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Preface

This thesis is concerned with the application of the feature modelling
concept, originally developed for single-part manufacturing, to assembly
modelling and planning. When you are expecting that the complete as-
sembly process will be automated from now on, then this thesis may dis-
appoint you. However, this thesis shows that some aspects of assembly
can be more automated and easier used with the here described assembly
features.

The research was carried out at the Computer Graphics and CAD/CAM
group of the Department of Computing Science of Delft University of
Technology. It was professor Denis McConalogue who headed the CAD/
CAM group when I became a PhD student. Because of his superannuation,
professor Erik Jansen became my first promoter. Without the ever motivat-
ing work of my co-promoter and supervisor, Wim Bronsvoort, who invited
me to join the group as a PhD student, this work could not have been fin-
ished. He has the perfect gift to drag people through difficult periods. I
owe him many red pens for all his corrections made in my documents.

Several people did also provide direct or indirect contributions to my
work, I want to thank:

Especially, the other PhD students involved in feature modelling re-
search — Maurice Dohmen, Klaas Jan de Kraker and later Rafael Bidarra
— for being sparring partners for my ideas.

The people from the Mechanical Engineering Department — Marcel
Tichem, Michiel Willemse, Jan Peter Baartman, Ton Storm, Bart Meijer and
professor Nick Reijers — in their ever lasting patience in explaining me,
as a computing scientist, the differences between screws and bolts and the
more serious parts of mechanical engineering.

The support staff of our group during my stay — Aadjan van der Helm,
Peter Kailuhu, Kees Seebregts and �ter Jonker — they did spend a lot of
time in creating for me a working environment, as comfortable as it could
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be, given the means available.
The master students who helped me in solving parts of my problems

— Ronald Hupperichs doing research in the functional modelling area,
Ronald van Gimst doing research in motion planning and Marco van der
Zwet doing research in modelling with assembly features.

The other PhD students of our group — Arjan Kok (my first room-
mate), Reinier van Kleij (my second roommate), I. Ari Sadarjoen, Andrea
Hin, Theo van Walsum, Wim de Leeuw, Freek Reinders and Erik Reinhard
— for all the nice hours during work and after work, but almost always
talking about our work.

I will miss the laughter of Ton Bosman through the long aisles, and the
sneezings from Matthijs Sepers, who unconsciously provided the building
with some liveliness.

I will miss the people from the First-Aid group, who were always
laughing during practising First-Aid on the most disgusting wounds and
amputations.

And I will remember my car-pool partners — dr. Cees Witteveen, dr.
Leo Boellaard and the one without a grade Martien van Beeck — they have
shortened the long traffic jams with all kinds of games and alternative
routes through the “Groene Hart” of the Netherlands.

I also want to thank my new colleagues, from Baan Research, who are
provided with the habit of continuously reminding me of the fact that
there was still something like a thesis that I had to finish.

I want to thank my parents for providing me the opportunity to go to uni-
versity. And of course, my wife Nelleke, for her love, support and patience
and all the work she did for me during the last years, that I was supposed
to do, but did not do, because I was busy with what you are reading now.

Soli Deo Gloria – to God alone be glory.

Winfried van Holland
Breukelen, 1997
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Chapter 1

Introduction

With the now commonly used tools in computer-aided design (CAD) and
computer-aided manufacturing (CAM), accuracy in part design and preci-
sion in production have increased. These improvements made it possible
to further reduce the lead time, or time-to-market, of products, for exam-
ple by further automating the assembly process. The process of linking
CAD and CAM is now going on for a couple of decades.

In the 80s, however, the automation of the assembly process suddenly
staggered. One of the reasons for this was the disillusion in the possi-
bilities of using flexible assembly robots. Although it was possible for
such robots to perform a large set of tasks, it was very hard to automati-
cally generate programs to execute these tasks on these robots (Gottschlich
et al. 1994). Each task, together with alternatives needed because of un-
certainties in the assembly process, had to be completely spelled out. To
overcome these problems, this work had to be automated.

Before the production of a new or modified product can take place,
it must be preceded by an engineering phase. In this phase, a design or
re-design of a product is executed, resulting in a model of the product to
produce. Together with this model, a plan is made, describing how the
product can actually be produced. The key for automating the assembly
planning lies in the use of the product model information for assembly
analysis and planning.

This thesis will focus on the automation and integration of modelling
and planning, especially for assembly. With the use of new techniques us-
able in assembly modelling and planning, the automation of the assembly
process can make another step forward.
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1.1 Assembly modelling

In assembly modelling, a model is created representing a product consist-
ing of several smaller components. Because of these smaller components,
the focus in assembly modelling will be not only on these components, but
also on the relations between these components. A component that cannot
be subdivided into smaller components is called a single part. A group of
components merged together is called an assembly.

Decisions made during the creation of a model can have great impact
on the complete life cycle of the product. Wrong decisions made dur-
ing design can be responsible for time- and money-consuming product
re-designs. To avoid such re-designs as much as possible, a designer has
to take into account requirements from other disciplines involved in the
life cycle of the product. Involved disciplines can be, among others, from
the start of the life cycle to its end: marketing, design, manufacturing, as-
sembly, service and finally disassembly, see Figure 1.1.

model

product
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marketing

design m
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assembly
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Figure 1.1: Product life cycle

Several analyses can already be performed during modelling to check
whether the requirements are met. So, modelling and analysing have to be
integrated. Because of the analysing step, modelling cannot be restricted
to the design department only. It is possible that a designer is responsible
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for the final design of a product, but the modelling process itself still needs
input from many other disciplines.

To fulfill all different, and sometimes conflicting, requirements, the de-
signer can use the design for X (DFX) concept, where the X can be any life
cycle phase (Boothroyd 1987, Andreasen et al. 1988, Boothroyd et al. 1994).
In DFX, already during design, requirements from X are taken into ac-
count, where the X can, for example, stand for: Manufacture in DFM, As-
sembly in DFA, or Service in DFS. To realize this, the designer must have
knowledge of many issues involved in the disciplines or, and this is more
likely, the other disciplines must cooperate during design. The latter is
usually meant by the term concurrent engineering.

The difference between single-part modelling and assembly modelling lies
in the existence of several components in an assembly, together with as-
sembly relations. Because of these additions, both the design and the anal-
ysis steps within assembly modelling are more complex than for single-
part modelling. There are more disciplines involved in assembly mod-
elling than in single-part modelling, providing more (conflicting) require-
ments to satisfy. Due to the existence of single parts in every assembly,
assembly modelling cannot be separated from single-part modelling. The
term product modelling is used to refer to both.

1.2 Assembly planning

Modelling alone is not enough to prepare the production of a product. The
analyses within modelling check whether the requirements can be met,
but do not exactly determine how they are met. This is determined within
planning.

Planning is responsible for the creation of the production plans, which
specify how the product can be produced.

In assembly planning, several plans are created specifying how the
product can be assembled given the product model.

The difference between single-part planning or manufacturing planning
and assembly planning is comparable to the difference between single-part
modelling and assembly modelling. Product planning is therefore used to
refer to both.

Assembly plans are very difficult to generate, and often this is still done
manually, consuming a large amount of time. This time can directly effect
the time-to-market, the time of a product from its preliminary requirements
specified by marketing, until it finally can be sold on that market.
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In particular for smaller volumes, the time needed for assembly plan-
ning becomes more and more important. Such volumes are most of the
time produced on already available machines. These flexible assembly sys-
tems are capable of assembling families of products, in a flexible batch
order. During development of the product, the time needed to generate
assembly plans is here relatively important.

At Delft University of Technology, a prototype flexible assembly cell,
the DIAC (Delft Intelligent Assembly Cell), has been developed (Meijer
and Jonker 1991). The main goal was to develop a cell capable of assem-
bling a large variety of product families, in relatively small batches. This
research has been a collaboration between several faculties of Delft Uni-
versity of Technology: Mechanical Engineering, Applied Physics, Electri-
cal Engineering and Technical Mathematics and Informatics.

One of the problems arisen in this project was the difficulty to link all
developed planning modules. There was no predefined way for the mod-
ules to retrieve needed information or to store generated information. The
work described in this thesis is one of the spin-off projects of the DIAC
project, and is mainly concerned with this problem.

1.3 Product models

Both product modelling and planning are highly dependent on well de-
fined product models. Product models can be seen as information carriers
for modelling and planning. Examples of information stored in product
models are the geometry of the product and the used material. By com-
bining information, other information can be generated that can also be
stored in the product model, e.g. volume, weight and center of gravity.

Nowadays, product models used in modelling and planning are hardly
integrated. But also there is hardly any integration between single-part
models and assembly models. This results in several different product
models for a product, at least one for every discipline involved in mod-
elling and planning.

Different product models give rise to severe problems, because of re-
dundancy of stored data and because of loss of information due to conver-
sions between models. This makes it extremely difficult for one discipline,
to understand why certain decisions were taken by another discipline.

A possibility is the use of one integrated product model by all disci-
plines involved. Information is stored only once in the product model,
resolving the problems due to redundant data. This makes it possible that
information can be stored by one discipline, and can be used by other
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disciplines. Also there is no unnecessary loss of information, because con-
versions from one product model to another are no longer needed.

Nowadays, in single-part models, there is a shift from storing only
geometry-oriented information towards more functional-oriented infor-
mation. The latter is done using features in feature-based models. This
functional information is very useful during modelling and planning. In
this thesis the feature-based concept will be applied to modelling and
planning for assembly.

1.4 Main objective

The main objective of this thesis is to develop an integrated feature-based
product model to be used in assembly during modelling and planning.

Therefore three issues are involved in this research:

� The structure of the product model itself. An integrated product
model for assembly is needed to avoid the unnecessary loss of in-
formation during modelling and planning, and to integrate single-
part and assembly models. Features are used because in single-part
models they have shown their benefits, and it is expected that this
will also be the case for assembly models.

� The way this product model can be used during assembly modelling.
Therefore a prototype system is built, in which the feature-based in-
tegrated model can be created.

� The way this product model can be used during assembly planning.
The same prototype system also contains planning functionality, in
which planning activities can be activated directly from the mod-
elling environment. It is evaluated whether the used features pro-
vide benefits during planning.

1.5 Overview

To describe the research done to realize the objective, the thesis is divided
into the following parts:

Part I background, gives an overview of commonly used modelling tech-
niques in Chapter 2 and planning techniques in Chapter 3. After
this overview, the long-term goals are defined in Chapter 4, to pro-
vide a direction for future research and development in this area.
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These long-term goals are the starting points for the short-term goals,
which provide more clearness on the chosen solutions in the rest of
the thesis.

Part II modelling with assembly features, focusses on the modelling en-
vironment. First, in Chapter 5, a new object-oriented feature-based
product model is presented. This model combines elements from
single-part and assembly modelling.

Thereafter, in Chapter 6, the focus is on assembly features, in the
described product model to keep track of the assembly information
of a product.

In Chapter 7, a prototype assembly modelling system is described.
Within this system, assembly models can be created and manipu-
lated.

Part III planning with assembly features, discusses the use of the object-
oriented feature-based product model with assembly features in as-
sembly planning modules.

It is not the intent to give a detailed description of every planning
module needed within assembly planning. Some have been chosen,
to verify the concept. Besides this verification, new and extended
planning algorithms are presented to show additional benefits of the
product model.

First, in Chapters 8 and 9, extensive descriptions of using the prod-
uct model in stability analysis and grip planning are given. This is
followed by a discussion, in Chapter 10, of how the product model
can be used in motion planning and assembly sequence planning.

Part IV concluding remarks, is the final part containing the conclusions
and future work in Chapter 11.

To avoid confusion about used terminology, Appendix A has been in-
cluded.
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Background

Part I gives an overview of commonly used modelling tech-
niques in Chapter 2 and planning techniques in Chapter 3. Af-
ter this overview, the long-term goals are defined in Chapter 4,
to provide a direction for future research and development in
this area. These long-term goals are the starting points for the
short-term goals, which provide more clearness on the chosen
solutions in the rest of the thesis.
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Chapter 2

Assembly modelling

For centuries, products have been designed with the sole use of technical
drawings on a piece of paper. With the “recent” introduction of comput-
ers, new possibilities became available, including the possibility to model
products with the aid of a computer. This chapter will describe techniques
available for this, with the focus on assembly modelling.

2.1 Top-down and bottom-up modelling

There are two main approaches in which one can create a product model,
the top-down and the bottom-up approach, as was described by, for ex-
ample, Libardi et al. (1988) and Lim et al. (1995).

2.1.1 Top-down approach

The top-down approach is based on the designer’s point of view. The de-
signer initially thinks in an abstract, functional manner to find ways to
satisfy the requirements of the product. The product has to fulfill some
specified main function. By recursively dividing the main function into
sub-functions, the designer generates a product model in a top-down de-
sign or modelling way.

The initial functional — highly conceptual — information is difficult to
specify in a general way, and therefore hard to store and use in a computer
environment. Later on, at the sub-function level, more and more details
are determined, which can be represented more simply in a general way,
and therefore can be better handled by a computer. At the end, sub. . . sub-
functions can be represented by geometry, which can now very well be



10 Assembly modelling

stored in a computer. Research on how to model the highly conceptual in-
formation, sometimes called functional modelling, is in a preliminary stage.
Examples of this approach are described in Section 2.3.

2.1.2 Bottom-up approach

The bottom-up approach is based on availability of technologies. In this
approach, complete — highly detailed — geometric representations of
components are already available. These representations of the compo-
nents are usually made with some CAD package, and later on the spatial
relations between these components are modelled to specify the complete
product.

This approach is now widely used because of the technical possibili-
ties of CAD systems. In the last decades, there has been much research
in single-part modelling, resulting in many improvements. This research
was focused on how to model the geometry of a completely detailed com-
ponent. Modelling techniques like constructive solid geometry (CSG),
boundary representations (B-Rep) or hybrids of these, can be used for this.
Functional intents that have led to these detailed components can, how-
ever, not be stored in these representations. In this way the “bottom”, the
detailed representation of geometry of sub. . . sub-functions, is first stored
in the product model. Thereafter the relations between the components are
added to the model. Examples of the bottom-up approach are described
in Section 2.2.

2.2 Modelling with detailed single-part models

First the focus will be on the bottom-up modelling approach, because it is
easier to explain top-down modelling after bottom-up modelling.

The assembly models used in bottom-up modelling can be subdi-
vided into two different groups (Srikanth and Turner 1990, Requicha and
Whalen 1991):

� hierarchical models

� relational models.

Both make use of already defined product models of the single parts, and
combine these into an assembly model of the complete product. Therefore
a brief description of product models for single parts is given first.
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2.2.1 Single-part models

Compared to assembly modelling, there has been much research in the
area of single-part modelling. For more details on the described mod-
els, see Requicha (1980), Mortenson (1985), Mäntylä (1988) and Bronsvoort
et al. (1991).

solid models

The first single-part models in CAD were in fact computer models of 2D
paper drawings. Later 3D computer models, representing the complete
topology and geometry (the geometry for short) of parts, were introduced.
These product models were called solid models, and the nowadays mostly
used representations are Constructive Solid Geometry (CSG), Boundary Rep-
resentation (B-Rep) or hybrid forms of these.

Within CSG, models are built from a collection of primitive solid ob-
jects, e.g. blocks, cylinders and spheres. The set operations union, differ-
ence and intersection can be applied on these objects to define new, com-
posite objects. The data structure is a binary tree; the root represents the
complete single part, and the leaves represent the primitive solid objects.
The main disadvantage of this method is that there is no explicit informa-
tion in the representation about the faces, edges and vertices of the single
part. This information is needed during some analyses in modelling and
in several modules in planning, both for single parts and for assemblies.

A product model that does have explicit information about the faces,
edges and vertices in the single part is the B-Rep. The data structure is
a graph structure. Every node in the graph is a boundary element of the
solid object, i.e. face, edge or vertex, and arcs in the graph represent adja-
cencies between these elements.

Hybrid data structures of CSG and B-Rep combine the advantages of
both structures: the convenience of modelling with CSG structures, and
the availability of explicit information within the B-Rep structures.

feature models

A disadvantage of solid models is the lack of functional information in
the data structure: only the resulting geometry is stored. The intent of the
designer, i.e. why he has chosen for the specified geometry, is not stored
within solid models. This information is, however, needed during analy-
ses and planning, but also to verify whether certain changes are allowed
on the model.
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To overcome this disadvantage, feature models were introduced. Fea-
tures contain, besides geometry, functional information.

Feature models represent a product by a set of feature instances, and
between these feature instances constraints can be specified. In literature
there are many different definitions for features, but a common element in
these definitions is that they combine shape — geometry information —
with functional significance. This functional significance is not restricted
to design significance, but can be significance for any involved discipline
during the product life cycle. Each discipline can have its own way of
looking at a product, called a view. Each view may have its own set of
features (de Kraker et al. 1995, Bronsvoort et al. 1996). Features used in the
design view, so-called design features, are different from features used in
the manufacturing view, so-called manufacturing features. In cases where
functional significance is only related to a generic shape, the correspond-
ing feature is called form feature.

It is undesirable that every view-specific feature model is created from
scratch. Several methods have been developed to create and convert fea-
ture models, and to provide consistency between several feature models:

feature recognition The feature recognition method constructs feature
models out of already available solid models, or even 2D CAD draw-
ings. Several techniques have been developed to recognize features,
mostly manufacturing features.

One technique uses an (Attributed) Face Adjacency Graph (FAG)
(Joshi and Chang 1988), a graph with the nodes representing the
faces and the edges representing the adjacencies between faces. For
every feature to recognize, a predefined FAG is known. By us-
ing graph-based pattern-matching techniques, features in the solid
model are recognized.

Another technique is decomposing the solid model into volumes,
and trying to map these volumes onto known feature volumes. This
technique is used by, among others, Kim (1992).

design by features When completely new product models have to be
generated, one can immediately start with feature modelling. Prod-
uct models are created by combining instances from a set of view-
specific generic features, with constraints between them. This con-
cept is called design by features, but is not restricted to the design
view; a feature model for the manufacturing view can also be cre-
ated with design by features.
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feature conversion The method of feature conversion, or feature mapping,
is used to create different feature models of the same product for
several different views. Feature recognition and design by features
are combined in this method. A feature model is created for one
view, using design by features, and is converted into a feature model
in another view by a kind of feature recognition, see, for example,
Dohmen et al. (1996) and de Kraker et al. (1997).

More details about feature modelling, and links for further reading, can
be found in Shah et al. (1991), Bronsvoort and Jansen (1993) and Shah and
Mäntylä (1995).

Now that the single-part models have been described, the focus will be
back on combining these models in assembly models.

2.2.2 Hierarchical models

In a hierarchical model, the complete product is represented by a tree struc-
ture. Nodes in the tree represent parts (the leaves of the tree), subassem-
blies or the complete product (the root of the tree). The position and ori-
entation of every node is specified by a 4 � 4 homogeneous transformation
matrix. This transformation matrix can be global, i.e. with respect to the
world coordinate system, or local, i.e. relative to the position and orienta-
tion of the direct ancestor in the tree.

One of the disadvantages of hierarchical models is the difficulty of
specifying and calculating the transformation matrices. Another draw-
back of the simple hierarchical model is that the model does not contain
any information about relations between the individual components.

2.2.3 Relational models

The disadvantage of having to manually provide the transformation ma-
trices for the hierarchical model, has led to the creation of the relational
model. The only way to automatically calculate the transformation matri-
ces, i.e. the position and orientation of the components in the complete
product, is to provide in some way the relations between these compo-
nents, which resulted in a change from a pure tree structure to a more
graph-oriented structure.

Ambler and Popplestone (1975) and Popplestone et al. (1980) used a
product model with relations between the components to calculate the ac-
tual position and orientation of every component in the product. These re-
lations were defined between so-called features on components. Features
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were defined here as simple topological entities: planar face, cylindrical
shaft or hole, edge, spherical face and vertex. They defined a set of re-
lations, of type against — mating faces with opposite normals, coplanar
— mating faces with identical normals , and fits — fitting of a cylindrical
shaft and hole, and specified how transformation matrices can be calcu-
lated given these relationships.

Wesley et al. (1980) used an extended tree structure in their system
called AUTOPASS (AUTOmated Parts ASsembly System). Their extended
tree structure allowed additional edges between parts and subassemblies
to represent certain relations. The leaves in this tree structure are not on
the level of single rigid parts, but on the level of so-called sub-parts —
primitive polyhedrals, representing shapes on a part. These sub-parts are
an early form of what are now called form features.

Lee and Gossard (1985) provided relations between components in a
product model with their virtual link concept. They use a tree structure to
represent the subdivision of a product into subassemblies and parts. In
this tree structure, an additional graph structure is specified; any mating
pair of two components is represented by a virtual link, see Figure 2.1. A
virtual link is representing the information required to describe the rela-
tion and the mating features between components needed to calculate the
transformation matrices.

product

virtual link virtual link virtual link

virtual link virtual link virtual link

component component

component component

Figure 2.1: Virtual link structure for assembled products
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The relations that could be represented with the virtual links were
again very elementary: the against relation — a plane-plane mating re-
lation, and a fits relation — a cylindrical shaft-cylindrical hole mating re-
lation. Lee and Andrews (1985) provided an algorithm to automatically
generate the transformation matrices from these virtual links for every
component in a product. With the algorithm, the need for the difficult
procedure to manually give all the transformation matrices has vanished;
however, before the algorithm can generate the matrices, many of these
basic relations had to be specified.

With the solution of the positioning problem of the components in the
assembly, the research went more and more from only the basic creation of
the models towards the use of models for analysis, and even towards the
generation of assembly plans. Especially the assembly sequence problem
came into focus, i.e. can we use a product model to generate a possible
assembly sequence for the product.

Partially based on this, development was focused on purely graph-
based product models. Within graphs, components are represented by
nodes and relations between components are represented by edges. The
relations between components were still very elementary. These elemen-
tary relations or basic relations are given by, for example, Homem de Mello
and Sanderson (1989) and Srikanth et al. (1991):

contact Two components have a contact relation if there are non-rigidly
attached faces, edges or vertices between them; i.e. there is some
freedom of motion between two components with a contact relation.

attachment Two components have an attachment relation if there are
rigidly attached faces, edges or vertices between them; i.e. there is
no longer a freedom of motion between two components with an
attachment relation.

assembly dimension Two components have an assembly dimension if
there is a constraint between them to fully specify some other re-
lations. These dimensions are needed, for example, when a contact
relation between two faces is defined: additional assembly dimen-
sions must be defined to uniquely specify the position of one face on
the other. See Figure 2.2 on the following page for an example.

The relations are called elementary in the sense that one has to provide
many of these relations to fully describe the product model.



16 Assembly modelling

Terminology for the elementary relations differs from author to author,
but these types are commonly used. Notice, that the definition of an at-
tachment given here differs considerably from the one given later in Sub-
section 6.4.3, and subsequently used in this thesis.

contact

dimension

Figure 2.2: Example of a dimension relation

Sanderson and Homem de Mello (1990) used a graph representation to
find assembly sequences. They used several representation levels for the
product model:

� the solid models of the components, see Figure 2.3(a) on the next
page,

� the relational model of the product, where they specified, besides
the set P of components, a set C of contacts (c1 : : : c5), a set A of at-
tachments (a1; a2; in this case eliminating all degrees of freedom of
a contact) and a set R of relationships between elements of the set
P [ C [ A (r1 : : : r14), see Figure 2.3(b).

� the connection model of the product, a reduced relational model,
showing only the connections between components, see Fig-
ure 2.3(c).

The difference between a relational model and a connection model is thus
the level of abstraction. In a connection model, only the connections be-
tween components are defined; these connections can contain several re-
lations. These connection models are similar to the liaison graphs described
by Bourjoult; for extensions on his model see De Fazio and Whitney (1987),
in which the precedence relations between connections can be given. The
relational model is on a lower abstraction level; here all the elementary
relations between components are specified. The connection model can be
generated from the relations in the relational model.
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Figure 2.3: The product model representations used by Sanderson and
Homem de Mello

There exists much variety in product models using a graph for rep-
resenting the relations, but most are similar to the one described here.
Some use feature models for the components, and relations are then de-
fined between features on the components. Roy and Liu (1988) already
made use of form features for their single-part components models. They
use a kind of Face Adjacency Graph to represent their single-part feature
models. Relations between different components are specified between
these features, and are called functional relations. The generated product
model is called a Functional Relationship Graph (FRG). Later this has been
extended to the Modified-FRG (M-FRG) in Roy et al. (1989), where they
showed how information stored in the model can be used for elementary
assembly planning.

2.3 Modelling with functional information

In the previous section, we described the bottom-up approach of mod-
elling assemblies. Now we focus on the top-down approach.
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In their ”Systematic Approach”, Pahl and Beitz (1988) divided the de-
sign process into four phases:

� product planning and clarification of task,

� conceptual design,

� embodiment design and

� detailed design.

Each phase takes as input the results from the previous phase. Now the
main problem of the bottom-up modelling approach becomes clear — de-
tailed models of components cannot be generated before their function-
ality within the product, and their relations with other components have
been specified. This can be done within the conceptual design and em-
bodiment design phases by functional modelling.

A functional model represents a product structure from highly ab-
stract to concrete, i.e. from undetailed to highly detailed (Henderson and
Taylor 1993). To use a functional model in design, the flow of the work
should preferably also go from abstract to concrete. This looks obvious,
but sometimes the flow goes from bottom to top: specifying a functional
structure from the detailed product description to the conceptual level.

A problem in functional modelling is how to store the abstract and
undetailed information. There must be a possibility to compare stored
designs, in such a way that designs or pieces of designs can be re-used
in new designs. But on the highest level, the functions are represented
as black boxes, describing only (textually) the task of the function. This
makes it hard to find a unique way to describe a specific function in some
kind of language, and difficult to search for a conceptial solution earlier
used. However, some techniques developed in artificial intelligence can
be used to find similarities between solutions.

Although functional models are in an early stage of development, there
are some promising examples.

Mäntylä (1991) described a modelling environment for functional, con-
ceptual and detailed design. Within the prototype environment, called
WAYT (Why-Are-You-There?), a hierarchy of functions can be specified,
with relations between them. Feature models of the components can be
associated to these functions.

Gui (1993) described the “�“ system, a computer environment for top-
down functional modelling. A multi-graph structure is used to represent
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both functional and relational models. Every node in a multi-graph repre-
sents a (conceptual) component or a (conceptual) connector between com-
ponents. Therefore every node can be a multi-graph itself. In this way, a
hierarchical structure can be created from abstract to concrete. Both con-
ceptual components and connectors can be subdivided into other (concep-
tual) components and connectors. On the lowest, detailed level, compo-
nents represent single parts and connectors represent elementary relations
between these parts. An example is given in Figure 2.4.

component

connector

concrete

abstract

Figure 2.4: The multi-graph structure used in the � system; components
are represented by blocks and connectors by circles

Andreasen (1992) and Mortensen and Andreasen (1996) divide a prod-
uct model into domains, a way of looking at something:

functions describe the effects that the product is to create,

organs describe the entities that create the effects, and

parts are the materialization of the organs, i.e. the detailed parts.

Within this subdivision, functions, organs and parts are all described by a
hierarchy; so there is a hierarchy of functions, a hierarchy of organs and
a hierarchy of parts. Between these hierarchies, there exists also relations.
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A function can be realized by several organs, and an organ can belong to
several functions. Also an organ will normally need several parts to fulfill
its realization, and a part will contain several details belonging to sev-
eral organs. These interrelations with a many-to-many character make the
functional models extremely complex, as can already be seen in a simple
example in Figure 2.5.

systems

sub-

partsorgansfunctions

total

elements

Figure 2.5: An example of function, organ, and part hierarchies, with their
complex interrelations

Another point that is stated by Andreasen is the difficulty in dividing
functions into sub-functions. Before the function can be divided into sub-
functions, the used means — the technology used to realize this function —
has to be defined. Without choosing a specific mean, you cannot subdivide
a function into sub-functions. Every possible mean for a function, will
result in a specific subdivision. This results in a function/means tree.

Although a good theoretical foundation is given for the top-down
modelling process by Andreasen (1992), there is still a lack of proper com-
puter tools to support this modelling concept.
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2.4 Assembly features to fill the gap

In this chapter, two concepts for modelling have been described, the
bottom-up and the top-down concept. The first has the problem of adding
higher-level information and relations to the product model of highly de-
tailed components. The latter has the problem of converting highly ab-
stract information to detailed geometry information. We did not even con-
sider the problems in automatic conversion of functions to geometry!

There is a large gap between the detailed geometry information and
the elementary relations on the one hand, and the abstract functional in-
formation on the other hand. This gap is not only present within assembly
modelling, but also within single-part modelling.

The way a designer has to specify a part in a CSG or B-Rep model does
not correspond to his way of thinking. He prefers a more abstract concept
to specify his product, and this was to some extent provided with the in-
troduction of feature modelling. Features are on a higher abstraction level
than geometric elements, and features provide the possibility to contain
functional information.

Several people who noticed the possibilities of using features in single
part modelling, also tried to apply the feature concept within assembly
modelling.

De Fazio (1990) described a prototype feature-based DFA system,
where form features for single-part modelling were used together with
“features” to specify the mating relations between components. The lat-
ter features provided additional assembly-specific information — such as
degrees of freedom and relative extraction directions — to the elementary
relations normally used within assembly planning.

Although the additional information could be used in assembly plan-
ning, these features did not bring assembly modelling to a higher abstrac-
tion level. Still all the elementary relations had to be specified separately.

The first appropriate use of the term assembly feature was by Sodhi
and Turner (1991). Before that the term was sometimes used, but only
to specify, in fact, elementary relations (Popplestone et al. 1980, Lee and
Andrews 1985).

Sodhi and Turner used assembly features for specification of relations
between components on a higher abstraction level. In their opinion, as-
sembly features served as a higher-level interface — capturing assembly
relations at the functional level, and removing from the designer the bur-
den of identifying the underlying elementary relations. See, for exam-
ple, Figure 2.6 on the following page, where a Pin Joint assembly feature is
shown. The designer can, with this feature, specify several form features
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and several elementary relations in one step.

contacts
alignment

hole pin

cylindrical

planar
contacts

features feature

Figure 2.6: Pin Joint assembly feature

Shah and Tadepalli (1992) defined an assembly feature as an associa-
tion between two form features on different parts. They used assembly
features as an abstraction to specify several elementary relations.

They also pointed out that assembly features could be used within a
design-by-features concept. When a designer has chosen two form fea-
tures, the system can provide the designer with possible assembly fea-
tures. Although this is a bottom-up approach, it can be very useful.

Later, Shah and Rogers (1993) compared assembly modelling with
single-part modelling. They found that the two modelling concepts were
very comparable. A single part can be thought of as an “assembly” of
form features, with mutual relations. The constraints used between form
features in single-part modelling, can also be used as elementary relations
in assembly modelling. By combining such elementary relations, one can
generate higher-level relations called assembly features. These assembly
features can then be extended with additional assembly-specific informa-
tion, such as degrees of freedom and fit information.

Assembly features as defined here were only used to ease modelling.
They were closer to a designer’s way of thinking: with one assembly fea-
ture he could specify several elementary relations. The information stored
within these features was not yet used for analysis of the model, nor cre-
ation of assembly plans.

Assembly features combine information about assembly and geometry,
i.e. both abstract functional and detailed geometrical information. There-
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fore they can be used to fill the gap between abstract functional and de-
tailed geometric models. It seems easier to link pure functional models to
geometric models through assembly feature models, than without them.
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Chapter 3

Assembly planning

In Chapter 1, it has already been described that automation of the gen-
eration of assembly plans is needed, will the assembly process itself be
effectively automated. In this chapter, modules needed within assembly
planning to analyse a model and to generate assembly plans will be de-
scribed.

Generally, assembly planning does not start at the moment that the
design process has been completely finished. In the contemporary DFX
concept, already in an early phase of the design process the designer takes
into account requirements from other disciplines involved in the prod-
uct life cycle, see Figure 1.1 on page 2. During the design phase, certain
steps in the planning for other disciplines are done simultaneously, thus
analysing the proposed product model. The generated analysis informa-
tion should be stored in the product model. Modelling and planning are
not completely separated, but concurrently performed by several disci-
plines that are closely related and simultaneously operating on the same
product model.

But even within one discipline, for example assembly, there exists sev-
eral kinds of planning activities. For all these activities, the product model
is analysed to see whether the activity can be performed. Each differ-
ent activity has its own module to perform the analysis. The next section
will briefly describe some of these modules used in assembly analysis and
planning.

3.1 Assembly planning modules

In literature, the term assembly planning is almost exclusively used for
assembly sequence planning (Homem de Mello and Sanderson 1991b,
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Wolter 1991, Delchambre 1992). Although assembly sequence planning
— finding feasible sequences in which the product can be assembled —
is a very important planning module in assembly planning, there exists
many other modules (Nevins and Whitney 1989). In Figure 3.1, several
planning modules are shown. It is indicated that assembly sequence plan-
ning is highly dependent on these other modules as well, especially where
these modules concern about the assemblability of an assembly.

planning
stability
analysis

planning

feeding

subassembly

planning

grip
planning

planning

sequence

assembly
planning
fixture

motion

Figure 3.1: Assembly sequence planning and its relation with some other
planning modules

The following list briefly enumerates assembly planning modules
found in literature (Heemskerk 1990, Martens 1991, Boneschanscher 1993,
Lee 1994, Gottschlich et al. 1994), with their specific goals.

fixture planning A fixture planner determines fixtures, together with
base components to be used for assembling. A base component is the
first component of an assembly that is assembled. Fixture planning
determines the base components leading to a minimal number of fix-
turing setups during assembly and providing a maximal set of com-
ponent approach directions. Another problem to solve for the fixture
planner is to determine the optimal number of base components that
can be placed on one fixture at a time.

feeding planning A feeding planner determines usable feeders for the
components to assemble. The planner must take into account the
approach directions of the components on the feeder. In connection
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with the number of base components on a fixture, the feeding plan-
ner must find the optimal number of components on one feeder, to
eliminate unnecessary feeding operations. Feeding is more time crit-
ical in assembly, compared to manufacturing, because assembly op-
erations use relatively short times, comparable with feeding times.
Therefore, the components to assemble must be continuously fed,
otherwise the assembly cell will be idle.

stability analysis A stability analyzer checks whether a certain assembly
is stable and thus can be used as partial assembly or subassembly.
The analyzer takes into account different stability conditions: static
conditions — only gravitational forces, transport conditions — forces
due to accelerations because of transport, and assembly operational
conditions — forces due to the assembly operation itself, i.e. addi-
tional forces needed to establish contacts. Chapter 8 will describe
this topic in more detail.

grip planning A grip planner tries to determine appropriate tools for
gripping the components, and the areas on the components where
to grasp them. To find these areas, also information concerning used
feeder, fixture and already assembled partial assemblies is derived.
Chapter 9 will describe this topic in more detail.

subassembly planning A subassembly planner tries to divide the com-
plete product into subassemblies. The main requirement for sub-
assemblies is that they remain stable when manipulated, but other
requirements can be added, such as that the subassembly must ful-
fill some functionality, or is important for service purposes.

gross motion planning Gross motion planning is the first phase of mo-
tion planning. A gross motion planner determines a collision free
path from the feeding position towards a position near the partial
assembly. Finding a collision free path is also known as the “piano
movers” problem.

fine motion planning Fine motion planning is the second phase in mo-
tion planning, and starts at the point where the gross motion plan-
ner stopped. A fine motion planner thus determines an assembly
path from a position near the partial assembly to the final assembled
position. In contrast with gross motion planning, fine motion plan-
ning will often use contacts to reduce uncertainties in positioning
the component. Fine motion planning uses these contacts to “lead”
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the component to its final position. Section 10.1 will describe motion
planning in more detail.

assembly sequence planning An assembly sequence planner determines
feasible assembly sequences for a product. However, these se-
quences are highly dependent on output generated by almost all
other planning and analysis modules. Sometimes, when problems
occur during assembly, it is needed to create an ad-hoc sequence,
used to finish the assembly as far as possible. Section 10.2 will de-
scribe this topic in more detail.

scheduling A scheduler determines an optimal assembly sequence for a
complete batch of products. Out of a set of feasible sequences gen-
erated by the assembly sequence planner, the scheduler must choose
“optimal” sequences to be used during actual assembly. Therefore
resources must also be allocated by the scheduler. This can only be
done when, for example, the fixture, feeding and grip planners have
already selected their resources.

It can be preferable to do assembly sequence planning and schedul-
ing simultaneously, to make use of the dependencies between these
modules and to decrease the exponential complexity. Searching fea-
sible sequences is related to available resources known already for
the schedule. By exploiting this information, the search space can be
restricted.

In addition to these planning modules, there can be several other modules
within assembly planning, such as sensor planning, dynamical analysis,
functional analysis, assembly line planning, etc. These will not be elabo-
rated here.

The question may rise, whether there exists some fixed execution se-
quence for these modules, so that all required information will be avail-
able at the right moment. As can be seen in the description of assem-
bly sequence planning, this is not always the case, because especially this
module is highly interdependent and therefore very intertwined with all
the other modules concerning the assemblability.

3.2 Grouping assembly planning modules

This section will describe some proposals made to group assembly plan-
ning modules, in such a way that some ordering between groups can be
found.
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3.2.1 On-line and off-line planning

One way to divide the planning modules is into on-line and off-line mod-
ules (Gottschlich et al. 1994).

In essence, the on-line modules are dependent on information gener-
ated during the assembly process. On-line planning modules therefore
also generate their output during the actual assembly process. The output
is used almost immediately within that process. On-line planning mod-
ules are therefore time critical — the longer their required planning time,
the larger the risk that the assembly process, executed in parallel, has to
wait.

The off-line planning modules are less time critical. They are less de-
pendent on actual information, and therefore can generate output before
the assembly process is executed.

However, it is difficult to strictly separate the planning modules into
on-line and off-line modules. Some of the planning modules can be used
both on-line and off-line. For example, the scheduler can make a schedule
off-line for a batch of products, given some specified flexible assembly cell
with resources. However, during the actual execution of such an off-line
generated schedule, it must be able to generate a schedule on-line, for ex-
ample when specific resources are not available or damaged (van Holland
et al. 1992).

3.2.2 Using abstraction levels

Heemskerk (1990) suggests a hierarchical reference model with four levels
of abstraction, and places the modules in such a level, see Figure 3.2 on the
next page.

batch level The batch level generates plans for a complete batch of prod-
ucts to be assembled.

product level The product level deals only with one (type of) product of
the complete batch at a time, and generates plans for this product.

part level The part level deals only with one part (component) from a
product at a time, and generates plans for this part.

primitive level The primitive level generates plans for four primitive ac-
tions that must be executed on each part during assembly: feed,
grasp, move and mount.
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Figure 3.2: A hierarchical reference model for assembly planning modules

Although these abstraction levels provide an overview of the information
needed within assembly planning, there are some disadvantages of this
model (Martens 1991, Boneschanscher 1993). The main disadvantage is
the restriction of placing planning modules at one abstraction level only. It
will be incorrect to place, for example, assembly sequence planning, at the
product level only. By doing so, the system will provide the scheduler with
only one assembly sequence plan for a specific product, which may result
in suboptimal schedules on batch level. Better results are retrieved when
assembly sequence planning and scheduling cooperate with each other.
This will decrease the total search space needed to find proper solutions
(van Holland et al. 1992)

3.3 Experiences with existing assembly planners

Mostly, assembly planning modules are described independently from
each other. Only a few descriptions of systems have been given that con-
tain several planning modules. Two of these systems are the DIAC system
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and the Archimedes 2 system. In the following subsections, some experi-
ences with these systems are described.

3.3.1 Experiences in DIAC

In Section 1.2, it has already been described that the work in this thesis is
a spin-off from the DIAC (Delft Intelligent Assembly Cell) project (Meijer
and Jonker 1991).

Several prototype planning modules have been developed during this
project, for example gross motion planning (Martens 1991), assembly se-
quence planning, scheduling and batch planning (Boneschanscher 1993),
and fine motion planning and grip planning (Baartman 1995).

The product models used — the Product Data Model (PDM) and the
Connection Model (Martens 1991) — were based on low-level geometric
information for the components, with elementary relation information be-
tween these. The PDM contained information about:

� Insertion Point, a point near the partial assembly where the assembly
of a component can start.

� Final Point, a point on the partial assembly where the component to
assemble must be positioned.

� Insertion Path, the path to bring the component to assemble from
Insertion Point to Final Point.

� Approach Direction Set, a set of directions available to bring the com-
ponent from a place relatively far from the Insertion Point to the In-
sertion Point.

These attributes had to be entered manually. A disadvantage of the used
product model was the lack of additional assembly-specific information
required for the planning modules. So, every module had its own pro-
cedures for geometric reasoning to analyse the product geometry on spe-
cific assembly information. This information was stored locally within the
module, and could not be used by other modules. In addition, there was
no description of how results from a module could be stored, for use in
other modules.

So, although several planning modules were provided in the system,
the modules were not well integrated.
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3.3.2 Experiences in Archimedes 2

At the Sandia National Laboratories, the Archimedes 2 mechanical assem-
bly planning system has been developed (Kaufman et al. 1996)1. The sys-
tem is able to read commonly-used CAD data files, which makes it easier
to work with more complex products. The modules available within the
system are: mating planning, assembly sequence planning and task plan-
ning.

Ames et al. (1995) have described some shortcomings of the planner.
Some planning still has to be entered by hand: grip planning, fixture plan-
ning, fine and gross motion planning and stability analysis. Another prob-
lem is the integration of all planning modules, including the problem of
resolving conflicting constraints between modules.

Further there is no possibility to store non-geometric data in the used
product model, which is sometimes needed in modules. This auxiliary
data has to be computed from the product model, which is very difficult
and time-consuming. In a way this is also superfluous, because during
product modelling this information was already, at least partially, known
to the designer.

Finally, there is no possibility for an engineer to interact with generated
plans during the planning process.

3.4 Experiences in manufacturing planning

The problems described are not unique for assembly planning, and some
of them can also be found in a closely related area: manufacturing plan-
ning.

Here the lack of manufacturing-specific information in the used low-
level geometric product models can be found. The use of higher-level
feature models solved a major part of these problems. With feature mod-
elling, see Subsection 2.2.1, the product models were converted to or even
designed by manufacturing features. These manufacturing features con-
tain, besides a description of the shape, manufacturing-specific informa-
tion that can directly be used within manufacturing planning.

See Shah and Mäntylä (1995), van Houten (1991), Rosen (1992) and
Jasperse (1995) for an overview of manufacturing features and their use in
manufacturing planning.

1See their home page with descriptions of the system at: http://www.sandia.gov/2121/
archimedes/archimedes.html
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3.5 Features in assembly planning

As described in this chapter, most of the product models used in assem-
bly planning are not able to directly provide the information needed for
assembly planning. The promising results in manufacturing planning us-
ing product models containing manufacturing features, did not yet have
much influence in assembly planning.

However, there are some authors describing features used within as-
sembly modelling, as described in Section 2.4. Their assembly features
were mainly used to provide a higher modelling level, reducing the time-
consuming specification of elementary relations.

For example, De Fazio (1990) described a prototype feature-based
design-for-assembly system, where features are used for modelling both
single-parts and assemblies. Later more details of this system were given
in De Fazio et al. (1993), and it became clear that the system could also be
helpful in planning.

In their bottom-up modelling concept, the assembly features are ele-
mentary relations containing additional assembly information, such as de-
grees of freedom and relative extraction directions, i.e. the opposite of ap-
proach directions. This additional information could successfully be used
within several of their prototype assembly planning modules, as are: the
bottom-up design of the assemblies, the positioning of the components
relative to each other using the features, derivation of feasible assembly
sequences, and performing economic analysis on the found sequences to
select one and possibly generate a conceptual assembly line for it. Needed
information could be directly retrieved from the assembly model, without
executing complex and time-consuming geometric reasoning procedures.
This all brought the assembly models to a higher abstraction level with
respect to planning.

As within manufacturing planning, information already known during
design and needed during planning, could now be stored in features in the
product model.

However, information generated during planning should ideally also
be stored in the product model. Later on this information can then be
used by other planning modules.

When more information is integrated in the model, also planning mod-
ules can be better integrated — information can be retrieved from and
stored in the same model. Especially intertwined modules could have
much profit from integrated models, for example a considerable reduction
in computation time.

Therefore features could also be useful in assembly planning, both to
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store required functional information together with the geometric infor-
mation, and to integrate information used by several planning modules.



Chapter 4

Towards an integrated modelling
and planning environment

It is not enough to investigate only modelling and planning concepts and
techniques used in the past, to retrieve possible areas for improvements.
When you want to know where to improve, you should know the differ-
ences between where you are now and what you want to achieve. This
chapter will describe a future modelling and planning environment, and
this will provide directions to work at.

The future modelling and planning environment should include con-
cepts that at least accomplish that:

� the quality of the produced products improves due to more ad-
vanced modelling techniques,

� the time-to-market decreases due to better planning tools.

This chapter will first describe the long-term goals for a modelling and
planning environment. These goals will provide the overall research di-
rections. The derived short-term goals will be described in Section 4.2.

4.1 Long-term goals

The best way to determine the long-term goals is, of course, to investigate
what is lacking in current systems, and what is needed by users. The main
direction is also described by Henderson and Taylor (1993). They stated
that there should be an integrated environment for physical objects — the
components — and their conceptual counterparts — the intent of the com-
ponents.

Key topics to realize such an integrated environment are:
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� top-down and functional modelling,

� integrated single part and assembly modelling, and

� integration of modelling and planning activities.

In the next subsections, these topics will be further explained.

4.1.1 Top-down and functional modelling

One of the major disadvantages of the current modelling environments, is
that the user is provided with a far too simple and limited model, which
cannot handle all information already known by him or her, and that, as
a consequence, information is lost. This information must often be recov-
ered again later in the product life cycle through complex calculations,
which would be unnecessary if it could be stored in the system from the
start (Wilson and Pratt 1988). For example, when a user specifies a spe-
cific bolt-nut connection between two plates, he or she already knows the
assembly sequence restrictions for such a connection, i.e. the bolt and nut
connection must be established after the bolt and plate connections. How-
ever, this information can generally not be stored in the model, and there-
fore the time-consuming assembly sequence planning module tries every
combination of bolt, nut and plates to find a proper assembly sequence. At
the end, it will provide the user with a solution that he or she was already
familiar with during modelling.

The main goal is therefore to provide a modelling environment that is
able to store input on a high abstraction level, close to the way of thinking
of the user. The user must be able to create a model in a top-down way,
from conceptual to detailed. Therefore it must be possible to translate
functional information to lower-level, more detailed information. In be-
tween the top and the bottom level, it must be possible to specify partially
detailed information, such as sketches of components and functional faces,
see for example Horváth et al. (1995) and Horváth (1996). The approach
from Mantripragada et al. (1997) is also been going in this top-down de-
sign direction. They use the most important characteristics of a product,
so-called Key Characteristics (KCs), to represent the design intent. These
KCs are then used to identify important datums on components, and to
define relationships between them.

One of the major problems in this field is to maintain the consistency
of a top-down generated model. After changing something at a more de-
tailed level of the model, higher levels should be changed accordingly.
This can be extremely difficult, because changes at a detailed level can
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have several effects on higher levels, and there is no one-to-one mapping
of detailed information to conceptual information.

4.1.2 Integration of single part and assembly modelling

As a consequence of the top-down concept, modelling of assemblies and
the corresponding single parts must be highly integrated. Creation of the
component, and finally the single-part, models will be driven by the cre-
ation of the assembly model. Changes made in the assembly, directly in-
fluence the models of the corresponding components.

The relations between components partially provide the behavior of an
assembly, and can also directly specify some of the geometric properties
of the components. So by providing global shapes, and relations between
them, elements of the detailed geometry can be generated.

These possibilities also provide the system with the opportunity to per-
form some planning activities on a partially detailed model. In a prelim-
inary phase during design, analyses can be executed to see whether re-
quirements are met. Such preliminary planning activities also require a
high integration between the modelling and planning environment.

4.1.3 Integration of modelling and planning

The creation of complex products cannot be done by one person only, nor
by a group of persons within one discipline. Complex products require
high integration of various disciplines involved in the complete life cycle
of the product (Cutkosky et al. 1992).

In fact, it is not possible to separate modelling and planning. This has
already been shown in Section 1.1, describing the design for X (DFX) con-
cept. During modelling, one has to take into account requirements from
several disciplines (the X’s).

Another aspect, highly related to the integration of modelling and
planning, is the integration of different planning modules. Information
created by one planning module, must be available for the other mod-
ules. There must not be any need for generating information within one
module that already was available in another module (van Holland and
Bronsvoort 1997).
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4.2 Short-term goals

The long-term goals provide main directions for research in the far future.
The short-term goals derived from the long-term goals are described in
this section, using the same subdivision as in the previous section.

In literature, descriptions of first steps in the direction of the long-term
goals can be found in Cutkosky et al. (1992), De Fazio et al. (1993), Hen-
derson and Taylor (1993) and Bronsvoort et al. (1996).

4.2.1 Top-down and functional modelling

In Section 2.4, it has already been described how features can possibly be
used to solve the gap between conceptual functional modelling and de-
tailed geometric modelling. Current functional modellers do not properly
link the functions to the final geometry, and current geometric modellers
do not provide the necessary information why certain geometric solutions
were used.

Features combine functional and geometric information, and therefore
are a good research direction to solve the gap between them, as is also
described by Henderson and Taylor (1993) and Wearring (1996). The em-
phasis should not only be on features describing a certain shape, but also
on features describing relations between shapes, because in a top-down
design not only shapes of the designs are important, but also the behavior
provided by relations between shapes.

4.2.2 Integration of single-part and assembly modelling

As features are already used in single-part modelling, the integration of
single-part and assembly modelling could be provided by the feature-
modelling concept. However, in single-part modelling, different disci-
plines are involved in the creation of the model, and they all make use of
different, possibly overlapping, sets of features. As a first step, it should be
possible to create an integrated model for one discipline, or view, already
known in single-part modelling, e.g. the design view or the manufactur-
ing view. Thereafter, multiple views should be taken into account, as is
described by de Kraker et al. (1995) and Bronsvoort et al. (1996).

4.2.3 Integration of modelling and planning

Data structures used in assembly modelling and needed in assembly plan-
ning, should, as much as possible, be combined to realize a reduction in
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planning time. The additional functional information stored in feature
models during modelling can be used in planning modules to retrieve
needed information without the use of lower-level geometric reasoning
procedures.

To realize a fast feedback loop of DFX analyses in modelling, it is re-
quired that there is not only one integrated data structure, but also one
system in which modelling and planning activities are integrated.

4.2.4 Towards solutions of the short-term goals

In the following parts of this thesis, detailed solutions to solve the short-
term goals are described. In Part II an integrated feature-based product
model will be described, usable for both single-part and assembly mod-
elling. This feature-based model will already provide some characteris-
tics needed for top-down functional modelling. Part III will describe how
several assembly planning modules are integrated in the system, making
profitably use of the feature-based model.
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Background

Modelling

Part II focusses on the modelling environment. First, in
Chapter 5, a new object-oriented feature-based product model
is presented. This model combines elements from single-part
and assembly modelling.

Thereafter, in Chapter 6, the focus is on assembly features,
in the described product model to keep track of the assembly
information of a product.

In Chapter 7, a prototype assembly modelling system is de-
scribed. Within this system, assembly models can be created
and manipulated.
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Chapter 5

Feature-based product model

As was described in Chapter 2 about the background of assembly mod-
elling, the modelling concept should preferably be closely related to the
way of thinking of the designer, i.e. top-down. Within this concept it is
also preferable that modelling single parts is comparable to modelling as-
semblies. This can be achieved by using the same concepts in modelling
single-parts and assemblies. In other words, the feature model used for
single parts must be comparable to the feature model used for assem-
blies. In this chapter, a feature-based product model is described, capable
of modelling single parts and assemblies.

This was already mentioned by Shah and Rogers (1993). They consid-
ered a feature model for single parts as an “assembly” of form features.
This concept can be seen in Figure 5.1 on the following page. Figure 5.1(a)
shows a simple part containing two form features, and a constraint to spec-
ify the position between the two. Figure 5.1(b) shows the same shape, but
now containing two components, and a mating relation to specify the po-
sition between these two. Both single part model and assembly model
contain “building blocks” and relations between them.

Although there exists similarities between part models and assembly
models, there are also differences, e.g. in building blocks and in rela-
tion types between the building blocks. Whereas in single-part modelling
building blocks can be used that subtract volume, in assembly modelling
mostly additive building blocks are used.

To specify a product model for both, an object-oriented approach is
used. Therefore, first some concepts of object orientation are described.
Then the object-oriented feature-based product models for single parts
and assemblies are described. Parts of this chapter have already been pub-
lished in van Holland and Bronsvoort (1996b).
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plane-plane mate
constraint

block

form feature
rib

form feature

(a) single part model

relation

large block

plane-plane mate

component
small block

component

(b) assembly model

Figure 5.1: Comparing models for single parts and assemblies

5.1 Object-orientation

This section will give a brief description of some issues in object-orientation
and object-oriented modelling; for a detailed description see Stroustrup
(1993) and Gorlen et al. (1991).

In object-oriented modelling abstract data types are used. An abstract
data type is a user-defined data type that encompasses data elements
along with the operations that can be performed on them. Most program-
ming environments used to create models, do not support these abstract
data types, but separate the data elements and the operations that can be
performed on them. The main advantage of combining data elements and
operations is that it is easier to change available data structures or to add
new structures. An additional benefit is that object-oriented models are
closer to the way of thinking of both computer engineer and user of the
created models.

The power of object-oriented modelling lies in the concept of inheritance
— start with an already developed set of object types, or classes, and ex-
tend these for new applications, by adding data elements and operations
to form new classes. Do not write new classes from scratch, but inherit
data and operations from useful base classes. Add new functionality by
describing how the new or derived class differs from the base classes.

Figure 5.2 on the next page shows an example class hierarchy for 2D ob-
jects in a 2D modelling environment. The class hierarchy is shown in the
OMT class diagram notation — OMT stands for Object Modeling Tech-
nique (Rumbaugh et al. 1991). Individual classes are represented in the
OMT notation as rectangles with compartments. The first compartment is
for the name and is always required. The other two are optional, one for
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the data and one for the operations of the class. When data or operations
are not directly needed for the understanding of a class, the OMT notation
allows suppressing any or all elements from being displayed.

2D shape
position : Postition
color : Color

draw( )
move( )

Circle Polyline String ...

Rectangle

modify( )

Triangle ...

Square

modify( )

...

Figure 5.2: Class hierarchy for 2D objects

The base class, the 2D shape class, contains data elements used for a
2D shape, e.g. the position or color, and operations for drawing or moving
a 2D shape on a screen. Derived classes inherit these data elements and
operations, so it is not needed to specify the position data element and
drawing operation for derived classes, if they can use the already available
data elements and operations.
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In the OMT notation, the inheritance between two classes is repre-
sented by a line with a triangle in between. The triangle points in the
direction of the base class.

When some pre-defined operation does not fulfill all the requirements
for a derived class, this operation can be overloaded: create for this derived
class a specific operation with the same name as in its base class. For ex-
ample, the difference between the Rectangle class and the derived Square
class is the modification operation, where the latter class restricts the mod-
ification by defining that width and height must always remain the same.
In this way only the needed additional data elements and operations have
to be specified for a derived class.

It is possible for a class to derive data elements and operations from
more than one base class; this mechanism is called multiple inheritance. Fig-
ure 5.3 shows an example of multiple inheritance. When a combined data
structure for a string and a rectangle around it is needed, and data struc-
tures for a string and a rectangle have been defined, then the new class,
the BorderedString class, can be created by inheriting the data elements
and operations from both Rectangle and String class.

BorderedString

Rectangle String

Hello World

Figure 5.3: Multiple inheritance

How these object-oriented models can be used in developing data
structures for feature modelling, is shown in the following sections.

5.2 Single part model

As was stated in the introduction of this chapter, the feature model for
a single part can be seen as a collection of building blocks, i.e. the form
features, together with mutual relations, i.e. the constraints.

The term form feature is used here, instead of the terms design feature
or manufacturing feature, because there is no need to know whether the
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used shape has some design or manufacturing intent. Only the shape of a
feature is of interest here.

5.2.1 Form features as building blocks

A single part can contain several building blocks of the same type, i.e. sev-
eral instances of form features. Each type of form feature is represented by
a GenericFormFeature class. Take, for example, a single part with mul-
tiple holes in it. Each hole is represented by a specific instance, called
object in object orientation, of the Hole class. Every feature inherits from
the base FormFeature class. This class contains a data structure in which
the geometry of the feature can be described and operations, or methods,
on these data structures with some specific functionality. Each derived
feature class, e.g. the ThroughHole class, derives the data elements and
operations on them from its base class, and makes some modifications on
data elements and operations to describe the geometry of that specific fea-
ture. Each instance, or object, of these classes, describes the exact shape,
with specified attributes, e.g. a through hole with specified diameter at-
tribute M8. Detailed descriptions of form feature classes can be found in
Ovtcharova et al. (1992), and an example is shown in Figure 5.4.

Depression

Slot Step Hole...

DoveTailSlot... ThroughHole BlindHole ...

Protrusion

Block Rib...

DoveTailRib ...

FormFeature

CompoundFormFeature

2+2+

Figure 5.4: Class hierarchy for form features
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A special class is the CompoundFormFeature class, where new form
features can be created by taking combinations of other form features. In
this way, the set of already known form features can be extended. There-
fore we need an association relation between classes. In the OMT notation,
such an association is represented by a line between two classes. The line
terminators indicate the multiplicity of the association. A hollow ball in-
dicates “optional”, meaning zero or one. A solid ball indicates “many”,
meaning zero or more, or n or more, when a multiplicity of n is provided.

For the CompoundFormFeature class, the association with the Form-
Feature class represents: a CompoundFormFeature has always an asso-
ciation with two or more FormFeatures, whereas a FormFeature has an
optional association with a CompoundFormFeature — it is only present
when a FormFeature is in a CompoundFormFeature.

By using the term form feature, the product model is simplified: these
features are not the only type of features; there are many more, see for ex-
ample Pratt (1993). Of course there can be multiple views on one product
model, using their own set of features. But the assumption that a prod-
uct model for single parts is represented in a specific view, which contains
form features and constraints, is enough for the discussion within assem-
bly modelling. If it works with one view and conversion between views is
achieved, then it will work with any view. For the discussion on multiple-
view feature models for single parts and conversion between views, see
de Kraker et al. (1997).

5.2.2 Constraints for mutual relations

To define the exact position and orientation of the instances, relations or
constraints are defined between these instances. Therefore a base Con-
straint class is defined, and derived classes to describe constraints, e.g. the
Mate class for the mating relation between two planes, and the Offset class
for the offset relation between two planes.

Besides the geometric constraints, there can also exist algebraic con-
straints, to specify, for example, a relation between the area of a plane and
the volume of a shape.

Details on constraints can be found in Dohmen (1995) and Dohmen
et al. (1996), and a brief example of a constraint class hierarchy is given in
Figure 5.5 on the facing page. Here, also, new constraints can be defined
using the CompoundConstraint class by taking combinations of other con-
straints.
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Geometric

PlanePlane LinePlane

...Mate ...Offset ...

Algebraic

... ...

Constraint

CompoundConstraint

2+

...

2+

Figure 5.5: Class hierarchy for constraints

5.2.3 Feature model: combining form features and con-
straints

To define a complete single part, both instances of features and instances
of constraints must be specified. This is done with a FeatureModel class
as is shown in Figure 5.6. The FeatureModel class contains a list of feature
instances, the FormFeatures, and a list of constraint instances, the Con-
straints on these feature instances.

FeatureModel

FormFeature
1+

Constraint

2+2+

1+

Figure 5.6: A feature model representing a single part by combining form
features and constraints
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A constraint solver is used to satisfy the constraints, and to calculate
the resulting position and orientation of the feature instances. The Fea-
tureModel class defines methods for adding instances of features and in-
stances of constraints, and defines operations for calculating the actual ge-
ometry of the defined single part. In Figure 5.7 on the next page, a feature
model of a single part is shown, with instances of features and instances
of constraints. Associations between these feature and constraint instances
are shown with solid lines, associations between the feature model and its
feature instances are shown with dashed lines. Notice that the associations
between the feature model and its constraints are not shown in the figure
for clarity, although they do exist in the model.

5.3 Assembly model

An assembly consists of combinations of single parts, where different in-
stances can be of the same type. These parts are not always directly assem-
bled into the complete product, but sometimes, and for several different
reasons, subassemblies are created as stable entities. These subassemblies
can be used to assemble other subassemblies or, at the end, the complete
product. Both single parts and subassemblies are stable entities (with re-
spect to motions or transportations), and can therefore be assembled onto
other entities; these stable entities are called components. The already as-
sembled components are called a partial assembly. A partial assembly can
thus be a single part (when assembly has just been started), or a, possi-
bly motion-instable, group of components (during assembly). More about
stability analysis can be found in Chapter 8.

5.3.1 Components as building blocks

In a partial assembly, the same component type can be available on several
places in the partial assembly, e.g. several bolts to fasten a plate. For each
different component type, we introduce a generic component, describing the
geometry by its form features. The generic component does not describe
a position and orientation in the product; this is described by an instance
of a generic component. In this way, a product can have several instances
of the same generic component. Each instance can have different relations
within the product. Figure 5.8 on page 52 shows the class diagram used to
describe the different components.

As can be seen in Figure 5.8, there exist two derived classes from the
GenericComponent class: the Single Part and the GenericCombined class.
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block

step

round-hole round-hole

round-hole

slot
dove-tail slot

constraints

single part

constraints

co-planar offset edgeco-planar offset mating

Figure 5.7: Form feature model of a single part

The difference between the two is that the SinglePart inherits data ele-
ments and operations from both GenericComponent and FeatureModel,
described in Section 5.2. The SinglePart class represents the feature model
of a single part, which cannot be subdivided into smaller components.
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FeatureModel Component

SinglePart

Product PartialAssembly SubAssembly

1+

GenericCombined

GenericComponent InstanceComponent 1+

Figure 5.8: Class hierarchy for different components

The GenericCombined class represents the generic components contain-
ing more than one component. This class will be described in more detail
in Subsection 5.3.3.

5.3.2 Connection features for mutual relations

As within single parts, constraints between instances of form features are
used to specify the position and orientation of components. In the as-
sembly model this is achieved by assembly relations. These can be the ele-
mentary relations as described in Subsection 2.2.3, but a higher abstraction
level is preferable for the assembly relations, both in modelling and plan-
ning. Therefore connection features are introduced. For now it is enough to
know that connection features are on a higher abstraction level than the
elementary relations, and that they contain assembly-specific information.
More details on the connection features are given in Chapter 6. There is
a complete hierarchy of connection features; an example class diagram is
shown in Figure 5.9 on the next page.
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PlaneMateConn.PenHoleConn. RibSlotConn. SnapFitConn.

ConnectionFeature

CompoundConn.

2+

...

ThreadedPenHoleConn. DoveTailRibSlotConn. ...

2+

Figure 5.9: Class hierarchy for connection features

The predefined set of generic connection features can be extended by
using the CompoundConnectionFeature class. With this class, existing
connection features can be combined to generate new connection features.

5.3.3 Generic combined model: combining components
and connection features

The GenericCombined class represents components that consists of combi-
nations of instances of components and connection features between them.
Product, subassembly and partial assembly are all assemblies that can be
subdivided. It is hard to indicate the difference between these types, from
an object-oriented design point of view, which is one of the reasons no
different classes are introduced for product, subassembly and partial as-
sembly (the italic classes in Figure 5.8): all are represented by their base
class, the GenericCombined class.

An attribute in the GenericCombined class contains information
whether it represents a stable entity, i.e. a subassembly or product, or it
is not known whether the entity is already stable, i.e. a partial assembly.

In figure 5.10 an example is given of a generic combined component,
consisting of three instances of two different generic components, and two
instances of connection features.
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component

component

small-block

2nd instance
component

1st instance

base-block

rib-slot

generic

connection feature 2

1st instance

combined

rib-slot
connection feature 1

component

small-block

Figure 5.10: Generic combined model of a subassembly

5.4 Combined product model

As has been shown in the previous sections, in single part modelling and
in assembly modelling, comparable data structures are used to represent
building blocks, mutual relations between the building blocks, and the
structures of the instantiated building blocks and instantiated relations. In
single part modelling, these are represented by, respectively, instances of
form features, instances of constraints, and the feature model. In assembly
modelling, these are represented by, respectively, instances of components,
instances of connection features, and the generic combined component.

Because of these similarities, new classes are defined to establish a
uniform modelling environment for modelling single parts and assem-
blies. These new classes are: the Combined, Related and Relation class,
all shown in Figure 5.11 on the facing page with a bold face.

The Relation class is introduced as a base class for all objects that repre-
sent a relation between building blocks, i.e. the constraints and connection
features. The Related class is introduced as a base class for all building
blocks, i.e. the instances of form features and the instances of components.
The Combined class is introduced as a base class for classes in which sets of
related objects and relations between them are specified, i.e. feature mod-
els and generic combined components. Using these three base classes, a
uniform way in modelling single parts and assemblies is created. This uni-
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Component

ConstraintConnectionFeatureFeatureModel GenericCombined

FormFeature

2+1+

Related

Relation

2+

Combined

1+

GenericComponent

InstanceComponent

Figure 5.11: Combined data structure for modelling single parts and as-
semblies

form modelling concept can be used to combine the two modelling envi-
ronments into one environment, in which both single parts and assemblies
can be modelled.
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Chapter 6

Assembly features

In Chapter 2 and in Chapter 3, assembly features were already briefly de-
scribed with respect to assembly modelling and assembly planning. The
assembly features were used to store assembly information not available
within commonly used product models.

In the previous chapter, the term connection feature was already used
to represent a higher-level relation between instances of components. This
connection feature is one type of assembly feature. In this chapter, more
details of assembly features will be described.

Parts of this chapter have already been described earlier in several
papers, among others van Holland et al. (1995) and van Holland and
Bronsvoort (1995a, 1995b).

6.1 Assembly information and assembly features

As within all disciplines involved in the product life cycle, in assembly
also specific information is needed. As within the other disciplines specific
information is stored within their specific features, e.g. design informa-
tion within design features and manufacturing information within man-
ufacturing features, assembly information will be stored within assembly
features.

6.1.1 Generic and instance level assembly information

Looking at the assembly information needed in modelling and planning,
we can distinguish two different levels:

generic level assembly information independent of the actual position
and orientation of the component within the assembly;
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instance level assembly information dependent of the actual position and
orientation of the component within the assembly.

These levels could also be noticed in the previous chapter, where generic
components contained assembly information on a generic level, and in-
stance components contained assembly information on an instance level.

Assembly planning information is also generated for either the generic
level, or the instance level. This can be seen in, for example, the lowest ab-
straction level of Heemskerk (1990). Within this level, four activities have
to be generated for a component: feed, grasp, move and mount. The feed-
ing, and some elements within grasping, are identical for every generic
component. However, some elements within grasping, and the moving
and the mounting of a component can be completely different for every
instance. Therefore, assembly information can also be differentiated be-
tween generic and instance level — between generic and instance compo-
nents.

Handling information, which is information mostly on the generic
level, is therefore related to the GenericComponent class.

However, connection information, highly dependent of the actual spe-
cific connections between a component and other components, is assembly
information on instance level. Therefore, connection information is related
to the InstanceComponent class.

To store this assembly-specific information within a product model,
special assembly information carriers are defined, the assembly features.

6.2 Assembly feature definitions

In Section 2.4, several definitions of assembly features were given, sum-
marized in:

� the elementary relations between components (Lee and Andrews
1985);

� the elementary relations between components extended with some
assembly information (De Fazio 1990);

� collection of elementary relations and matching form features (Sodhi
and Turner 1991);

� an association between two form features present on different parts
(Shah and Tadepalli 1992).
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All these definitions are, in one way or another, focusing on the relation
between components. Although the relation between components is very
important within assembly, more information is needed. The assembly
features are therefore redefined here, because the previous definitions are
far too restrictive.

An assembly feature is defined as an information carrier for assembly-
specific information. This is a broad definition, but needed to carry all
assembly-specific information within modelling and planning. Assem-
bly features are used to store assembly-specific information in a product
model and to retrieve it from the product model.

Using this definition, it is not strictly necessary to directly link
assembly-specific information to generic shape information, as is done
within definitions for design features and manufacturing features. There
exists assembly-specific information not directly mappable to some
generic shape, e.g. grippers used to grasp a component and the base com-
ponent to start an assembly with, and this information needs to be stored
in the product model as well.

Assembly information can be divided into two types. The first
type represents assembly information used to handle a component, i.e.
handling-specific assembly information on generic level. The second type
represents information about the connections between components, i.e.
connection-specific assembly information on instance level. So the assem-
bly features are divided into:

handling features representing handling information and

connection features representing connections between components.

It is possible that more information than described here should be in-
cluded in these features, because this information is also useful within
modelling or planning. Of course, this is possible by extending the data
structures. Here only a framework is provided to store all required infor-
mation.

6.3 Handling features

Before the actual assembly operation can take place, the components to
assemble must be positioned somewhere near the area of partial assembly.
Fixturing, feeding and almost all grasping information can be stored on
the generic level. This is done by using the handling features.
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6.3.1 Information within handling

Looking at the assembly process as a black box performing assembly activ-
ities on components, one can distinguish on the input side a large number
of components entering the system, and on the output side a relatively
small number of components leaving the system. All these components
must be fed into and transported out of the system, which can be done us-
ing component trays or component feeders. By using component trays, the
number of components and the used pattern on a tray must be known, be-
cause the system must know when a tray is empty and whether an empty
tray must leave the system. Also the actual position and orientation infor-
mation, or ways to retrieve this information using sensors, must be pro-
vided. It is assumed that component feeders do have an infinite capacity,
and that components on these feeders are always positioned and oriented
in some predefined way.

Some of the components can be used as base component, i.e. the first
component of an assembly that is assembled. This base component is as-
sembled onto a fixture tray or fixturing spot. It is assumed that a base
component is always fixtured in a predefined way; thus position, orienta-
tion and fixturing tools are known for a base component.

To move a component from feeding position to fixture, or to assemble
it on a partial assembly, a grasping tool or gripper is needed. It is possible
that a component can be grasped by more than one gripper. Each type of
gripper has its own specifications, and can grip a component in a different
way. For a generic component, it is possible to generate all possible areas
where a specific type of gripper can grasp the component. This can be
combined with the contact areas used in the feeder or component tray, and
the contact areas involved in fixturing (for a base component). For every
type of gripper, usable for a generic component, a set of grip areas can
already be calculated, independent of the actual position and orientation,
see for example Figure 6.1 on the next page. However, the actual grip of
a gripper can only be calculated on component instance level, knowing
the already assembled components, which can further reduce the set of
possible grip areas. See Chapter 9 for more details on how to find possible
grip areas on components.

6.3.2 Handling features class

A handling feature is in some way different from other features, in the
sense that there are no generic descriptions of types of handling features,
i.e. there does not exist some predefined set of handling feature types with
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corresponding behavior linked to these types. Therefore every handling
feature instance is unique and carries information on

� feeding,

� fixturing,

� grippers and

� matching grasping areas.

Thus the HandlingFeature class provides methods to store and retrieve in-
formation about feeding, fixturing and grasping, for a generic component.
This can also be seen in Figure 6.1.

gripper areas

generic
component

handling
feature

feeder

gripper #1

gripper #2

fixture

for gripper #1

for gripper #2
gripper areas

d2

d1

Figure 6.1: Attributes of handling feature

feeding and fixturing information

The feeding and fixturing information can be stored by providing pre-
defined position and orientation information, together with involved con-
tact areas.



62 Assembly features

Feeding and fixturing information can be modelled in the same way as
the assembly model itself. The component together with its feeder or com-
ponent tray can be seen as an “assembly”, with mutual connection infor-
mation. A comparable “assembly” can be constructed for component and
fixture. These “assemblies” can be represented by the GenericCombined
class, described in Subsection 5.3.3: combining components and connec-
tion features. As can be seen in the next section, the connection features
related to the GenericCombined class can provide information about posi-
tion, orientation and contact areas, exactly the information needed in the
handling features.

gripper and grasp area information

Although a gripper can be represented by a complete assembly, and an ac-
tual grip on a component can be seen as an assembly, following Baartman
(1995) we have chosen for a generic gripper definition, because a gripper
can be very complex due to the large number of components in the gripper.
Many of these gripper components do not have any effect on the grasp ar-
eas on the grasped component, but will have an enormous time-effect on
the generation of these grasp areas. Therefore we use specific information
about grippers for the calculation of grasp areas and the actual grip:

� the number of fingers,

� the maximum finger width,

� the finger length,

� minimal and maximal grasp forces,

� finger tip parameters and

� possible available motions.

By using this information, combining it with the already allocated con-
tact areas involved in feeding and fixturing, the grasp areas on a compo-
nent can be calculated, and stored together with the gripper specifications.
How this is done, is described in more detail in Chapter 9 on the grip plan-
ning module.
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6.4 Connection features

Taking a closer look at an assembly will show that there are several kinds
of relations between instances of components. These relations can, with
some exceptions, be represented by elementary relations. However, there
are two main disadvantages of this commonly used method. The first dis-
advantage is the large number of elementary relations to be specified be-
tween the instances of components to represent all relations between them.
The second disadvantage is the level of abstraction of these elementary re-
lations. A designer thinks in connection types between components, and
not in elementary relations. These higher-level connection types can be
structured within so-called connection features. These connection features
are much closer to the way of thinking of a designer than the elementary
relations.

6.4.1 Information within a connection

The idea of connection features is that characteristics of connection types
can be incorporated in these features. By specifying a connection feature
in a product model, the assembly-specific information known by the fea-
ture is also available in the model. Characteristics of a connection are, of
course, the static characteristics when a connection has been established,
but dynamic characteristics are even more important, especially within
assembly planning. These dynamic characteristics are about how the con-
nection can be established (during assembly) or can be broken (during
disassembly).

Here an extendible list is provided, to show some information that is
available when the connection type is known:

involved form feature types The type of the form features involved in the
connection, e.g. both the rib and slot feature in a rib-slot connection.

final position The final position, or goal position, is the position and ori-
entation of the assembled component relatively to the partial assem-
bly, after the assembly operation has been completed. This position
can also be specified by the relative position and orientation of the
involved form features.

insertion point The insertion point is the position and orientation rela-
tive to the final position where there is just no contact between the
component to assemble and the partial assembly to assemble it on.



64 Assembly features

insertion path The insertion path is a trajectory from the insertion point
to the final position. This trajectory can also be a predefined algo-
rithm for some compliant motion, i.e. a motion using contacts during
assembly to eliminate uncertainties in position and orientation.

tolerances A tolerance required to establish a certain connection between
the components.

contact areas Contact areas are those areas involved in the connection.

internal freedom of motion The internal freedom of motion (IFM) is the
set of motions that can separate the component and the partial as-
sembly. This can be both translational and rotational freedom of mo-
tion.

geometric refinements Geometric refinements are special refinements to
ease the assembly operation, e.g. rounds and chamfers.

6.4.2 Connection feature class

Commonly used definitions for assembly features, which in fact only rep-
resent connection types, are too strict for connection features. Only the
type of connection between two form features present on two different
components are modelled. However, there exist connections between
more than two form features and between more than two components,
e.g. a bolt and nut connection connecting several plates.

The ConnectionFeature class provides methods to store and retrieve
assembly information for a specific connection between several compo-
nents. Every specific connection can have its own GenericConnectionFea-
ture class, derived from the base ConnectionFeature class. In this way,
connection features can be compared to form features, in the sense that
connection features are also divided into a set of generic connection fea-
tures from which instances can be generated.

The generic connection features hierarchy is represented by the class
diagram of Figure 5.9 on page 53.

elementary and compound connection features

As with many other features, also in connection features a distinction can
be made between elementary and compound features. Compound con-
nection features can be subdivided into simpler compound features or,
finally, into elementary features. The plane mating connection can be used
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as the most elementary connection feature, see Figure 6.2(a). With com-
binations of this connection feature, almost every connection feature can
be described as a compound feature, in particular the commonly used el-
ementary relations. For example, a rectangular slot, a V-shaped slot and a
dove-tail connection are all a combination of several plane mating connec-
tions, and even a pen-hole relation can be described by a number of plane
mating connection features. However, it is better to have a predefined set
of commonly used connection features, the elementary connection features,
because additional assembly information can be better provided in such a
way. Some examples of such elementary connection features are given in
figure 6.2.

(a) plane mate con-
nection

(b) rib-slot connec-
tion

(c) dove-tail
connection

(d) pen-hole
connection

(e) rectangular
pen-hole
connection

Figure 6.2: Examples of elementary connection features

Each industry has its own set of elementary connection features, i.e. a
set used in the automotive industry will be different from a set used in the
aircraft industry. The sets should also be extendible. Assume that there ex-
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ists a set that matches the requirements for some department within some
industry, then there will always be demands for, possibly new, connections
not defined in the used set. It is possible to extend the used set by defin-
ing complete new ones, but it is also possible to create new connections
by combining already existing ones. The latter can be done by using the
CompoundConnectionFeature class. Examples of compound connection
features are given in Figure 6.3.

(a) compound circular
pattern connection
feature

(b) compound rib-slot
connection feature

Figure 6.3: Compound connection features

6.4.3 Attachments and agents

A special type of connection is the attachment. Attachments are connec-
tions enforced by so-called agents. Agents, consisting of components and
connections, are only needed to enforce a connection.

Take, for example, a functional connection to fix two plates. This can be
done by taking a bolt attachment connection. So, by specifying the func-
tional connection to fix two plates, a new component is introduced with
its own connections, i.e. the bolt with its mutual connections. The new
components and mutual connections are called the agents — divided into
component agents and connection agents. By choosing another, different,
connection to fix the plates, e.g. bolts and nuts to fasten them, other com-
ponents and connections are introduced. See also Figure 6.4.
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(a) plates connected with
single component
agent (instance bolt
component) and two
connection agents (two
threaded pen-hole
connections)

(b) plates connected with
two component agents
(instance bolt and
nut components) and
three connection agents
(two pen-hole and
one threaded pen-hole
connection

Figure 6.4: Connecting two plates with different attachment connections

The fact that a component or a connection is an agent, is important
during modelling. It provides information why a certain component or
connection is in the model: the mutual attachment connection is needed.
Deleting an agent from a model will therefore have direct influence on the
attachment relation.

Because an attachment is always related to at least one component
agent, by instantiating an attachment, always one or more specific com-
ponents are instantiated.

In the definition of the attachment connection, it is defined that the
agents only enforce the connection. This means that there is primarily a
connection behavior of the attachment, and, in addition, some component
behavior. This can be found in the characteristics of the Attachment class.
The Attachment class inherits directly from the ConnectionFeature class,
providing the connection behavior. The attachment should also contain
associations to the agents, i.e. components or connections. However, the
agents themselves should also be able to tell to which attachment they be-
long. To solve this, two new classes are introduced, the ComponentAgent
and the ConnectionAgent, which derive from respectively, InstanceCom-
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ponent and ConnectionFeature. Both agent classes contain an association
back to the attachment to which they belong, see Figure 6.5.

By instantiating the attachment, both the included components and
connections are instantiated.

InstanceComponentConnectionFeature

Relation

2+

Related

2+

1+ AgentComponentAttachment 1+AgentConnection

Figure 6.5: The attachment class



Chapter 7

Assembly modelling prototype
system

In Chapter 5 the feature-based assembly model, and in Chapter 6 more
details of the assembly features have been described. It is, however, not
enough to specify only the assembly model and the assembly features. In
this chapter, the way how to work with these models is described. In ad-
dition, some implementation issues of the prototype system are described.

7.1 Prototype architecture

Before more details are described of how to interact with the product mod-
els, first the global architecture of the prototype is presented, see Figure 7.1
on the following page. In this architecture, modelling and planning algo-
rithms make use of the same product model, the feature-based product
model as described in Chapter 5. There is one interface module, used for
control. By using one interface module, it is possible to call planning algo-
rithms during modelling and vice versa, which is useful for DFX analyses.
Some of the functions can be accessed by a graphical user interface (gui),
to provide the user with an easy mechanism to access the model. Other ap-
plications, which do not directly make use of the gui, can also have access
to the interface for modelling and planning functionality.
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interface

modelling

applications

user gui

planning

product
model

feature-base

other

Figure 7.1: Global prototype architecture

7.2 Assembly modelling versus actual assembly
of a product

It is obvious that assembly modelling and actual assembly of the prod-
uct are not the same. However, sometimes modelling systems enforce that
building of the assembly model takes place in the same order as the assem-
bly sequence during actual assembly, i.e. the actual assembly prescribes
the assembly modelling steps.

The obligation that a designer already provides an assembly sequence
or a stable partial assembly during modelling, can have negative influence
on the creative possibilities of the designer.

There is, however, no need for such a direct link between modelling
and actual assembly. The only requirement is, that a modelling system
should enforce that the final model representing a product or subassembly
can be assembled. The modelling system must provide tools to come as
quickly as possible to such a feasible model.

In some stages during design, however, the designer may want to
know, whether an assembly sequence is available, or whether a certain
assembly remains stable. The modelling system must provide possibili-
ties for these checks, but only execute them on direct or indirect request of
the user.

Another disadvantage of a direct link between modelling and assem-
bly, is that the user is not allowed to model via unrealistic sub-solutions
like several non-connected components, or already instantiated connec-
tions without matching components. It must be possible in some design
stages to still have some undetailed elements or loose links in the model.
The modelling system must, however, be able to recognize these, and re-
mind the user if needed.

How these disadvantages can be avoided is described in Section 7.4.
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First the user interface for the integrated modelling of single parts and
assemblies is described.

7.3 Combined class viewers

Section 5.4 already described a combined data structure for the Feature-
Model and GenericCombined classes, see also Figure 5.11 on page 55. This
Combined class structure provides a uniform modelling environment for
single part and assembly modelling. In this section, the user interface of
this class is described.

From Combined objects, there are association relations to both Related
and Relation objects. There are also association relations between Related
and Relation objects themselves. All theses objects and their mutual asso-
ciations can be represented by a graph; the nodes are the objects, the arcs
the associations. On the other hand, the Combined object itself represents
some geometry, i.e. a single part or an assembly.

This gives two different ways of looking to the same object, as a graph
or as geometry. Therefore, a geometry viewer and a graph viewer are used.
Both viewers have advantages and disadvantages, and used together they
can supplement each other.

7.3.1 Geometry viewer

Within the geometry viewer, the geometry of the model is shown. Because
we make use of the ACIS geometric library for the underlying geometry,
we also made use of the ACIS capabilities to display the geometry, using
line drawings, shaded drawings and mixtures of both. In Figure 7.2 on
the following page, an example of a geometry view is shown. By showing
the geometry to the user, a good spatial notion of the model is provided.
The user can zoom in or out, and rotate the model in the view, to examine
specific details in the model. With the use of mouse clicks, the user can
retrieve information from faces, form features and components.

There are three main disadvantages in using a geometry viewer:

� When complex models are viewed, with many faces overlapping
each other, it is very hard to select a specific face, form feature or
component. This can be solved by always retrieving all relevant
items under the mouse pointer, and by sequentially highlighting
them, selecting the right one. However, sometimes it can be very
hard to see whether the desired element is highlighted.



72 Assembly modelling prototype system

(a) line drawing

(b) shaded drawing

Figure 7.2: Geometry view of a combined model



7.3 Combined class viewers 73

� Relations between form features or instance components, repre-
sented by the Relation class, are very difficult to examine within the
geometry viewer. One can show contact areas, but the type of con-
nection cannot be shown. This can be solved by using icons within
the geometry view, but within complex models, users can hardly
separate the geometry from the icons.

� The structure of the whole model is hardly shown within the geom-
etry viewer. The way the model is constructed from Related and
Relation objects cannot be seen within the geometry viewer.

These disadvantages can be overcome by using the other viewer, the graph
viewer.

7.3.2 Graph viewer

The Combined objects consist of Related and Relation objects with mutual
associations, and these can be represented in a graph structure.

These Combined objects can also be used for building larger Combined
objects, e.g. a subassembly in a product. This recursive structure can be
represented by a hyper-graph structure, where nodes in the graph can be
other graphs representing an InstanceComponent. This InstanceCompo-
nent is an instance of a GenericComponent, being a feature model or a
subassembly.

Advantages of viewing the data structure with the graph viewer are:

� Both the Related and Relation objects can be shown within one struc-
ture.

� Both the Related and Relation objects can directly and easily be se-
lected by following the links in the graph.

� The structure of the whole model is shown by the structure of the
graph, i.e. not only the structure of the relations between related ob-
jects, but also the hierarchy of the structure.

An example of a graph view is shown in Figure 7.4 on page 75. For the
actual building and viewing of the graph, the XHDG widget set — the
X-toolkit Hierarchical Directed Graph widget set (Zink 1994) — has been
used. This widget set is capable of representing multi-level graphs. One
can hide details of a graph on a lower level, by representing only the com-
plete graph as a single node in a higher level. By clicking on this node, the
node will be expanded and the underlying graph is shown.
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Displayable and displayed class

It is preferable that all objects of a product model are uniformly repre-
sented, and have the same behavior in the graph. To achieve this, a new
class is introduced, the Displayable class. If an object of the model wants
a representation of itself in a graph, the object must inherit this behavior
from the Displayable class. Therefore, the Combined, Related and Relation
classes all are derived from the Displayable class, see Figure 7.3.

DisplayableDisplayed

Combined Related Relation ...

Figure 7.3: The Displayable and Displayed class

However, several Displayable objects can be viewed several times in
one model. This is, for example, the case when the same generic com-
ponent is instantiated several times. The instantiated component itself is
unique. The associated generic component can be shown multiple times
in the graph, once for each instantiation. To handle this, the same dis-
playable object must be displayed multiple times on several places. This
is performed by the Displayed class. For every displayed displayable, a
new Displayed object is created. So, a Displayable can be associated with
multiple Displayed’s, and a Displayed is always associated with only one
Displayable.

In Figure 7.4, an example is shown of a graph view. The model repre-
sents a product derived from the DIAC 1 prototype product (Storm 1988).
Every node in the graph, represents a Displayable object: Combined, Re-
lated or Relation. The arcs in the graph represent the associations between
the objects. On the left side, in the middle, you can see the node represent-
ing the Combined object, i.e. the GenericCombined object, of the complete
assembly. Dashed arrow lines are drawn to represent the associations be-
tween the GenericCombined object — the assembly — and the Instance-
Component objects — the instantiated components in this assembly. In
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Figure 7.4: A graph view of the DIAC 1 prototype

the same way arcs could be drawn to the ConnectionFeature objects —
the connection features — but to avoid cluttering, this is not shown. Asso-
ciations between Related and Relation objects are represented with solid
arrow lines. Nodes with a double border can be expanded to show a more
detailed structure. The difference between a grey and a white border is
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that grey bordered nodes represent single-part feature models, whereas
white bordered nodes represent subassemblies.

To describe the possibilities of expanding nodes to show their underly-
ing graph, a smaller example is used. This example, one of the subassem-
blies of the DIAC 1 prototype, is shown in Figure 7.5. The geometry of this
subassembly is shown in Figure 7.2.

Figure 7.5: Graph representing a subassembly

By clicking one of the expandable nodes, the node shows its corre-
sponding sub-graph, see Figure 7.6 on the facing page. This sub-graph
shows more details, and therefore the associating arcs can now point to
this expanded information, i.e. at first only the associations on component
level are shown by the arcs, but after expanding the associations on form
feature level can be shown. In this way the form features involved in a
connection feature can be shown.

If a node represents a subassembly, then the underlying subassembly
can be shown by expanding the node. This can go on until the node rep-
resents a single-part feature model, which is expanded to the underlying
feature model. Even the individual features can be expanded to show the
faces involved in a relation, see Figure 7.7 on page 78.

From showing these examples, it becomes clear that there must be pos-
sibilities to hide certain information within the graph viewer. Information
that can be provided, but is not needed at some moment, is not shown,
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Figure 7.6: A node can be expanded to show its underlying model; notice
that associations are now shown on form feature level

because otherwise the models would become extremely large. This fast
growing of a graph is in fact the main disadvantage of using the graph
viewer.

Of course, one can combine the geometry and the graph viewer: by
selecting one of the nodes in the graph, the represented elements in the
geometry viewer are highlighted.
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Figure 7.7: By expanding a node representing a form feature, the underly-
ing faces are shown

7.4 Combined class modelling

In the previous section, two ways of viewing existing models were de-
scribed, but nothing was said about the creation of models. In this section,
possible ways of creating and maintaining the combined models are de-
scribed. Some operations have actually been implemented, others have
not.

Basically there exists two ways to create and modify a model:

off-line By describing the model in a text file, and parsing the file into the
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modelling system. The creation and modification of the model using
a text file can be done completely separately, i.e. off-line, from the
modelling system.

on-line By using the user interface of the system, the user can create new
and modify existing assembly models. This interface has been partly
implemented.

There is no need to further describe the steps taken within off-line mod-
elling using a text file — it works as with any other interpreter. However,
some concepts of on-line modelling warrant some further explanation.

7.4.1 On-line modelling

Before the actual creation of the combined model can start, the generic el-
ements needed in the structure must be available. These elements can be
separated into the related and relation elements, and depending on the
fact whether you want to create a feature model or an assembly, the form
features and constraints, or the generic components and connection fea-
tures are shown.

For example, before one can create a feature model, form feature de-
scriptions and constraints must be available in some kind of library. These
can be selected and added to the feature model. Then associations be-
tween the form features and the constraints must be defined in such a way
that the result will be the required feature model.

An element added to the model can be an object from the Related or
the Relation class. Dependent on which type you first add to the model,
there can exist two types of modelling:

� related driven modelling and

� relation driven modelling.

Both can coexist within the same modelling session.

related driven modelling

In related driven modelling, first instances of Related objects, generic form
features or generic components, are added, and then the needed Relation
objects between these Related objects are specified.

This is comparable with already existing modellers, where first the en-
tities that contain geometric information are provided (form features or
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components) and then the relations between them, to create the complete
combined model.

The only addition of this concept to the commonly used bottom-up
concept is that both Related and Relation objects contain more knowledge
about each other because of the features. For example, according to al-
ready specified Related objects, a selection can be made of possibly match-
ing Relation objects. This can be helpful for the designer in specifying the
right relations between related objects.

A disadvantage is the fact that this still is a bottom-up modelling con-
cept: the detailed generic objects must already be available before the re-
lations are specified.

relation driven modelling

In relation driven modelling, first the desired Relation objects are specified,
and then Related objects are specified.

At first sight, this does not differ much from the previous way, e.g.
the Related objects can be selected from a matching list dependent on the
already chosen Relation objects. This is still bottom-up modelling.

However, the relation driven modelling concept can be helpful in real-
izing a top-down modelling concept. Suppose that the user is capable of
specifying some undetailed Related objects. Then, by specifying Relation
objects between these instances, and because of the knowledge available
in the Relation objects, matching geometry can be created on the Related
objects. In this way, more detail is specified for the Related objects. This
is modelling from the conceptual towards the detailed level, i.e. top-down
modelling.

mixing related and relation driven modelling

Of course, it is also possible to have both modelling techniques available
in one modelling environment. In this way, the user can choose which
technique he wants to use to create a model.

Some parts of the model can preferably be done by using the related
driven technique, for example when using well-known standard compo-
nents. Other parts of the model, which rely on more creative aspects of
the model with regard to shape and preferred connections established by
these shapes, can preferably be done by using the relation driven mod-
elling technique.
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7.5 Implementation issues

Most parts of the assembly modelling prototype have indeed been im-
plemented. Because the focus of this prototype has been to validate the
use of assembly features in modelling and planning, these parts have got
more attention than pure user interface aspects. In the current implemen-
tation, models can be created and modified in the off-line way. For the
interpreter, the packages flex and bison1 were used. In the off-line mod-
elling files, first the used generic components are described, thereafter the
instances with their relationships. Single parts and assemblies can be de-
scribed completely mixed in one and the same file.

The system is able to create the complete components and assemblies
from the provided instance related and relation objects. A simple con-
straint solver has been implemented to generate the position and orienta-
tion of every instance related object. The complete geometry of the com-
ponents and assemblies is represented with the ACIS geometric library.
Once a part or product has been created, it can directly be used as a generic
component by instantiating it into another partial assembly.

For displaying and examining, the ACIS functionality for displaying
and manipulating 3D graphical objects has been used. The objects can
be displayed as line drawings, shaded images or both. For high-quality
shaded images, utilities have been created to convert the model to formats
used by standard rendering software. The XHDG widget set (Zink 1994)
is used to create and manipulate the multi-level graphs. All the figures
of windows and of shaded images in this thesis have been taken from the
prototype system.

In the prototype, the planning modules can directly be accessed during
modelling, both in the graph and in the graphical viewers. This makes it
possible to perform DFA actions during modelling.

1flex and bison are the GNU variants of the commonly-used Unix tools lex and yacc
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Modelling

Background

Planning

Part III discusses the use of the object-oriented feature-
based product model with assembly features in assembly plan-
ning modules.

It is not the intent to give a detailed description of every
planning module needed within assembly planning. Some
have been chosen, to verify the concept. Besides this verifica-
tion, new and extended planning algorithms are presented to
show additional benefits of the product model.

First, in Chapters 8 and 9, extensive descriptions of using
the product model in stability analysis and grip planning are
given. This is followed by a discussion, in Chapter 10, of how
the product model can be used in motion planning and assem-
bly sequence planning.
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Chapter 8

Stability analysis

Stability analysis is a very important issue in assembly. For example, in
subassembly planning, an assembly is decomposed into stable subassem-
blies, and in assembly sequence planning, stable components must be as-
sembled onto stable partial assemblies. So, in one way or the other, in
assembly planning there must be some stability analyzing tool.

According to Boneschanscher (1993), three types of stability can be dis-
tinguished, depending on the forces taken into account:

gravitational stability only takes into account the gravity. If an assembly
falls apart under influence of the gravity, the assembly is said to be
gravitationally instable.

assembly stability takes into account both gravity and additional forces
caused by the joining operation. If an assembly falls apart during as-
sembly of a component, the assembly is said to be assembly instable.

motion stability takes into account gravity and additional forces due to
acceleration during motion of the assembly. If an assembly falls apart
during moving it from one position to another, the assembly is said
to be motion instable.

Examples of these types of stability are shown in Figure 8.1 on the follow-
ing page.

This chapter will focus on the first stability type, gravitational stability.
Therefore, where the word stability is used, gravitational stability should
be read. The other types of stability can be checked using the same meth-
ods as for gravitational stability, by using the resulting force instead of the
gravitation force. However, the exact calculation of the resulting force can
be very difficult, and is not within the scope of this thesis.
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g

(a) gravitational
stability

g

(b) assembly sta-
bility

g

(c) motion stabil-
ity

Figure 8.1: Different types of stability

To analyse whether an assembly is stable, two steps can be distin-
guished:

1. Analyse translational stability

2. Analyse rotational stability

Within translational stability analysis, only translations between compo-
nents are taken into account, see Figure 8.2(a) on the next page. Within
rotational stability analysis, only rotations between components are taken
into account, which is far more complex than the first step, see Fig-
ure 8.2(b). One advantage of dividing the stability analysis into these two
steps is that the second step can be omitted when the first step already
finds the assembly to be instable.

Both for translational and rotational stability analysis, first some back-
ground is given, thereafter the profits of using assembly features within
stability analysis are shown.

Parts of this chapter have already been published in van Holland and
Bronsvoort (1995a).

8.1 Translational stability

Translational stability analysis checks whether a component can translate
relatively to the other components.
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Figure 8.2: Translational and rotational stability

During assembly, each time a component is added to the partial assem-
bly, and a relative easy thing to analyse is whether a just added component
has some effect on the new partial assembly.

Taking friction into account, the just added component on a partial as-
sembly can have stability effects on other components already assembled.
However, if friction is not taken into account, only the just added compo-
nent must be checked for stability. In this chapter, friction is not taken into
account, so there is no need for searching other instable components in the
new partial assembly.

To know whether a component can translate under influence of the
gravity, one has to investigate whether it is possible to translate, or move,
the component in the gravitational direction. Therefore the internal freedom
of motion (IFM ) of a component is needed, the set of motion directions that
can separate a component from its partial assembly (Lee and Yi 1993). If
one of the directions in the IFM can be transformed in such a way that
it contains an element in the direction of the gravitational force, then the
component is instable in relation with its partial assembly.

8.1.1 Internal freedom of motion

We define the internal freedom of motion between two components as
IFM(ci; cj), i.e. the set of motions that can separate component ci from
component cj . By knowing the set of separating directions of ci from cj ,
also the opposite can be found, i.e. the set of motions that can separate
component cj from component ci:

IFM(ci; cj) = �IFM(cj ; ci):
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If component ci has both a connection with component cj , and a con-
nection with component ck, then the set of motions that can separate com-
ponent ci from both component cj and ck, is found by taking the intersec-
tion of the two IFMs:

IFM(ci; cjck) = IFM(ci; cj) \ IFM(ci; ck):

This rule can be generalized: the internal freedom of motion of a compo-
nent ci having connections with n other components is:

IFM(ci; c1 : : : cn) =
n\

j=1

IFM(ci; cj):

Lee and Yi (1993) used in their definition of internal freedom of mo-
tion only the three principal axes. This is far too limited: in that case also
assembly will be limited to only one of these directions. To accomplish
all possible motion directions for the complete 3D space, another repre-
sentation is needed. This can be done by using a method called visibility
mapping, which is also used by Chen et al. (1993a, 1993b) for several ap-
plications in manufacturing, such as computing machinability on CNC
machines, and mould and die design. Mattikalli and Khosla (1992) also
used this method for stability analysis.

8.1.2 Visibility maps

The visibility mapping method maps the possible translation directions
onto a unit sphere, resulting in a so-called visibility map or VMap.

If a component ci has a plane-mate connection with component cj, see
Figure 8.3(a), then component ci can only move in the set of directions
represented by:

n
~t j ~n � ~t � 0

o
;

where ~n is the normal of the contact face. Mapping these possible transla-
tion directions~t onto the unit sphere, will result in a hemisphere, shown in
Figure 8.3(b) and 8.3(c). If this is done for every contact face between two
components, and the intersection of all the hemispheres is taken, this will
result in a convex spherical polygon representing the internal freedom of
motion between the two components. This method can also be extended
for non-planar faces, as described by Mattikalli and Khosla (1992).
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(c) IFM(cB ; cA) = �IFM(cA; cB)

Figure 8.3: Internal freedom of motion

8.1.3 Central projection

Computing with VMaps is difficult, because taking intersections of convex
spherical polygons is possible, but time consuming. Several attempts have
been made to simplify these calculations on VMaps. This can be done by
transforming the 3D VMaps onto 2D maps, and perform the calculations
in 2D, which is easier. Martens (1991) uses a transformation with spherical
coordinates, but this results in taking intersections of sinusoid functions
in the 2D domain, which is still very difficult, and not stable when the
directions are close to the poles of the sphere.

A better approach is used by Oliver and Huang (1994) and Woo (1994),
using the central projection transformation.

projecting onto one plane

With the central projection transformation, every point on the unit sphere
is projected onto the plane z = 1. This is done by:
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~p(~t) = ~t
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tz
;
ty
tz
; tz
tz

�

=
�
tx
tz
; tx
tz
; 1
�

=
�
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�

The advantage of this method is that every great circle on the sphere is
transformed to a straight line in the 2D domain. A great circle is defined as
the intersection of a plane with a sphere, where the center of the sphere is
also a point on the plane. Every VMap is represented by a convex spherical
polygon on a unit sphere, where the edges of the polygons are parts from
great circles. So these edges are projected onto straight lines in 2D, see
Figure 8.4(c) on the facing page. This implies that taking intersections of
VMaps is reduced to taking intersections of convex polygons, which is
relatively simple.

A problem of projecting the VMap onto only one plane, z = 1, is that
antipodal points — (x; y; z) and (�x;�y;�z) — on the sphere are projected
onto the same point (p; q) on the plane. However, it can be the case that one
of these antipodal points represents a possible motion direction, whereas
the other does not. By projecting them onto only one point on the z = 1
plane, the problem is introduced that the difference between them cannot
be distinguished any more.

projecting onto two planes

This problem can be solved by not projecting onto one plane, but instead
onto two planes. The points on the sphere beneath the plane z = 0 are pro-
jected onto the plane z = �1, and the points above the z = 0 are projected
onto the plane z = 1. The sphere is thus transformed into two planes,
z = 1 and z = �1; see Figure 8.4(d) on the next page for an example.

Another, major, problem both for projecting onto one and two planes is
the numerical degeneracy problem. For points on the sphere with tz � 0,
the range on the projection planes becomes very large; points with tz = 0
are projected onto infinity. A standard solution for this is to try to rotate
the VMap in such a way that no tz value is near zero. This can only be
done if the spherical convex polygon on the unit sphere is smaller than
the hemisphere, and this is not always the case. Take, for example, the
plane mating connection, which has a complete hemisphere as VMap, see
Figure 8.3(b) and 8.3(c) on the preceding page.
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Figure 8.4: Central projection
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central projection using the cube projection

A better solution for the numerical degeneracy problem mentioned in the
previous subsection, is to project the sphere onto the six planes of a cube,
instead of two planes 1. This is done by determining for each point on
the sphere which of the tx, ty or tz components has the largest absolute
value. If this is the tx component, then the point is projected onto the
plane x = �1, dependent on the sign of the tx component. Similar rules
apply if the ty or tz component has the largest absolute value. For example,
point (1,0,0) is projected onto plane x = 1, and point (1

2

p
2; 0;�1

2

p
2) onto

both plane x = 1 and z = �1. As a consequence of this projection, the
range (p; q) of the projection onto a plane will always be limited, within
�1 � p � 1;�1 � q � 1, and the projection onto such a plane will always
be a convex polygon. The VMap is thus transformed onto the six planes
of a cube bounding the unit sphere; an example is given in Figure 8.5.

x=-1

z

x

y

x=1

z=-1

y=1y=-1

z=1

(a) VMap

z=1

x=1

z=-1

y=1y=-1

(b) central projec-
tion onto cube

y=1

x=1

y=-1

z=1

x=-1

z=-1

(c) unfolded cube

Figure 8.5: Central projection onto a cube

The intersection of two VMaps is now simply computed by taking for
every plane the intersection of the convex polygons of the two correspond-
ing planes of the two cubes.

For the implementation of the box projection, one can simply use the
geometry classes already available for creating the assemblies, in our case
the ACIS geometric library. One starts with a cube, representing all pos-
sible motion directions. For every face involved in a connection, one can

1Basically the same idea has been developed independently by Mattikalli et al. (1994)
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create a halfspace. By taking the intersection of the halfspace and the cube,
one retrieves the possible motion directions.

8.1.4 Using connection features for internal freedom of
motion

An advantage of using connection features, is that there is already knowl-
edge of possible motion directions available within the generic connection.
Every generic connection feature already contains the generic contact ar-
eas, and contains a generic description of the internal freedom of motion.
See Figure 8.6 on the next page for examples of generic internal freedom
of motions for several connection features.

For every instance, this generic internal freedom of motion, can directly
be used to retrieve the actual internal freedom of motion. This is shown in
Figure 8.7 on page 95 for a simple assembly, where the internal freedom of
motion of component D is calculated by intersecting the internal freedom
of motions of the involved connection features.

To find translation stability, the resulting internal freedom of motion
must be intersected with the central projection of the plane with the nor-
mal in the direction of the gravitational force. If this intersection is empty,
the assembly is translationally stable, otherwise it is translationally insta-
ble.

The same calculation can be used when the resulting force during as-
sembly or motion is known, and this force has a fixed direction during
assembly or motion, which is, unfortunately, rarely the case. Then the
halfspace should be taken in the direction of the resulting force. If the re-
sulting intersection with the internal freedom of motion is not empty, the
assembly is not assembly or motion stable.

8.2 Rotational stability

To decide that a component is rotationally instable, one has to find a ro-
tation axis around which the component can rotate, given the available
forces. A rotation axis differs from a translation direction in the fact that
an axis contains both a position and a direction. This describes imme-
diately the main difference between analysing translational stability and
rotational stability. Translation directions can be mapped onto visibility
maps, but for possible rotation axes this is more difficult.

Another difference is that when already more then two components are
in the resulting partial assembly, one has to take into account that already
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Figure 8.6: Connection features contain a description for the generic inter-
nal freedom of motion

examined contact areas can become instable by adding a new component.
This can be seen in Figure 8.8 on page 96, where assembling a component
C, results in a rotationally instable connection between component A and
B, whereas the connection between component B and C itself is rotation-



8.2 Rotational stability 95

z

y
x

C

D

B

A

simple assembly

D

A

B
C

assembly model with plane-
mate connection features

y=1

x=1

y=-1

z=1

x=-1

z=-1

IFM(D;A)

\

y=1

x=1

y=-1

z=1

x=-1

z=-1

IFM(D;B)

\

y=1

x=1

y=-1

z=1

x=-1

z=-1

IFM(D;C)

=

y=1

x=1

y=-1

z=1

x=-1

z=-1

IFM(D;ABC)

Figure 8.7: Retrieving the actual internal freedom of motion from the in-
volved connection features

ally stable.
Also other components not directly connected to the just assembled

component, can have influence on the stability of the assembly, e.g. com-
ponent E in Figure 8.8(c). These components must also be taken into con-
sideration.

8.2.1 Rotational degrees of freedom

Mattikalli and Khosla (1991) described a theoretical basis for finding all
possible rotation axes; the rotational degrees of freedom. They also developed
a structure to represent all possible rotation axes.

Every rotation axis can be represented by a direction and a position.
All possible directions can be represented on a unit sphere, as was shown
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Figure 8.8: Assembling a component can change a previously stable con-
nection into an instable connection

in the previous section, and for a specific direction all possible axes can
be represented in a plane with the same normal as that direction. Any
rotation axis in a specific direction can thus be represented by two coordi-
nates on that specific plane. Therefore there must be defined an origin of
the plane, and, for convenience, this origin is chosen as the contact point
between plane and sphere representing the directions. The x and y axes
on the plane are chosen in such a way that the x axis is parallel with the
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equator of the sphere, and the y axis is in the direction of the north-pole of
the sphere, see Figure 8.9(a).
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planes and the position by
positions on these planes
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y

x

z

y

(b) represent only planes on the
equator of the unit sphere

Figure 8.9: Representing rotational degrees of freedom

For a single contact area, they have proven that it is enough to represent
only the planes around the equator of the unit sphere. These planes can be
divided by a half plane representing on the one side the possible rotation
axes and on the other side the stable axes, see Figure 8.9(b). Further they
found that it is enough to represent only those planes that have the same
direction as the edges (on the convex hull) of the contact area.

All rotation axes for every contact area can be combined in such a way
that they are within one rotational degrees of freedom representation. In
this representation, one can immediately see which rotation axes are pos-
sible for the given contact.

However, within stability analysis for assembly, there is no need to in-
vestigate all rotation axes in 3D space. Only the axes on the borders of
the convex hulls of contact areas can generate a rotation due to available
forces, and only these have to be compared with the axes in the represen-
tation. For the axes that match with the ones already in the representation,
it must be calculated whether the assembly is instable under influence of
gravity.



98 Stability analysis

8.2.2 Using connection features for rotational degrees of
freedom

To find the rotational degrees of freedom, Mattikalli and Khosla (1991)
used the edges (of the convex hull) of the contact areas involved. How-
ever, by using information available in the connection features describing
connections between components, there is no need to investigate all these
edges. Take, for example, the rib-slot connection feature. This feature al-
ready contains the information that there are maximal four possible rota-
tion axes. Without this information, many possible edges would have to
be examined before these four axes were found, see Figure 8.10.

The possible rotation axes are stored within the generic descriptions of
the connection features. Using information available on instance level, the
actual possible rotation axes can directly be provided, see Figure 8.10. By
combining all possible rotation axes of all involved connections, the result-
ing possible rotation axes are found. These can be combined with external
force information, to determine whether an assembly is rotationally insta-
ble.

(a) this instance contains two of the
four possible rotational axis

(b) this instance contains three of the
four possible rotation axes

Figure 8.10: Connection features can give possible rotational axes, by com-
bining available generic and instance information



Chapter 9

Grip planning

Another planning module in assembly planning is the grip planning mod-
ule. The main purpose in grip planning is to find how a component can be
grasped, in such a way that it can be assembled onto the partial assembly.
In this chapter, the use of form features and assembly features within grip
planning is shown. Before their use is described, first a brief description
of grip planning in general is given. More details on grip planning can be
found in van Bruggen et al. (1993) and Baartman (1995).

Parts of this chapter have already been published in van Holland and
Bronsvoort (1996a).

9.1 Grip planning in general

In general, there are several aspects within grip planning (Baartman 1995).
First, some gripper, or grippers, must be selected to grasp a specific com-
ponent. Second, areas on the component must be determined to position
the selected gripper on, the so-called finger domains. Finally, positions on
these finger domains must be chosen for the actual grip.

9.1.1 Gripper aspects

A gripper can only be selected if there exists, at least, one actual grip that
is capable of gripping the component. Therefore, to know which grippers
can be selected for a specific component, the other aspects — determining
finger domains and selecting some of them for at least one grip — must be
considered. When this has been done once for a specific component, this
information can be stored in the handling feature associated to a generic
component, see Section 6.3.
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But how do we represent a gripper, in such a way that this gripper
model can be used in grip planning? The high versatility of the human
hand results in a wide range of components that can be grasped by hu-
mans. Much research is done to develop a robot hand that is as versatile as
a human hand, but the control of such a gripper becomes very complex. To
get less complex control, the gripper must be made simpler, which means
that only grips on a restricted set of components can be performed, i.e.
the gripper can only be used for a very limited range of products. Most
industrial grippers are made to grasp only a uniform set of components,
e.g. components within one product family, which severely restricts the
flexibility of the assembly system: new components require new grippers.

General-purpose grippers are developed to realize more flexibility in
grasping. This flexibility is dependent on the type of the mechanical fin-
gers, the number of fingers, their possible movements, and the contact
type between fingers and the component. Here only general-purpose grip-
pers are considered with two or three fingers. Each finger is represented
by a small cylinder with a larger sphere at the end of it. Contacts with
the component are represented by a point contact, where the sphere is in
contact with the component. Baartman (1995) shows that, for flexibility,
it is preferable to use point-contact finger-tips. These contact types are
easier for computations than, for example, soft finger-tips (Cutkosky and
Wright 1986), because the geometry is fixed and therefore contact forces
applied to them can be computed. The component in Figure 9.1 is grasped
with point-contact finger-tips.

finger-tip
point-contact

component

finger

gripper

partial assembly

Figure 9.1: Gripper grasping a component; the contacts with the compo-
nent are represented by point-contacts
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9.1.2 Finger domain aspects

To find a set of grips, all areas where the fingers can be positioned must
be found, the so-called finger domains, which is a time-consuming step de-
scribed in more detail later on.

Some requirements for these finger domains, described by, among oth-
ers, Nguyen (1988) and Ponce et al. (1993), are:

feasibility It must be possible to position the gripper fingers on the finger
domains.

reachability It must be possible to reach the finger domains with a grip-
per via a collision free path from an initial position relatively far from
the component.

The feasibility requirements must also take into account that the gripper
is not positioned on areas of the component involved in the connection to
be established and/or in contact with, or close to, the feeder from which
the component is grasped. For this, among other things, the contact areas
with the fixture, partial assembly and feeder must be known.

9.1.3 Actual grip aspects

When all finger domains have been determined, a selection from these
must be made in such a way that the following requirements are met:

closure There must be either force closure or form closure, i.e. the contact
forces respectively the location and shape of the gripper fingers must
constrain the motion of the grasped component.

equilibrium There must be a balance between the weight of the compo-
nent and the forces exerted by the fingers.

stability During the grip, the position and orientation of the grasped com-
ponent, relatively to the gripper, must remain the same.

Most research in finding stable grips has been based on these requirements
(Nguyen 1988). When the gripper has only two or three fingers, the po-
sitions to place these fingers are always on a line respectively in a plane,
called the grip plane. This reduces the problem of finding stable grips from
a 3D problem to a 2D problem, or a 21

2
D problem if the orientations of the

faces are taken into account.
If all these requirements are met, and several sets of finger domains

remain possible, still several actual grips can be selected.
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Sometimes it is enough to find only one possible grip. However, when
flexible assembly is considered, and off-line planning modules are used,
flexibility is increased by determining a larger set of grips on generic com-
ponent level. These grips are ranked in some way to be able to select the
best grip for different situations, during the on-line planning phase, on
instance component level.

9.2 Finger domains and non-free regions

As was already mentioned in the previous section, finding finger domains
is a very time-consuming step. More details about how to find them in
general will be given in this section. Improvements will be described in
the next section, where form features and assembly features are used to
find them.

Finger domains can be found by taking the complement of all areas
where the fingers cannot be positioned. There can be several reasons for
such areas: there is no collision free path of the finger-tips to the compo-
nent; the areas are forbidden, e.g. threaded or easy-to-damage areas; or
the areas are in contact with the feeder, partial assembly or used fixtures.
Except for the forbidden areas, van Bruggen et al. (1993) have described a
method for finding them by looking for so-called non-free regions on the
component. These non-free regions can be found by using Expanded
Face Solids (EFS). Baartman (1995) has described some extensions to this
method.

9.2.1 Expanded Face Solids

The basic idea of using EFSs is that every face in the product model is
offset by an envelope volume dependent on the thickness of the finger-
tip. The intersection of the EFS for a certain face with the model gives
the region(s) where the finger-tip positioned on the face has a collision
with the model, the non-free regions. The envelop volume is created by
sweeping the finger-tip completely over the face, see Figure 9.2(a) on the
facing page.

To get easier and faster calculations, the finger-tip is approximated
with a box, resulting in a boxed-shaped EFS, see Figure 9.2(b).

To get all non-free regions from the complete model, an EFS for every
face in the model must be created, and intersection of these EFSs with the
model will result in all the non-free regions. Because an EFS must be cre-
ated for every face, the time complexity of this method is dependent on
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Figure 9.2: Finding non-free regions with the Expanded Face Solids

the squared number of faces.
Although the EFS method is only given for planar faces, it is possible

to extend it to other types of faces. However, offsetting a curved face is
often very difficult, and is mostly done by faceting, which results in an
approximate EFS of the face. Another disadvantage of the faceting step is
that it generates many new faces, which is undesirable because of the time
complexity of this method.

When all finger domains have been found, several finger domains
must be selected for the actual grip. This is done by filtering, using several
heuristics for the finger domains, in such a way that a stable grip is found.

9.2.2 Problems using Expanded Face Solids

However, there are some problems with the EFS method, because the EFS
of a given face does not find the non-free regions on that face, but only the
areas possibly influencing that face. An influencing area is an area that is
the cause for a non-free region, i.e. the finger will be in collision with the
influencing area when it is positioned on the non-free region.

Suppose, we want to find the non-free regions on a model, see Fig-
ure 9.3(a) on the next page. To find these non-free regions, we must gener-
ate EFSs for all faces. By doing so, every face finds the areas it is influencing
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on other faces, but this does not exactly result in all the non-free regions.
Take, for example, the model shown in Figure 9.3(a). It is not clear

what the size of the envelope volume of face f should be. By choosing an
offset of height d and width 0:5d — with d as the diameter of the finger-tip
— the found intersections will sometimes be too large, see Figure 9.3(b).
In this case, the method is too conservative, specifying too many areas as
non-free where in fact the finger can be positioned.

By taking an equal offset of 0:5d for both height and width, some in-
tersections will not be found, and some areas are supposed to be finger
domains whereas they in fact are non-free regions, see Figure 9.3(c).

non-free
regions

face f

(a) non-free regions to
be found by face f

non-free
regions

non-free region

0.5 d

d

EFS

found

too large

(b) some non-free re-
gions found are too
large

non-free region

0.5 d

non-free
region not

found

(c) some non-free re-
gions are not found

Figure 9.3: Problems using the EFS method

Baartman (1995) has described a solution for these problems by using
a more complex method, introducing an extra step. For the generation of
the envelope volume the height d and width 0:5d are taken. The generated
EFS of face f is used to find influencing areas, see Figure 9.4(a) and 9.4(b)
on the next page. These influencing areas are used to calculate the non-
free regions on face f , by projecting the influencing area back onto face
f . Finally the area is extended by 0:5d to find the non-free region of the
finger-tip on face f , see Figure 9.4(c) and 9.4(d). For 2D, this may look
simple, but it can be very complex for 3D models.

For this enhanced method, to find all non-free regions on the model,
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face f

(a) face f , to
find non-free
regions on

(b) find influ-
encing area
using EFS

0.5 d

d

(c) project influ-
encing area
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face f

(d) resulting
non-free
region for
face f

Figure 9.4: Enhanced EFS method, projecting the influencing areas back
onto the evaluated face f

again for every face in the model, an EFS must be created to find the in-
fluencing areas for that face. These areas must be projected back onto the
face to find the resulting non-free regions. Removing these found non-free
regions from the complete model will result in the finger domains.

Notice that for finding all possible grips, a lot of information on the
component itself, and its connections with feeder, fixture and the partial
assembly, has to be taken into account. The connection areas cannot be
used for grasping the component; these areas are already in contact with
feeder or fixture, or they will become in contact with other components
in the partial assembly. To retrieve all this information from a low-level
geometric model is very time consuming, and sometimes even impossible.
The next section will show how concepts from feature modelling can help
to find faster and better solutions.

9.3 Using features in grip planning

The idea of using features in grip planning is to interrogate the features in
a product model to see where they can or cannot be grasped. Using feature
information will accelerate the finger-domain determination, therefore
this method is called Feature Accelerated Finger Domain Determination
(FAFDD). Which type of features are used, and in which phase of the fin-
ger domain determination, can be seen in Figure 9.5 on the following page.

In the first phase, form features and handling features can give infor-
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Figure 9.5: Features used to accelerate the finger domain determination,
and to provide additional information for the actual grip

mation about finger domains. Every generic component is associated with
a handling feature, as described in Section 6.3, which contains information
on the gripper(s), feeder and fixtures to use for this generic component.
The form features retrieve the finger-tip parameters for a specific gripper
from the handling feature, and use these parameters to generate an initial
set of gripper-specific finger domains. The areas involved in feeding and
fixturing, also stored in the handling features, are removed from this ini-
tial set. Thereafter, the resulting set is stored back in the handling feature.
The handling feature then contains a set of gripper-specific finger domains
for a component, independent of the connections involved in the complete
product.

This set, initially the same for every instance of the component, can be
used in the second phase to determine actual gripper-specific grips on in-
stance level. This can be done by combining this set of finger domains with
connection information and assembly directions stored in the connection
features. If several grippers can be used for the component, then for each
gripper such a set of finger domains will be computed.

In the next subsections, these steps within FAFDD will be further ex-
plained.

9.3.1 Using form features

A feature model consists of instances of generic form features. In every
generic feature definition, some information useful for grip planning can
be stored. By using this information, every instance can generate potential
finger domains from its parameters.
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local finger domains

In Figure 9.6, information stored in the generic definition of this dove-tail
slot feature is shown. The parameters for width, length and depth are
defined here. On the basis of the values for the parameters of an instance,
the non-free regions, areas not in a finger domain, can be computed for a
specific finger-tip. The influence of other features on this feature is not yet
taken into account, and therefore the found finger domains are called local
finger domains.

front

length
width

depth
angle

left top

back

right

bottom

(a) generic definition of form feature
dove-tail slot

finger

different rankingfinger

local finger domain

top side

front side

(b) instance form feature dove-tail
slot with local finger domains de-
pendent on gripper parameters

Figure 9.6: Generic definition of a dove-tail slot feature, and an instance
of it with its local finger domain (different shadings represent
different rankings: light shading for areas that can easily be
grasped, dark shading for areas that cannot be grasped)

The local finger domains on each feature can be enhanced by giving
some kind of ranking to it, depending on the graspability known by the
feature. For instance, curved faces can be used for grasping, but it is better
to use planar faces. Take, for example, the dove-tail slot feature in Fig-
ure 9.6, some finger domains can be reached by the gripper from both top,
and front and back side. Others can only be reached from front and back
side, resulting in a lower ranking, because the orientation of the gripper
must be taken into account here. This ranking can later be used when the
best grip must be chosen from all possible grips. In Figure 9.7 on the next
page, some generic features and their local finger domains are given.

The local finger domains found for all features in the model can be
combined to retrieve the local finger domains for the complete model.
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finger
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Figure 9.7: Generic form features and their local finger domains

global finger domains

Areas found to be within a local finger domain, can still be non-free re-
gions because of the influence of other features. A feature does, in general,
not know, whether there exists some influence from other features. For ex-
ample, in Figure 9.8 on the facing page, the two rib features may be too
close to each other to position a finger in the slot between them. There-
fore an extra step within FAFDD is introduced to compute the global finger
domains from the already generated local finger domains.

This local finger domain reduction might be done by using the EFS

method. But using the EFS method, as was described in the previous sec-
tion, will completely reduce the benefits provided by the features. As was
already mentioned before, the EFS of a face finds the non-free regions on
other faces influenced by the evaluated face. Therefore, to find the global



9.3 Using features in grip planning 109

of other feature
global influence

finger

local finger domains

block

rib 2rib 1

Figure 9.8: Features can have influence on other features, reducing their
specified finger domains

non-free regions on the local finger domains, for every face in the model
an EFS must be calculated. The number of faces to investigate would there-
fore be the same in FAFDD as with using the EFS method alone.

additive features influencing local finger domains

Fortunately, features themselves can give information on whether they can
possibly influence the finger domains of each other. Only additive features,
features that add volume to a model, can have influence on finger domains
of other features. Subtractive features alone cannot have influence on finger
domains of other features. More precisely, only faces belonging to local
finger domains of additive features can give rise to a further reduction of
the finger domains.

Figure 9.9 on the next page explains this with an example. We start
here with the local finger domains from the three features in the model.
For every face belonging to a local finger domain of an additive feature,
an EFS calculation is performed. This results in a reduction of the local
finger domains of the model, because the two ribs have influence on each
other. There is no need to investigate non-free regions or faces not belong-
ing to additive features (the starting block feature is neither additive nor
subtractive). The number of EFS calculations performed in this example is
6, instead of 12 when the original EFS method would be used.
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rib2

block

rib1

(a) start with the local finger domains

(b) check the influence of additive feature rib1

(c) check the influence of additive feature rib2

(d) resulting global finger domains

Figure 9.9: If additive features have influence only on each other, the lo-
cal finger domains of the additive features are needed for EFS
calculations
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subtractive features influencing local finger domains

As stated before, a problem of the initial EFS method applied on a face
is that it does not find the non-free regions on the evaluated face itself,
but on the faces that this face influences. In the example in Figure 9.9
on the facing page, this was not a problem, because the faces influencing
each other were both belonging to additive features. There is no need in
projecting the influencing areas back onto the faces, because of the fact
that the influencing areas belong also to additive features, and these are in
turn investigated with the EFS method, finding the projection. Thus both,
influenced face and influencing area, were handled by the EFS method,
finding the non-free regions on each other.

Unfortunately, the procedure just sketched fails if an additive feature
has influence on finger domains of a subtractive feature. The non-free
regions on the subtractive feature are found, but the non-free regions
because of that subtractive feature on the additive feature itself are not
found, i.e. the projection of the influencing area. To find the latter non-free
regions, the EFS method must also be performed on the just found non-free
regions on the subtractive features, to perform the projection back onto the
influenced face.

Another example explains this situation. Figure 9.10 on the next page
shows the local finger domains resulting from the three features in the
model. In step 1, the faces belonging to local finger domains of the additive
rib feature are investigated by the EFS method. If found non-free regions
belong to the subtractive slot feature, these regions are used in step 2, to
find the non-free regions on the additive feature. This results in the global
finger domains of the model, found with only 3 EFS calculations and 2
projections due to influencing areas, instead of 12 EFS calculations and 12
projections due to influencing areas, needed in case no feature information
would have been used.

method FAFDD versus original EFS

It is clear for which models the time reduction is most substantial using
FAFDD. Models with only subtractive features do not require any EFS cal-
culations at all. In the worst case, models with many additive features
influencing subtractive features, many EFS calculations and projections of
influencing areas are needed to find the global finger domains, but such
models are rare in practice. Even then, fewer calculations are needed using
FAFDD compared with using the original EFS method.
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block

slot
rib

(a) start with the local finger domains

(b) step 1, evaluate the additive features, and store influencing areas of
subtractive features

(c) step 2, evaluate the influencing areas of the
subtractive features

(d) resulting global
finger domains

Figure 9.10: When additive features have influence on subtractive fea-
tures, both local finger domains of additive features and
found influencing areas on subtractive features are investi-
gated by EFS calculations

9.3.2 Using handling features

Handling features can be used to store information for a generic compo-
nent. Some relevant information stored in the handling feature can be
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used by the form features, e.g. the finger width of a specific gripper is
used by the form features to generate the global finger domains for that
gripper.

Not only the finger width is stored in the handling feature, but also
other information on the grippers used to grasp the component. Every
gripper can have a specific number of fingers, maximal and minimal grip
opening, and possible grip forces, see also Section 6.3.

Besides gripper information, also feeder and fixturing information can
be found in the handling feature. This information can be used to further
reduce each gripper-specific set of global finger domains found for every
generic component. All areas involved in feeding and fixturing the com-
ponent are non-free regions and therefore removed from the set of global
finger domains. The resulting set of finger domains is stored for every
type of gripper in the handling feature. This gripper-specific set of finger
domains can be used for every instance to determine the actual grip.

9.3.3 Using connection features

Until now, only information has been considered independently of the po-
sition where the component will be assembled on the partial assembly.
This position is different for every instance of the component. Additional
useful information can be retrieved from the connection features in the
model. These features ’know’ which areas cannot be in the set of finger
domains because they are involved in a connection. In Figure 9.11 on the
following page, this is shown for a dove-tail connection. The connection
’knows’ which areas on the dove-tail slot and the dove-tail rib feature are
involved in the connection. These areas are removed from the set of finger
domains.

Although finding possible stable grips is not covered in this thesis, fea-
tures can be used in this step as well. Possible grips can be generated by
slicing the component perpendicular to the assembly direction. The slice
reduces the problem of finding an actual grip from a 3D problem to a 2D
or 21

2
D problem. The global finger domains are intersected with the slice,

and the resulting intersecting lines are used to determine possible grips
that have correct values for closure, equilibrium and stability.

The form features can be further used to retrieve information on possi-
ble grip edges in such a slice. From an edge, the related face and form fea-
ture can be found. This feature can give information on the opposite face,
which can be used to find a correct closure, e.g. a block feature ’knows’
that its back face is opposite to its front face, and that they are parallel.
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(a) local finger domains from both
dove-tail slot and dove-tail rib
feature

(b) further reduction because of the
involved dove-tail rib-slot con-
nection feature

Figure 9.11: Connection features can further reduce the finger domains

Finding opposite faces can, in general, be used as a heuristic to find pos-
sible grips. Another heuristic can be to first evaluate the finger domains
available on the largest design feature in the model.

9.4 Results

In this section, some results of the FAFDD are presented.
First, the differences between using only the EFS method and the

FAFDD are presented. For this, we use the feature model given in Fig-
ure 5.7 on page 51. We want to find every area on the model where a rela-
tively small finger can be positioned. Both for the EFS method and, when
needed for, FAFDD we made use of an envelope volume of both height
and width of 0:5d. Although this can generate incorrect finger domains as
has been described in Subsection 9.2.2, an implemented algorithm for this
method was already available, instead of an algorithm for the enhanced
EFS method. Regardless which method is used, the finger domains result-
ing from using feature information and from using some EFS method can
easily be compared. Using the enhanced EFS method instead of the origi-
nal EFS method, will be more in benefit for the FAFDD method, comparing
the calculation times, because the enhanced EFS method takes consider-
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ably more time than the original EFS method. In Figure 9.12, a top and a
bottom view are given, showing the found finger domains using the orig-
inal EFS method. Dark areas on a model represent areas not in the finger
domain, i.e. the non-free regions, light areas represent the finger domains.
The model in Figure 9.12 consists of 21 faces, and the computation time
was approximately 24 seconds on a HP9000/715-80 system. Figure 9.13
on the next page shows the results using FAFDD. The model consists of
9 features, and the computation time was approximately 6 seconds. No
EFS calculation is needed in this model to reduce the local finger domains,
because there are no additive features in this model.

(a) top view (b) bottom view

Figure 9.12: Finger domains for a small finger found with the EFS method
only

The different shadings in the dove-tail slot feature in figure 9.13 rep-
resent finger domains with different rankings. This can only be found
with FAFDD using the feature information, therefore it is not shown in Fig-
ure 9.12.

Another difference can be seen in the length of the non-free regions in
the dove-tail slot. The non-free regions resulting from using the original
EFS method are smaller than those resulting from FAFDD. This is because
of the fact that the EFS method does not take the angle between faces into
account, which is incorrect. Notice, however, that the results of using the
enhanced EFS method should be the same, with respect to the length of the
non-free regions, as those of the FAFDD.

In Figure 9.14 on page 117, the finger domains are shown for fingers
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(a) top view (b) bottom view

Figure 9.13: Finger domains for a small finger determined using FAFDD

with a larger diameter using FAFDD. The finger width is larger than the
width of the slot, and therefore no areas exist in the slot where the finger
can be positioned. Further, the depth of the dove-tail slot is smaller than
the finger width, so no areas are found with different rankings in the dove-
tail slot. The computation time, using FAFDD, is the same as for the smaller
finger: the same number of features has to be consulted to get the finger
domains for the complete model.

In Figure 9.15 on the next page, the differences between local and
global finger domains for the same model are shown. The local finger
domains are found by using FAFDD without additional EFS calculations.
The global finger domains are found by executing additional EFS computa-
tions, but only on the found local finger domains of additive features. The
local finger domains for this model with 3 features are found in approxi-
mately 5 seconds. The additional EFS calculations took approximately 15
seconds, resulting in a total computation time of approximately 20 sec-
onds.

In Figure 9.16 on page 118, some other examples are given. On the left
side, the finger domains are shown resulting from using the original EFS
method, and on the right side those resulting from FAFDD. Some models
on the right side also show different rankings, e.g. chamfers are given a
lower ranking, because there is less chance of finding an opposite face for
the actual grip. For every model, the number of faces and features is given,
and the approximate computation time to generate the finger domains.
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(a) top view (b) bottom view

Figure 9.14: Finger domains for a larger finger determined using FAFDD

(a) local finger domains, 5 sec (b) global finger domains,
20 sec

Figure 9.15: Local and global finger domains when features have influence
on each other

In these results, curved surfaces have not been investigated with the
EFS method. When this would have been done, these surfaces would have
been faceted, generating many small faces. For each of these faces, an EFS
calculation would have to be performed, which would considerably in-
crease the computation time. Using FAFDD, the features themselves know
whether it is possible for a finger to grasp on a curved surface, without
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(a) 10 faces, 15 sec (b) 2 features, 5 sec

(c) 15 faces, 15 sec (d) 7 features, 3 sec

(e) 13 faces, 14 sec (f) 5 features, 10 sec

(g) 14 faces, 22 sec (h) 3 features, 20 sec

Figure 9.16: Some examples of global finger domains using the EFS

method (left side) and using FAFDD (right side)
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increasing the computation time.
The results of using both handling and connection features are taken

together in one figure. The handling feature gives information on contact
areas involved in feeding and fixturing. Connection features give contact
areas and assembly directions involved in the partial assembly. For the re-
duction of the finger domains, it makes no difference whether the contact
area is involved in a fixture or the partial assembly. In Figure 9.17, an ex-
ample is given of a component, the small-block, which contains a rib-slot
connection with another component, the base-block (see Figure 5.10 on
page 54 for a feature model of the subassembly containing these compo-
nents). The non-free regions found because of the contact areas are shown
in the figure.

Figure 9.17: Non-free regions found on a component because of the con-
tact areas known by the involved connection features

These results show that using assembly information available in a
model in its features, in general accelerates the determination of the finger
domains. Another advantage is the benefit of the ranked finger domains,
which can be used as heuristics in finding the actual grip.
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Chapter 10

Other planning modules

As was already mentioned in Chapter 3, assembly sequence planning is
a special kind of planning module, in the sense that it is highly depen-
dent on other planning modules, e.g. stability analysis, grip planning and
motion planning (see Figure 3.1 on page 26).

In this chapter, the focus will be on motion planning and assembly se-
quence planning, planning modules where features, in particular assem-
bly features, can be useful. This chapter consists mainly of concepts of
how these features can be used, and not of descriptions of implementa-
tions to validate these concepts. Parts of this chapter have already been
published in van Holland and Bronsvoort (1997).

10.1 Motion planning

Motion planning is separated into two steps: gross motion and fine motion
planning (Baartman 1995).

In gross motion planning, a collision free path is searched for a specific
component, towards the partial assembly. In fine motion planning, the last
phase of the assembly is taken into account, where contacts between com-
ponents by definition cannot be avoided, see Figure 10.1 on the following
page.

10.1.1 Gross motion planning

Gross motion planners determine a path for a component from its feed-
ing position to its insertion position, a position near the final assembled
position where there is no contact yet between component and partial as-
sembly. To determine this motion path, the geometry of component and
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fixturefeeder

IP

FP

(a) in gross motion planning,
the component is moved
from an initial position to-
wards the insertion position
(IP), by avoiding any colli-
sions

fixturefeeder

IP

FP

(b) in fine motion planning, the
component is moved from
the insertion position to the
final position (FP) by using
contacts to reduce position-
ing uncertainties

Figure 10.1: Motion planning is divided into gross and fine motion plan-
ning. Notice that for clearness the distance between IP and FP
has been somewhat enlarged in this example

partial assembly are taken, and an obstacle-free path is computed in 3D
space.

Within gross motion planning, there is no real benefit of using assem-
bly features, because there is no contact yet between component and par-
tial assembly. However, for determining the insertion point, the position
where gross motion ends and fine motion starts, the assembly features can
be useful.

10.1.2 Fine motion planning

Fine motion planning is used to find a path from the insertion position to
the final position. The contact areas between component and partial as-
sembly are now used to “lead” the component to its desired final position.

Assembly features, and especially connection features, can be prof-
itably used in two ways by providing:

� possible motion directions

� possible fine motion strategies
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The internal freedom of motion stored within connection features, can be
used to retrieve the possible motion directions. How this can be done, has
already been described in Chapter 8 in the context of translational stability.

Specific connections, e.g. (threaded) pen-hole and plane-mate, often
have their own specific fine motion strategies. To select the right strat-
egy in case no connections features are used, the type of connection must
be retrieved from the geometry, which is sometimes very hard, or even
impossible.

When using the contact information stored within connection features,
the type of contact is already available. Another advantage of using the
connection features is that generic fine motion strategies can already be
stored within the generic connection features. When there is a need for
a specific fine motion, the specific instance of the connection feature can
provide the generic fine motion strategy with parameters, resulting in an
appropriate fine motion to be used.

10.2 Assembly sequence planning

There exists many publications about assembly sequence planning, and it
is not within the scope of this thesis to describe all possible techniques. A
brief overview will be given in this section, which will focus on the cur-
rent lacks. For further reading, see Gottschlich et al. (1994) for a recent
overview. Important references are De Fazio and Whitney (1987), Wolter
(1988), Homem de Mello and Sanderson (1991a), Baldwin et al. (1991),
Lozano-Pérez and Wilson (1993) and Chakrabarty and Wolter (1994).

The whole process of assembly sequence planning is complex, and can
be subdivided into three main steps, of which sometimes the first two
steps are taken together:

1. generate precedence relations between the components of a product,

2. generate all feasible assembly sequences,

3. find the optimal assembly sequence from the feasible sequences.

Often assembly sequence planning is reduced to only checking a prece-
dence relation graph, to find the optimal assembly sequence. How this
precedence relation graph is created, is, however, seldom described. But
in reality the creation of the precedence graph and the search for an opti-
mal sequence both have to be taken into account.

These three steps are now described in more detail in the following
subsections.
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10.2.1 Generate precedence relations

To find precedence relations, information relevant to both manufacturing
and assembly is needed. This information is mostly not, or only to a lim-
ited extent, present in current product models, as was already mentioned
in Subsection 2.2.3.

Sometimes these precedence relations are gathered by interrogating a
human assembly planner, but this is extremely difficult for larger models,
because of the large number of precedence relations. Therefore, mostly
computer tools are used. These tools take as input a geometry description
of the product, with the available relations between components. The —
mostly low-level — relations are restricted to whether components mate
with each other, and whether these matings are fixed or not, see also Fig-
ure 2.3 on page 17.

In the previous chapters on stability analysis (Chapter 8) and grasp
planning (Chapter 9) and in the previous section on motion planning (Sec-
tion 10.1), it has already been described how features in general, and as-
sembly features in particular, can be used to determine certain specific
precedence relations. Notice that in assembly sequence planning, these
modules are only used to find precedence relations, and not to find all
information needed for the assembly process. For example, in grasp plan-
ning it is sufficient to determine that a grip can be found, whereas later the
exact grip can be determined. The latter will take more computation time.

Using features for generating precedence relations does not change the
basic ideas on how to generate them, but it differs in the way assembly-
specific information is retrieved. Feature models can significantly decrease
the complexity and the time used to retrieve this information.

10.2.2 Generate feasible assembly sequences

Assembly sequence planning is often reduced to find the optimal — or
semi-optimal sequence, because the optimal can seldom be found in real-
ity, because of all kinds of competing criteria (De Fazio and Whitney 1987)
— assembly sequence selected from all feasible assembly sequences. Feasible
assembly sequences are those sequences that can result in the complete
product.

The precedence relations are thus used to generate feasible se-
quences. The feasible sequences can be represented by an AND/OR graph
(Homem de Mello and Sanderson 1991b) or an Assembly State Transition
Diagram, called ASTD (Waarts et al. 1992). Mostly the AND/OR graph or
ASTD is built simultaneously with investigating the precedence relations.
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This can be done by first searching for feasible disassembly sequences
for the product, and then reversing them to get the feasible assembly se-
quences. Every component in the product is investigated in turn to check
whether it is possible to disassemble it from the product or not. If the
component can be disassembled, it is removed from the product, and the
procedure is repeated on the components left, until all components have
been taken out. Finding disassembly sequences is less combinatorial than
finding assembly sequences, because every step in disassembling a prod-
uct leads to a smaller product that always can be disassembled, whereas
every step in assembling a product leads to a bigger product with increas-
ing chances on constraining precedence relations for components still to
assemble. The latter can result in checking many infeasible sequences.

Figure 2.3(a) on page 17 showed an example product, created by
Sanderson et al. (1990), with its corresponding relation graph, see Fig-
ure 2.3(b). The resulting AND/OR graph for this product is shown in
Figure 10.2, representing all feasible sequences.

Figure 10.2: AND/OR graph representing the feasible sequences for a sim-
ple product
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10.2.3 Retrieve the optimal assembly sequence

The optimal sequence is the sequence with the optimum for some kind of
cost function, taking into account, for example, total assembly time, used
resources, or combinations of both.

An example of such an optimal sequence is shown in Figure 10.2 on the
preceding page; it is represented by the thick lines. This optimal sequence
can be generated using some Branch-and-Bound method (Nilsson 1971,
Barr and Feigenbaum 1981). Because of the combinatorial explosion, there
are many sequences to investigate, and heuristic search methods are used
for faster retrieving the optimal sequence.

Because of the need for specific resources during flexible assembly —
like grippers, feeders and fixtures — it is not very useful to determine the
optimal sequence off-line, and to store it together with the product model.
During actual assembly, the availability of the resources can be different
in time. So within a sequence of the same batch, for every batch the avail-
ability of resources can differ, and even for the same products assembled
within a batch. One reason for this is that resources can also be used else-
where by other flexible assembly cells. But another important reason is
the hardly unpredictable time a resource is actually used during assembly,
because of all kinds of troubles that may arise during assembly. It is there-
fore better to calculate the optimal sequence on-line, just before the actual
assembly, so that the available resources can be taken into account, and
uncertainties are eliminated as much as possible (van Holland et al. 1992).

10.2.4 Additional profits of using features for sequence
planning

Usually, the selection of the next candidate to be evaluated for disassembly
is done by a time-consuming trial-and-error method. One by one, every
component in the partial assembly left is chosen, and is evaluated to see
whether it can be disassembled.

A simple heuristic for building the search space is the following: every
time you have to choose the next component to disassemble, you choose
the one with the minimal number of connections between component and
the remaining partial assembly. This heuristic is based on the fact that the
component with the fewest connections with its partial assembly does also
have the greatest chance for a successful disassembly. This heuristic can
easily be used together with the feature-based product models, because
every component knows exactly its involved connections.
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However, more sophisticated knowledge can be used, because some
features available in feature models contain already information about
possible assembly sequences. By using connection feature information,
the combinatorial explosion can be reduced, i.e. a reduction in search space
can be realized. Connection features can often give information on the
precedences of the components involved in the connection, resulting in a
priority for the selection of the next component to evaluate.

Connection features with agents, can quickly give the component to
select first, because they “know” something about the disassembly se-
quence. It is useless to try to disassemble a plate when it is still connected
by a bolt, so the connection feature will present the bolt first, and after that
the plate connected by the bolt.

Take, for example, the simple product shown in Figure 10.3. This ex-
ample is used to show the effects in search space reduction when assembly
features are used. First, in Figure 10.4(a) on the following page, the search
space is shown when no feature information is used.

plate (b)

base (a)

bolt (d)bolt (c)

Figure 10.3: Simple product to show the effect in search space reduction
by using assembly features

Between the base and the plate there exists a specific attachment, say
a pattern of threaded connections. This specific attachment contains two
bolts as the component agents. The attachment contains two attachments
as connection agents. These attachments are the threaded connections,
with each of them containing one bolt as the component agent and a
threaded pen-hole and a normal pen-hole connection as connection agents,
see Figure 10.5 on page 129.

A connection feature representing a pattern can directly indicate that it
does not matter in which order to disassemble the components, e.g. that
it does not matter in which order a pattern of bolts is assembled. In the
example above, this means that the search space is reduced because it does
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ac

abcd

abcacd

ab

a c db

ad

abd

(a) without feature information

abcd

ab cd

a b c d

(b) with feature information

Figure 10.4: Effect on search space reduction of using feature information.
Notice that the AND relations marked with a cross represent
search directions initially followed but giving a negative re-
sult, because the represented (dis)assembly operation cannot
be performed

not matter whether first bolt c is assembled, or bolt d.

The attachments, the threaded connections, further reduce the search



10.2 Assembly sequence planning 129

base (a)

bolt (c)
threaded

connection
threaded

connectionconnection

plate (b)

threaded

pen-hole

pattern bolt (d)

pen-hole pen-hole

threaded threaded
pen-hole

Figure 10.5: Connection features belonging to the simple product

space, because these attachments directly indicate the required assembly
order for base, plate and bolt: first the base, then the plate, and finally
the bolt. There is no need to search for alternative solutions here. Fig-
ure 10.4(b) on the facing page shows the search space when feature infor-
mation is taken into account.

Thus, by using feature information, the AND/OR graph can shrink
significantly, resulting in a smaller number of precedences that have to be
checked. This will result in much lower computation times for the assem-
bly sequence planner.





Part IV

Concluding remarks

Background

Modelling

Planning

Part IV , is the final part containing the conclusions and fu-
ture work in Chapter 11.
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Chapter 11

Conclusions and future research
directions

As was stated in the introduction, the focus of this thesis has been on the
automation and integration of modelling and planning for assembly. At
the end of this thesis, some conclusions are drawn, and some topics for
future research directions are indicated.

11.1 Conclusions

Just as features proved to be a good concept in manufacturing, they are
also useful in assembly. Features can solve the lack of information in mod-
elling and planning, and can provide a proper tool to integrate the two.

Modelling

In assembly modelling, assembly features provide the modeller with
building blocks closer to the detailed geometrical design than the currently
available prototype functional modellers, and, on the other hand, more on
a conceptual level than the commonly used geometric modellers.

Assembly features

As assembly features are information carriers for assembly-specific in-
formation, more information already known during design can now be
stored. Information can be stored once, and be used in many other phases.
By using assembly features, it is much easier to store information needed
during the complete product life cycle into one product model.



134 Conclusions and future research directions

Generic and instance level assembly information

The needed modelling information is separated into information available
on generic component level and information available on instance level.
Information on generic component level is information that is related to
the type of component, independent of the actual position and orientation
of a component. The information on instance level, on the other hand,
is dependent on the actual position and orientation of an instance of the
component and the product to which it belongs.

Handling and connection features

The information about how to handle a component is stored in a handling
feature. Most of this information, e.g. fixture, feeder, gripper and possible
grip area information, are stored directly with the generic component.

The connection feature provides the possibilities to store connection-
specific information related to instance components in the product model.
This information is used both during modelling, to generate the complete
model, and during analysis and planning, to enhance the planning mod-
ules.

Connection features make it possible to start with the relation-driven
modelling concept. Within this concept, a model starts with raw geometry,
and the relations between the geometric elements create the more detailed
shapes. This is very useful in bridging the gap between functional and
geometric modellers.

Integration of single-part and assembly model

The concept of combining the single-part feature model and the assembly
feature model results in a very powerful integrated object-oriented prod-
uct model. Modelling of single parts and of assemblies are now both based
on the same structure, providing a general way of working with them to-
gether. Therefore an important step to integrate single-part and assembly
modelling into one modelling system has been made.

Planning

Analysis steps within modelling can sometimes hardly be separated from
the actual planning modules during assembly planning. Therefore, it is
logical that in planning modules the already available assembly informa-
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tion stored in the assembly features is used, and new information is stored
using these features.

Integrated planning modules

Feature-based product models for assembly provide handles to integrate
the different models used in all kinds of planning modules. Assembly
features are very useful, or even required, using DFX and concurrent en-
gineering.

Stability analysis

Within stability analysis, the use of assembly features shows that trans-
lational stability can now be analyzed easier using the available freedom
of motion within connection features than without these features. Using
visibility map projection onto the unit cube, all possible motion directions
in the complete 3D space are represented, which avoids the problems of
ambiguity and numerical degeneracy occurring in the projection methods
using one or two planes.

In rotational stability analysis, the connection features are also very
helpful, by providing already available information on possible rotational
axes. This will decrease the number of possible rotational axes to analyse.

Grip planning

Within grip planning, all features available in the integrated product
model are useful in accelerating the module. The FAFDD method provides
ranked finger domain areas, useful for faster generation of the actual grip.
These ranked areas, which cannot be created using the EFS method, are
for many models generated very fast compared to the EFS method. Only
models containing many additive form features influencing subtractive
features, do not result in great differences between the two methods in
computation times.

Motion planning

Fine motion planning makes use of the connection features to retrieve the
possible fine motion strategies. This avoids difficult low-level geometric
reasoning calculations, retrieving the connection type and the matching
motion strategies belonging to it.
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Assembly sequence planning

Assembly features are profitably used in the described assembly planning
modules, and almost all these modules are used for generating the prece-
dence relations needed in assembly sequence planning. Additionally, be-
cause of the integration of the product models used in all planning mod-
ules, it is now also possible to retrieve all the needed information from one
model and to determine many of the precedence relations automatically.
This is absolutely needed for assembly sequence planning, which is highly
dependent on all kinds of other planning modules.

The connection features reduce the complexity of finding feasible se-
quences, because they contain information about possible sequences. At-
tachment connections specify in which order the connected components
together with the involved agents can be assembled. Also pattern connec-
tions are of great help, knowing that no specific order is needed assem-
bling a pattern of components.

Using features for generating precedence relations does not change the
basic ideas on how to generate them, but it differs in the way assembly-
specific information is retrieved or determined. Feature models can sig-
nificantly decrease the complexity of and the time used for this. A conse-
quence might be that the designer or engineer needs more modelling time,
because he must add more assembly-specific information to the model.
However, this is not that bad, because modelling will then better fit to his
way of thinking, and assembly features combine large amounts of infor-
mation that otherwise should be added step by step.

Assembly features in modelling and planning

In this way, the feature concept does not only integrate single-part and as-
sembly modelling, and several planning modules, but also modelling and
planning. The assembly planning modules can now make use of one in-
tegrated product model from which they can retrieve information on very
detailed single-part level and on higher assembly level. Together with
the benefits of using earlier generated information by other modules, the
planning modules can produce their planning results faster. These plan-
ning results can, in addition, contain more accurate information, because
more information was already available in the product model, which will
generally increase the quality of the planning results.

All these topics have been described to make a step forward in the
direction of a modelling and planning environment of the future. Several
of the short term goals have been reached, especially in the integration
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of a single-part and assembly model, and in the integration of modelling
and planning. However, there remain many topics for future research; see
Section 11.2 on the next page.

Implementation

The integration of single-part and assembly model by using the same
object-oriented product model showed its benefit in the implemented pro-
totype. With this product model both single-part and assembly models
were created and manipulated in the same way.

The integration of modelling and planning in the prototype made it
easy to provide direct DFA feedback during modelling.

Development environment

After so many years of development, some remarks can be made about the
development environment used. The use of object-orientation has proven
its benefits. However, although ACIS describes itself as being an object-
oriented geometric library, it behaves itself as a non object-oriented geo-
metric library with some object-oriented shell around it. This means in
fact that the advantages of object orientation, such as combining attributes
and operations in one model, and using inheritance to derive functional-
ity can hardly be used. Another difficulty in using ACIS is the lack of
proper documentation to explain the underlying concepts. On the other
hand, commonly used concepts expected within a geometric library are
provided by the ACIS library, and were very helpful in building geomet-
ric models.

Although in theory there is a lot of functionality available in C++, this
does not mean that everything can (already) be done in practice. Maybe
because of using the newest functionality provided by C++, there were
many problems with available compilers and debuggers not capable of
handling this promised functionality.

The new evolutions in, and the possibilities of, the object-oriented
JAVA language provide many elements needed in computing science
research. JAVA is platform-independent and provides all kinds of
language-included possibilities concerning networking, multi-threading,
user-interface building, etc. Besides that, the language is interpreted, and
therefore provides a very useful language for a research environment
building mainly prototype software.
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11.2 Future research directions

In fact the future research directions have already been described in Chap-
ter 4, but more can be said about this.

Remember first the key topics in the long term planning:

� top-down and functional modelling,

� integrated single-part and assembly modelling, and

� integration of modelling and planning.

Top-down conceptual modelling

The focus of this thesis has been relatively more on integration of single-
part and assembly modelling and on integration of modelling and plan-
ning, than on the topic of functional or conceptual design. Although some
first steps have been made in the direction of a top-down modelling en-
vironment, much more research must be done, especially research that
tries to link the conceptual level with the detailed geometry level and vice
versa. One research area in this field, still unresolved, covers the consis-
tency checking of conceptual and detailed level. A model that is created
top-down, and later changed on geometry level, should remain consistent
with the higher conceptual level.

Integrated single-part and assembly modelling

In this thesis, the multiple-view concept in a single-part feature model has
not been taken into account. In fact the described form features were with-
out specific disciplinary information. Instead, they were chosen in such a
way that the used connection features could use them. In reality, a feature
model will have multiple views, and research is needed on the required
form features for assembly modelling. Feature conversion has to be per-
formed to derive these features, which is also still a research area with
many challenges.

A special kind of feature conversion is needed to solve problems in as-
sembly modelling not only related to form features, but also to combining
components. The feature conversion should not only take place within one
component, but within the complete product. By combining several com-
ponents, it is possible that the partial assembly contains a shape needed in
a connection. Take, for example, two components with both a step feature,
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as is shown in Figure 11.1 on the facing page. Connecting the compo-
nents can result in a shape comparable with a slot feature. When another
component is connected using a rib-slot connection, the connection feature
cannot be associated with the slot shape, because it does not yet know that
two step features can result in one slot feature. Using automatic conver-
sion of features on product level will solve this problem.

step

rib

step

Figure 11.1: Feature conversion is needed on product level, to convert two
steps into one slot feature

Integration of modelling and planning

This thesis provides a framework for storing, and using, assembly infor-
mation into, and from, an integrated product model. However, research
on the information itself must be extended. This research must be in the
direction of searching all kinds of assembly connections with all kinds of
characteristics. Questions that still remain are: which connections can be
properly used in flexible assembly and when do you select them? These
questions must be solved in the first place by mechanical engineers, but
not alone. Computing scientists must be highly involved in this research,
because only the combination of both disciplines will bring modelling
and planning closer to a fully integrated environment. One provides the
needed information, the other provides techniques to store and retrieve
them. Both will think about practical ways to use this information.

Spin-off

As this research has been a spin-off project from the DIAC project, the
project itself is not finished. We are another step forward to the “complete”
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automation of the assembly process, in which products are automatically
assembled from assembly plans, assembly plans are automatically gener-
ated from models, and models are automatically modified on the basis of
(executed) assembly plans. For the additional steps to reach this final goal,
this project itself will have to be followed by its own, multi-disciplinary
spin-off projects.
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Mäntylä, M. (1991), WAYT: Towards a modeling environment for assem-
bled products, in H. Yoshikawa, F. Arbab and T. Tomiyama, eds,
‘Intelligent CAD’, Elsevier Science Publishers B.V., Amsterdam, The
Netherlands.

Martens, P. (1991), Cad/Cam for Assembly Planning, PhD thesis, Delft
University of Technology, The Netherlands.

Mattikalli, R., Baraff, D. and Khosla, P. (1994), Finding all gravitationally
stable orientations of assemblies, in ‘Proceedings of the IEEE Inter-
national Conference on Robotics & Automation’, Vol. 1, San Diego,
California, USA, pp. 251–257.

Mattikalli, R. S. and Khosla, P. K. (1991), Analysis of restraints to trans-
lational and rotational motion from the geometry of contact, in
A. Sharon, R. Behun, F. Prinz and L. Young, eds, ‘Issues in Design
Manufacture/Intergration, Winter annual meeting of ASME’, Vol. 39,
Atlanta, Georgia, USA, pp. 65–71.

Mattikalli, R. S. and Khosla, P. K. (1992), Motion constraints from contact
geometry: Representation and analysis, in ‘Proceedings of the IEEE
International Conference on Robotics & Automation’, Nice, France,
pp. 2178–2185.

Meijer, B. R. and Jonker, P. P. (1991), The architecture and philosophy of the
DIAC (Delft Intelligent Assembly Cell), in ‘Proceedings of the IEEE In-
ternational Conference on Robotics & Automation’, Sacramento, Cal-
ifornia, USA, pp. 2218–2223.



148 BIBLIOGRAPHY

Mortensen, N. H. and Andreasen, M. M. (1996), Designing in an interplay
with a product model — explained by design units, in ‘Proceedings of
the Symposium on Tools and Methods for Concurrent Engineering’,
Technical University of Budapest, Hungary, pp. 100–115.

Mortenson, M. E. (1985), Geometric Modeling, John Wiley, New York, USA.

Nevins, J. and Whitney, D. E., eds (1989), Concurrent Design of Products and
Processes, McGraw-Hill, New York, USA.

Nguyen, V.-D. (1988), ‘Constructing force-closure grips’, The International
Journal of Robotics Research 7(3), 3–16.

Nilsson, N. (1971), Problem solving methods in artificial intelligence, McGraw-
Hill, Inc., New York, USA.

Oliver, J. H. and Huang, H.-T. (1994), ‘Automated path planning for inte-
grated assembly design’, Computer-Aided Design 26(9), 658–666.

Ovtcharova, J., Pahl, G. and Rix, J. (1992), ‘A proposal for feature classific-
tion in feature-based design’, Computers & Graphics 16(2), 187–195.

Pahl, G. and Beitz, W. (1988), Engineering Design - a Systematic Approach,
Springer-Verlag, Berlin. Translated from Konstruktionslehre, Springer-
Verlag, 1977.

Ponce, J., Sullivan, S., Boissonnat, J.-D. and Merlet, J.-P. (1993), On char-
acterizing and computing three and four-finger force-closure grasps
of polyhedral objects, in ‘Proceedings of the IEEE International Con-
ference on Robotics & Automation’, Vol. 2, Atlanta, Georgia, USA,
pp. 821–827.

Popplestone, R. J., Ambler, A. P. and Bellos, I. M. (1980), ‘An interpreter for
a language for describing assemblies’, Artificial Intelligence 14, 79–107.

Pratt, M. J. (1993), ‘Applications of feature recognition in the product life-
cycle’, International Journal on Computer Integrated Manufacturing 6(1
& 2), 13–19.

Requicha, A. A. G. (1980), ‘Representations for rigid solids: theory, meth-
ods and systems’, ACM Computing Surveys 12(4), 437–464.

Requicha, A. A. G. and Whalen, T. W. (1991), Representations for assem-
blies, in L. S. Homem de Mello and S. Lee, eds, ‘Computer-Aided
Mechanical Assembly Planning’, Kluwer Academic Publishers, The
Netherlands, pp. 15–39.



BIBLIOGRAPHY 149

Rosen, D. W. (1992), A Feature-Based Representation to Support the De-
sign Process and the Manufacturability Evaluation of Mechanical
Components, PhD thesis, University of Massachusetts.

Roy, U., Banerjee, P. and Liu, C. R. (1989), ‘Design of an automated assem-
bly environment’, Computer-Aided Design 21(9), 561–569.

Roy, U. and Liu, C. R. (1988), ‘Establishment of functional relationships
between product components in assembly database’, Computer-Aided
Design 20(10), 570–580.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F. and Lorensen, W. (1991),
Object-Oriented Modeling and Design, Prentice-Hall International, Inc.
ISBN 0-13-630054-5.

Sanderson, A. C. and Homem de Mello, L. S. (1990), Automatic generation
of mechanical assembly sequences, in M. J. Wozny, J. U. Turner and
K. Preiss, eds, ‘Geometric Modeling for Product Engineering’, Else-
vier Science Publishers B.V., Amsterdam, pp. 461–482.

Sanderson, A. C., Homem de Mello, L. S. and Zhang, H. (1990), ‘Assembly
sequence planning’, AI Magazine Spring, 62–80.
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Wesley, M. A., Lozano-Pérez, T., Lieberman, L. I., Lavin, M. A. and
Grossman, D. D. (1980), ‘A geometrical modeling system for auto-
mated mechanical assembly’, IBM Journal of Research and Development
24(1), 64–74.

Wilson, P. R. and Pratt, M. J. (1988), A taxonomy of features for solid mod-
els, in M. J. Wozny, H. W. McLaughlin and J. L. Encarnaçao, eds, ‘Ge-
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Appendix A

Terminology

Within the assembly research world, there exists no commonly accepted
standard terminology. To avoid confusion about terminology used in this
thesis, some frequently used terms are defined here. This terminology is
closely related to a proposal given by Wolter (1995).

assemble Assemble is the process of merging or joining a component onto
other assembled components.

assembly An assembly is a group of components merged together. Some-
times assembly refers to the process of assembling components.

partial assembly A partial assembly is defined as the already assembled
components on which other components are assembled. Thus a com-
ponent is actually assembled onto a partial assembly. This implies
that a partial assembly is, at least, gravitational stable, i.e. it does not
fall apart due to the gravitational force.

component A component is defined as a motion or transport-stable unit,
i.e. it does not fall apart due to gravitational and transportation
forces. A component can be manipulated to assemble it onto a par-
tial assembly or, in the case of a base component, onto a fixture. A
component can be either a part or a subassembly.

base component A base component is the first component of an assembly
that is assembled. A base component is always assembled onto a
fixture.

part A part — often called a single part — is the smallest component used
in assembly. In this thesis these are assumed to be rigid. They cannot
be decomposed into smaller components.
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subassembly Sometimes an assembly is transport stable and can be a
component itself. Such a component, called subassembly, can be de-
composed into smaller components — parts or other subassemblies.

product An assembly that fulfills some specified functional requirements
is called a product. The difference between a subassembly and a
product is not that clear. For one department an assembly may be
a product (e.g. a complete engine), whereas for another department
this “product” may be a subassembly (e.g. the engine assembled in a
car).

generic component A generic component is used to represent component
information independent of the assembly to assemble the compo-
nent in. For example, the geometry which is independent of the ac-
tual position and orientation of the component within the assembly
is stored within a generic component.

instance component A counterpart of the generic component is the in-
stance component. An instance component is an instance of a generic
component, linked to an assembly. Thus an instance component
represents component information dependent of the position, ori-
entation and relations within an assembly. There can exist several
instances of the same generic component within one assembly, e.g.
several bolts to fasten a plate.
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Summary

Assembly features in modelling and planning

Computer programs can nowadays hardly be left out from the complete
assembly process. Not only during modelling of assemblies, but also dur-
ing planning of the actual assembly, programs are indispensable. In fact,
modelling and planning can hardly be separated. To avoid problems in the
assembly process, models should be verified in an early stage with plans
to check whether they can actually be assembled.

Both the modelling of single-part components and assemblies, and the
modelling and planning phase must be integrated.

Current generation models are highly focused on geometry. However,
only geometric information is not enough in modelling and planning. Be-
sides geometric information, there is also a need for functional informa-
tion related to the geometry. In recent years, techniques have been devel-
oped for modelling and planning in manufacturing that combine geomet-
ric and functional information for single-part components. These models
are called feature models, where features contain both geometric and func-
tional information.

This feature concept is not only useful in manufacturing, but can also
be used in assembly, as is shown in this thesis. Assembly features are sub-
divided into handling and connection features. Handling features contain
assembly-specific information for handling components. Connection fea-
tures contain assembly-specific information for connections between com-
ponents.

Both for modelling and planning of single-part components and assem-
blies, an integrated object-oriented product model has been developed,
combining form features with handling and connection features.

A prototype modelling environment has been developed. A model can
be manipulated using a geometric or a graph-oriented user interface. The
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model itself provides the possibilities for component-driven and relation-
driven modelling. In the first method, one starts with completely finished
components, and by adding relations to them the final assembly is created.
In the second method, one starts with the relations, and from these rela-
tions the components can be created.

The product model has been verified within several analysis and planning
modules.

Assembly features can profitably be used within assembly analysis. Es-
pecially the internal freedom of motion between components, stored in
the connection features, accelerates the translational stability analysis. Ro-
tational stability analysis can also be accelerated by using knowledge of
possible rotation axes stored in the connection features.

In grip planning, during the determination of finger domains on com-
ponents, the form features and the assembly features play a significant
role. Although the time-consuming EFS method is still needed, the feature
models can in many cases provide a considerable time reduction.

Further, feature models provide additional information that can prof-
itably be used in compliant motion planning. Within connection features,
the type of connection is known, which is important for compliant mo-
tions.

Also the complete search space to find the optimal assembly sequence
can be substantially reduced, resulting in faster generation of the optimal
assembly sequence. Some connection features already contain knowledge
about possible, or impossible, assembly sequences themselves.

It can be concluded that feature-based product models for assembly can
considerably help both in assembly modelling and planning, on the one
hand in integrating single-part and assembly modelling, and on the other
hand in integrating modelling and planning.



Samenvatting

Assemblage features bij modelleren en plannen

Computer programma’s zijn tegenwoordig niet meer weg te denken uit
het gehele assemblage proces. Niet alleen bij het modelleren van de te
assembleren produkten, maar ook tijdens het plannen van het daadwer-
kelijke assembleren, zijn programma’s onmisbaar. In feite kunnen de
modellerings- en planningsfasen niet los van elkaar worden gezien. Om
problemen in het assemblage proces te voorkomen, moeten modellen al
in een vroeg stadium geverifieerd worden met assemblageplannen om te
controleren of ze uiteindelijk wel geassembleerd kunnen worden.

Zowel het modelleren van enkel-stuks componenten en geassem-
bleerde produkten, als de modellerings- en planningsfasen dienen te
worden geı̈ntegreerd.

De huidige generatie modelleerprogramma’s zijn vooral gericht op de ge-
ometrie. Geometrische informatie is echter maar beperkt toepasbaar tij-
dens het modelleren en plannen. Naast de geometrie is ook de functionele
betekenis van de geometrie noodzakelijk. Bij het modelleren en plannen
van enkel-stuks componenten voor fabricage, heeft men de afgelopen ja-
ren een model ontwikkeld waarbij men naast geometrie ook de functionele
betekenis van de geometrie op kan slaan in het model. Deze modellen
worden feature modellen genoemd, waarbij features zowel geometrische
als functionele informatie bevatten.

Dit feature concept is niet alleen bruikbaar voor fabricage, maar kan
ook gebruikt worden voor assemblage, zoals wordt aangetoond in dit
proefschrift. Assemblage features kunnen worden onderverdeeld in hand-
ling en connection features. Handling features bevatten assemblage spe-
cifieke informatie die zich richt op het hanteren van componenten. Con-
nection features bevatten assemblage specifieke informatie die zich richt
op verbindingen tussen componenten.
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Voor zowel modelleren als plannen van enkel-stuks componenten en
assemblages is een geı̈ntegreerd object-georiënteerd model ontwikkeld
waarin naast form-features, ook handling en connection features zijn op-
genomen.

Voor het modelleren van assemblages is een prototype modelleerom-
geving ontwikkeld, waarmee modellen op een geometrische en op een
graaf-gebaseerde wijze kunnen worden gemanipuleerd. Het model biedt
de mogelijkheid om zowel component gedreven, als relatie gedreven te
modelleren. Bij de eerste methode start men met de componenten en voegt
men daarna relaties toe. Bij de tweede methode start men met relaties en
vanuit deze relaties kunnen dan de componenten worden gecreëerd.

Het gebruikte model is toegepast op een aantal analyse- en planningsmo-
dulen om de bruikbaarheid te verifiëren.

Bij stabiliteits analyse kunnen de assemblage features goed worden ge-
bruikt. Vooral de mogelijke bewegingsvrijheden tussen componenten, op-
geslagen in de connection features, versnellen de analyse van translatie-
stabiliteit. Ook het analyseren van rotatiestabiliteit kan worden versneld
door de aanwezigheid van informatie over mogelijk rotatieassen in de
connection features.

Bij greepplanning spelen tijdens het zoeken naar mogelijke grijpgebie-
den op componenten form features en assemblage features een belangrijke
rol. Hoewel het volledig uitbannen van de tijdrovende EFS methode niet
is gelukt, kunnen feature modellen in veel gevallen toch een aanzienlijke
tijdwinst opleveren.

Verder leveren de feature modellen extra informatie op die zeer nuttig
gebruikt kan worden om compliante bewegingen te berekenen, dit omdat
nu juist het type verbinding tussen componenten bekend is.

Ook het totale zoekdomein voor het vinden van een optimale assem-
blagevolgorde kan aanzienlijk worden beperkt, hetgeen resulteert in het
vlugger genereren van een oplossing. Sommige connection features be-
vatten nu zelf al kennis over eventueel mogelijke, of onmogelijke, assem-
blagevolgorden.

Geconcludeerd kan worden dat feature modellen voor assemblage aan-
zienlijk kunnen helpen in zowel het modelleren als het plannen van as-
semblages, aan de ene kant bij de integratie van het modelleren van enkel-
stuks componenten en geassembleerde produkten, en aan de andere kant
bij de integratie van modelleren en plannen.
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