis E in wild boars (Sus scrofa) in Europe

[23]. However, their interpretation remains fraught with

uncertainties mainly owing to cross-reactivity, declining

antibody titres, cut-off thresholds used to distinguish posi-

tive and negative reactions, and difficulties with the de-

tectability of antibodies because these depend on the

relation between immunity and infection resistance (e.g.,

a detectable antibody does not always imply protection and

the time of exposure remains unknown for pathogens that

create life-long immunity in the host) [24]. New statistical

approaches, such as latent class methods and site-occu-

pancy modelling, have been suggested recently to improve

estimates of prevalence from imperfect tests by allowing

uncertainty in the detection of infection state [25]. Al-

though still in early stages of development, advanced

modelling techniques, such as Bayesian process models,

can enable inferences of timing of exposure from age-

seroprevalence data, accounting for non-stationary epide-

miological dynamics [26], and/or detect cross-species trans-

mission [27], to identify which host species is the most

likely source of infection.

Identifying maintenance populations

Methods to identify plausible reservoirs typically focus on

thresholds that define individual populations as mainte-

nance or nonmaintenance (squares or circles in Figure I,

Box 1). Therefore, we discuss critical community size (CCS)

as an intuitive measure of persistence that can be traced

back to the reservoir framework proposed by Haydon et al.

[5].

CCS can be loosely defined as the host population size

below which a pathogen cannot persist [28,29]. Thus, a

maintenance population can be defined as a host popula-

tion in which a pathogen persists because the population

size is greater than CCS, whereas a nonmaintenance

population is one smaller than CCS [5]. However, there

are several challenges to the study of CCS in practice.
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Figure 1. Illustration of disease zones characterised by low and high frequencies

and/or rates of transmission from an external source of infection (force of infection,

x-axis) and target-to-target transmission represented here by the basic reproduction

number in the target population (R0,T; y-axis). We note that the source of infection

can be a reservoir, a maintenance population, or a nonmaintenance population.

Further details of the dynamic and genetic signatures of each zone are provided in

Table 1 (main text).
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The first challenge is to define the population in which

persistence is to be measured. Given that persistence is

sensitive to the complex relation between demographic and

epidemiological factors, it is difficult to estimate in the pres-

ence of population structure [30,31]; therefore, CCS is most

commonly discussed in the context of single well-mixed

populations, although these are rare in natural systems.

The second challenge is in defining persistence, particularly

because any estimate of CCS is likely to be sensitive to the

choice of persistence metric [32]. In his original work, Bartlett

defined CCS as the size of a population in which extinction

was as likely as not following a major outbreak [29]. However,

persistence might also be measured from an initial condition

corresponding to the endemic equilibrium [33,34]. Lloyd-

Smith et al. [35] point out that the relation between persis-

tence and population size is not well described as a step

function, but instead increases in a gradual manner. CCS

can also be thought of in relation to the probability of extinc-

tion within a given time or the time until a given proportion

(usually 50%) of introductions (or simulations) have gone

extinct [36]. Once appropriate definitions are adopted, the

final challenge is estimating CCS. The main approaches used

are: (i) empirical observation, which consist of plotting inci-

dence data against population size [28,37–39]; (ii) analytic

expressions [34,40–42], although all approximations so far

exclude many processes relevant to CCS, such as latency,

spatial heterogeneity, seasonality, age structure, and non-

exponential infectious periods [40,43]; and (iii) stochastic

computer simulations, in which parameterised compartmen-

tal models are used to generate distributions of persistence

times for populations of different sizes and from which CCS

can be estimated [33,34]. However, these studies assume a

linear relationship between population size and recruitment,

which is unrealistic in natural systems [35]. Beyond studies of

measles [44–46], little work has been done to estimate CCS.

Next-generation matrix (NGM) methods have also been

used to identify reservoir communities from endemic prev-

alence data. This method estimates a threshold that is

similar to R0 (or the effective reproduction number in the

endemic case) separately for individual host populations

Table 1. Description of the dynamics and genetic signature of each disease zone captured in Figure 1 (main text)

Zone Process Observation Example

Dynamics Genetics

A Low frequency of spillover infection with

no onward transmission in the target

population. Low incidence with isolated,

epidemiologically independent cases

Low incidence with long gaps

between outbreaks that exceed

the average combined

incubation and infection periods

Genetic independence between

cases

Lyme disease in humans

Human rabies

B Frequent, dead-end spillover leads to

cases at a rate that could appear to

indicate target-to-target transmission

(but it is not)

Sometimes low incidence with

frequent outbreaks (e.g., West

Nile virus in humans). However,

low frequency with high

incidence can also occur (e.g.,

Rift Valley fever in humans)

Genetic independence between

cases allows distinction from

zones with similar incidence

rates arising from target-to-

target transmission (zones C/D)

West Nile virus in humans

and horses

Rift Valley fever in humans

Wildebeest-associated

malignant catarrhal fever

in cattle

Vampire bat rabies in

humans and/or livestock

C Limited target-to-target transmission

causes isolated stuttering chains of

transient nature and, thus, self-limiting

outbreaks

Low-to-medium incidence with

frequent small outbreaks

Genetics reveals that stuttering

chains are unlinked based on

cases having shared ancestry

only in the distant past. Critical

to distinguish from zones B/D

Monkeypox

Cattle brucellosis in

Yellowstone

Early severe acute

respiratory syndrome

H5N1 avian influenza

Food-borne Escherichia

coli

D Similar dynamics to zone C but chains

initiated at high enough frequency to

create a pseudo-endemic pattern (i.e.,

cases are always present in the target

population)

Medium-to-high incidence with

frequent small outbreaks.

Reveals pseudo-endemicity

Genetics reveal that chains are

separate and temporally

superimposed (rather than

linked), showing frequent

transmission from source.

Critical to distinguish from zone

C

Wildlife CDV in the

Serengeti

Possibly TB in African

lions

Wildlife rinderpest (but see

[78])

E Rare introductions that result in large

and usually sustained outbreaks due to

R0,T >1. Size of target population is

important because higher R0,T leads to a

faster depletion of susceptibles,

increasing the CCS required for

persistence

High incidence with endemic

circulation influenced by, for

example, seasonal dynamics

Invasion can be traced to a

single or a small number of

spillover events

HIV

Influenza in humans

Mycoplasma

ovipneumonia in bighorn

sheep

Bat rabies in skunks

F Frequent introductions and large

outbreaks associated with a high number

of spillover events. Difficult to identify

dynamically. Contribution from source

unclear due to high R0,T in target

population

High incidence Genetics reveal multiple co-

circulating lineages in the target

population, with new lineages

appearing through spillover

events. Multiple spillovers from

the source mean that it is more

difficult to eliminate

Southern African

Territories strains of cattle

foot-and-mouth disease in

sub-Saharan Africa

Bovine TB in UK

Jackal-dog rabies in

southern Africa
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within a multigroup population rather than averaging

across all populations [47]. For example, using NGM,

mallards and other dabbling ducks were reported to be

part of the most likely reservoir community of influenza A

in the global water bird population [8]. However, this

method focuses strictly on whether persistence is possible

(i.e., whether the appropriate reproductive number

exceeds 1), and ignores the stochasticity and nonequilibri-

um dynamics that are central to classical thinking on CCS.

Also, implementations of the method have relied on the

strong assumption that infection prevalence is at endemic

equilibrium in all host species.

Connectivity within the reservoir: tracing transmission

Identifying which populations constitute the reservoir

requires understanding how the populations are epidemiologi-

cally connected to each other. Here, we discuss two approaches

used to trace transmission within the reservoir and between

the reservoir and a target population: simulations and model-

ling, and genetics. Evidence to test the hypothesis that a

particular population is a source of infection can also be

acquired through real-world interventions that either reduce

prevalence of disease in the putative source or block source-to-

target transmission while monitoring incidence in the target.

These are discussed in a subsequent section.

Tracing transmission using simulations and modelling

Statistical modelling is increasingly used to identify plausi-

ble sources of infection. One of the advantages of modelling

is that they can be used for partially observed processes [e.g.,

approximate Bayesian computation [48,49], state-space

models (SSM; [50]), and Markov models [50–52]]. For exam-

ple, SSMs make an explicit distinction between data that

can be observed (e.g., infected individuals detected by sur-

veillance) and the underlying process itself, which might be

largely unobserved (e.g., all infection events). Beyer et al.

[50] constructed an SSM of rabies persistence in the Seren-

geti District in Tanzania that used records of humans

reporting to hospital with dog bite injuries. Using a state-

space implementation of a metapopulation process describ-

ing the unobserved process of dog-to-dog transmission be-

tween villages, they were able to estimate parameters

capturing the effects of intervillage distance and the size

of dog populations on rabies dynamics. Based on these, they

inferred that it was more likely that dog rabies infections

were being imported from unvaccinated domestic dogs in

outlying districts, or from wild peri-urban carnivores in the

Serengeti district itself, rather than from wildlife residing

within the National Park. Despite their advantages, infer-

ences rely on valid assumptions being made about the

biological processes embodied in model structure.

Given a possible set of transmission parameters, plau-

sible reservoirs of infection can also be identified using

simulation models [43,53,54]. Transmission parameters

are typically obtained from epidemiological, demographic,

or genetic data, and can be manipulated to explore the

sensitivity of the reservoir dynamics to these parameters.

For example, Cross et al. [54] used an age-structured model

of two interacting elk populations (free-ranging and those

receiving supplemental feeding) to investigate the extent

to which dispersal from feeding grounds could explain

changes in brucellosis seroprevalence in elk around the

Yellowstone ecosystem. They found that R0 in the free-

ranging elk population (the target population) had in-

creased to above 1 over the past 20 years, probably due

to changes in elk aggregations that led to enhanced elk-to-

elk transmission (i.e., moved from zone C to E in Figure 1).

Tracing transmission using genetics

Genetic inference of cross-species transmission has so far

tended to borrow analytical approaches from population

genetics and phylogeography [55–57] (Box 2). Genealogy-

based methods have particular appeal because, for many

pathogens, the accumulation of mutations takes place on

approximately the same timescale as transmission. If trans-

mission chains are genetically distinguishable, they can pro-

vide complementary information to incidence and prevalence

data. For example, given sufficient pathogen genetic variabil-

ity in the reservoir, genetic data should readily distinguish

rare spillover and subsequent transmission in the target from

scenarios involving the same incidence due only to a high

Box 2. Using pathogen genetics to untangle reservoir–

target dynamics

Methods based on discrete ancestral state inference offer an

appealing statistical way to approach the problem of multihost

transmission by fitting probabilistic models to pathogen sequence

data [79]. In these methods, genealogies are constructed from the

data, and host associations (states) observed at the tips of the trees

are used to estimate the conditional probability of being affiliated

with a particular host population along all interior branches.

Transmission events between host populations and, thus, the net

contribution of the reservoir to dynamics in the target, can be

enumerated through Markov jump counts [56,80]. A more formal

population genetic framework, centred on joint estimation of

population sizes and migration rates across all patches [81,82],

can similarly be adapted to deal with pathogen gene flow [83].

Although novel approaches based on genetic data open up

intriguing opportunities, their resolution has defined limits. As

introductions into the target become more frequent, it is increas-

ingly difficult to distinguish contributions of the reservoir from

continuous transmission within the target. Increasing genetic

resolution by using longer sequences can compensate for this, but

only to the point of sequencing entire pathogen genomes. The

ability of genetic markers to resolve cross-species transmission

processes will also be reduced by potential pathogen flow from the

target population back into the reservoir [84].

Genetic inference of reservoir–target dynamics has so far also

received little formal testing. There is strong reason to suspect that

biased sampling can have a profound influence on the inferences

generated. For example, genetically unsampled sources of infection

will not only remain undetectable, but their contribution will also be

wrongly attributed to populations included in the sample (a problem

akin to that caused by ‘ghost populations’ in population genetics

[85]). Moreover, inferred transmission dynamics can depend on the

relative spatial and temporal density of sampling among host

populations. Finally, stuttering chains within the target population

can boost the frequency of cases (compare zones A and C in

Figure 1, main text) and, hence, the likelihood of detection under

sparse sampling; if unaccounted for, this can lead to overestimation

of cross-species transmission rates. These complexities can gen-

erate significant challenges for the investigation of reservoir–target

systems because balanced, representative sampling, proportional to

the incidence in each host, is rarely achievable. Therefore, develop-

ing robust ways to deal with problems related to sampling in the

context of genealogical inference and the reconstruction of

transmission histories remains an important focal area for future

research.
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force of infection from outside the target population (Figure 1,

zones B and C, and zones D and E) [57,58].

Reservoir capacity

A reservoir can comprise multiple connected populations of

the same or different species (see Figure 1E in Box 1), and,

thus, can be represented as a metapopulation. To assess

whether this metapopulation is capable of supporting

pathogen persistence, we can draw a parallel with ecologi-

cal theory. Representing the reservoir as a metapopula-

tion, we can extend the notion of metapopulation capacity

[59] to that of reservoir capacity (Box 3). Reservoir capaci-

ty, l’M, is a measure of the potential of a structured host

population to support pathogen persistence in the absence

of external imports and, thus, can be used to assess wheth-

er a population constitutes a reservoir. A useful benefit is

that associated patch values Vi (i.e., the relative contribu-

tion of each population to overall persistence; Box 3) can be

used to prioritise populations when designing interven-

tions. The modelling framework encapsulates three pro-

cesses (within-population processes, transmission between

populations, and community-level persistence) and is nor-

mally used to investigate one of these processes when it is

possible to parameterise the other two.

Box 3. Reservoir capacity of a metapopulation

The notion of ‘metapopulation capacity’ [59] captures in a single

number l
0

M the capacity of a fragmented landscape, comprising

patches, to support the long-term persistence of a species in the

absence of external imports. By analogy, we define ‘reservoir

capacity’ as the capacity of a metapopulation to support the long-

term persistence of a pathogen. It can be regarded as a measure of

effective host abundance, weighted to take into account structural

factors, such as local population sizes and connectivity, that influence

fadeout rates within populations and transmission between them.

The dynamics of a general metapopulation are governed by

Equation I (Figure I), in which invasion and fadeout rates are functions

of infection status of other populations, as well as factors such as

population sizes and transmission rates. Persistence in the metapo-

pulation is controlled by the ratio of population invasion events to

disease fadeouts, and these are balanced at equilibrium. Reservoir

capacity for this general model is defined in Equation II (Figure I).

Reservoir capacity also suggests a persistence threshold. In this

deterministic model, a pathogen persists in a given landscape if and

only if l
0

M >1, corresponding to the threshold above which Equation I

has a stable nontrivial equilibrium. Although parameterising this kind

of metapopulation model is challenging, methodology shared

between ecologists and epidemiologists [86] can allow assessments

of likely persistence.

An attractive feature of this approach is the ability to estimate

patch values, Vi, which are measures of the contribution of individual

populations to the persistence threshold that is used to guide

interventions. For example, Figure II shows the relative contribution

of 75 villages in the Serengeti District, Tanzania, to local rabies

reservoir capacity, estimated from the Beyer et al. [50,87] model

discussed in the main text. Although the village shaded in red is the

biggest both in terms of size and patch value, for villages with

approximately 400 dogs, the patch values range from 0.00 to 0.04

depending on their spatial location relative to other villages (Figure

IIB).

[I]

[II]

Rate of change in pi,

the probability that

infec�on is present in

popula�on i

Invasion rate Ci of

popula�on i by infec�on

from other popula�ons  p

when infec�on absent

Fadeout rate Ei of

pathogen in

popula�on i  when

infec�on present

Persistence is possible if and only if λ’M > 1, i.e., there exists a vector p (in the

set of all such vectors Ω) such that the minimum expected ra�o of invasions

to fadeouts across popula�ons >1
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Figure I. Metapopulation model and definition of reservoir capacity.
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(A) (B)

Figure II. Dog population size against relative patch values (A) estimated for rabies in 75 villages of the Serengeti District, Tanzania, and their geographic location (B).

Colour gradient represents patch values Vi and circle sizes (B) are proportional to dog population size.
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Enriching the evidence base

No one line of evidence is likely to support unambiguous

inferences about the structure and functioning of a reser-

voir system. However, two general strategies are worth

emphasising: interventions embedded into adaptive man-

agement and data integration.

Interventions embedded into adaptive management

programs

Interventions are normally designed to maximise the ben-

efits of disease control [60]. However, they must often be

devised with an incomplete understanding of the overall

disease dynamics. We argue that using interventions as

quasi-experiments can provide valuable opportunities to

learn more about the functioning of a reservoir (see exam-

ples in Table 2). Through adaptive management [61,62],

disease control objectives can be met while generating and

enriching the evidence base to improve future control

policies and resource allocation.

Interventions that generate substantial (and, thus, more

easily measurable) changes to the system are the most likely

to provide useful information. Such interventions can be

akin to ‘press’ (sustained action; e.g., long-term vaccination)

or ‘pulse’ (one-off action; e.g., single culling or vaccination

campaign) phenomena that are familiar to ecologists [63], or

‘block’ perturbations (where potential transmission between

reservoir and target is impeded; e.g., fences). Power can be

assessed from predictions based on classical sensitivity or

elasticity analysis [64]. Interventions that induce no

changes can also be informative if, for example, they allow

us to rule out a particular transmission route or source

population. What can be learned from such interventions

is dependent on whether they enable relevant hypotheses to

be tested. It is also important to note that these interven-

tions can alter the target-reservoir transmission dynamics,

leading to difficulties in distinguishing causes and effects of

the intervention. For example, the Randomised Badger

Culling Trial conducted over 3000 km2 and a 10-year time

period [65] generated a wealth of data and analysis that

should be instrumental in determining the circumstances in

which badger culling might usefully contribute to the effec-

tive control of bovine TB in the UK. However, it might not be

simple to determine whether particular changes in the

reservoir–target disease transmission dynamics were a di-

rect or indirect (due to dispersal and behaviour change)

consequence of the culling.

Table 2. Intervention studies shedding light on maintenance host status

Pathogen Focal (other) species Location Type of intervention:

intervention

Outcome Is focal species

a maintenance

host?

Refs

Mycobacterium bovis Wild boar (red deer) Spain Block: isolated and/or fenced

from livestock hosts for over

20 years

Pathogen persisted Yes [88]

Red deer (possum) New Zealand Pulse: possum density

reduced by poisoning

Incidence in deer dropped

to approximately zero in

treatment plots

No [89]

Possum (pigs, deer,

and ferrets)

New Zealand Press: reduced possums by

poisoning to 22% of former

population density, followed

by maintenance through

trapping and shooting

Major reduction in TB

prevalence in possums

and TB incidence in cattle

Yes [90]

Badgers (cattle) England Pulse: randomised controlled

trial of badger culling

Mixed results, but

evidence for temporary

decrease in incidence

Insufficient

evidence

[91]

Brucella spp. Red deer (cattle, sheep,

and goats)

Spain Press: controlled in livestock

through a yearly ‘test-and-

slaughter’ program; no

control in deer

Pathogen eliminated in

deer

No [92]

Louping ill

virus

Hares (grouse) Scotland Press: hare density reduced

by shooting and snaring;

control plot without

intervention

Huge drop in tick burden

and viral prevalence in

grouse on treatment plot

Yes [93]

Leishmania

chagasi

Dogs (humans) Brazil Pulse: seropositive dogs

eliminated in two valleys, no

treatment in two other

valleys

No difference in human

incidence across

treatments

No (although

see [69])

[94]

Rabies virus Red foxes (skunks,

dogs, cats, and bats)

Ontario Press: oral vaccination of

foxes

Elimination from foxes,

followed by elimination

from skunks

Yes [95]

Red foxes (carnivores

and dogs)

Europe Press: oral vaccination of

foxes

Elimination Yes [96]

Dogs (wild carnivores,

livestock, and humans)

Serengeti,

Tanzania

Press: long-term mass

vaccination of dogs

Elimination in parts of the

ecosystem

Yes [97]

Rinderpest virus Cattle (wildlife) Africa Press: coordinated large-

scale vaccination of cattle

with sudden interruption to

identify remaining affected

areas

Eradication in cattle and

wildlife

Yes [78]
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The main challenge in using adaptive management lies

in balancing knowledge gain that enables improved future

control with achieving the best short-term outcome based

on current knowledge [66]. It might be that an intervention

that optimises the short-term outcome (e.g., one resulting

in the greatest reduction of disease prevalence in the

target) is also the one that provides the greatest statistical

power to test the hypothesis of interest. In other situations,

there can be a trade-off between the short-term goals of

rapid disease control and the longer-term goals of learning

about the system to optimise future control. This is par-

ticularly true given the cost of allocating resources to

monitoring, the need to include experimental control areas

[67], and the challenge of defining efficient experimental

designs (e.g., stepped wedged trial; [68]) for the hypothesis

being tested [62,69]. For example, faced with limited

knowledge about the dynamics of chronic wasting disease

(CWD) in Wisconsin (US), the US Department of Natural

Resources established an adaptive management pro-

gramme to eradicate CWD from the area [70]. The inter-

vention was based on random deer culling, but a key

component of the program was the collection of lymph

nodes and brain tissue from the culled and harvested deer

to assess the spatial distribution of CWD and provide

further insights into its epidemiology.

Integration of data and findings

In most cases, understanding reservoirs dynamics requires

the use of multiple data sources. Integration of findings can

occur at the analysis or study design stage [71] or later,

using techniques such as meta-analysis or mathematical

modelling (e.g., [69]). Triangulation of multiple sources

should improve understanding of the validity and gener-

alisation of inferences [72]. By synthesising several lines of

evidence, Lembo et al. [14] found support for the hypothesis

that domestic dogs, rather than wildlife, constitute the

maintenance population for canine rabies in northern

Tanzania. Their analyses included post-hoc integration

of long-term case monitoring data (suggesting that rabies

can persist in high-density domestic dog populations),

genetic data (showing that a single rabies virus variant

circulates among a range of species), and analysis of inci-

dence patterns (indicating that spillover from domestic dog

populations initiated only short-lived chains of transmis-

sion in other carnivores, consistent with zone C in

Figure 1).

Ultimately, we seek a formal statistical integration of

different sources of evidence that can be used to character-

ise reservoir systems. Such integrative approaches are

rare, but increasingly powerful methods are being devel-

oped. For example, genetic, spatial, and epidemiological

data can now be combined to enable detailed reconstruc-

tion of transmission within and between host populations

(e.g., [73,74]) and time-calibrated phylogenies can be lay-

ered with geographical and epidemiological data in a joint

framework that enables estimation of the frequency and

directionality of interspecies transmission (e.g., [56,75]).

For example, based on viral gene sequences and epidemio-

logical data, Faria et al. [75] reconstructed the cross-spe-

cies transmission history of rabies virus between North

American bats and identified ecological and evolutionary

constraints on transmission patterns. Latent variable

models that explicitly parameterise both process and ob-

servation models are also well suited to combining data

types, particularly when observations are sparse [26].

Developing statistically rigorous analytical methods that

integrate multiple data layers is a challenging but exciting

area, and key to future progress in infectious disease

ecology [76,77]. Box 4 summarises outstanding questions

in the study of reservoirs of infection.

Concluding remarks

Each of the approaches discussed here provides important

threads of evidence on its own. However, these threads are

part of a more extensive tapestry and, when viewed in

isolation, they convey only a fragmentary understanding of

how reservoirs work. Appropriately designed interventions

can simultaneously provide direct tests of disease control

methodology, deliver health benefits within the target

population, and create important research opportunities

that can advance understanding of reservoir dynamics.

However, to realise these benefits fully, we must form

broad-based interdisciplinary teams, engage with their

full range of expertise from the earliest planning stages,

and support them throughout the lifetime of the interven-

tion. Understanding reservoir structure and function

requires not only an integration of approaches to data

collection and analysis, but also a step-change in the

way that research communities integrate their activities

with animal and human health practitioners.
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