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ABSTRACT 

We report reference-grade de novo assemblies of four model organisms and the human 

genome from single-molecule, real-time (SMRT) sequencing. Long-read SMRT 

sequencing is routinely used to finish microbial genomes, but the available assembly 

methods have not scaled well to larger genomes. Here we introduce the MinHash 

Alignment Process (MHAP) for efficient overlapping of noisy, long reads using 

probabilistic, locality-sensitive hashing. Together with Celera Assembler, MHAP was 

used to reconstruct the genomes of Escherichia coli, Saccharomyces cerevisiae, 

Arabidopsis thaliana, Drosophila melanogaster, and human from high-coverage SMRT 

sequencing. The resulting assemblies include fully resolved chromosome arms and close 

persistent gaps in these important reference genomes, including heterochromatic and 

telomeric transition sequences. For D. melanogaster, MHAP achieved a 600-fold 

speedup relative to prior methods and a cloud computing cost of a few hundred dollars. 

These results demonstrate that single-molecule sequencing alone can produce near-

complete eukaryotic genomes at modest cost. 
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Introduction 

Genome assembly is the process of reconstructing a genome from a collection of much 

shorter sequencing reads, and is a critical step of all genome projects1-3. In contrast to 

resequencing projects, de novo assembly is not assisted by a reference and the genome 

must be reconstructed from scratch. An accurate reconstruction is critical, as both the 

continuity and base accuracy of an assembly can affect the results of all downstream 

analyses. However, repetitive sequences make assembly a difficult problem when the 

repeat length exceeds the read length4, 5. Unfortunately, most high-throughput 

sequencing methods generate sequencing reads of only a few hundred base pairs, which 

is well short of many common repeats. While short reads are sufficient for many types 

of analyses, they are not sufficient for assembling through the major repeat families in 

both microbial and eukaryotic genomes. This has led to more fractured and incomplete 

assemblies6 compared to those based on first-generation Sanger sequencing7. 

 

Recent advances in single-molecule sequencing technologies have promised reads 

hundreds of fold longer than second-generation methods8-11. Most notably, Pacific 

Biosciences’ single-molecule, real-time (SMRT®) sequencing was the first 

commercially available long-read technology11. Utilizing a DNA polymerase anchored 

in a zero-mode waveguide, SMRT sequencing has delivered usable reads upwards of 

50Kbp12. Preliminary results from Oxford Nanopore suggest that >10Kbp read lengths 

are also possible using nanopore sequencing13, 14. Such read lengths drastically simplify 

genome assembly by resolving repetitive structures in the assembly graph12, 15. 

However, the long reads generated by single-molecule sequencing currently suffer from 

low accuracy, requiring new algorithms to compensate for noise in individual reads. 

Recent theoretical work has demonstrated that random error can be overcome 

algorithmically16, and early studies indicate that SMRT sequencing follows a largely 

random error model17, 18. Thus, by oversampling the genome at sufficient coverage, 

SMRT sequencing can be used to produce assemblies of unmatched continuity15, 17, 19-21, 

including automatically finished genomes for the majority of known bacteria and 

archaea15. 
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Despite providing outstanding results, early assemblies of noisy, long reads have come 

at a substantial computational cost. For example, using tools available at the time, an 

initial assembly of Drosophila melanogaster from SMRT reads required over 600,000 

CPU hours—the equivalent of more than 20 days running on a thousand-core compute 

cluster22. Even small bacterial genomes currently require a day to assemble using the 

HGAP19 or PBcR15 assembly pipelines. Until now, the primary bottleneck of long-read 

assembly has been the sensitive all-versus-all alignment required to determine 

overlapping read pairs. For the initial D. melanogaster assembly, this overlapping step 

comprised over 95% of the total runtime. Even if future long-read technologies improve 

accuracy, all-pairs overlapping would remain a significant bottleneck in overlap-layout-

consensus (OLC) assembly1. Both this computational cost and the comparatively high 

sequencing cost have prevented widespread application of SMRT sequencing to large 

genomes. The steadily increasing throughput of the PacBio® RS II instrument has begun 

to address sequencing costs, but the computational cost of assembling larger genomes has 

remained beyond the reach of most investigators. 

 

To address the computational barrier of long-read assembly, we present a probabilistic 

algorithm for efficiently detecting overlaps between noisy, long reads. The MinHash 

Alignment Process (MHAP) uses a dimensionality reduction technique called 

MinHash23 to create a more compact representation of sequencing reads. Originally 

developed to determine the similarity of web pages24, MinHash reduces a text or string 

to a small set of fingerprints, called a sketch. MinHash sketches have been successfully 

applied to document similarity23, image similarity25, sequence similarity26, 27, and 

metagenomic clustering28. The approach can also be viewed as a generalization of 

minimizers29. Briefly, to create a sketch for a DNA sequence, all k-mers (aka shingles or 

q-grams) are converted to integer fingerprints using multiple, randomized hash 

functions. For each hash function, only the minimum valued fingerprint, or min-mer, is 

retained. The collection of min-mers for a sequence makes the sketch (Fig. 1, Methods). 

This locality sensitive hashing allows the Jaccard30 similarity of two k-mer sets to be 

estimated by simply computing the Hamming31 distance between their sketches. Because 

the sketches are small and Hamming distance is quick to compute, this is an extremely 
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efficient technique to estimate similarity. 

 

Here, we present assemblies of SMRT sequencing reads for four model organisms and 

the human genome using a MHAP-enabled assembly pipeline. The resulting assemblies 

are superior to any previous de novo assemblies of these organisms, and were produced 

in a fraction of the time required using previous overlapping algorithms32. In addition, 

these assemblies include novel heterochromatic sequences and fill persistent gaps 

remaining in the reference genomes of these important organisms. 

Results 

MinHash alignment filtering 

MHAP uses MinHash sketches for efficient alignment filtering. The time required to 

hash, index, store, and compare k-mers is proportional to the sketch size, so it is 

preferable to keep sketches small. However, using fewer min-mers reduces the sensitivity 

of the filter. Figures 2a and 2b show that it is possible to use sketches an order of 

magnitude smaller than the input reads, while maintaining acceptable overlap detection 

accuracy. Specifically, sketches of 1,000 16-mers can be used to accurately detect 5Kbp 

overlaps for 10Kbp reads simulated from the human genome with an overlap error rate of 

30% (Methods, Supplementary Note 1). For human, using a smaller value of k (e.g. 10) 

increases the number of false matches found, so it is preferable to use the largest value of 

k that maintains sensitivity. Sensitivity can be further controlled by the sketch size. 

Because the error rate of an alignment is roughly additive in the error rate of the two 

reads, mapping high-error reads to a reference genome is easier than overlapping. For 

mapping 10Kbp reads to the human genome at 15% error, a sketch of only ~150 16-mers 

is required to achieve over 80% sensitivity. 

 

The efficiency of MHAP improves with increased read length. Figure 2c compares the 

total number of k-mers counted during MHAP overlapping to a direct approach that 

exactly measures the Jaccard similarity between two reads without using sketches 

(Methods). For a fixed number of total bases sequenced, and a minimum 20% overlap 
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length, increasing read length has no effect on the direct approach since it must consider 

all k-mers. However, the number of min-mer comparisons performed by MHAP decays 

rapidly with increasing read length, since the complexity is governed by the sketch size (a 

constant) and the number of reads (which decreases for increasing read length, 

Supplementary Table S1). Thus, the efficiency of MHAP is expected to improve with the 

increasing read length and accuracy of future long-read sequencing technologies. 

MHAP overlapping performance 

In addition to speed, MHAP is a highly sensitive overlapper. We evaluated the sensitivity 

and specificity of MHAP versus BLASR32, the only other aligner currently capable of 

overlapping SMRT reads. BWA-MEM33, SNAP34, and RazerS35 were also evaluated, but 

their current versions were unable to reliably detect noisy overlaps (Supplementary Note 

2). The performance of MHAP and BLASR was evaluated by comparing detected 

overlaps to true overlaps inferred from mapping reads to their reference genomes 

(Methods). First, the methods were evaluated across multiple parameter settings and 

sequencing chemistries (Supplementary Figs. S1–S2, Table S2). Importantly, MHAP 

sensitivity is tunable based on the size of k, the sketch size, and the Jaccard similarity 

threshold. Based on these results, two MHAP parameter sets were chosen that balanced 

speed with accuracy, and the comparisons were repeated on all datasets (Table 1). To 

achieve adequate sensitivity on large, repetitive genomes, BLASR required parameter 

settings that drastically increased runtime. For efficiency, BLASR only considers a subset 

of alignments (controlled by the bestn and nCandidates parameters), resulting in missed 

overlaps for highly repetitive genomes. In contrast, MHAP considers all alignments and 

was consistently accurate across all genomes tested, while being orders of magnitude 

faster than BLASR. 

SMRT sequencing and assembly 

MHAP overlapping enables efficient and complete assembly of large genomes. To 

demonstrate, we integrated MHAP into the Celera Assembler36 PBcR15, 17 hierarchical 

assembly pipeline, and assembled the genomes of Escherichia coli K12, Saccharomyces 

cerevisiae W303, Drosophila melanogaster ISO1, Arabidopsis thaliana Ler-0, and the 

haploid human cell line CHM1htert37 from high-coverage SMRT sequencing data (85X, 
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117X, 121X, 144X, and 54X coverage, respectively, Supplementary Note 3, 

Supplementary Table S3)38. This new pipeline is referred to as PBcR-MHAP, while the 

previous pipeline based on BLASR is PBcR-BLASR. Also included in PBcR-MHAP is a 

new consensus module, FalconSense, for correcting the noisy reads after overlapping 

(Methods). Table 2 details the relative performance of PBcR-MHAP on all datasets. 

Assembly continuity is measured using the traditional N50 metric (half the genome size 

is contained in contigs of length N or greater) and an “assembly performance” metric 

defined by Lee et al. as the N50 contig length divided by the N50 length of the reference 

segments (observed N50 vs. idealized N50)12. In all cases compared, MHAP overlapping 

produced comparable or improved assembly results in less time that previous approaches. 

As expected, speedups were most pronounced for larger genomes and read lengths, with 

a ~600-fold speedup observed for D. melanogaster. 

 

Using PBcR-MHAP, microbial genomes can be completely assembled from long reads in 

roughly the same time required to generate incomplete assemblies from short reads. For 

example, PBcR-MHAP was able to accurately resolve the entire genome of E. coli K12 

using 85X of SMRT reads in 4.6 CPU hours, or 20 minutes using a modern 16-core 

desktop computer. In comparison, the state-of-the-art39 SPAdes assembler40 required 4.1 

CPU hours to assemble 85X Illumina reads from the same genome. Both short- and long-

read assemblies are highly accurate at the nucleotide level (>99.999%), but the short-read 

assembly is heavily fragmented and contains more structural errors (Supplementary Table 

S4, Supplementary Fig. S3). Our initial SMRT assembly does contain more single-base 

insertion/deletion (Indel) errors, but polishing it with Quiver19 (requiring an additional 

6.6 CPU hours) resulted in the lowest number of consensus errors of all assemblies (11 

vs. 96 for SPAdes). 

 

S. cerevisiae W303, the smallest eukaryotic genome assembled here, was sequenced 

using the P4C2 chemistry, which produces shorter reads than P5C3. Nonetheless, the 

resulting PBcR-MHAP assembly produced fewer contigs than PBcR-BLASR, ran eight 

times faster, and required less than two hours on a desktop computer. Despite being from 

a different strain, the assembly is largely syntenic with the S. cerevisiae S228 reference 
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(Supplementary Fig. S4). Compared to a previously published reference-guided assembly 

of this strain41, the PBcR-MHAP de novo assembly achieves a 4-fold improvement in 

N50 and assembles 12 out of 16 chromosomes without gaps. Thus, even using the older 

P4C2 chemistry, our assembly approaches perfect continuity and represents the best 

assembly of Saccharomyces cerevisiae W303 to date, including both hybrid and 

reference-assisted assemblies12,41. 

 

As predicted, greater performance gains were observed for the larger, more complex 

genomes of A. thaliana Ler-0 and D. melanogaster ISO1 sequenced using the longer 

P5C3 chemistry (Table 2). Compared to the A. thaliana Col-0 version 10 reference42, 

which has undergone continued improvement since its initial sequencing in 2000, our 

assembly of Ler-0 is more continuous and contains an average of 5 fewer gaps per 

chromosome. The Ler-0 assembly structurally agrees with the Col-0 reference, with the 

exception of a few strain-specific variations (Supplementary Fig. S5). Similarly, the D. 

melanogaster ISO1 assembly achieves startling continuity and widespread agreement 

with the version 5 reference43 (Supplementary Note 4, Supplementary Fig. S6). For 

example, chromosome arm 3L is fully spanned by a single 25Mbp contig (Fig. 3), and on 

average our assembly is significantly more contiguous than the original Sanger-based 

assembly of D. melanogaster
36, averaging just 5 contigs per autosomal chromosome arm 

(2L, 2R, 3L, 3R, 4). As a result of this outstanding continuity, our assembly potentially 

resolves 52 of 124 (42%) gaps in the version 5 reference that have persisted for over a 

decade of finishing (Supplementary Note 4, Supplementary Table S5). Half of these 

putative gap closures match the estimated gap size in the reference, but require further 

validation to confirm they represent true gap closures. 

 

Despite the original Drosophila Genome Project’s 2Kbp, 10Kbp, and BAC inserts, the 

contig N50 of the SMRT assembly is greater than the scaffold N50 of the Sanger 

assembly (21Mbp vs. 14Mbp). This result demonstrates that sufficient coverage of long 

reads can independently resolve repeats in eukaryotic genomes, eliminating the need for 

read pairs. Lastly, only a few days was required to assemble the genomes of A. thaliana 

and D. melanogaster using PBcR-MHAP on a single desktop computer, demonstrating 
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that reference-grade assembly of 100Mbp eukaryotes is now possible without requiring 

large computing clusters. 

A de novo human assembly using long reads 

The human genome has long been regarded as the pinnacle of whole-genome shotgun 

sequence assembly44, and is clearly the most widely studied genome with enormous 

resources dedicated to sequencing, assembling, and finishing45-47. As a final test of PBcR-

MHAP, we assembled 54X SMRT sequencing reads from the haploid human cell line 

CHM1htert37. We compared our assembly to the human GRCh38 reference48, as well as 

to a reference-guided assembly of CHM1 that utilized BAC-tiling and Illumina 

sequencing47 (Supplementary Note 5, Supplementary Fig. S7). 

 

The contig N50 of our long-read de novo assembly of CHM1 is an order of magnitude 

larger than both the CHM1 Illumina assembly and the original Sanger-based assemblies 

of human (Fig. 4, Table 2, Supplementary Figs. S8-S10). Based on a comparison to the 

GRCh38 reference, the average number of contigs per chromosome in our assembly is 

92. Not only does our assembly exceed all previous de novo assemblies of human, but it 

also has the potential to improve the current human reference. Our assembly potentially 

resolves 51 of 819 (6%) annotated gaps in GRCh38 (Fig. 4, Supplementary Note 4, 

Supplementary Table S5). Of these putative gap closures, 16 match the estimated gap 

size in the reference, but require further validation to confirm they represent true gap 

closures. 

 

One example of a historically difficult region to assemble in the human genome is the 

major histocompatibility complex (MHC), which plays an important role in immunity49. 

In contrast to the CHM1 Illumina assembly, which breaks the MHC region into over 60 

contigs, PBcR-MHAP assembles 97% of this region in just 2 contigs. Compared to the 

Illumina assembly, a total of 21 (5%) additional MHC genes are correctly reconstructed 

into a single piece by our assembly. 
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Assembly validation and repeat resolution 

To validate the resulting assemblies, we compared each assembly to the closest available 

reference genome using dnadiff50 (Supplementary Note 4, Supplementary Table S4). All 

assemblies are structurally concordant with the reference sequences (Supplementary Figs. 

S3–S7). However, only the E. coli and D. melanogaster datasets were generated from the 

same strain as the reference, and detailed validation was limited to these genomes. The D. 

melanogaster SMRT reads were sequenced from the same subline of ISO1 used by the 

Drosophila Genome Project since 200051 providing the opportunity to validate SMRT 

sequencing of a eukaryotic genome. 

 

Supplementary Table S4 provides GAGE52 accuracy metrics for the E. coli and D. 

melanogaster assemblies. Averaging across these two assemblies, and ignoring the 

effects of heterzyogsity, we estimate PBcR-MHAP consensus accuracy to be 99.9%, 

corresponding to a Phred Quality Value (QV) of 30. Further polishing the raw assemblies 

with Quiver increased the average base accuracy to 99.99% (QV40), but at the expense of 

added runtime. For example, Quiver polishing of the 143Mbp D. melanogaster assembly 

required a total of 498 CPU hours. Thus, true diploid assembly and consensus polishing 

remains an area for improvement. Alternatively, short-read resequencing could be used to 

polish long-read draft assemblies and call heterozygous alleles via mapping. 

 

We further analyzed the completeness of the D. melanogaster chromosomes and gene 

sequences53 in our assembly (Supplementary Note 6). A total of 2,884 high-quality 

Nucmer54 alignments cover 122.9Mbp (95.7%) of the 129.7Mbp version 5 reference 

genome43. Of these alignments, 114.8Mbp cover known euchromatic sequence and 

8.1Mbp cover known heterochromatic sequence. We further mapped 17,294 annotated 

genes (full-length, including introns) to our assembly, identifying a total of 16,604 (96%) 

genes contained in a single alignment to a single contig. Of these, 15,780 were 

reconstructed at over 99% identity and 7,299 were reconstructed with perfect identity. 

After Quiver, these numbers increased to 16,776 genes in a single alignment (97%), 

16,751 over 99% identity, and 14,824 perfectly reconstructed. 
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Because repeats represent the greatest challenge to assembly, we also analyzed the 

completeness of D. melangaster transposable element (TE) families. TEs in D. 

melanogaster represent a large fraction of annotated repeats and vary over a wide range 

of sizes and levels of sequence diversity55. To assess TE resolution in our assembly, we 

replicated the analysis of a recent study that assembled D. melanogaster from Illumina 

Synthetic Long Reads (Moleculo) using the Celera Assembler56. Of 5,425 annotated TE 

elements in the euchromatic arms55, 5,201 (96%) are contained in a single contig by our 

assembly and the majority aligned perfectly to the reference (4,026 pre-quiver; 4,984 

post-quiver). Our assembly also resolves 96% (132 of 138) of copies from the highly-

abundant roo TE family (37 at 100% identity; 93 post-Quiver), in contrast to the results 

of McCoy et al.
56, where only 5.2% of roo copies were resolved. For the juan family, 

with less than 0.01% divergence between copies, a total of 7 of 11 copies were 

reconstructed at perfect identity (11 of 11 post-Quiver). We conclude that the SMRT 

assembly accurately reconstructs a significantly higher fraction of complex TEs than 

Illumina Synthetic Long Reads. In addition, the high error rate of SMRT sequencing does 

not appear to prohibit the accurate reconstruction of TE sequences, even from highly 

abundant TE families with many identical copies interspersed throughout the genome. 

Improved telomere assemblies 

Because SMRT sequencing generates long reads without the need for cloning or 

amplification, it is possible to better reconstruct the repeat-rich heterochromatic regions 

of eukaryotic chromosomes. This is a distinct advantage compared to previous 

sequencing methods, for which heterochromatin sequencing was thought to be impossible 

because of cloning biases or short read lengths. As proof of principle, we evaluated the 

ability of long-read sequencing to reconstruct heterochromatic sequences in the telomeric 

regions of S. cerevisiae
57 and D. melanogaster

43 (Supplementary Note 7). Telomeres play 

important roles in chromosome replication in all eukaryotic genomes, and in humans 

their loss has been associated with disease58, but these sequences are typically missing 

from de novo assemblies in eukaryotes. For example, it was not until six years after the 

initial shotgun assembly that the D. melanogaster reference genome began to include 

telomeric sequence59. 
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As in other genomes, S. cerevisiae telomeres serve to protect the chromosome and aid in 

chromosome repair. Additionally, they affect the transcription of nearby genes60. Using 

the annotations in the reference genome, we mapped the telomeric repeats to our 

assembly of S. cerevisiae W303 (Supplementary Note 7). We identified 9 chromosomes 

where a single contig included an alignment comprising at least 50% of the terminal 

telomeric repeat on both the left and right ends, indicating that a majority of the 16 

chromosomes were completely resolved from telomere to telomere. In the remaining 

cases, 4 chromosomes were composed of more than one contig containing the telomeres, 

and 2 chromosomes did not extend into the telomeres (or the telomeric sequence did not 

match the reference). This is a significant improvement over the current S. cerevisiase 

W303 genome41, where only one chromosome is spanned from end to end and only 5 

chromosome ends have been annotated. 

 

In contrast to the simple telomeric repeats of S. cerevisiae and other eukaryotes, D. 

melanogaster telomeres are composed of head-to-tail arrays of three specialized 

retrotransposable elements (Het-A, TART, and Tahre) and clusters of telomere-associated 

sequences (TASs)59, 61, 62. Because telomeric TEs preferentially transpose to chromosome 

ends, they are virtually absent from the euchromatic regions59. By mapping repeat 

families from RepBase63 and a recent D. melanogaster repeat study64, we identified 

repeat arrays characteristic of D. melanogaster telomeres (Supplementary Note 7). A 

total of 24 telomeric contigs are present in our assembly. One contig, corresponding to 

chromosome 2R, contains both subtelomeric (HetRp_DM) and telomeric sequence, fully 

capturing the transition from euchromatin to heterochromatin. This contig extends 80Kbp 

beyond the end of the reference assembly, and represents the first time the full telomeric 

transition sequence has been identified for this chromosome. Chromosome arms 2L, 3R, 

and X also have large contigs containing telomeric repeats extending past the end of the 

current reference sequence, indicating additional regions of the reference that could be 

improved by our de novo assembly. 

Cloud computing for large-genome assembly 

Exponentially lower costs have democratized DNA sequencing, but assembling a large 

genome still requires substantial computing resources. Cloud computing services offer an 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 14, 2014. ; https://doi.org/10.1101/008003doi: bioRxiv preprint 

https://doi.org/10.1101/008003
http://creativecommons.org/licenses/by-nc-nd/4.0/


	
   13	
  

alternative for researchers that lack access to institutional computing resources. However, 

the cost of assembling long-read data using cloud computing has been prohibitive. For 

example, using Amazon Web Services (AWS), the estimated cost to generate the D. 

melanogaster PBcR-BLASR assembly is over $100,000 at current rates, an order of 

magnitude higher than the sequencing cost. With MHAP, this cost is drastically reduced 

to under $300. To expand access to the PBcR-MHAP assembly pipeline, we have 

provided a free public AWS image as well as supporting documentation for non-expert 

users that reproduces the D. melanogaster assembly presented here in less than 10 hours 

using AWS. Allocating additional compute nodes, which would marginally increase 

costs, could further reduce assembly time. For E. coli, the total cost of PBcR-MHAP 

assembly and Quiver polishing is currently less than $2. With MHAP, assembly costs are 

now a small fraction of the sequencing cost for most genomes, making long-read 

sequencing and assembly more widely accessible. 

Discussion 

We have demonstrated that it is possible to assemble large genomes from noisy, long 

reads. Like was previously shown for microbial genomes, assembly of eukaryotic 

genomes using SMRT sequencing can automatically produce reference-grade genomes.  

In the best cases, entire chromosome arms assemble into single-piece assemblies from 

telomere to centromere. For the few remaining gaps, long-read assemblies could be 

paired with super-long linking information as generated by optical65, 66 or chromatin 

interaction maps67-69. These complementary scaffolding approaches could be used to span 

centromeres, resolve entire chromosomes, and phase haplotypes to generate truly 

complete assemblies. 

 

Our results indicate that probabilistic alignment methods are well suited to address the 

read length and error rate of single-molecule sequencing. A number of strategies have 

been previously developed to find similarities in high dimensional data, and chief among 

them are probabilistic dimensionality reduction approaches23, 70, 71. Such algorithms trade 

the guaranteed accuracy of a deterministic method for a much faster solution with 

bounded error. By producing high-quality assemblies in a fraction of the time, MHAP 
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demonstrates that this tradeoff is acceptable for the overlapping problem, where 

sequencing redundancy compensates for loss in alignment accuracy. Further, the long 

reads produced by single-molecule sequencing allow for a coarser estimate of similarity 

than traditional dynamic programming or direct k-mer matching. 

 

MHAP can serve as drop-in replacement for current overlapping methods. The sensitivity 

of MHAP is well suited for overlapping diploid or polyploid genomes; however, the 

genomes presented here are either inbred or haploid and current assemblers struggle to 

reconstruct genomes with structurally divergent alleles. In addition to SMRT sequencing, 

MHAP is likely to be suitable for nanopore sequencing10, which is expected to have 

similar read length and error characteristics. As a strategy, MinHash sketches are also 

applicable to reference alignment, sequence clustering, and alignment-free distance 

estimation. Future work includes evaluating the applicability of MinHash to these other 

areas. Fast and sensitive methods are needed not just for long-read overlapping, but to 

address the ever-expanding scale of genomic data for all applications. 

 

In addition to demonstrating the potential of probabilistic alignment and long-read 

sequencing, we have freely provided high-quality assemblies of human CHM1 and the 

important model organisms S. cerevisiae W303, A. thaliana Ler-0, and D. melanogaster 

ISO1. We hope these assemblies will assist in the continued finishing of these important 

reference genomes. 
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Figures and Tables 

 

Figure 1. Rapid overlapping of noisy reads using MinHash sketches 

To create a MinHash sketch of a DNA sequence S, (A) the sequence is first decomposed 

into its constituent k-mers. In this toy example, k=3, resulting in 12 k-mers each for S1 

and S2. (B) All k-mers are then converted to integer fingerprints via multiple hash 

functions. The number of hash functions determines the resulting sketch size H. Here 

H=4. H independent hash sets are generated for each sequence (Γ1..H). In MHAP, after the 

initial hash (Γ1), subsequent fingerprints are generated using an XORShift pseudorandom 

number generator (Γ2..H). The k-mer generating the minimum value for each hash is 

referred to as the min-mer for that hash. (C) The sketch of a sequence is composed of the 

ordered set of its H min-mer fingerprints. In this example, the sketches of S1 and S2
 share 

the same minimum fingerprints for Γ1 and Γ2. (D) The fraction of entries shared between 

the sketches of two sequences S1 and S2 (0.5) serves as an estimate of their true Jaccard 

CATGGACCGACCAG

CAT GAC GAC
 ATG ACC ACC
  TGG CCG CCA
   GGA CGA CAG

19  14  57  36  CAT
14  57  36  19  ATG
58  37  16  15  TGG
40  23   2  61  GGA
33  28  11  54  GAC
 5  48  47  26  ACC
22   1  60  43  CCG
24   7  50  45  CGA
33  28  11  54  GAC
 5  48  47  26  ACC
20   3  62  41  CCA
18  13  56  39  CAG

S1:

[5, 1, 6, 6]
Sketch(S2)

(A) 

(B) 

S1: CATGGACCGACCAG
       | ||||| |  
S2: GCAGTACCGATCGT

(E) 

min-mers 

GCAGTACCGATCGT

   GTA CGA CGT
  AGT CCG TCG
 CAG ACC ATC
GCA TAC GAT

:S2

GCA  36  19  14  57
CAG  18  13  56  39
AGT  11  54  33  28
GTA  44  27   6  49
TAC  49  44  27   6
ACC   5  48  47  26
CCG  22   1  60  43
CGA  24   7  50  45
GAT  35  30   9  52
ATC  13  56  39  18
TCG  54  33  28  11
CGT  27   6  49  44

1 2 3 4 1 2 3 4 

(C) 
[5, 1, 2,15]
Sketch(S1)

(D) J(S1,S2)  2/4 = 0.5
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similarity (0.22), with the error bound controlled by H. In practice, H >> 4 is required to 

obtain accurate estimates. (E) If sufficient similarity is detected between two sketches, 

the shared min-mers (ACC and CCG in this case) are located in the original sequences 

and the median difference in their positions is computed to determine the overlap offset 

(0) for S1 and S2. 

 

 

 

Figure 2. Simulated MHAP performance for various sketch sizes and read lengths 

Reads were randomly extracted from the human reference genome and errors were 

introduced to simulate a SMRT sequencing error model  (11.88% insertion, 1.83% 

deletion, and 1.29% substitution)17. (A) Probability of detecting ≥1 or ≥3 matching min-

mers for k=10 and various sketch sizes. (B) Probability of detection for k=16. Match 

types are divided into: unrelated sequences (rand), overlapping reads (olap), and reads 

mapped to a perfect reference (map). The expected Jaccard similarity between a pair of 

random and non-random reads was estimated based on 50,000 independent trials and 

equation (9) in the Methods. (C) The total number of 16-mers processed for a direct 

lookup approach versus MHAP using sketch sizes of 512 and 1256 across varying read 

lengths. Plot is normalized by the maximum value observed during the simulations. 
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Figure 3. Single-contig assembly of D. melanogaster chromosome arm 3L 

A singe ~25Mbp contig from the PBcR-MHAP D. melanogaster assembly covers the full 

euchromatic region of chromosome arm 3L. (Top) All 100bp exact repeats across the 

length of the 3L assembly are shown using a self-alignment dotplot. Red dots indicate 

forward repeats, and blue dots inverted repeats. Points nearer to the hypotenuse indicate 

repeat copies nearer to each other in the genome. (Bottom left) All 20bp exact repeats are 

shown for the first 12Kbp of the assembly illustrating a peritelomeric tandem repeat. 

(Bottom right) All 20bp exact repeats are shown for the last 2Mbp of the assembly, which 

is comprised of an elevated repeat density, characteristic of the pericentromeric region. 
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Figure 4. Continuity and putative GRCh38 gap closures of the human CHM1htert 

assembly 

Human chromosomes are painted with assembled CHM1 contigs (using the 

coloredChromosomes package72). Alternating shades indicate adjacent contigs, so each 

vertical transition from gray to black represents a contig boundary or alignment 

breakpoint. The left half of each chromosome shows the PBcR-MHAP assembly of the 

SMRT dataset and the right half shows the Illumina-based assembly47. The SMRT 

assembly is significantly more continuous, with an average of less than 100 contigs per 

chromosome. Putative gap closures by the SMRT assembly are shown as red dashes next 

to the spanned gap position. Most fall near the telomeres and centromeres. Tiling gaps, in 

white, typically coincide with regions of uncharacterized reference sequence (i.e. long 

stretches of N’s) for which no contigs could be mapped. 
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Table 1. Overlapping sensitivity and specificity for MHAP and BLASR 

Organism: The genome analyzed. Program: the program being run. Sensitivity: the 

percentage of true overlaps identified by the program. Specificity: the percentage of 

true negatives correctly identified by the program. PPV (Positive Predictive Value): 

the percentage of true overlaps out of all overlaps reported. In all cases, a maximum of 

1Gbp was randomly selected and mapped to the reference genome. BLASR was run with 

default parameters and bestn set to sequencing depth of coverage (BLASR 1C), 10 times 

coverage (BLASR 10C), and 100 times coverage (BLASR 100C). MHAP was run with 

default parameters (k=16, min. matches=3, min. Jaccard=0.04) and sketch sizes of 512 

(MHAP 512) and 1256 (MHAP 1256). True positives and false negatives were estimated 

to ±1% (Methods, Supplementary Note 8). Smith-Waterman alignment was used to 

confirm overlaps not detected by reference mapping (Supplementary Note 8). For D. 

melanogaster, BLASR with bestn=100C was terminated after seven days.  

Organism Program Sensitivity Specificity PPV Time (CPU h) Overlap Mem (GB) 

E. coli K12 BLASR 1C 89% 100% 100% 21.53 3.71 

 BLASR 10C 95% 100% 100% 86.84 3.71 

 BLASR 100C 95% 100% 100% 706.32 4.40 

 MHAP 512 65% 100% 99% 2.27 20.14 

 MHAP 1256 85% 100% 99% 3.61 22.34 

S. cerevisiae W303 BLASR 1C 16% 100% 100% 71.43 5.42 

 BLASR 10C 35% 100% 100% 434.30 5.71 

 BLASR 100C 87% 100% 99% 2,832.67 13.20 

 MHAP 512 70% 100% 98% 18.58 8.78 

 MHAP 1256 83% 100% 98% 31.44 10.40 

A. thaliana Ler-0 BLASR 1C 2% 100% 100% 30.92 8.93 

 BLASR 10C 11% 100% 100% 82.24 5.85 

 BLASR 100C 68% 100% 100% 445.27 6.03 

 MHAP 512 69% 100% 100% 13.34 9.86 

 MHAP 1256 88% 100% 100% 21.27 11.10 

D. melanogaster ISO1 BLASR 1C 75% 100% 100% 166.81 11.70 

 BLASR 10C 89% 100% 100% 878.15 11.44 

 BLASR 100C - - - - - 

 MHAP 512 62% 100% 99% 9.08 10.49 

 MHAP 1256 83% 100% 98% 15.73 11.58 

Human CHM1htert BLASR 1C 41% 100% 99% 34.20 6.60 

 BLASR 10C 59% 100% 96% 42.50 4.68 

 BLASR 100C 71% 100% 93% 189.45 5.02 

 MHAP 512 64% 100% 93% 9.37 9.20 

 MHAP 1256 77% 100% 92% 17.19 10.72 
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Table 2. Continuity and performance of long read assembly with MHAP 

Organism: The genome being assembled. Pipeline: pipeline used for correction and 

assembly. Assembly: the total number of base pairs in all contigs (only contigs 

containing at least 50 reads are included in all PBcR results). # Contigs: The number of 

contigs >200 bp. NG50: N such that 50% of the genome is contained in contigs of 

length ≥N where the genome size is set to reference length, excluding unknown 

sequences. Assembly performance is the contig N50 divided by the N50 of the reference 

segments12. The genome sizes were estimated from the reference to be 4,639,675 for E. 

coli K12; 12,157,105 for S. cerevisiae W303; 119,482,035 for A. thaliana Ler-0; 

129,663,327 for D. melanogaster ISO1; and 3,101,804,741 for human. Average # Contigs 

/ Chromosome: Excluding unassigned scaffolds, average number of contigs >200 bp per 

chromosome. Average for assemblies are based on alignments to the reference genome, 

while averages for reference genomes (and N50) are based on splitting at three or more 

consecutive Ns. Overlap Time: CPU hours to compute overlaps using BLASR or MHAP 

(with fold speedup versus BLASR, where applicable). All timing was performed on 

AMD 2.4GHz 6136 processors. Total time (CPU h): total time taken to assemble the 

genome. All overlapping steps were constrained to 32GB of RAM per computational 

node. 

Organism Pipeline Assembly (bp) # Contigs NG50 (Performance) # Ctg / Chr Overlap (CPU h) Total (CPU h) 

E. coli K12 SPAdes40
 4,592,147 199 132,561 (3%) 199 - 4.1 

 PBcR-BLASR 4,661,585 1 4,661,585 (100%) 1 22.8 46 

 PBcR-MHAP 4,651,226 1 4,651,226 (100%) 1 2.5 (9X) 4.6 (10X) 

S. cerevisiae W303 S228 Reference57 12,157,105 17 924,431 1 - - 

 W303 Reference41 11,886,100 359 261,861 (28%) 19.9 - - 

 PBcR-BLASR 12,294,493 23 818,023 (89%) 1.7 151 222 

 PBcR-MHAP 12,255,862 21 818,260 (89%) 1.6 19.5 (8X) 27 (8X) 

A. thaliana Ler-0 TAIR1042 119,482,035 102 11,194,537 14.6 - - 

 Public ASM73 130,857,836 545 6,720,323 (60%) 15.7  - - 

 PBcR-MHAP 120,486,579 38 11,164,124 (100%)  8.1 1,693 1,896 

D. melanogaster ISO1 Ref v543 162,469,346 37,647 21,485,538 2.3 - - 

 Ref v151 114,201,575 1,450 201,052 (1%) 241.7 - - 

 PBcR-BLASR 138,364,521 128 15,297,019 (71%)  11.2 608,000 629,000 

 PBcR-MHAP 143,328,915 132 20,985,587 (98%) 11.3 894 (680X) 1,060 (593X) 

Human CHM1htert Ref3848 3,049,316,025 1,386 56,413,054 29.7 - - 

 hg145 2,852,886,468 48,081 455,244 (1%) 1751 - - 

 Illumina47 2,827,635,806 40,824 129,173 (0%) 1775 - - 

 PBcR-MHAP 2,828,300545 3,434 4,320,471 (8%) 91.7 222,098 262,240 
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Methods 

In order to provide context for the MHAP algorithm, we first describe the evolution of 

read overlapping approaches, and then describe how MHAP can be viewed as another 

evolution of existing techniques. We start by demonstrating how long reads can degrade 

the performance of current approaches. Then, we introduce the notion of Jaccard 

similarity and describe how it depends on read length and error rate. Next, we show how 

Jaccard distance can be efficiently computed and how it is implicitly measured by current 

approaches. Finally, we introduce the concept of MinHash and demonstrate how to apply 

it to noisy, long reads. 

Background 

An overlap is typically defined as maximally scoring alignment between two strings that 

allows arbitrary orientation and offset of the reads74. For two reads S1 and S2, both of 

length O(L), the fastest method for determining their optimal alignment is Smith-

Waterman (SW) dynamic programming, which has a computational complexity of O(L2) 

75. Thus, to naively find all overlapping pairs of N reads would take O(N2
L

2). 

 

In order to reduce the number of pairs that need to be directly evaluated by SW, each read 

can be broken into a set of k-length substrings (k-mers) by sliding a k-sized window along 

the length of the read. Thus, a read S of length L is represented by a set of K=L-k+1 k-

mers. The k-mers of S can be indexed in a hash table (or suffixes of S in a suffix array) in 

O(NK) time76. This index can be used to filter out potentially non-matching pairs faster 

than a direct O(N2) comparison. To compare two reads, the number of shared k-mers is 

computed by the counting how many k-mers in a query read match k-mers in other 

reads32, 35, 36, 77. The overall time, when comparing against multiple reads, can be 

improved by using a suffix array to index all existing reads32, 54. Overlapping algorithms 

designed for high-identity reads, such as the original Celera Assembler overlapper36, may 

trigger a banded SW search based on a single shared k-mer. However, using any of these 

approaches, the complexity is proportional to the read length. 
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For reasons that will become apparent below, we focus our discussion on the hash table 

indexing approach, though similar reasoning applies to the suffix array approaches. In the 

case of hash table indexing, all k-mers are first hashed into an integer fingerprint for 

easier indexing and faster comparison. We define this set of K=L-k+1 integers as Γ(S), 

where |Γ(S)|=K is the set’s cardinality. Here we assume that the integer size is large 

enough that a chance of a random collision is negligible. The integers from all strings are 

hashed into a table such that each hash table bucket will contain a list of all string indices 

that contain that specific integer fingerprint. In order to find all the strings that have at 

least w shared k-mers with S, each element in Γ(S) is found in the hash table, and a count 

table is maintained for any read that has at least one matching k-mer. Only the string in 

the count table that have ≥w counts are returned. Observe that the time to maintain the 

count table is directly related to the sum of all counts in the count table and is an 

additional cost to the hash table lookup of all k-mers. 

 

We refer to the above as a “direct” method and demonstrate how using noisy, long reads 

can rapidly degrade its performance. While straightforward, this approach is actively 

used in efficient alignment algorithms for short-read sequencing34 and is a viable 

alternative to compressed index alternatives like suffix arrays78. As an alternative, we 

present a probabilistic dimensionality reduction and filtering algorithm that theoretically 

improves runtime and storage requirement over direct methods or suffix-array approaches 

such as BLASR32. 

Matching k-mer probabilities 

Given two random reads generated from a finite alphabet set Σ (e.g. {A,C,G,T}) of length 

L and an integer k≤L, each read contains K k-mer fingerprints, where the expected 

number of fingerprints that are shared by these two reads, E[Xr], is equal to the 

probability that a random k-mer is in the first read,  

P
rand

=1− 1− Σ
−k( )

K

      
(1) 

multiplied by the number of k-mers in the second read, 

E[X
r
]= P

rand
K       (2) 
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Similarly, the expected number of k-mers that are shared by two reads of arbitrary length 

within an overlapping M≤K size k-mer region, E[Xc], corrupted by ε error at each 

position, is related to the probability that an overlapping k-mer is not corrupted in both 

reads, 

P
ovl
≈ (1−ε)2 +ε 2

1

Σ −1

$

%
&
&

'

(
)
)

k

      

(3) 

(assuming substitution errors, for insertions or deletions the probability is slightly 

different, but on the same order), multiplied by the length of the overlap  

E[X
c
]= P

ovl
+P

rand
−P

ovl
P
rand( )M +P

rand
(L −M )

= P
ovl
−P

ovl
P
rand( )M +P

rand
L

  

(4) 

The sensitivity and accuracy of using k-mer counts for filtering overlapping pairs, using 

any data structure, is dependent on how accurately we can classify if a k-mer count 

between any two reads is coming from either Xr or Xc. 

 

Given the small DNA alphabet, from eq. (2) and (4), we observe that: (i) for large L the 

value of E[Xr] starts to approach that of E[Xc], and determining if two reads are actually 

overlapping (or random matches) based on the k-mer count becomes more error-prone; 

(ii) the number of k-mer hash lookups required for each read grows with L; (iii) the 

percentage of actual reads that collide for each specific k-mer lookup grows as 

1− (1− 4
−k
)
L

. So, for example, while for K=200 one expects on average that 

approximately 0.02% of total sequences match any given 10-mer, for K=50,000 this 

grows to approximately 5% of total reads, with the probability of having a 10-mer match 

for every read at least once, when performing K 10-mer lookups, ≈ 100%. Unless k is 

large enough for a specific L, the computational complexity of looking up a length L read 

in a data structure is not O(K), but rather O(KN). In other words, the computational cost 

is related to the time it takes to maintain the count table, rather than the overhead of 

lookups in the data structure storing the k-mers. Therefore, the resulting number of 

operations required for an all-to-all lookup is O(KN
2
), with the constant decreasing 

exponentially with k. Importantly, the maximum k is limited by the error rate of the reads 

and the size of the overlap. Thus, ε, L, and M bound the performance of an all-to-all 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 14, 2014. ; https://doi.org/10.1101/008003doi: bioRxiv preprint 

https://doi.org/10.1101/008003
http://creativecommons.org/licenses/by-nc-nd/4.0/


	
   25	
  

lookup, regardless of the data structure used. Below we will demonstrate that when using 

MinHash sketches, instead of a full k-mer set representation of S, we significantly 

decrease K, and by extension the complexity of the computation (Fig. 2a). 

Jaccard similarity 

Jaccard similarity30, 79 is a measurement related to the actual k-mer count, defined as 

  𝐽 𝑆!, 𝑆! =
!(!!) !(!!)

!(!!) !(!!)
        (5) 

Assuming that the number of repeating k-mers (or hash value collisions) is negligible, so 

both reads have K k-mers,  

  𝐽 𝑆!, 𝑆! =
!

!(!!) ! !(!!) !!
=

!

!!!!
    (6) 

where w is the number of k-mer matches between S1 and S2. Assuming k is large enough 

and ε is small enough so that the probability of a random match is sufficiently small, the 

Jaccard similarity between two overlapping reads is proportional to the percentage of 

sequence length that is shared between the two reads, and thus independent of L. 

Asymptotically, for highly dissimilar matches, the Jaccard similarity approaches w/(2K), 

and for highly similar matches it approaches 1. 

 

The Jaccard similarity between two L-sized reads, as well as k-mer collision count, can be 

directly computed in O(L log L) time by using a “sort-merge” algorithm, where we first 

sort Γ(S) of the two reads, and then count the number of matching k-mers by performing 

a merge operation. For multiple comparisons the cost of sorting is amortized, so a direct 

read comparison complexity drops to O(L) time.  

Modified sort-merge algorithm 

During read overlapping we are looking for similarity in the overlapping region, rather 

than the averaged similarity over the full length of the reads, as would be measured by 

the Jaccard similarity. In addition, assembly algorithms require the approximate position 

and size of the overlap region for building the read layout. 

 

In order to compute the overlap score and region, we modify the basic sort-merge 

algorithm by also storing the indices of the k-mer position along with the k-mer 

fingerprint. In case a k-mer in S1 matches multiple k-mers in S2, we store only the match 
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with the earliest position in the read, thus guaranteeing O(L) operations. The position and 

size of the S1 and S2 overlap is computed using the median difference in position of 

matching k-mers. The k-mer counting algorithm is then run again, but now constrained 

only to the overlapping region, in order to get the final k-mer count. Based on the 

computed k-mer count w and overlap region size M, we define the overlap similarity as 

  𝑆𝑖𝑚 𝑆!, 𝑆! =
!

!
      (7) 

This approach reduces the complexity of computing the similarity between two reads 

from O(L2) to O(L). Additionally, the O(L) runtime is asymptotically faster than the 

downstream steps, so filtering false matches early does not asymptotically increase the 

computational complexity of assembly. 

MinHash 

Even with the above improvements for computing sequence similarity, we are still left 

with the problem of computing it for all possible pairs. It is possible to use a hash table or 

suffix array to accelerate the algorithm32, 54. However, we are still faced with a rapid 

decay in computational efficiency for large L (see above). To significantly decrease the 

number of table lookups per read, as well as the time it takes to build the lookup table, 

MHAP uses a probabilistic dimensionality reduction approach called MinHash23. The 

efficiency of MinHash versus a direct computation of Jaccard similarity, comes from 

reducing a read from K integer fingerprints, to some smaller, random, possibly repeating 

vector of H fingerprints, where H<<K. We refer to this compressed representation of the 

string as a sketch. Since we only consider H values for any given read, the storage and 

read lookup cost decrease proportionally with the size of the sketch (Fig. 2c). 

 

Observe that the probability of Γ(S1) and Γ(S2) having the same minimum value (or min-

mer) is equal to the probability that a k-mer in at least one of the strings also exists in 

both strings. This is equal to the Jaccard similarity J(S1,S2)
23: 

  𝑃[min𝛤 𝑆! = min𝛤 𝑆! ] = 𝐽 𝑆!, 𝑆! =
!(!!) !(!!)

!(!!) !(!!)
 (8) 

Therefore, given H differently seeded hash functions, the probability that the number of 

min-mers shared by S1 and S2 is at least x, can be computed using the cumulative density 

function of the binomial distribution,  
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        𝑓 𝑥;𝐻,𝑝 = 1−
!

!!!
𝑝!!!(1− 𝑝)!!!    (9) 

where p is the Jaccard similarity of the two sequences (eq. 8). Plots for the percentage of 

read matches that share at least x min-mers, as a function of number of hashes H, are 

shown in Figure 2. The H min-mers of S forms the sketch of S. 

MHAP implementation details 

The MHAP algorithm is a two-stage filter that combines the ideas described above. First 

it filters reads based on shared min-mer counts using MinHash. Then, for all reads that 

pass the MinHash filter, it again filters matches based on the k-mer count for the 

overlapping region using the sort-merge algorithm to obtain a more accurate similarity 

estimate. For accuracy, the value of k for the second filter can be smaller than the value 

for the MinHash filter, since we only perform this operation on read pairs that passed the 

MinHash filter. We refer to the first filter k-mer size as k1, and the second as k2. 

 

The first filter generates H fingerprints for all k1-mers of a read using the MurmurHash380 

hash function implementation in the Guava library81 (for larger k values a rolling hash 

can be used). Next, we use the MurmurHash3 fingerprint as a seed into a computationally 

efficient XORShift random number generator82 to generate H random fingerprints. 

Highly repetitive k-mers, comprising over 0.001% of the total k-mer count, are computed 

beforehand and ignored. The fingerprint needed for the second filter is computed using 

the same MurmurHash3, and the fingerprints are sorted and stored in a data structure 

associated with each S, along with the H min-mers. 

 

The hth min-mer for each read is hashed into the hth hash table, which is shared between 

all reads. The hash tables are maintained in memory, unless there are too many reads. In 

that case, the computation is treated as a parallel all-to-all computation, where only a 

subset of reads are hashed and compared to all reads streamed directly from the drive. 

This subset-to-all comparison is repeated for all non-intersecting subsets, either in 

parallel or serially, depending on the computation resources available. 

 

For each read we find all the reads that are similar by looking up the H min-mers in the 

hash tables. The hth min-mer is looked for in the hth hash table, and the counts are 
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aggregated into one list. Any read that has at least x min-mers in common with the 

lookup read is propagated to the second stage filter. The second stage filter is 

implemented as described above, but to account for the high Indel rate exhibited by 

SMRT sequencing, the overlap region is extended by 30% on either side. 

 

Since MHAP was designed for complex genomes with large N and many repeats, k1 is set 

to 16 to decrease the number of false positives in each hash table bucket. k=16 is the 

largest value that can be effectively hashed into a 32-bit fingerprint while providing good 

sensitivity (Supplementary Table S2). Much larger k-mer values would significantly 

degrade sensitivity, while slightly larger values would double memory usage (requiring a 

64-bit fingerprint), without providing significant improvements17. Two sketch sizes 

where chosen (default=512 or sensitive=1256) based on Supplementary Table S2, to 

achieve sensitivities required for assembly. For the second stage filter, k2 was empirically 

set to 12 to avoid false positive matches in 100,000bp reads. Using these settings for 

SMRT sequencing reads, approximately 40% of overlaps detected using the first filter 

also pass the second filter. All MHAP parameters are adjustable, and tuning them for 

specific SMRT chemistries or different sequencing technologies could further improve 

performance. 

Evaluating sensitivity and specificity 

Sensitivity and specificity were evaluated based on overlaps inferred from reference 

mapping. An automated script was used to evaluate MHAP or BLASR results. To avoid 

an all-vs-all comparison of reads, random sampling was used to estimate performance. 

For sensitivity, a random sequence was selected and all sequences with an overlap above 

a minimum length threshold (2,000bp) were extracted from the reference matches. Any 

missing overlap was considered a false negative while an existing overlap was a true 

positive. To compute positive predictive value (PPV), a random overlap above the 

minimum length threshold was evaluated by comparing it to the reference mapping. To 

address repeat-induced overlaps, if no reference mapping was found for an overlap, a full 

local alignment was performed on the overlapping region the overlap marked true if the 

resulting alignment identity was at least 70% and above the minimum length threshold. 

The PPV was computed as the number of true overlaps divided by the number of 
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overlaps evaluated. The sample size required to estimate sensitivity, PPV, and specificity 

to ±1 was calculated using Clopper-Pearson83 (Supplementary Note 8). 

Correcting noisy reads 

Noisy reads can be accurately corrected using a multiple alignment of reads sampled 

from the same region of the genome so long as the sequencing errors are random and 

independent between reads16, 17. The correction process consists of two general steps, 

building a multiple read alignment (MSA) and deciding the correct bases from the MSA. 

This strategy was first used to correct noisy, long reads using accurate, short reads17 and 

the AMOS make-consensus tool84. With the invention of new consensus algorithms, this 

hierarchical approach has also been successfully applied to the long reads themselves19. 

The PBcR pipeline supports two consensus modules: a slower but more accurate method 

called PBDAGCon85 and a faster but less robust method called FalconSense86. 

PBDAGCon, described previously19, uses a directed acyclic graph (DAG) to construct a 

partial order alignment87. Finding an optimized path through the DAG generates a robust 

consensus. Alternatively, the FalconSense algorithm accelerates consensus generation by 

never explicitly building a multiple alignment. Instead, FalconSense aligns reads only to 

a template sequence that is the target of correction88. Individual matches and Indels are 

then tagged and sorted to determine a consensus sequence with high support 

(Supplementary Note 9, Supplementary Fig. S11)84, 89. This read correction algorithm 

was used for all assemblies presented here, except for human, for which PBDAGCon 

performed better due to a higher error rate in the raw data. 

Assembling corrected reads 

The PBcR pipeline corrects and assembles the input sequences. By default, the longest 

40X of data is corrected using all provided sequences and the longest 25X after 

correction is assembled. These default values were used for all experiments below for 

both the PBcR-BLASR and PBcR-MHAP pipelines. The spec files and commands used 

for assembly are reproduced in Supplementary Note 10. Where noted, assemblies were 

optionally polished using Quiver to optimize base-call accuracy. 
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Assembly Validation 

All assembled genomes were aligned to their respective reference using Nucmer54 and 

validated using the original GAGE52 scripts. To accelerate the alignment of large 

genomes, Nucmer defaults were modified to increase the minimum seed size and cluster 

size, as well as to use only unique seeds in the reference genome. Resulting alignments 

and validation statistics are reported in Supplementary Figures S3–S7 and Supplementary 

Table S4. 
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