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Abstract

Alzheimer’s disease (AD) is a complex multifactorial disorder with poorly characterized

pathogenesis. Our understanding of this disease would thus benefit from an approach that

addresses this complexity by elucidating the regulatory networks that are dysregulated in

the neural compartment of AD patients, across distinct brain regions. Here, we use a Sys-

tems Biology (SB) approach, which has been highly successful in the dissection of cancer

related phenotypes, to reverse engineer the transcriptional regulation layer of human neuro-

nal cells and interrogate it to infer candidate Master Regulators (MRs) responsible for dis-

ease progression. Analysis of gene expression profiles from laser-captured neurons from

AD and controls subjects, using the Algorithm for the Reconstruction of Accurate Cellular

Networks (ARACNe), yielded an interactome consisting of 488,353 transcription-factor/

target interactions. Interrogation of this interactome, using the Master Regulator INference

algorithm (MARINa), identified an unbiased set of candidate MRs causally responsible for

regulating the transcriptional signature of AD progression. Experimental assays in autopsy-

derived human brain tissue showed that three of the top candidate MRs (YY1, p300 and

ZMYM3) are indeed biochemically and histopathologically dysregulated in AD brains com-

pared to controls. Our results additionally implicate p53 and loss of acetylation homeostasis

in the neurodegenerative process. This study suggests that an integrative, SB approach

can be applied to AD and other neurodegenerative diseases, and provide significant novel

insight on the disease progression.
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Introduction

Alzheimer’s disease (AD) is the most common form of dementia in the elderly and is projected

to affect over 100 million people worldwide by 2050 [1]. At the pathological level, it is character-

ized by neuronal loss, extracellular plaques of Aβ and intracellular neurofibrillary tangles com-

posed of hyper-phosphorylated tau [2]. Currently there are no effective approaches to prevent,

cure or even slowdown the progression of the disease. Classical genetic and biochemical ap-

proaches have implicated specific molecular pathways, such as those involved in APP processing/

Aβ generation [3–5], dendritic spine alterations [6,7], and inflammation [8]. More recently, mul-

tiple high-throughput technologies (transcriptomics, genomics, proteomics) have been applied

and have led to the discovery of new processes that are dysregulated in AD, such as those in-

volved in protein misfolding, altered lipid and cholesterol homeostasis or oxidative stress [9–12].

Yet, a comprehensive understanding of AD pathogenesis remains elusive and will likely require

an integrative, regulatory network based analysis [13] of these distinct pathophysiological pro-

cesses to understand their inter-connectivity and their role in disease progression.

Systems Biology (SB) predicates the use of regulatory-model based methodologies, as opposed

to purely statistical association approaches, to support the integrative, unbiased interrogation of

large datasets to study their global behavior rather than studying the effect of individual genes.

An important limitation of classical approaches, relying on statistical association rather than

causal regulatory model analysis, is the inability to distinguish between primary causal disease

drivers and secondary (passenger) non-causal events. Indeed, as previously shown for the eluci-

dation of human malignancy drivers, these approaches are very effective at identifying both indi-

vidual and synergistic Master Regulators (MRs) genes that are both necessary and/or sufficient

to induce presentation of a specific pathophysiological phenotype, while discarding the majority

of passenger genes. These methods, for instance, have led to elucidation of experimentally vali-

dated drivers of human disease and associated mechanisms, including the synergistic pair C/EBP

and STAT3 in the mesenchymal subtype of glioma [14], the triplet TLX1, TLX3, and RUNX1 in

acute lymphoblastic leukemia tumorigenesis [15], the pair FOXM1 andMYB in formation of

germinal centers [16], and the AKT1 protein in driving glucocorticoid resistance in T cell acute

lymphoblastic leukemia [17], among many others, see [13] for a review.

In sharp contrast, model-based, SB approaches are just beginning to be applied to diseases of

the nervous system. In the context of AD, one study using “weighted gene co-expression network

analysis” found AD-related coexpression modules involved in immune response and in synaptic

and metabolic functions [18]. More recently, expression profiles from whole-brain samples were

used to construct a gene-regulatory network that implicated immune- and microglia-associated

genes in the progression of AD [19]. However, the genetic determinants and functional effectors

of AD that are specific to the neural compartment of the brain, which is ultimately the one affect-

ed by the disease, remain elusive and have yet to be studied using a network biology approach.

Here, we propose that regulatory network methods that have produced significant discoveries in

human neoplasia can be effectively applied to neurobiology and may provide an important dis-

covery tool for elucidating drivers and effectors of neurodegenerative processes. In particular, we

reasoned that interactome-based approaches using neuron-specific regulatory networks could

help unveil novel genes contributing to AD pathogenesis in this cellular context.

Since an accurate, neuron-specific model of transcriptional regulation for AD is still elusive,

we used the Algorithm for the Reconstruction of Accurate Cellular Networks (ARACNe) to an-

alyze a large-scale gene expression profile dataset obtained from neurons isolated by laser-

capture microdissection from human AD and control subjects [Gene Expression Omnibus

dataset, GSE5281 and GSE9770 [20,21]]. This analysis yielded a rich regulatory network repre-

senting the transcriptional layer of the human neuronal interactome—i.e., the genome-wide
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repertoire of transcription-factor/target interactions that comprise the regulatory logic of neu-

ronal cells. This regulatory network model was then interrogated by the Master Regulator IN-

ference algorithm (MARINa) using gene expression signatures representing distinct brain

regions and AD stages to infer candidate MRs of clinically relevant phenotypes. Biochemical

and neuropathological validation studies suggest a role in AD pathogenesis for three novel

MRs inferred among the most significant ones by MARINa (YY1, p300 and ZMYM3), both at

early and late stages of disease progression. Taken together, these findings highlight novel spe-

cific pathological processes potentially leading to neuronal dysfunction and toxicity, such as an

increased stabilization of p53 and loss of acetylation homeostasis. Furthermore, they suggest

that, similar to what has happened in the study of human malignancies, unbiased analysis of

genome-wide regulatory networks can further our understanding of pathogenesis in AD and

other neurodegenerative disorders.

Results

Selection and assessment of the gene expression profiles dataset

To identify neuron-specific Master Regulators (MRs) as drivers of Alzheimer’s disease (AD)

initiation and progression, gene expression signatures were generated from laser-captured neu-

rons from AD and control cases, encompassing both pathological and clinical phenotypes. Spe-

cifically, we selected the Liang et al. dataset, which comprises gene expression profiles from

laser-capture microdissected (LCM) cortical neurons isolated from six anatomically and func-

tionally distinct postmortem human brain regions representing 14 controls, 10 non-demented

individuals with AD-type changes in their brains at autopsy (NDAD), and 34 demented indi-

viduals with the histopathological confirmation of AD [20,21] (S1 Table). To assemble the reg-

ulatory model (interactome), we used the full set of 193 gene expression profiles representing

the entorhinal cortex (EC), hippocampus (HIP), middle temporal gyrus (MTG), posterior cin-

gulate (PC), superior frontal gyrus (SFG) and visual cortex (VCX) of these individuals. Cluster

analysis revealed that samples from regions known to be severely affected in AD (e.g., HIP, EC

or MTG) show tight clustering according to diagnosis whereas samples from regions relatively

less affected (i.e., VCX) do not cosegregate (Fig. 1 and S1 Fig.). Therefore, unbiased clustering

analysis confirms the reproducibility of clinically relevant molecular phenotypes and suggests

that patient stratification into these three diagnostic categories is biologically relevant, as sup-

ported by common molecular features. Thus, the categories “Control”, “NDAD” and “AD”

were used to inform follow up analyses.

Construction of the human neuronal transcriptional interactome

The Algorithm for the Reconstruction of Accurate Cellular Networks (ARACNe) [22] was pre-

viously developed to reconstruct the transcriptional regulatory logic of specific cellular con-

texts. This logic comprises the set of regulatory targets, or regulon, of each transcription factor

(TF) or other transcriptional regulator of gene expression. For simplicity, we will use the term

TF to indicate both classes. Analysis of these 193 gene expression profiles by ARACNe yielded

the first human causal transcriptional network for cortical neurons, representing 488,353 indi-

vidual transcriptional interactions between 3,758 TFs expressed in this context and their

transcriptional targets.

Identification of candidate Master Regulators using MARINa

We then used the previously developed Master Regulator INference algorithm (MARINa) to

interrogate regulatory networks to identify candidate MR genes [14,16]. These represent
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regulators that are sufficient and/or necessary causal determinants of a specific phenotypic dif-

ference. MR candidates are identified by MARINa based on the enrichment of their ARACNe-

predicted targets in the differentially expressed genes of a specific phenotype, similar to using a

gene reporter assay approach to detect aberrant activity of a TF. The difference is that instead

of using a single reporter controlled by the promoter of a TF-target gene, we use the expression

of all the ARACNe-inferred targets of the TF. This allows identification of regulators whose ab-

errant activity is post-translationally determined, which could not be identified by differential

expression, thus overcoming the limit of traditional analysis.

MARINa analysis was performed on 18 distinct gene expression profile signatures, repre-

senting three distinct phenotypic differences (Control!NDAD, NDAD!AD and Con-

trol!AD) across each of the six brain regions. Candidate MRs were first selected based on

Fig 1. Cluster dendrograms for hippocampus and visual cortex samples. Bioinformatic analysis reveals a high degree of clustering of Alzheimer
disease (AD), non-demented AD (NDAD) and control (C) in the hippocampus but not the primary visual cortex. Dendrogram showing clustering of (A) the
hippocampus and (B) primary visual cortex samples using centered correlation and average linkage.

doi:10.1371/journal.pone.0120352.g001
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their statistical significance and then sorted by their Differentially Expressed Targets Odds

Ratio (DETOR) [16]. The latter represents the density of targets in the leading edge of the

GSEA analysis compared to the remaining range of expression and is a direct measure of the

regulatory impact of the MR. These analyses result in relatively small ranked-lists containing

TFs that are most likely to be responsible for the phenotypic difference in the brain region of

interest. We also reasoned that candidate MRs for a region specific signature should be inde-

pendent from the number and specific selection of the samples in the analysis. Thus, to filter

out false positive MRs, we used bootstrapping on the 18 representative gene expression profile

signatures, each time randomly sampling only 70% of the total samples representing the signa-

ture, with replacement. Candidate MRs that failed to be identified in all 10 bootstrap runs were

then considered false-positives and were excluded from further consideration. The results of

the bootstrapping step on the count of candidate MRs are summarized in Fig. 2. In the control

v. NDAD phenotypic change, high numbers of candidates are found in EC, HIP and MTG,

which are regions showing early pathology in AD and are also affected in aging to variable de-

grees. In contrast, in the control v. AD phenotypic change, we observe a positive correlation be-

tween the count of candidate MRs and the regional progression of AD. Finally, comparing

NDAD and AD allows for the highlighting of MRs mostly responsible for dementia progres-

sion, as pathological hallmarks are already present in NDAD patients. Interestingly, the highest

counts are found in EC, MTG, PC and SFG and a very low count is found in HIP, showing that

in this region a small number of MRs are predicted to drive the phenotypic differences between

NDAD and AD patients. This is a common finding for this type of analysis, such that signa-

tures representing phenotype-relevant events produce a greater number of highly statistically

significant MRs than signatures that are not the result of specific regulatory events. To this ex-

tent, PC and SFG are the two regions that differ significantly between the two phenotypic

changes of interest (control v. AD and control v. NDAD). As a negative control, VCX was

found to show a significant decrease in the number of candidate MRs in all three phenotypic

changes, thus confirming its less representative role in AD.

Selection of candidate MRs for biochemical validation

In order to prioritize MRs for further biochemical validation, we made two assumptions. First,

we reasoned that AD should be reflected across a multitude of genetic programs that are either

brain region specific or common to multiple regions. However, we anticipated that focusing on

region-specific programs would lead to discovery of many idiosyncratic false-positive MRs

(e.g., those regulating region-specific downstream programs from the true MRs or programs

activated within specific regions in response to neurodegeneration), whereas focusing on MRs

conserved across multiple regions should be more specific to bona fide upstream AD drivers.

Hence, for each phenotypic difference, we selected candidate MRs conserved across more than

one region, thus eliminating candidate MRs identified only in one region. Fig. 2 summarizes

this analysis and S2 through S7 Tables display the final lists of MRs on a region and transition-

specific basis, after this step.

Second, we assumed that candidate MRs regulating hippocampus-specific signatures would

be of particular relevance, as this region plays a central role in memory and is one of the first

ones affected in AD [25–27]. Two strategies were thus followed in parallel: either prioritizing

candidates that are most highly ranked in HIP (strategy 1), or prioritizing those that show up

in the highest number of regions, including HIP (strategy 2). Through these assumptions, we

reduced our original MR set to about 20 candidates per strategy (Tables 1 and 2). Two of the

highest ranked genes from each strategy, for which appropriate reagents were available, were

then selected for further validation in human brain tissue, by immunohistochemistry and

Alzheimer's Disease Genetic Networks
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Fig 2. Count of candidate MRs per region and per comparison groups after each computational analysis.Master Regulator Inference analysis
(MARINa) reveals different numbers of candidate Master Regulators (MRs) by brain region and comparison group. Count of candidate MRs in (A) control v.
Alzheimer’s disease (AD), (B) control v. non-demented Alzheimer’s disease (NDAD) and (C) non-demented Alzheimer’s disease (NDAD) v. Alzheimer’s
disease (AD) after each analysis. EC = entorhinal cortex, HIP = hippocampus, MTG =middle temporal gyrus, PC = posterior cingulate, SFG = superior frontal
gyrus, VCX = visual cortex.

doi:10.1371/journal.pone.0120352.g002

Table 1. List of candidate MRs for each comparison (Control v. NDAD and Control v. AD) in strategy
1 (highly ranked in HIP).

Gene Name Probe Number NES Odds Ratio

Alzheimer’s disease

EP300 202221 s at 1.98 151.63

YY1 201901 s at 1.97 133.82

BUD31 205690 s at -1.88 94.58

ILF3 208930 s at 2.09 65.61

TRIM27 212118 at -1.88 56.33

ZDHHC21 233216 at 1.99 55.42

ZFC3H1 213065 at -1.96 47.31

ZNF75A 227670 at -1.89 37.53

ZNF410 202010 s at -1.89 33.94

ZNF451 215012 at 1.89 27.98

Non-demented Alzheimer’s disease

KDM5A 215698 at 1.98 191.76

TFAM 203176 s at 2.12 183.43

MEF2A 208328 s at 2.00 104.84

ZNF800 227101 at 2.00 102.54

ZFAND5 217741 s at 2.00 75.42

THRA 204100 at -1.88 72.81

ZCCHC2 219062 s at 2.05 40.86

EP300 202221 s at 1.90 38.00

NFIA 224976 at -1.90 36.78

BCL11A 219498 s at 1.99 36.54

BCL11A 222891 s at 1.97 30.92

SALL2 213283 s at -1.97 25.00

ZBTB16 205883 at -1.96 23.91

THRA 35846 at -1.99 21.93

MR master regulator, NES normalized enrichment score, HIP hippocampus, AD Alzheimer’s disease,

NDAD non-demented Alzheimer disease

doi:10.1371/journal.pone.0120352.t001
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Western blot analyses. These include the E1A binding protein p300 (EP300), Ying Yang 1

(YY1), the Zinc Finger, MYM-Type 3, (ZMYM3), and the Myocyte Enhancer Factor 2D

(MEF2D).

Finally, we asked whether the expression levels of these selected candidates in the laser-

captured neuron dataset correlated with that observed in mRNA obtained from whole human

brain tissue (S3 Fig.). For YY1, EP300 and ZMYM3, this analysis revealed an increase of mRNA

levels in AD cases compared to controls, suggesting that these two systems are comparable for

these genes and therefore justifying utilization of whole tissue for further analyses. MEF2D

shows no difference in the expression levels in the LCM dataset and the whole brain extracts,

however, this finding is compatible with our analysis, which focuses on inferred activity rather

than differences in expression levels. When investigated further using immunoblot, immuno-

histochemistry and binding assays, the experiments did not show consistent differences for

Table 2. List of candidate MRs for each comparison (Control v. NDAD and Control v. AD) in strategy 2 (enriched in HIP and at least 2 other
regions).

Gene Name Probe Number # regions NES(HIP) Odds Ratio(HIP)

Alzheimer’s disease

THRA 1316_at 4 1.97 105.009

BBX 223134_at 4 1.97 55.002

NFAT5 208003_s_at 4 1.98 138.656

EP300 202221_s_at 3 1.98 151.633

ZFR 201856_s_at 3 1.99 141.377

ZNF710 39891_at 3 1.99 134.643

ZNF609 212620_at 3 1.98 118.809

ZNF785 1554770_x_at 3 1.89 117.578

ZNF562 219163_at 3 1.91 109.206

KHSRP 204372_s_at 3 1.94 102.221

BUD31 205690_s_at 3 -1.88 94.581

PHF3 215718_s_at 3 1.99 82.351

ZNF264 205917_at 3 1.90 60.619

TRIM27 212118_at 3 -1.88 56.330

ZDHHC21 233216_at 3 1.99 55.417

LMO3 204424_s_at 3 -1.94 34.285

ZCCHC17 223107_s_at 3 -1.83 31.673

Non-demented Alzheimer’s disease

ZMYM3 1554171 at 6 1.97 45.92

MEF2D 225641 at 5 2.00 74.56

RBPJ 211974 x at 5 -2.01 20.13

THRA 35846 at 4 -1.99 21.93

ZCCHC2 219062 s at 4 2.05 40.86

ZNF780B 244818_at 3 1.88 188.16

ZDHHC21 233216_at 3 1.95 40.79

NFIA 224976_at 3 -1.90 36.78

BCL11A 219498_s_at 3 1.99 36.54

ZNF320 229614_at 3 1.94 33.66

CTNP1 213980_s_at 3 -2.29 8.96

MR master regulator, NES normalized enrichment score, HIP hippocampus, AD Alzheimer’s disease, NDAD non-demented Alzheimer disease

doi:10.1371/journal.pone.0120352.t002
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both MEF2D and phospho-MEF2D (unpublished data). Thus, only the results for YY1, EP300

and ZMYM3 are presented below.

Experimental validation of candidate MRs in AD brain

1. YY1. YY1 has been implicated in a variety of cellular processes, including proliferation,

differentiation, development and apoptosis [28]. Immunohistochemical staining for YY1

shows no significant differences between AD and controls (S4A and S4B Fig.). To determine

whether there are differences in the expression of YY1 protein in AD brain tissue, the levels of

the protein were measured by quantitative immunobloting in samples from two different re-

gions to account for regional variability, the hippocampus and the temporal neocortex, and

from two different stages of AD, labeled “moderate” (mAD) and “severe” AD (sAD), to study

potential changes associated with disease severity. Moderate cases differ from NDAD at the

clinical level. Analysis of nuclear extracts from the temporal neocortex (BA38) and hippocam-

pus (CA1) from autopsy brain tissue reveals multiple bands between 35 and 50 kD as well as a

consistent 60 kDa band corresponding to full-length YY1 (Fig. 3A and 3B). Since YY1 is a cas-

pase substrate and caspases are active in AD [29–32], we reasoned that the low molecular

weight bands might be cleavage products. Indeed, recombinant caspases 3 and 7 hydrolyze

endogeneous YY1 into fragments of 35 kDa comparable to those observed in human brains

(S5 A and S5B Fig.). Furthermore, immunoblots prepared using lysates from primary rat hip-

pocampal neuronal cultures treated with apoptotic concentration of Aβ dodecamers (Aβdod)

that activate caspases 3/7 and calpain proteases [33] leads to the appearance of two bands be-

tween 35 and 50 kDa that are not observed at subapoptotic concentrations (Fig. 4A and 4B).

The observed increase in the full-length YY1 protein might also be indicative of a change in re-

activity. Peptide competition blocks the appearance of these low molecular weight bands, fur-

ther supporting antibody specificity (S5C Fig.). Analysis of 24 nuclear extracts from temporal

neocortex (BA38) shows a significant decrease of the full-length YY1 in AD (p = 0.02) and a

significant increase of the proteolytic fragments as compared to controls (p = 0.002) (Fig. 3C

and 3D). No significant differences are observed between mAD and sAD cases. The CA1,

which is more severely affected than the temporal neocortex, shows a stronger reduction of

YY1 full-length protein (Fig. 3B). The proteolytic fragments are also significantly increased in

AD cases compared to controls (p = 0.007) (Fig. 3E). Together, these results suggest that YY1 is

cleaved in early stages of AD and that proteolytic fragments are predominant when the pathol-

ogy is severe. Additionally, apoptotic concentrations of Aβ regulate YY1 and promote its cleav-

age into fragments of similar molecular weight as those observed in human brain tissue

suggesting that YY1 is downstream to Aβ activity.

2. p300. The p300 protein is a member of the p300/CREB-binding protein (CBP) coactiva-

tor family. These proteins interact with numerous transcription factors and participate in various

physiological processes including proliferation, differentiation and apoptosis, by coordinating

and integrating multiple cellular events to the transcriptional machinery [34,35]. Immunohisto-

chemical staining of control and AD brains for p300 labels perisomatic granules in moderate and

AD cases, but no consistent change in staining intensity or distribution is observed (S4C and

S4D Fig.). Immunohistochemical staining with an antibody to phospho-Ser1834-p300 (p-p300),

which is necessary for p300 acetyl-transferase activity [36], shows AD-specific staining in both

CA1 and frontal cortex sections (Fig. 5A-F and S6D Fig.). Cytoplasmic structures, consistent

with granulovacuolar degeneration (GVD), are observed in pyramidal neurons from affected tis-

sues (Fig. 5B and 5C). These structures co-localize with phospho-tau (p-tau) in ~95% of p-p300-

positive neurons (Fig. 5E and 5F). Many p-p300-positive fine delicate neuritic processes are also
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observed in affected tissue from human CA1 region as well as in other regions including the

frontal cortex (S6D Fig.). Control tissues do not show these staining patterns (Fig. 5A and 5D).

To ask whether the acetyltransferase activity of p300 is altered in AD, we studied the acetyla-

tion state of two well-described p300 substrates, Histone 3 and p53 [37,38]. p300/CBP is

Fig 3. Increased proteolysis of YY1 is observed in post-mortemAlzheimer’s disease (AD) brain tissue. (A, B) Representative immunoblots using
nuclear fractions from 12 human brain tissue samples from temporal neocortex (BA38) and 17 from hippocampus (CA1) show nuclear full-length and
proteolytic fragments of YY1 in control (Ctrl), moderate Alzheimer’s disease (mAD) and severe Alzheimer’s disease (sAD) cases. Densitometric analysis of
immunoblots from BA38 shows (C) a significant decrease (p = 0.02) in the full-length YY1 protein (60 kDa) in AD (n = 15, mAD + sAD) and (D) a significant
increase (p = 0.002) in the proportion of proteolytic fragments (35–50 kDa) compared to controls (n = 9). Densitometric analysis of immunoblots from CA1
also reveals a significant increase (p = 0.007) in YY1 proteolytic fragments in AD (n = 10, mAD + sAD) compared to controls (n = 7). Comparisons were made
using a Student’s t-test.

doi:10.1371/journal.pone.0120352.g003
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responsible for p53 acetylation in its C-terminal domain [39–41]. Acetylation and ubiquitination

processes compete for these positions with the acetylation leading to stabilization [42,43]. Densi-

tometric analysis shows an increase of nuclear Ac-Lys382-p53 and total p53 in AD samples com-

pared to controls in temporal neocortex (Fig. 5G and 5H) and frontal cortex (S6A and S6B Fig.).

Cytoplasmic fractions also show increased Ac-p53 (Fig. 5G and 5I). These results are consistent

with the stabilization of p53 in AD tissue. Similarly, Ac-Lys14-Histone 3 is also significantly in-

creased in whole tissue extracts from AD patients in temporal neocortex (Ctrl-mAD p = 0.004,

Ctrl-sAD p = 0.0003) (Fig. 5J and 5K) and frontal cortex (p = 0.0006) (S6A and S6C Fig.). There-

fore, these experiments suggest an increase in p300 acetyltransferase activity in AD brain tissue

and highlight a possible mechanism affecting p300-mediated gene regulation.

3. ZMYM3. ZMYM3 gene encodes a zinc-finger protein originally identified as a candi-

date gene for non-specific X-linked mental retardation [44]. Immunohistochemical staining of

four control, four moderate AD and four severe AD cases reveals positive labeling of variable

signal intensity of nuclei in a subset of neurons (S4E and S4F Fig.). Some oligodendrocytes and

astrocytes are also immunopositive but no consistent difference is observed between AD and

controls. Immunoblots show multiple bands with the ZMYM3 antisera, including a 70 kDa

band that can be downregulated in rat primary hippocampal neurons using a ZMYM3-target-

ing siRNA construct (Fig. 6A and 6B and S5D Fig.). Densitometric analyses show a significant

decrease in the levels of the 70 kDa ZMYM3 band in severe AD cases compared to controls in

the temporal neocortex (p = 0.0009) and CA1 (p = 0.004) while moderate cases show no differ-

ence (Fig. 6C and 6D). In contrast to YY1, apoptotic concentrations of Aβ do not alter

ZMYM3 levels in rat hippocampal neurons nor induce cleavage of the protein suggesting that

ZMYM3 regulation is not a direct response to the altered changes of Aβ in AD (Fig. 4A). These

results show that ZMYM3 levels are decreased in the nuclei of severe AD cases and Aβ treat-

ment does not influence the protein levels at the time frames and concentrations tested.

Discussion

Multiple pathological processes have been associated with Alzheimer’s disease (AD), highlight-

ing the complexity of the disease. Novel computational approaches have the potential to ad-

dress this complexity by enabling the interrogation of the system as a whole. Recent progress

Fig 4. Exogenous treatment of rat primary hippocampal cultures with cytotoxic concentrations of dodecomeric preparations of Aβ (Aβdod) results
in increased YY1 protein levels and proteolysis. (A) Western blot analyses of extracts from cells treated with Aβdod for 6 hr show an increase in full-length
YY1 as well as the appearance of proteolytic cleavage fragments between 35 and 50 kDa at 10 μM but not 300 nM. (B) Densitometric analysis of the full-
length 65 kDa YY1 band shows a statistically significant increase in full-length YY1 in cells treated with 10 μMAβdod compared to control (p = 0.04).
Comparisons were made using a Student’s t-test. Veh = vehicle, tub = tubulin.

doi:10.1371/journal.pone.0120352.g004
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on the reliability of high-throughput technologies combined with powerful computational and

statistical analyses have now rendered such approaches feasible. In this study, we apply the

ARACNe and MARINa algorithms to Alzheimer’s disease and examine their utility by subse-

quent biochemical and histopathological analyses in human postmortem tissue. Our approach

Fig 5. Increase in p300 acetyltransferase activity in moderate (mAD) and severe AD (sAD) cases. Immunohistochemistry and immunofluorescence
analyses of phosphor-Ser1834-p300 (p-p300) on paraffin sections from the hippocampal area CA1 of human brains from control (Ctrl) (A, D), moderate AD
(mAD) (B, E) and severe AD (sAD) (C, F) show cytoplasmic granular labeling resembling granulovacuolar degeneration in pyramidal neurons (B, C, E, F;
arrows) in AD tissue, which co-localize with phospho-tau (p-tau) in ~95% of p-p300-positive neurons (E, F; arrows). p-p300-positive threads (A, D,
arrowheads) are also observed in affected tissue. Controls are negative for p-tau and p-p300 (A, D). (G) Immunoblots of nuclear and cytoplasmic fractions of
temporal neocortex (BA38) from Ctrl, mAD and sAD cases show an increase in Ac-Lys382-p53 (Ac-p53) in AD (n = 7, mAD+sAD) compared to control (n = 5)
in both fractions. Quantification using densitometric analysis reveals a significant increase in Ac-p53 in nuclear (H, p = 0.002) and cytoplasmic (I, p = 0.001)
fractions compared to controls. (J) Immunoblots of whole tissue extracts from BA38 from Ctrl, mAD and sAD cases also show a significant increase in Ac-
Lys14-Histone 3 (Ac-H3) in mAD (n = 7) and sAD (n = 6) compared to Ctrl (n = 7). (K) Quantification reveals a statistically significant increase in Ac-H3 in
mAD (p = 0.004) and sAD (p = 0.0003) compared to control. Comparisons were made using a Student’s t-test. Control case 4 is a statistical outlier, more than
3 standard deviations above the mean, and was excluded from the analysis. (A–C) Scale bar = 50 μm, (D–F) scale bar = 50 μm.

doi:10.1371/journal.pone.0120352.g005
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Fig 6. ZMYM3 protein level significantly decreases in severe AD cases. (A, B) Representative immunoblots using nuclear fractions from temporal
neocortex (BA38) (A) and hippocampal area CA1 (B) show a decrease in the levels of ZMYM3 in severe Alzheimer’s disease (sAD) compared to control (Ctrl)
and moderate Alzheimer’s disease (mAD). (C, D) Densitometric analyses of the 70 kDa band shows a significant decrease in ZMYM3 in severe AD cases in
BA38 (n = 8; p = 0.0009) and CA1 (n = 6; p = 0.004) compared to controls in BA38 (n = 9) and CA1 (n = 7). Comparisons were made using a Student’s t-test.

doi:10.1371/journal.pone.0120352.g006
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is free of in vitro and animal model bias and is driven by regulatory models and disease-rele-

vant signatures obtained exclusively from the neural compartment of primary human samples,

isolated by LCM. The latter avoids the significant bias due to the cellular heterogeneity that is

inherent in approaches based on whole brain transcriptome profiling. Indeed, we and others

have reported that transcriptional regulatory models are highly divergent in different cellular

lineages and have advocated the use of context-specific regulatory models, dissected from ho-

mogenous cellular populations. Our methodology relies on the identification of candidate

genes based on their inferred protein activity, rather than their expression levels, and on their

direct causal relevance in implementing the observed disease-specific signatures. This repre-

sents a novel strategy in the effort to pinpoint genes whose activity drives disease progression

according to various post-translational mechanisms, e.g., proteolytic regulation for YY1, post-

translational modification for p300 and modulation level for ZMYM3. Two of the lead candi-

date MRs found by our computational approach, YY1 and ZMYM3, have not been previously

implicated in AD, and our analysis has provided a number of additional candidates that we

plan to investigate in follow-up studies.

The importance of this approach is heightened by the limitation of current animal models

of AD, which do not replicate the full pathological picture and are therefore of limited usage

for biochemical studies and drug discovery. In this regard, our Systems Biology (SB) approach

provides a dynamic interpretation of the static postmortem state. Increasing the size of the

dataset, by including, for example, additional tissue samples from younger AD patients would

have the potential to enrich the analysis and identify candidate genes active at earlier stages of

disease progression. The studies reported here were designed as “proof of principle” and we

used specific assumptions and filters to identify a small subset of candidate MRs for experimen-

tal validation. This suggests that alternate filters, such as filtering by synaptic proteins rather

than on brain regions will also be effective in unveiling additional candidate MRs. Finally, we

wish to emphasize that the human neuronal interactome generated in this study is not specific

to AD and can be interrogated using data obtained from a broad range of neurological and psy-

chiatric diseases, allowing for the identification of neuron-specific MRs in these disorder.

The putative master regulators have interesting characteristics. YY1 is a ubiquitously ex-

pressed and highly conserved multifunctional transcription factor that can either repress or ac-

tivate gene expression depending on the cellular context [45,46]. Its activity can be modulated

by post-translational modifications including phosphorylation, p300/ PCAF-dependent acety-

lation, HDAC-dependent deacetylation, caspase-dependent cleavage, or by nucleocytoplasmic

shuttling [29,47,48]. The comparison of YY1 expression in CA1 and the temporal neocortex al-

lows the study of regions with differences in susceptibility to AD. AD arises earlier in the hip-

pocampal formation and is more advanced there than in the adjacent temporal neocortex. The

total protein YY1 signal (cleaved fragments + full protein) shows an insignificant increase in

AD samples compared to controls (x1.2 fold change in BA38, unpublished data), which corre-

lates with the increase found in YY1 mRNA levels. However, the ratio shifts to a preponderance

of cleaved fragments as the pathology progresses, with almost no full-length YY1 protein de-

tectable in CA1 nuclear fractions. The cleaved YY1 fragments are in the same molecular weight

range as the N-terminally truncated YY1 fragment (YY1Δ119) previously described, which has

lost its transactivation domain but retained its DNA binding domain and may act as a negative

regulator [29]. Similar observations show that YY1-mediated gene regulation might be altered

during neuronal degeneration because of the formation of YY1 complexes of different molecu-

lar weights [49]. Together, these results suggest an alteration of YY1 transcriptional activity in

AD brain through the modulation of full-length YY1 protein levels by proteolytic activity and

generation of potential dominant negative cleavage products. Additional experiments per-

formed in a cellular Aβ toxicity model show that apoptotic concentrations of Aβ induce
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appearance of cleaved YY1 fragments as early as 6h following treatment, potentially position-

ing YY1 downstream of Aβ. The increase in full-length YY1 protein was not seen in human tis-

sue, perhaps due to degradation. Intriguingly, YY1 has been shown in astrocytes to be an

activator of BACE1, a critical protease involved in amyloidogenesis, which indicates another

possible mechanism involved in AD [50]. Further experiments examining the role of YY1 in

APP processing are required.

The p300/CREB-binding protein (CBP) co-activator family exerts its activity through vari-

ous mechanisms. p300/CBP can facilitate protein-protein and protein-DNA interactions serv-

ing either as a protein bridge or scaffold, connecting transcription factors to the transcriptional

apparatus or recruiting components to enhancer or promoter elements [51]. Alternatively,

p300/CBP can exert its transcription-regulating properties through its histone acetyltransferase

(HAT) activity. Our results support the hypothesis that p300 acetyltransferase activity is upre-

gulated in AD brains, therefore modulating its transcriptional activity. Immunohistochemical

analyses of human brain tissue showed a clear increase in phospho-Ser1834-p300 in AD brains

while total P300 levels were unchanged. There was staining of granulovacuolar degeneration

(GVD) vacuoles and neuritic processes, a subset of which are abnormal/dystrophic. Addition-

ally, we found that p-p300 colocalizes with abnormal phospho-tau in GVD positive neurons.

Intriguingly, hyperacetylation of tau has been shown to occur in AD brain and has been attrib-

uted to p300 activity, suggesting that such an interaction could occur in AD brains [52,53].

Further, we found that acetylations of p53 and Histone 3, two other prominent substrates of

p300, are significantly increased in AD brain tissue compared to controls [37,38]. Interestingly,

YY1 downregulation also results in p300-dependent acetylation and stabilization of p53

through the prevention of its ubiquitination [41–43,54,55]. Thus p300 and YY1 activities

might converge to increase p53 levels in AD brains, which correlates with previous reports

[56]. In summary, alterations in p53 may be a critical downstream effector of p300 and YY1.

Finally, ZMYM3 is highly conserved among vertebrates, ubiquitously expressed in adult tis-

sues, but more abundant in the brain and predominantly located in the nucleus [44,57]. Our

immunohistochemistry and Western blot analyses corroborate these findings and further indi-

cate that ZMYM3 could emerge as a marker of disease severity. Indeed, despite being upregu-

lated at the messenger RNA level, both in the original Liang at al. gene expression profiles

dataset and in the QPCR analyses performed on whole tissue extracts, ZMYM3 protein levels

are significantly decreased in severe AD cases, likely influencing total transcriptional activity. A

compensatory mechanism counterbalancing the loss of protein might explain the increase in

translational activity or ZMYM3 expression that could require another protein, as yet unidenti-

fied, providing a possible explanation for the positive NES score in the MARINa analysis. Little

is known at this time about the mechanisms modulating ZMYM3 activity. Finally, we do not

observe any response of ZMYM3 to Aβ treatment at the protein level: either ZMYM3 protein

level is not modulated by Aβ, or the modulation is not observable at the protein level or at the

tested time frames. Future studies will aim to position ZMYM3 in AD relevant pathways.

These analyses have been performed by combining the effect of different genetic back-

grounds with the variability induced by the analysis of multiple brain regions. This is consistent

with previous work in prostate cancer (Aytes et al. Cancer Cell 2014) where variability induced

by different genetic backgrounds was combined with variability resulting from pharmacologi-

cal perturbation without introducing artifacts or false positives. In the original design of the

MARINa algorithm (Lefebvre et al, Mol. Systems Biol. 2010) we also addressed the issue of po-

tential confounding issues resulting from the introduction of samples that may represent hier-

archical structures in tissue stratification. Specifically, we showed that, as long as the strongly

correlated samples (e.g., those coming from the same tumor subtypes) represent no more than

20% of the data, there was virtually no difference in the results of the analysis when the samples
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are removed from the network inference and used only in the MARINa analysis. Taken togeth-

er these works support the results of this study.

Our findings also suggest that an SB approach may be a valuable addition to conventional

methods for the study of neurodegenerative phenotypes, by revealing candidate MRs acting at

different stages of disease progression. It is also interesting to note that two of our MRs are not

affected by Aβ, suggesting that the direct analysis of human tissue will detect alterations that

may not be found in the commonly used mouse models of AD. By assessing candidate MRs

that are highly enriched in the hippocampus, we found MRs that are dysregulated in relatively

early stages, i.e., YY1 and p300. By assessing candidate MRs that do not necessarily display a

high enrichment score in the hippocampus, but are significantly ranked in the highest number

of regions, we found MRs exhibiting biochemical changes in severe cases only, i.e., ZMYM3.

We hypothesize that future studies analyzing expression profiles from subjects with prodromal

AD or mild cognitive impairment will reveal MRs mediating the earliest stages of the disease

and identify causative processes.

Conclusions

In summary, we applied a Systems Biology approach to a set of gene expression profiles from

laser-captured neurons of human brains and generated the transcriptional component of a

human neuronal interactome. The interactome is by itself an invaluable resource that can be in-

terrogated in future studies to unveil candidate MRs playing a role in other neurological contexts

or at different stages of disease progression by inputting relevant gene expression profiles. Inter-

rogating this interactome in the context of AD provided an unbiased list of candidate MRs po-

tentially playing a role in the disease progression. We have evidence to support that three of the

selected candidates exhibit dysregulated behaviors in human AD autopsy brain tissue, but further

validation in cellular and animal models is necessary to understand their role in the pathology.

However, these dysregulations highlight specific pathological processes that can be further stud-

ied. On one hand, both p300 and YY1 activities lead to an increased stabilization of p53, thus

appearing as a potential downstream effector of both MRs and as a main player in neurodegener-

ative processes. On the other hand, all studied MRs are involved in HAT/HDAC activity: p300 is

a HAT, YY1 activity is regulated by various HATs/HDACs such as p300 [45,58] and ZMYM3 is

a component of a HDAC-containing complex [59]. These results support the hypothesis that a

loss of acetylation homeostasis in AD could explain neuronal dysfunction and toxicity [60].

Materials and Methods

Ethics Statement

Animal work was carried out under protocols AC-AAD9106 and AAAD4910 approved by the

Columbia University Institutional Animal Care and Use Committee. Rats were sacrificed using

CO2 euthanasia, and all efforts were made to minimize suffering. All human tissues used for

these studies were de-identified samples obtained from the New York Brain Bank under Co-

lumbia University Institutional Review Board protocol AAAB0192 (expires Feb. 2015). This

study is exempt category 4 research as it involved the study of existing data and specimens re-

corded by the investigator in such a manner that subjects cannot be identified, directly or

through identifiers linked to the subjects under OHRP Exempt Categories 45 CFT 46.101(b).

Materials

All chemicals used were of the highest grade available. RIPA, proteases and phosphatases in-

hibitors were purchased from Thermo Scientific. HFIP (Hexafluoro-2-propanol) was
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purchased from Fluka. Poly-D-lysine, DMSO, ZMYM3 rabbit antibody (IHC, HPA003211),

Actin mouse antibody (A1978) were purchased from Sigma; GAPDHmouse antibody (IMG-

5019A-2) from Imgenex; Ac-Lys382-p53 rabbit antibody (2525S) and Ac-Lys14-Histone 3 rab-

bit antibody (4318) from Cell Signaling Technology; ZMYM3 rabbit antibody (WB, sc-

130039), YY1 rabbit antibody (IHC, WB, sc-281), p300 rabbit antibody (IHC, sc-585) and p53

mouse antibody (WB, sc-126) from Santa Cruz Biotechnology; MEF2D mouse antibody (IHC,

WB, 610774) from BD Biosciences; βIII-tubulin from R&D systems; phospho-Ser1834-p300

(IHC, AP3296a) from Abgent; phospho-tau (p-tau) mouse antibody (clone AT8) from Thermo

Scientific. Amyloid beta (1–42) peptide was ordered from UCLA.

Patient samples

Fresh frozen and formalin fixed/paraffin-embedded autopsy brain tissue were obtained from

the New York Brain Bank at Columbia University Medical Center (New York, NY, USA) for

immunoblot and immunohistochemistry. Neuropathological examination was per the brain

bank protocols [61]. Samples were classified as control, moderate AD (mAD) or severe AD

(sAD) as presented in S8 Table. When no significant difference was observed between mAD

and sAD, measurements were pooled for statistical analyses.

Dataset Processing and Normalization

The analysis was performed on the Liang et al. dataset [20,21]. The dataset was downloaded

from the Gene Expression Omnibus website, reference GSE5281 and GSE9770, and contained

193 samples corresponding to six regions obtained from 14 controls, 10 NDAD individuals

and 34 demented individuals with the histopathological confirmation of AD. The gene expres-

sion profiles in the dataset were collected using the Affymetrix Human Genome U133 Plus 2.0

Array GeneChip system (54,675 probe sets). Expression measurements were normalized with

gcrma [62], which adjusts for background intensities in Affymetrix array data, including ad-

justing for optical noise and non-specific binding. The array files were processed and normal-

ized using R version 2.15.1.

Hierarchical Clustering

Clustering analysis was performed using BRB-Array tools version 4.3.2. Out of the 54,675 pro-

besets that were present on the array, 23,594 probesets that passed the BRB-Array tools filters

were used to perform the clustering. The arrays were normalized using a modified version of

RMA, which uses a random subset of the arrays to generate the normalization and probset

summary values. Centered (Pearson) correlation was used as the distance metric, and the aver-

age distances between all pairs of probesets that had an associated p-value of< 0.01 were used

to build the clusters.

ARACNe

Context specificity is critical to reconstruct the transcriptional regulatory logic as TF regulons

are highly context dependent. The ability to accurately reconstruct such logic using ARACNe

is predicated on the availability of large gene expression profiles datasets, including more than

100 samples, which represent either natural or perturbation-induced genomic variability of the

context of interest. For the reconstruction of the human neuronal interactome, we assumed

that different individuals represented sufficient naturally occurring genotypic variability, while

the different regions represented sufficient variability associated with microenvironment relat-

ed signals, thus resulting in an interactome representing an accurate estimate of the overall
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variability of cortical neuron gene expression. This assumption is supported by the t-SNE [23]

results on all samples, which show separation between regions that are severely affected in AD,

as well as high variability between regions overall (S2 Fig.). Thus, in contrast to traditional ap-

proaches, where one attempts to minimize variability by profiling several biological replicates,

ARACNe benefits from inter-sample variability as this allows for a more accurate inference of

transcriptional interactions by taking into account inter-sample transcriptional regulatory dif-

ferences. In contrast, the signatures used to interrogate the interactome require significant phe-

notypic specificity and benefit from replicate samples.

To construct the neuronal transcriptional network, ARACNe was applied to the set of 193

gcrma-normalized expression profiles using the adaptive partitioning algorithm, which selects

the optimal kernel width for calculating the Mutual Information (MI) threshold of a specified

p-value. The MI threshold used by ARACNe (MI> = 0.2185) corresponded to the p-value

threshold of 10-7 after 100 bootstrap runs. The resulting central nervous system (CNS) Interac-

tome contained 488,353 statistically significant MIs between the 3,758 TFs and 38,045 genes.

MARINa and Candidates Selection

MARINa was used to infer MRs that drive the transition between Control and AD samples, as

defined by pathological and clinical characterization. Given a regulatory network model, MA-

RINa requires a relatively small numbers of gene expression profiles (N� 6) representing each

phenotype of interest in a specific transition (e.g., 6 gene expression profiles for NDAD and

6 for AD), to identify the candidate MR genes. For each phenotype transition of interest (e.g.,

Control! AD in HIP), we first generate the gene expression profile signature, defined as all

genes represented on the specific microarray platform, ranked from the most underexpressed

to the most overexpressed in the disease phenotype compared to Control samples, as deter-

mined by a t-test. MRs are then identified as the TFs with the highest likelihood of implement-

ing the specific signature based on the regulatory mode, i.e., those whose ARACNe-inferred

targets (i.e. TF-regulon) are most enriched in differentially expressed genes in the gene expres-

sion profile signature. For instance, a positive MR (whose activation drives the transition)

would have its positively regulated targets highly enriched in overexpressed genes and re-

pressed targets highly enriched in under expressed genes in the signature of interest. The oppo-

site would be true for negative MRs (whose inactivation drives the transition). Such

enrichments can be effectively assessed by a multi-tail extension of the Gene Set Enrichment

Analysis (GSEA) [24]. Thus, importantly, identification of candidate MRs is based on the ex-

pression of their ARACNe-inferred targets rather than on their own change in expression level.

Master Regulator INference analysis (MARINa) was used to analyze each TF with more

than 20 targets in the human neuronal transcriptional network, with GSEA [24] used to assess

the enrichment of each TF’s set of predicted targets. As a reference, we used the set of genes

on the expression profile, ranked by their t-statistic calculated by comparing the candidate

phenotypic transition of interest (e.g., Control! AD in HIP). P-values were computed by

performing 1,000 sample-shuffling permutations and each TF was given a p-value based on

its enrichment score according to GSEA. Shadow Analysis was performed as described in Le-

febvre et al [16], to eliminate false positive representing TFs with substantially overlapping

programs with bona fide MRs but unlikely to drive the signatures of interest. Master Regulator

candidates (i.e., TFs with p< 0.01, not removed by Shadow Analysis) were sorted by their Dif-

ferentially Expressed Targets Odds Ratio (DETOR) score, as given by Master Regulator Anal-

ysis [16]. The counts of candidate MRs obtained in each region at this step can be found in

Fig. 2.
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Transcription Factors classification

To identify transcription factors (TFs), we selected the mouse genes annotated as “transcription

factor activity” in Gene Ontology and the list of TFs from TRANSFAC. This produced a final

list of 1,794 TFs, which mapped to 3,758 probesets on the gcrma-normalized expression profile.

Specificity-weighted GSEA and Bootstrapping

To further classify the MRs that were most relevant for disease outcome, we applied specificity-

weighted GSEA in combination with bootstrapping of the samples. Specificity-weighted GSEA

is an alternative method that can be used to predict master regulator candidates. Similar to

MARINa, specificity-weighted GSEA begins by measuring the enrichment of differentially ex-

pressed targets for each TF. However, in calculating the enrichment score for each TF and its

target, it takes into account the specificity of interaction between TF and its target, i.e. the total

number of TFs regulating the target according to the neuronal transcriptional network.

In the original GSEA paper by Subramanian [24] describes the calculation of the Enrich-

ment Score (ES) in the following way, with ES being the maximum deviation from zero of

Phit—Pmiss.

• Rank order N genes on the microarray platform to form L = g1 . . . gN according to the t-score

of their differential expression between phenotype 1 and phenotype 2

• For each TF being tested by specificity-weighted GSEA, calculate the fraction of genes in S

(“hit”, or targets of the TF according to the neuronal transcriptional network) weighted by

their correlation and the fraction of genes not in S (“miss”) present up to a given position i in

L. where

PhitðS; iÞ ¼
Xgj2S

j�i

jrjj
p

NR

NR ¼
X

gj2S
jrjj

p

PmissðS; iÞ ¼
Xgj=2S

j�i

1

N � NH

In specificity-weighted GSEA, the “hit” score of each gene is calculated in the following way,

Pweighted�hitðS; iÞ ¼
Xgj2S

j�i

jrjj
p

NRTj

Where Tj is the number of TFs that regulate gene Rj. The application of this equation results

in more conservative estimate of the enrichment score of each TF. In addition, the method

rewards TFs that have specific targets.

In order to select for highly enriched MR candidates, 10 iterations of specificity-weighted

GSEA was run with bootstrapping. Each bootstrap run was performed using 70% of samples in

each class (random subset with replacement) and 1,000 sample-shuffling permutations. Each

TF was given a p-value based on its enrichment score according to specificity-weighted GSEA,

and the results were sorted by their DETOR score [16]. Eventually we only selected MR candi-

dates that had a p-value< 0.01 according to specificity weighted GSEA in 10 out of 10 boot-

strap runs. The use of bootstrapping and specificity-weighted GSEA allowed us to identify two

groups of candidate MRs: those whose predicted activities were highly enriched regardless of
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which individual samples were used ("stable” candidates), and another group whose predicted

activities showed significant fluctuations depending on which individual samples were used

(“unstable” candidates). Number of stable candidate MRs in each of the regions and compari-

sons, as well as their effect on the final results can be found in Fig. 2.

Quantitative real-time polymerase chain reaction (QPCR)

Fresh-frozen brain tissue was pulverized in liquid nitrogen, lysed in QIAzol and homogenized

using a Qiagen TissueLyser II with 5mm stainless steel beads (frequency 25/s, 2 x 2min). RNA

was extracted using an RNeasy Mini kit (Qiagen) and RNA integrity was assessed using a bioa-

nalyzer (Agilent 2100). Only samples showing a RNA Integrity Number (RIN) score above 5

were used for further experiments. cDNA synthesis was performed using a First Strand cDNA

Synthesis Kit (Origene, Rockville, MD, USA) and used as template (1:4 dilution) in 20 μl reac-

tions. Primers sequences used for the RT-PCR were the following:

p300: F: AGATGGGAATGATGAACAACC, R: ACTCACCATGTTGGGCATTC;

YY1: F: GCGGAGCCCTCAGCCATGGCCTCG, R: CAGCGGCTGCAGAGCGATCATGG;

ZMYM3: F: TGTGGATCGTAATGGCAAGA, R: TGCGGTCAACCTTGTTGTAG,

MEF2D: F: TACCCACAGCACCCAGCTT, R: TAGACTGGGAGACCCAAGG.

The FastStart Universal SYBR Green Master mix (Roche) was used for reactions on a Mas-

tercycler ep realplex (Eppendorf, Hauppauge, NY, USA). The mRNA levels were normalized

against the geometric mean of GAPDH, HPRT1, SDHA and UBC as described in Vandesom-

pele et al. [63].

Protein extraction from whole tissue

Approximately 50 mg of fresh-frozen brain tissue were pulverized in liquid nitrogen, dounce ho-

mogenized in ice-cold PBS, diluted in RIPA buffer containing proteases and phosphatases inhibi-

tors, sonicated, centrifuged and aliquoted to be stored at -80°C. Concentrations were measured

using a BCA assay and samples were diluted to 1 mg/ml. For nuclear-cytoplasmic extractions,

approximately 80 mg of fresh-frozen brain tissue were pulverized in liquid nitrogen, washed

once with ice-cold PBS and centrifuged at 500 g for 5 min at 4°C. The supernatant was discarded

and the pellet was resuspended in 700 μl of 1x Hypotonic buffer, containing proteases and phos-

phatases inhibitors, and incubated on ice for 15 min. Samples were then dounce homogenized

and reincubated on ice for 15 min. 35 μl of 10% NP40 were added, samples were vortexed for 10

seconds at highest setting and incubated on ice for an additional 5 min. The homogenate was

centrifuged for 10 min at 14,000 g at 4°C. The supernatant contains the cytoplasmic fraction and

was aliquoted and stored at -80°C. The nuclear pellet was resuspended in 50 μl of Buffer BWork-

ing reagent from Procarta Nuclear Extraction Kit (Affymetrix, cat # AY2002) and the protocol

was followed according to instructions. Nuclear extracts were aliquoted and stored at -80°C.

Concentrations of nuclear and cytoplasmic extracts were measured using Bio-Rad DC Protein

Assay kit.

Immunohistochemistry

The slides were deparaffinized in xylene, rehydrated through graded alcohol and antigen re-

trieved by pressure cooking for 30 minutes in ethylenediamine tetraacetic acid (EDTA) buffer
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for MEF2D; in citrate buffer for p300, phospho-Ser1834-p300 and YY1 and in Trilogy for

ZMYM3. The slides were processed following the EnVision + Dual Link Kit (Dako) and incu-

bated overnight at 4°C with rabbit polyclonal anti-p300 (Santa Cruz, 1:50), rabbit polyclonal

anti-p-p300 (1:30), rabbit polyclonal anti-YY1 (1:50), rabbit polyclonal anti-ZMYM3 (1:800),

mouse monoclonal anti-MEF2D (1:100) diluted in Dako antibody diluent. The slides were

stained with DAB (3,3-diaminobenzidine) as described in the protocol and counterstained

with Mayer’s hematoxylin, dehydrated, and mounted.

Immunocytochemistry

The slides were deparaffinized in xylene, rehydrated through graded alcohol and antigen re-

trieved by pressure cooking for 30 minutes in citrate buffer for 30 min. The slides were blocked

30 min using a solution of 0.1% Triton in Superblock blocking buffer (Thermo Scientific). Rab-

bit p-p300 (1:30) and mouse p-tau (1:100) were incubated overnight at 4°C in Dako antibody

diluent. The slides were washed and goat anti-mouse and anti-rabbit antibodies diluted in

Dako antibody diluent were added for 30 min. After three final washes, the slides were incubat-

ed 5 min in Sudan Black, washed again in PBS and mounted. Fluorescent images were taken

with Axiovision software through Axiophot camera and a Zeiss Axioplan 2 microscope.

Hippocampal neuron cultures and treatment

Hippocampal neuron cultures from both male and female rats pups were prepared following a

slightly modified version of the method of Brewer (Brewer et al., 1993). Hippocampal neurons

were kept in culture at 37°C with 5% CO2 in Neurobasal medium (Invitrogen) with B27 sup-

plement and Glutamax (Invitrogen) and plated at a density of 2.5x105 cell/ml on dishes coated

with poly-D-lysine. For our experiments, neurons were treated after approximately 7–14 days

in vitro (DIV) with a dodecameric preparation of Aβ1–42 prepared according to Barghorn et al.

method [64]. At the end of the treatment, cells were washed twice with ice-cold PBS, harvested

with RIPA buffer containing phosphatases and proteases inhibitors, sonicated and centrifuged.

Western blotting analysis

Equal amounts, ranging from 1 to 10 μg, of cell and whole tissue lysates were resolved by SDS-

polyacrylamide gel electrophoresis (4–12% Bis-Tris, Invitrogen) and electro-transferred on a

polyvinylidene difluoride (PVDF) membrane (Millipore). The membranes were then incubat-

ed for 1h at RT in 5% milk and overnight at 4°C in primary antibodies (ZMYM3 1:100; YY1

1:100; Ac-p53 1:1,000; p53 1:100; Ac-Histone 3 1:1,000; Histone 3 1:1,000; Actin 1:5,000;

GAPDH 1:5,000). For the competitive assay, two identical gels were run using 5 to 10 μg pro-

tein extracts from different human post-mortem brain regions (CA1, BA38, BA9) and from rat

hippocampal neurons. The blots were then incubated overnight in 0.5 μg of YY1 primary anti-

body (sc-281) containing, or not, 80x of blocking peptide (sc-281 P). The antibody, with and

without peptide, was pre-incubated 2h at RT in 500 μL of PBS before being diluted and applied

onto the membrane. The immunoreactive signals were detected with enhanced chemilumines-

cence kit (Amersham Biosciences, Uppsala, Sweden). The procedures followed were conducted

in accordance with the manufacturer’s instructions.

Pen-siZMYM3 synthesis

A 5’ thiol-modified siZMYM3 (GGAGTCTCCTCATATTGAA, Dharmacon) was reduced fol-

lowing Dharmacon protocol. The last precipitation step was repeated three times in order to

fully eliminate the excess TCEP. The dry pellet was then reconstituted in sterile annealing buffer
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to 90 μM. The desired amount of reduced siZMYM3 was incubated with 1 equivalent of activat-

ed penetratin (MP biomedical, cat # 11PENA0500) for 1h at 37°C and analyzed using a 20%

TBE gel electrophoresis. The conjugated pen-siZMYM3 was aliquoted and stored at -80°C.

Supporting Information

S1 Fig. Dendrograms showing clustering of samples for (A) enthorinal cortex, (B) middle

temporal gyrus, (C) posterior cingulate and (D) superior frontal gyrus using centered cor-

relation and average linkage. C = control; NDAD = non-demented Alzheimer’s disease;

AD = Alzheimer’s disease.

(PDF)

S2 Fig. The results of t-SNE on the principle components of gene expression in the AD

dataset. Prior to applying the t-SNE method, principle component analysis was performed on

the expression data to extract the most informative features. The first 20 principle components

were used to run t-SNE. As the plot shows, regions severely affected in AD, such as EC and HIP,

show separation according to phenotype, whereas the rest of the samples show more variability.

These results supported our assumption that the samples in the dataset exhibited the variability

we needed to be able to accurately reconstruct the neuronal interactome using ARACNe.

(PDF)

S3 Fig. Fold changes of mRNA levels between Alzheimer’s disease (AD) and controls are

similar when comparing data from laser-captured neurons in middle temporal gyrus

(MTG) and whole tissue extracts from the temporal neocortex (BA38). The Q-PCR analysis

performed on whole tissue extracts from AD (n = 11) and controls (n = 8) shows a significant

increase in mRNA level for YY1 (p = 0.04) and ZMYM3 (p = 0.009), a non-significant increase

for EP300 (p = 0.06) and a stable level forMEF2D, which are comparable to those observed in

the laser-captured neuron dataset. Statistical analyses were performed using the Student’s t-test.

(PDF)

S4 Fig. Immunohistochemistry of YY1, total p300 and ZMYM3 proteins in paraffin-em-

bedded brain sections isolated from the CA1 region of post-mortem controls (Ctrl) and

moderate Alzheimer’s disease (mAD) subjects. (A-B) YY1 staining shows that most neurons

are labeled in the cytoplasm with a weak variable reticular staining in the nucleus. Amyloid pla-

ques are variably positive, predominantly in the central core (not shown). Numerous reactive

astrocytes exhibit cytoplasmic staining. However the high variability in immunostaining be-

tween cases precludes distinguishing Alzheimer’s disease (AD) from controls in a reliable man-

ner. (C-D) Total p300 staining shows cytoplasmic granules (arrowheads) that are found in

moderate and severe AD cases, but no major change in intensity or distribution pattern is ob-

served. (E-F) ZMYM3 staining shows immunopositivity in the nuclei of a subset of neurons as

well as of some oligodendrocytes and astrocytes. Scale bar = 100μm.

(PDF)

S5 Fig. (A) Endogenous YY1 can be cleaved by caspases 3, 7, 8 and 9. Rat hippocampal neu-

rons extracts are incubated with recombinant caspases 2, 3, 6, 7, 8 and 9 for 1hr at 37°C and an-

alyzed by Western blot. Caspases 3 and 7 are able to hydrolyze YY1 into fragments of 35 kDa,

caspase 8 into a 33 kDa fragment and caspase 9 into a 25 kDa fragment. (B) YY1 60 and 65

kDa isoforms show different cellular distribution in rat hippocampal neurons. Nuclear and cy-

toplasmic fractions of rat hippocampal neurons are analyzed by Western blot. The immuno-

blot reveals an enrichment of the 65 kDa form in the cytoplasm (Cyto) and an enrichment of

the 60 kDa form in the nucleus (Nucl). (C) YY1 immunoreactive signals are specific. A
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competitive experiment using ± 80x of blocking peptide shows that all the bands detected by

YY1 antibody are specific. (D) Identification of the 70 kDa band as ZMYM3. Rat hippocampal

neurons are treated with 1 nM pen-siZMYM3 for two, five and seven days and analyzed by

Western blot. The immunoblot reveals that the 70 kDa band is downregulated.

(PDF)

S6 Fig. Increase in p300 acetyltransferase activity in the frontal cortex of Alzheimer’s dis-

ease (AD) patients. (A) Immunoblots of human brain whole tissue extracts (BA9) from controls

(Ctrl) and ADs show an increase in Ac-Lys382-p53 (Ac-p53) and Ac-Histone 3 (Ac-H3) in AD

cases (n = 7, mAD+sAD) compared to controls (n = 7). (B-C) Quantification reveals a significant

increase for Ac-p53 (p = 0.04) and Ac-H3 (p = 0.0006). (D) Immunohistochemistry of p-p300 on

paraffin-embedded sections from the frontal cortex (BA9) of AD shows p-p300-positive dystro-

phic processes. Comparisons were made using the Student’s t-test. Scale bar = 100 μm.

(PDF)

S1 Table. Summary of the number of gene expression profiles used for computational anal-

ysis based on clinical and pathological classification

(PDF)

S2 Table. List of candidate MRs for each comparison (Control versus NDAD, Control ver-

sus AD, and NDAD versus AD) in HIP after bootstrap and overlap.

(PDF)

S3 Table. List of candidate MRs for each comparison (Control versus NDAD, Control ver-

sus AD, and NDAD versus AD) in EC after bootstrap and overlap.

(PDF)

S4 Table. List of candidate MRs for each comparison (Control versus NDAD, Control ver-

sus AD, and NDAD versus AD) in PC after bootstrap and overlap.

(PDF)

S5 Table. List of candidate MRs for each comparison (Control versus NDAD, Control ver-

sus AD, and NDAD versus AD) in MTG after bootstrap and overlap.

(PDF)

S6 Table. List of candidate MRs for each comparison (Control versus NDAD, Control ver-

sus AD, and NDAD versus AD) in SFG after bootstrap and overlap.

(PDF)

S7 Table. List of candidate MRs for each comparison (Control versus NDAD, Control ver-

sus AD, and NDAD versus AD) in VCX after bootstrap and overlap.

(PDF)

S8 Table. Summary of brain tissue used for immunoblots and immunohistochemistry.

(PDF)
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