
 Open access Journal Article DOI:10.1023/A:1008923410076

Assembly line balancing using genetic algorithms — Source link

Ihsan Sabuncuoglu, Erdal Erel, M. Tanyer

Institutions: Bilkent University

Published on: 01 Jun 2000 - Journal of Intelligent Manufacturing (Kluwer Academic Publishers)

Topics: Heuristics, Heuristic, Genetic algorithm, Simulated annealing and Chromosome (genetic algorithm)

Related papers:

 A survey of exact algorithms for the simple assembly line balancing problem

 State-of-the-art exact and heuristic solution procedures for simple assembly line balancing

 A Hybrid Genetic Algorithm for Assembly Line Balancing

 A survey on problems and methods in generalized assembly line balancing

 A Multi-Objective Genetic Algorithm for Solving Assembly Line Balancing Problem

Share this paper:

View more about this paper here: https://typeset.io/papers/assembly-line-balancing-using-genetic-algorithms-
3ymu61n1u7

https://typeset.io/
https://www.doi.org/10.1023/A:1008923410076
https://typeset.io/papers/assembly-line-balancing-using-genetic-algorithms-3ymu61n1u7
https://typeset.io/authors/ihsan-sabuncuoglu-52xjp6axlu
https://typeset.io/authors/erdal-erel-2sh8bj8hmj
https://typeset.io/authors/m-tanyer-gwtu03qeqn
https://typeset.io/institutions/bilkent-university-2j3xkcxw
https://typeset.io/journals/journal-of-intelligent-manufacturing-e9jks0a9
https://typeset.io/topics/heuristics-3tfiftpc
https://typeset.io/topics/heuristic-1j4coxuz
https://typeset.io/topics/genetic-algorithm-2evea86k
https://typeset.io/topics/simulated-annealing-2w8pnqe1
https://typeset.io/topics/chromosome-genetic-algorithm-329znf2b
https://typeset.io/papers/a-survey-of-exact-algorithms-for-the-simple-assembly-line-1a5sqss5b1
https://typeset.io/papers/state-of-the-art-exact-and-heuristic-solution-procedures-for-2b5wbna5st
https://typeset.io/papers/a-hybrid-genetic-algorithm-for-assembly-line-balancing-5a1cfmakes
https://typeset.io/papers/a-survey-on-problems-and-methods-in-generalized-assembly-2zgi04miv1
https://typeset.io/papers/a-multi-objective-genetic-algorithm-for-solving-assembly-j1mwrpbrwy
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/assembly-line-balancing-using-genetic-algorithms-3ymu61n1u7
https://twitter.com/intent/tweet?text=Assembly%20line%20balancing%20using%20genetic%20algorithms&url=https://typeset.io/papers/assembly-line-balancing-using-genetic-algorithms-3ymu61n1u7
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/assembly-line-balancing-using-genetic-algorithms-3ymu61n1u7
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/assembly-line-balancing-using-genetic-algorithms-3ymu61n1u7
https://typeset.io/papers/assembly-line-balancing-using-genetic-algorithms-3ymu61n1u7

Journal of Intelligent Manufacturing (2000) 11, 295±310

Assembly line balancing using genetic algorithms

I . SABUNCUOGLU , { E . EREL * and M . TANYER {

{Department of Industrial Engineering and *Department of Management, Bilkent University,

Bilkent, Ankara 06533, Turkey

Received February 22, 1998 and accepted December 20, 1998

Assembly Line Balancing (ALB) is one of the important problems of production/operations

management area. As small improvements in the performance of the system can lead to signi®cant

monetary consequences, it is of utmost importance to develop practical solution procedures that

yield high-quality design decisions with minimal computational requirements. Due to the NP-hard

nature of the ALB problem, heuristics are generally used to solve real life problems. In this paper, we

propose an ef®cient heuristic to solve the deterministic and single-model ALB problem. The

proposed heuristic is a Genetic Algorithm (GA) with a special chromosome structure that is

partitioned dynamically through the evolution process. Elitism is also implemented in the model by

using some concepts of Simulated Annealing (SA). In this context, the proposed approach can be

viewed as a uni®ed framework which combines several new concepts of AI in the algorithmic

design. Our computational experiments with the proposed algorithm indicate that it outperforms the

existing heuristics on several test problems.

Keywords: Assembly systems, assembly line balancing, arti®cial intelligence, genetic algorithms,

simulated annealing

1. Introduction

An assembly line consists of a sequence of stations

performing a speci®ed set of tasks repeatedly on

consecutive product units moving along the line at

constant speed. Each unit spends the same amount of

time, called the cycle time in every station, the

production rate is the reciprocal of this cycle time.

Tasks or operations are indivisible elements of work

which have to be performed by consuming a ®xed

amount of time to assemble a product. Due to

technological restrictions, precedence constraints

specifying the sequence of tasks have to be

considered. These constraints are represented by a

precedence graph consisting of nodes for the tasks and

arcs for the precedence relations. The Assembly Line

Balancing (ALB) problem is to determine the

allocation of the tasks to an ordered sequence of

stations such that each task is assigned to exactly one

station, no precedence constraint is violated, and some

selected performance measure is optimized (e.g.,

minimize the number of stations).

Since the ALB problem falls into the NP-hard class

of combinatorial optimization problems, numerous

research efforts have been directed towards the

development of computer ef®cient approximation

algorithms or heuristics (Ghosh and Gagnon, 1989).

The common characteristic of all the heuristic search

methodologies is the use of problem-speci®c know-

ledge intelligently to reduce the search efforts. In this

context, GAs are intelligent random search mechan-

isms that are applied to various combinatorial

optimization problems such as scheduling, TSP, and

ALB. The existing studies in the literature have

indicated that GA can be used as a very effective

search technique in solving dif®cult problems because

of its ability to move from one solution set to another

and ¯exibility to incorporate the problem speci®c

characteristics. To achieve these bene®ts, standard

GA operators should be properly modi®ed and

adapted to the problem domain. In this paper we

0956-5515 # 2000 Kluwer Academic Publishers

propose such a new GA structure and related

operators to solve the ALB problem. In fact, our test

results on the benchmark problems show that the

proposed GA approach yields better ALB schedules

than the existing GA methods and other traditional

heuristics. Furthermore, the computation time of the

proposed method is reasonably low (less than 2

seconds for about 50 tasks ALB problems) that GA

can be effectively used in solving real size problems.

The rest of the paper is organized as follows. First,

we review the relevant literature. Then we propose a

new GA-based algorithm. We also integrate GA and

simulated annealing (SA), working together to

achieve a better search. Next, we measure the

performance of our algorithm on a number of test

problems and compare it with the heuristics reported

to perform well. Finally, we summarize the important

®ndings and outline the further research directions.

2. Relevant literature

In this section, we ®rst review the traditional studies in

the literature and then discuss GA-based approaches.

2.1. ALB literature

Since the ALB problem was ®rst formulated by

Helgeson et al. (1954), many solution approaches

have been proposed. Ghosh and Gagnon (1989)

classify these studies into four categories: Single

Model Deterministic (SMD), Single Model Stochastic

(SMS), Multi/Mixed Model Deterministic (MMD),

and Multi/Mixed Model Stochastic (MMS). In this

paper, we consider the SMD category, which assumes

dedicated, single-model assembly lines where the task

times are known deterministically and an ef®ciency

criterion is optimized. SMD has been the most

researched category, as evidenced by a large number

of articles published in the literature (64 articles since

1983) (Ghosh and Gagnon, 1989). A summary of this

research work in this category is as follows.

There have been a number of attempts to optimally

solve the SMD version of the problem using linear

programming (LP) (Salveson, 1955), integer pro-

gramming (IP) (Bowman, 1960; Klein, 1963;

Patterson and Albracht, 1975; Talbot and Patterson,

1984), dynamic programming (DP) (Jackson, 1956;

Held et al., 1963; Schrage and Baker, 1978), and

branch-and-bound (B&B) approaches (Jackson, 1956;

Johnson, 1981; Wee and Magazine 1981). Since the

optimal solution of even a modest size problem (e.g.,

with 100 tasks) is impossible by the exact methods, a

considerable research effort has been spent to develop

heuristic approaches. Among them, most notable ones

are: Dar-El's MALB (1973), Dar-El and

Rubinovitch's MUST (1979), Baybars' LBHA

(1986), Tonge's (1965), Moodie and Young's

(1965), and Nevins' (1972) heuristics. Baybars

(1986) compares his heuristic with Tonge's (1965),

Moodie and Young's (1965), and Nevins' (1972)

heuristics on Tonge's problems. We will use the same

problem set to measure the performance of the

proposed algorithm.

2.2. GA approaches to the ALB problem

GAs are adaptive methods which can be used to solve

optimization problems. They are based on genetic

processes of biological organisms. Over many

generations, natural populations evolve according to

the principles of natural selection and survival of the

®ttest. In nature, individuals with the highest survival

rate have relatively a large number of offsprings; that

is, the genes from the highly adapted or ®t individuals

spread to an increasing number of individuals in each

successive generation. The strong characteristics from

different ancestors can sometimes produce super-®t

offspring, whose ®tness is greater than that of either

parent. In this way, species evolve to become more

and more well-suited to their environment. Holland

(1975) showed that a computer simulation of this

process of natural adaptation could be employed for

solving optimization problems. Goldberg (1989)

presented a number of applications of GAs to

search, optimization and machine learning problems.

In general, the power of GAs comes from the fact

that the technique is robust, and can deal with a wide

range of problem areas. Although GAs are not

guaranteed to ®nd the optimal solution, they generally

®nd good solutions with reasonable computational

requirements.

To the best of our knowledge, there are only three

published papers in literature which solve ALB

problem using GA; two of them work on the

deterministic (SMD) problem and the other works

on the stochastic problem (SMS). We now present a

review of these articles in chronological order.

The ®rst attempt was made by Leu et al. (1994). In
this study, the authors use solutions of heuristic

296 Sabuncuoglu, Erel and Tanyer

procedures in the initial population. They also

demonstrate the possibility of balancing assembly

lines with multiple criteria and side constraints such

as, allocating a task in a station by itself. According to

the authors, the GA approach has two advantages: (i)

GAs search a population rather than a single point and

this increases the odds that the algorithm will not be

trapped in a local optimum since many solutions are

considered concurrently, and (ii) GA ®tness functions

may take any form (i.e., unlike gradient methods that

have differentiable evaluation functions) and several

®tness functions can be utilized simultaneously.

In the second study, Anderson and Ferris (1994)

showed the effective use of GAs in the solution of

combinatorial optimization problems, working speci-

®cally on the ALB problem. The authors ®rst describe

a fairly standard implementation for the ALB

problem. Then an alternative parallel version of the

algorithm for use on a message passing system is

introduced. Their aim is not to demonstrate the

superiority of a GA over the traditional methods, but

rather to give some indications for the potential use of

this technique in combinatorial optimization prob-

lems. Thus, the authors do not compare the GA with

well known heuristics, but only with a neighborhood

search scheme with multiple restarts in which the GA

is found to be better than this method.

Suresh et al. (1996) used a GA to solve the SMS

version of the ALB problem. The ability of GAs to

consider a variety of objective functions is regarded as

the major feature of GAs. A modi®ed GA working

with two populations, one of which allows infeasible

solutions, and exchange of specimens at regular

intervals is proposed for handling irregular search

spaces, i.e., the infeasibility problem due to pre-

cedence relations. The authors claim that a population

of feasible solutions would lead to a fragmented

search space, thus increasing probability of getting

trapped in a local minima. They also state that

infeasible solutions can be allowed in the population

only if genetic operators can lead to feasible solutions

from an infeasible population. Since a purely

infeasible population may not lead to a feasible

solution in this particular problem, two alternative

populations, one purely feasible and one allowing a

®xed percentage of infeasible chromosomes, are

combined in a controlled pool to facilitate the

advantages of both of them. Certain chromosomes

are exchanged at regular intervals between the two

populations, the exchanged chromosomes have the

same rank of ®tness value in their own populations.

The results of the experiments indicate that the GA

working with two populations gives better results than

the GAwith one feasible population.

3. The proposed GA-based approach

The three studies summarized in the previous section

demonstrate that GA is a promising intelligent

heuristic for the ALB problem. In this study, we

direct our research effort towards exploiting the

characteristics of the ALB problem to further improve

the existing GA structures. After presenting the initial

GA structure, we explain the proposed GA approach

in detail.

3.1. The characteristics of the initial GA

The structure of our GA is similar to Whitley and

Kauth's (1988) GENITOR, as it performs only one

crossover operation at each iteration. The initial

structure (i.e., without dynamic partitioning and SA-

controlled elitism) of our algorithm is as follows.

Initial Genetic Algorithm
Generate initial population
repeat

Choose two parents for recombination
Apply mutation with Rm probability or
crossover with 1ÿ Rm probability
Replace parents with offsprings

until Stopping_condition is reached
Take the best-®t chromosome of the ®nal
population as the solution

Some of the characteristics of the proposed GA are

devised with the inspiration taken from current

examples in the literature. We describe these

characteristics as follows.

(1) Coding: Each task is represented by a number

that is placed on a string (i.e., chromosome) with the

string size equal to the number of tasks. The tasks are

ordered on the chromosome relative to their order of

processing. Then the tasks are allocated into stations

such that the sum of the task times in each station does

not exceed the cycle time. This coding scheme is

demonstrated in Fig. 1 for a 7-task problem.

Assembly line balancing using genetic algorithms 297

(2) Fitness function: The objective of the ALB

problem considered in this paper is to minimize the

number of stations, however, given two different

solutions with the same number of stations, one may

be ``better balanced'' than the other. For example, a

line with three stations may have stations times as 30-

50-40 or 50-50-20. We consider the 30-50-40 solution

to be superior (better balanced) to the 50-50-20

solution. Hence, we used a ®tness function that

consists of two objectives, i.e., minimizing the

number of stations and obtaining balanced station:

Fitness Function � 2

������������������������������������

Pn
k�1�Smax ÿ Sk�

2

n

s

�

Pn
k�1�Smax ÿ Sk�

n

�1�

where n is the number of stations, Smax is the

maximum station time, and Sk is the kth station time.

The ®rst part of the ®tness function aims to ®nd the

best balance among the solutions that have the same

number of stations while the second part minimizes

the number of stations in the solution. Since we

arbitrarily assume that the ®rst objective is more

critical than the second, we multiply it by two.

(3) Initial Population: The initial population is

generated randomly by assuring feasibility of pre-

cedence relations.

(4) Crossover and Mutation: Whether to perform

crossover or mutation depends on a certain prob-

ability, i.e., if the probability of recombining is 98%

then the probability of mutating is 2%. The crossover

(recombination) operator is a variant of Davis' (1985)

order crossover operator. The two parents that are

selected for crossover are cut at two random cut-

points. The offspring takes the same genes outside the

cut-points at the same location as its parent and the

genes in between the cut-points are scrambled

according to the order that they have in the other

parent. This procedure is demonstrated in the example

(Fig. 2). The major reason that makes this crossover

operator very suitable for ALB is that it assures

feasibility of the offspring. Since both parents are

feasible, both children must also be feasible. Keeping

a feasible population is a key to ALB problem since

preserving feasibility drastically reduces computa-

tional effort.

The mutation operator of Leu et al. (1994) is

scramble mutation, that is, a random cut-point is

selected and the genes after the cut-point are

randomly replaced (scrambled), assuring feasibility.

Elitism, i.e., replacing a parent with an offspring only

Fig. 1. Coding the chromosome representation of an assembly line.

298 Sabuncuoglu, Erel and Tanyer

if the offspring is better than the parent, is applied to

both the crossover and the mutation procedures. Both

of these operators are the same as Leu et al.'s (1994)
crossover and mutation operators.

(5) Scaling: The ®tness scores need to be scaled

such that the total of the scaled ®tness scores are equal

to 1, in order to activate the selection procedure (i.e.,

roulette wheel selection). Since our objective is to

minimize the ®tness scores, we need to assign the

highest scaled ®tness score to the lowest ®tness score

and vice versa, to assign a probability of selection that

is proportional to the ®tness of chromosomes. We

achieve this by subtracting each ®tness value from the

double of the highest (worst) ®tness value in the

population and assigning the subtrahend as the new

®tness value of that chromosome. Then, by dividing

each new ®tness score by the total of new ®tness

scores, we scale the ®tness scores such that their total

equals to 1.

(6) Selection Procedure: We use a well known

procedure called ``roulette wheel selection''. Each

chromosome consisting of an interval proportional to

its scaled ®tness score are placed next to each other on

the [0,1] interval. Then, a uniform random number in

the [0,1] interval is generated, and the chromosome

which is assigned to the interval corresponding to the

random number is selected. This procedure selects

chromosomes proportional to their ®tness scores.

(7) Stopping Condition: The algorithm terminates

after a certain number of iterations. We used 500,

1000, and 2000 values for the number of iterations

parameter.

3.2. The proposed dynamic partitioning technique

In this section, we develop a new method called

Dynamic PArtitioning (DPA) that modi®es chromo-

some structures of GAs to save CPU time. DPA

modi®es the chromosome structure by allocating tasks

to stations (i.e., freezing certain tasks) that satisfy

some criteria, and continues with the remaining

unfrozen tasks. Consequently, DPA allows the GA

to focus on the remaining tasks during the search and

saves a considerable amount of computation time. In

what follows, we use ``without DPA'' to refer to the

traditional GA discussed in Section 3.1 and ``with

DPA'' to refer to the GAwith dynamic partitioning.

3.2.1. Motivation

Although a typical GA developed for the ALB

problem can be a fast problem solver (e.g., the

proposed GA solves a 50 task problem after 500

iterations in approximately 1.5 seconds on a Pentium

133 PC), it needs a careful experimental design to tune

the parameters for each type of the ALB problem.

Hence, it has to be run a number of times (in the order

of ten thousands) that can consume signi®cant CPU

times. The main motivation behind the development

of the DPAmethodology is to reduce the CPU times in

spite of the expected deterioration in the performance,

i.e., the ®nal ®tness score. Surprisingly, as it will be

discussed in the next section, the performance is

improved as well. This indicates that DPA causes the

GA to work out more effectively with the remaining

``a fewer number of tasks'' after each freezing or

partitioning.

3.2.2. Implementation

To preserve the precedence relations between the

remaining tasks, we consider freezing at the ®rst and

the last stations (i.e., the genes at the beginning and at

the end of the chromosome are considered as

potentially freezable). The second criteria for freezing

is to achieve an optimal station time at the potentially

freezable stations. This optimality condition depends

on the ®tness function. The freezing criteria that best

®ts to our ®tness function is:

jS� ÿ Sij

S�
5DPC; i � 1; n;

DPC � 0:01; 0:02; 0:03; . . .

�2�

where

Fig. 2. Our crossover operator.

Assembly line balancing using genetic algorithms 299

S� �

Pn
i�1 Si
n�

n* is the minimum possible number of stations, i.e.,

n� �

Pn
i�1 Si
CT

� �

and CT is the cycle time.

The DPC (Dynamic-Partitioning-Constant) para-

meter enables us to ®ne-tune our algorithm (i.e., it

adjusts the accuracy of the station freezing criteria).

When it increases, the average number of partitioning

per run also increases, resulting in computation time

savings, but we may end up with a poorer solution

(i.e., worse ®nal ®tness scores).

As described above, the two criteria for DPA are

checked at the end of each iteration. If the ®rst or the

last station satis®es the criteria, then this (these)

station(s) is (are) frozen and the GA goes on to the

next iteration with the unfrozen tasks only. Since the

length of the chromosome decreases after each

freezing (or partitioning), the GA program spends

less time per iteration in the remaining iterations.

The population size, i.e., the number of chromo-

somes in the GA population, stays ®xed throughout

the procedure. The best-®t chromosome, yielding the

best solution, is checked for the DPA criteria at each

iteration. If it satis®es the criteria, DPA is applied to

the best-®t chromosome and the frozen genes (tasks)

are deduced from all the other chromosomes of the

population. This does not create any infeasibility for

the precedence constraints since the frozen tasks are

either at the beginning or at the end of the partitioned

chromosome.

The DPA mechanism is explained with an example

depicted in Fig. 3. In this example, DPA criteria are

satis®ed for both the ®rst and the last stations at the

45th iteration. Hence, tasks 1, 2, 13, 15, and 16 are

frozen. Then, the GA balances the remaining eleven

tasks, ignoring the frozen ®ve. At the 136th iteration,

only the ®rst station satis®es the DPA criteria, and

hence the tasks belonging to this station (i.e., tasks 7,

11) are frozen. These frozen tasks are then added on to

the best-®t chromosome of the ®nal iteration in the

order that they were frozen.

It is presumed that if DPA is applied starting with

the ®rst iteration, then we might do early freezing

which would bind us to a local optima. In order to

prevent this, we use a warm-up period that allows the

initial random population to achieve a considerable

®tness score prior to partitioning.

4. Experimental conditions

To investigate the effectiveness of DPA, we solve 30

different ALB problems that are generated in a similar

way as discussed in Leu et al. (1994). In addition, we

Fig. 3. Illustration of dynamic partitioning.

300 Sabuncuoglu, Erel and Tanyer

measure the effects of different DPA and GA

parameters on the solutions.

Thirty problems each consisting of 50 tasks are

randomly generated for three Flexibility-Ratios

(F-Ratios) of 10%, 50%, and 90%. F-Ratio is a

measure of the precedence relations among the tasks

and calculated as follows

Fÿ Ratio �
26�number of 1's in the precedence matrix�

n�nÿ 1�
�3�

where the precedence matrix is an upper triangular

binary matrix with (i, j)th entry equals to one if task j
is a follower of task i on the precedence diagram, zero

otherwise. Note that an F-Ratio of 1 corresponds to a

chain precedence diagram whereas 0 corresponds to

the bin-packing problem.

The task times of all thirty problems are generated

from the binomial distribution (n � 30, p � 0:25).

These parameters are also the choices of Leu et al.
(1994) and Talbot et al. (1986). Finally, we choose the
cycle time as 56, which is about twice the average of

the maximum task times of the 30 problems.

We examine four DPA and GA parameter settings,

namely DPC, warm-up period (WU), number of

iterations (ITER), and population size (POPSIZE).

DPC and warm-up period are the two DPA

parameters. Number of iterations and population

size are the two GA parameters included in the

analysis.

The ®rst factor, DPC, has four levels 0, 0.01, 0.02,

and 0.03. DPC at 0 level corresponds to GA without

DPA. As we increase the value of DPC from 0 to any

other number (between 0 and 1) we turn on the DPA

function.

The second factor is the warm-up period. This

factor has ®ve levels: 0, 25, 50, 75, and 500 iterations.

DPA is applied with no warm-up period at the 0 level.

We use 500 as the DPA level to observe the effects of

a very long warm-up period.

The third factor is the number of iterations. Three

levels are used: 500, 1000, and 2000. Finally, the

fourth factor is the population size with four levels at

20, 30, 40, and 50. In the experiments, we keep the

mutation rate at a ®xed level to save from additional

computation time. Based on pilot runs, we set the

mutation rate to 0.05.

In the experiments, we take 10 replications of each

problem at each combination of factor levels, by using

the same set of 10 randomseeds.Therefore,we solve30

(problems)6 10 (replications)6 4 (DPC levels)6

5 (warm-up levels)6 3 (iteration levels)6 4

(population size levels) � 72,000 problems.

5. Results of experiments

As given in Table 1, the effects of all four factors on

CPU times are signi®cant at the 5% level. For ®tness

scores, most of the factors are also signi®cant, except

for the warm-up period factor with 50% F-Ratio, and

DPC and warm-up period factors with 90% F-Ratio.

The Bonferroni and Duncan groupings of the ®tness

scores are reported in Table 2. In general, these two

methods yield the same ranking in all the experiments.

DPA performs signi®cantly better than the GAwithout

DPA, (DPC at 0), in both the 10% and the 50% F-

Ratio cases. When DPC is at the optimal level, the

improvement of the average ®tness scores with DPA

compared to GAwithout DPA is 7.69% and 16.43% in

the 50% and 10% F-Ratio cases, respectively. In the

90% F-Ratio case, GA with DPA does not perform

signi®cantly better than GA without DPA, but it is

slightly better at all levels of the DPC.

DPC performs usually well at the level nearest to 0

level (i.e., 0.01). But the optimal value of this factor

depends on F-Ratio and average task time compared

to cycle time.

As can be noted in Table 2, there is a payoff

between ®tness score and CPU time as we change the

value of DPC. In the 10% F-Ratio case, the

improvement of the average ®tness score is about

16% (8% in 50% F-ratio case) while the CPU time

saving is more than 20% (23% in 50% F-ratio case)

when DPC is at 0.01. However, when DPC is at 0.02

level, the improvement in the 10% F-ratio case

decreases to 6% (1% in 50% F-ratio case) while the

CPU time saving increases to 29% (31% in 50% F-

ratio case). We do not observe this behavior in the

90% F-ratio case.

The effects of other factors on CPU time are as

follows. CPU time increases as the number of

iterations or the population size or the warm-up

period increases. The effect of each level of these

factors differs signi®cantly from each other. We also

observe that the performance improves signi®cantly

as the number of iterations increases at all levels of

DPC. This observation was expected since the ®tness

score is not allowed to get worse than the value

obtained at a prior iteration. The improvement in

Assembly line balancing using genetic algorithms 301

Table 1. ANOVA results for ®tness scores and CPU time

Source

F-Ratio� 10%

DF Fitness scores CPU time

Sum of sq F value Pr4F Sig. at Sum of sq F value Pr4F Sig. at

0.05? 0.05?

Model 167 14378.71 34.68 0.0001 yes 317886844.56 423.09 0.0001 yes

Error 23832 59159.74 107222212.01

DPC 3 1966.58 261.07 0.0001 yes 39965797.16 2961.03 0.0001 yes

ITER 2 9772.55 1968.39 0.0001 yes 221475236.12 24613.36 0.0001 yes

WU 4 74.48 7.50 0.0001 yes 12618309.58 701.16 0.0001 yes

POPSIZE 3 793.68 106.58 0.0001 yes 14709022.85 1089.78 0.0001 yes

ITER*DPC 6 663.74 44.56 0.0001 yes 19417914.67 719.33 0.0001 yes

DPC*WU 12 305.00 10.24 0.0001 yes 4735933.37 87.72 0.0001 yes

DPC*POPSIZE 9 88.10 3.94 0.0001 yes 89602.23 2.21 0.0185 yes

ITER*WU 8 229.55 11.56 0.0001 yes 3341638.94 92.84 0.0001 yes

ITER*POPSIZE 6 283.70 19.05 0.0001 yes 172506.21 6.39 0.0001 yes

WU*POPSIZE 12 18.37 0.62 0.8302 no 93323.25 1.73 0.0544 no

DPC*WU*POPSIZE 36 31.24 0.35 0.9999 no 49551.79 0.31 1.0000 no

ITER*DPC*WU 24 113.32 1.90 0.0049 yes 1165622.78 10.79 0.0001 yes

ITER*DPC*POPSIZE 18 30.41 0.68 0.8340 no 26556.49 0.33 0.9966 no

ITER*WU*POPSIZE 24 7.99 0.13 1.0000 no 25829.11 0.24 1.0000 no

F-Ratio� 50%

Model 167 2809.20 6.50 0.0001 yes 338013613.13 883.86 0.0001 yes

Error 23832 61721.60 54575204.98

DPC 3 761.25 97.98 0.0001 yes 47259999.22 47974.24 0.0001 yes

ITER 2 1128.53 217.87 0.0001 yes 219721716.08 47974.24 0.0001 yes

WU 4 7.02 0.68 0.6074 no 22186867.76 2422.15 0.0001 yes

POPSIZE 3 165.46 21.30 0.0001 yes 10170984.90 1480.49 0.0001 yes

ITER*DPC 6 130.21 8.38 0.0001 yes 20175884.62 1468.41 0.0001 yes

DPC*WU 12 167.56 5.39 0.0001 yes 8385227.70 305.14 0.0001 yes

DPC*POPSIZE 9 65.94 2.83 0.0025 yes 37068.83 1.80 0.0631 no

ITER*WU 8 40.64 1.96 0.0471 yes 7002495.84 382.23 0.0001 yes

ITER*POPSIZE 6 183.56 11.81 0.0001 yes 57952.60 4.22 0.0003 yes

WU*POPSIZE 12 42.11 1.35 0.1797 no 205032.25 7.46 0.0001 yes

DPC*WU*POPSIZE 36 28.66 0.31 1.0000 no 106336.83 1.29 0.1144 no

ITER*DPC*WU 24 22.70 0.37 0.9981 no 2554821.89 46.49 0.0001 yes

ITER*DPC*POPSIZE 18 45.92 0.99 0.4735 no 45259.33 1.10 0.3464 no

ITER*WU*POPSIZE 24 19.63 0.32 0.9994 no 103965.27 1.89 0.0053 yes

F-Ratio� 90%

Model 167 4940.09 1.35 0.0001 yes 472137987.51 3671.42 0.0001 yes

Error 23832 520551.62 18351793.51

DPC 3 0.27 0.00 0.9996 no 1894134.57 819.92 0.0001 yes

ITER 2 1250.52 28.63 0.0001 yes 459903043.76 99999.99 0.0001 yes

WU 4 0.36 0.00 1.0000 no 654259.41 212.41 0.0001 yes

POPSIZE 3 3379.81 51.58 0.0001 yes 7903184.28 3421.08 0.0001 yes

ITER*DPC 6 0.06 0.00 1.0000 no 845397.93 182.98 0.0001 yes

DPC*WU 12 0.84 0.00 1.0000 no 467938.31 50.64 0.0001 yes

DPC*POPSIZE 9 0.75 0.00 1.0000 no 27598.34 3.98 0.0001 yes

ITER*WU 8 0.01 0.00 1.0000 no 229897.42 37.32 0.0001 yes

ITER*POPSIZE 6 305.90 2.33 0.0296 yes 6303.33 1.36 0.2246 no

WU*POPSIZE 12 0.50 0.00 1.0000 no 17151.22 1.86 0.0346 yes

DPC*WU*POPSIZE 36 0.64 0.00 1.0000 no 12427.69 0.045 0.9982 no

ITER*DPC*WU 24 0.02 0.00 1.0000 no 159493.27 8.63 0.0001 yes

ITER*DPC*POPSIZE 18 0.36 0.00 1.0000 no 11582.80 0.84 0.6591 no

ITER*WU*POPSIZE 24 0.06 0.00 1.0000 no 5572.18 0.30 0.9936 no

302 Sabuncuoglu, Erel and Tanyer

performance is logarithmic, i.e., the improvement gets

less as the number of iterations increases.

Warm-up period factor is not signi®cant in none of

the F-Ratio levels. Hence, we drop out this factor (i.e.,

keep it ®xed at the zero level) in our further

experiments. We also note that this factor needs a

different tuning at each level of the DPC. The

performance improves at a decreasing rate with the

number of iterations factor.

The population size factor can be tuned for

obtaining the optimal performance of the algorithm.

From the three sets of problems with 10%, 50%, and

90% F-ratios, we observed that a larger population

size yields a better score on problems with higher F-

Ratio (i.e. 50% and 90%). It may seem to be counter-

intuitive, at the ®rst sight, that smaller population

sizes performed better than the larger ones on

problems with the 10% F-Ratio. Our explanation for

this observation stems from the fact that the search

space is wider at low F-Ratios. Therefore, a large

population cannot concentrate on local minimum

search. The special recombination mechanism that is

used in our GA is responsible for this ®nding, i.e. only

one pair of chromosomes are selected for recombina-

tion at each iteration. Since including the best-®t

chromosome in crossover is potentially more advan-

tageous for the local minimum search than crossing

over two other chromosomes, the performance

deteriorates as the population size increases. In other

words, the probability of selecting the best-®t

chromosome for recombination in a large population

is less than in a small population.

When the three sets of data are combined, we

observed that F-Ratio is a signi®cant factor on the

overall performance of the system. The Bonferroni

and Duncan grouping of the ®tness scores due to F-

Table 3. Bonferroni and Duncan grouping of ®tness scores due to F-Ratio

Bonferroni grouping Duncan grouping Mean N F-Ratio

A A 10.619 24,000 90%

B B 3.493 24,000 50%

C C 3.392 24,000 10%

Table 2. Bonferroni and Duncan grouping of ®tness scores and CPU time due to DPC

Fitness score CPU time

Bonferroni & Duncan Mean N DPC Bonferroni & Duncan Mean N DPC

10% F-Ratio

A 3.733 6000 0.03 A 3.289 6000 0

B 3.548 6000 0 B 2.605 6000 0.01

C 3.323 6000 0.02 C 2.340 6000 0.02

D 2.965 6000 0.01 D 2.241 6000 0.03

50% F-Ratio

A 3.743 6000 0.03 A 3.246 6000 0

B 3.510 6000 0 B 2.510 6000 0.01

B 3.480 6000 0.02 C 2.235 6000 0.02

C 3.240 6000 0.01 D 2.096 6000 0.03

90% F-Ratio

A 10.623 6000 0 A 3.237 6000 0

A 10.620 6000 0.03 B 3.167 6000 0.01

A 10.618 6000 0.01 C 3.103 6000 0.02

A 10.614 6000 0.02 D 2.996 6000 0.03

Assembly line balancing using genetic algorithms 303

Ratio is presented in Table 3. Although the average

task time of each set of problems is approximately the

same (i.e., they are generated by the same random

generator), the ®tness scores increase exponentially as

the F-Ratio increases, since the increase in the number

of precedence relations reduces the allocation alter-

natives of the tasks and leading to an increase in the

required number of stations.

In conclusion, the DPA procedure achieved a

signi®cant amount of CPU time saving. Even though

some deterioration in the performance is expected due

to DPA, we have surprisingly achieved some

improvement. In other words, we have obtained a

better performance with DPA than the traditional

application of GA (without DPA), while also saving

from the CPU time. This counter-intuitive result can

be explained as follows. The stations that are frozen

by DPA already have station times that minimize the

®tness function, as explained earlier. Hence, by

freezing some of the tasks without straying too

much from optimal balancing, the GA concentrates

more on the remaining tasks. If we did not freeze the

stations that satisfy the DP criteria, the mutation and

crossover mechanisms would waste time by working

on these already balanced stations as well, instead of

focusing on the poorly balanced stations. Therefore,

given the same number of iterations, a GAwith DPA

is able to work (try alternative combinations) on

balancing the poorly balanced stations more than a

GA without DPA. Consequently, we achieved sig-

ni®cant performance improvement by DPA.

Another interesting observation is that the improve-

ment effect of DPA decreases as the F-Ratio

increases, i.e., as the search space gets narrower.

The reason is that the possibility of partitioning at the

same level of DPC decreases due to small number of

feasible solutions resulting from the large number of

precedence relationships. Even if the GA is allowed to

focus on the poorly balanced stations with DPA, it is

less likely to lead to an improved result since GA

without DPA can perform a suf®cient search in a

narrow search space.

6. Restructuring elitism by simulated annealing

Replacing a parent with an offspring only if the

offspring is better than the parent is called elitism.
There is an analogy between the idea of elitism in GAs

and local search algorithms, a move to a neighbor

point is made only if the solution is improved. In this

section, we restructure the elitism rule of our GAwith

the simulated annealing (SA) methodology.

SA is a well-known global search algorithm in

which moves to poorer solutions are allowed with a

certain probability. We refer the interested readers to

articles by Johnson et al. (1989, 1991) on SA.

6.1. Integration of SA to elitism

The problem speci®c decision elements of SA are

replaced by GA decision elements in our application.

The initial solution is the best-®t chromosome of the

initial population, neighborhood generation is simply

the crossover and mutation mechanisms, and evalua-

tion of Hc is the difference between the ®tness scores

of the offspring and its parent. In case the offspring's

®tness score is larger than its parent's, we calculate

Hc, and then evaluate the probability function,

P�x� � min�1; exp�ÿ Hc
T
��. Temperature �T� is

decreased exponentially as Tk�1 � Tk6a, where k is

the iteration number, and a is the scaling factor

smaller than 1 and usually very close to 1, i.e., 0.98.

Hence, Tk � T06a
k, at the kth iteration. We do not

explicitly de®ne a stopping criterion other than the

0.01 limit for T.We keep the iteration number ®xed at

500, but P�x� starts to take values that are almost zero

after T reaches the 0.01 limit, hence this limit can be

thought as the stopping criterion of SA where strict

elitism takes over again. With the above stopping

criterion, P�x� reaches approximately zero at different

iteration numbers due to different a levels. In our

experimental setup, we used 7 different levels of a, 0,

0.8, 0.95, 0.96, 0.97, 0.98, and 1. The level 0 means

``strict elitism,'' i.e., no SA, and the level 1 means

``no elitism'' where our crossover mechanism

(neighborhood generation mechanism) turns out to

be a random search mechanism instead of a local-

optimum seeking mechanism.

6.2. Experimentation

Our experimental design again consists of the same 30

problems with 10 replications, 4 population size

factors (20, 30, 40, 50), and 7 a levels (0, 0.80, 0.95,

0.96, 0.97, 0.98, 1), resulting in 30610646

7 � 8; 400 instances.

The Anova results are given in Table 4. We observe

that a levels are signi®cantly different from each

304 Sabuncuoglu, Erel and Tanyer

Table 4. ANOVA results for ®tness scores

Fitness scores

Source DF Sum of

squares

F value Pr4F Signi®cant

at 0.05?

Number of Iterations� 500

Model 41 64954.54 171.63 0.0001 yes

Error 8358 77151.19

ALPHA 6 801.64 14.47 0.0001 yes

F-RATIO 2 63714.08 3421.91 0.0001 yes

POPSIZE 3 90.48 3.27 0.0204 yes

F-RATIO*ALPHA 12 801.65 7.24 0.0001 yes

POPSIZE*ALPHA 18 86.68 0.52 0.9499 no

Number of Iterations� 1000

Model 41 72736.44 220.21 0.0001 yes

Error 8358 67334.30

ALPHA 6 1108.85 22.94 0.0001 yes

F-RATIO 2 70000.85 4344.50 0.0001 yes

POPSIZE 3 273.72 11.33 0.0001 yes

F-RATIO*ALPHA 12 1292.04 13.36 0.0001 yes

POPSIZE*ALPHA 18 60.97 0.42 0.9844 no

Table 5. Bonferroni and Duncan grouping of ®tness scores due to a, F-Ratio, population size

Bonferroni Duncan Mean N a Bonferroni Duncan Mean N a

grouping grouping grouping grouping

Iter� 500 Iter� 1000

A A 7.368 1200 1 A A 6.925 1200 1

B A B 7.018 1200 0.98 B A B 6.608 1200 0.98

B C C 6.712 1200 0.97 B C C 6.315 1200 0.97

C C 6.596 1200 0.95 D C C 6.209 1200 0.96

C C 6.585 1200 0.96 D C E C 6.123 1200 0.95

C C 6.494 1200 0.8 D E D 5.876 1200 0

C C 6.440 1200 0 E D 5.825 1200 0.8

F-Ratio F-Ratio

A A 10.609 2800 90 % A A 10.351 2800 90 %

B B 5.091 2800 10 % B B 4.271 2800 50 %

C C 4.534 2800 50 % B B 4.184 2800 10 %

Pop size Pop size

A A 6.900 2100 20 A A 6.554 2100 20

B A B A 6.762 2100 30 B B 6.287 2100 30

B A B 6.700 2100 50 B C B 6.153 2100 50

B B 6.616 2100 40 B C 6.080 2100 40

Assembly line balancing using genetic algorithms 305

other. We ranked the factors by both Bonferroni and

Duncan methods (Table 5). According to Bonferroni,

the a levels are not signi®cantly different from each

other, but Duncan test ranks 1 and 0.98 levels

separately from the other levels. We should point out

here that Bonferroni is a conservative test. Thus, we

conclude that elitism is better than the no elitism case.

Then we increase the number of iterations factor to

1000 to see if we can observe a signi®cant difference

in the Bonferroni ranking as well. (We change the

initial temperature from 1000 to 10,000,000 in order

to avoid early cooling, as we change the number of

iterations from 500 to 1000). We observed again that

the Bonferroni ranking of the a levels do not show any

signi®cant difference, but the Duncan test ranks the

levels in four groups instead of three.

Later, we enlarged our experimental design by

including three different DPC levels, i.e., 0.01, 0.02,

and 0.03, in addition to the other factors. In this case,

we observe that the combined effect of a and DPC is

signi®cant at 0.05 level, but overlapping of the levels

of a is observed according to the Bonferroni grouping.

Although we could not achieve any signi®cant

improvement by relaxing the elitism rule, we observe

that strict elitism �a � 0� is signi®cantly better than no
elitism �a � 1�. Considering that our reproduction

mechanism is a special one which is different from the

traditional approach, i.e. only one or two chromosomes

are replaced by new offsprings, we claim that elitism

should be used in order to obtain a better performance

with this kind of a reproduction mechanism.

7. Comparison of the proposed GAwith heuristics

In this section we compare the proposed GAwith Leu

et al.'s (1994) GA on the Kilbridge-Wester's (1961)

45-task ALB problem and with Baybars' (1986)

heuristic and other traditional heuristics on Tonge's

(1961) 70-task problem.

7.1. Comparison with leu et al.'s GA (1994)

Leu et al. (1994) solved Kilbridge-Wester's (1961)

problem by their GA and compared it with ®ve other

heuristics that are also available in the QS software

package (Chang and Sullivan, 1991). These ®ve non-

GA heuristics are single-pass procedures accompa-

nied by heuristic rules to break ties.

The cycle time of the original problem is 55, but

Leu et al. (1994) slightly change this value to 56 to

observe the sensitivity of non-GA heuristics to

changes in problem constraints. The authors also

compare the ®ve heuristics with their GA using four

different measures, (i) mean-squared idle time, (ii)

square root of mean squared idle time, (iii) ef®ciency

(utilization), and (iv) maximum station time. If the

maximum station time is less than the given cycle

time, then it becomes the new cycle time, i.e., the cycle

time is reduced. The other three measures are already

explained in Section 2. We evaluate the performance

of our GA in terms of these measures as well.

We solved the Kilbridge-Wester problem by the

proposed GA using 1200 different factor level

combinations. The factors used and their levels are:

DPC (0, 0.01, 0.03, 0.05), population size (20, 50),

cooling rate (0, 0.95, 0.97, 0.99, 1), mutation rate

(0.02, 0.05, 0.1), and 10 random seeds. In the

experiments, we set the number of iterations� 500,

warm-up period� 0.

As shown in Table 6, the proposed GA ®nds the

optimal number of stations, outperforming Leu et al.'s
GA (1994) and the other heuristics. The solution that

Table 6. Comparison of non-GA heuristics, Leu et al.'s GA and the proposed GA

Solution

method

Mean-squared

idle time

Sqr root (mean-

sqrd idle time)

Ef®ciency Maximum

workload

Heuristic 1 239.64 15.48 0.8961 56

Heuristic 2 239.27 15.47 0.8961 56

Heuristic 3 67.45 8.21 0.8961 56

Heuristic 4 124.91 11.17 0.8961 56

Heuristic 5 239.64 15.48 0.8961 56

Leu et al.'s GA 51.81 7.20 0.8961 55

Proposed GA 1.20 1.10 0.9855 56

306 Sabuncuoglu, Erel and Tanyer

provides the optimal number of stations was found at

13 different factor level combinations. These factor

levels are presented in Table 7 to demonstrate the

positive effect ofDPA and the restructured elitism rule.

As can be observed in Table 7 the optimal number of

stations (i.e., 10) is found by the proposed GA only

when DPA is activated (i.e., DPC=0) together with

the restructured elitism (i.e., cooling rate=0). The two

different mean squared idle time measures in this table

indicate that there are two alternative solutions with 10

stations. The solution with the lowest mean squared

idle time is given in Fig. 4.

Table 7. Factor levels at which the optimal solution is found

No DPC Population

size

Random

seed

Cooling

rate

Mutation

rate

CPU

time

Mean sqrd

idle time

1 0.03 20 14567 0.97 0.05 0.76 1.40

2 0.03 20 97663 0.99 0.02 0.76 1.40

3 0.03 20 97665 0.99 0.05 0.82 1.20

4 0.03 20 77943 0.99 0.10 1.04 1.40

5 0.03 20 47729 0.99 0.10 0.93 1.40

6 0.03 20 77943 1.00 0.10 1.04 1.40

7 0.03 50 84521 0.97 0.10 1.37 1.20

8 0.03 50 76421 0.97 0.10 1.59 1.20

9 0.03 50 60013 0.99 0.10 1.70 1.40

10 0.03 50 14567 1.00 0.02 1.53 1.40

11 0.05 20 14567 0.97 0.05 0.76 1.40

12 0.05 20 77943 0.99 0.10 1.04 1.40

13 0.05 20 47729 0.99 0.10 0.93 1.40

Fig. 4. The proposed GA solution for the Kilbridge-Wester 45-Task problem.

Assembly line balancing using genetic algorithms 307

7.2. Comparison with Baybars' LBHA-1 (1986)

Baybars (1986) solved Tonge's (1961) 70-task

problem with a heuristic called LBHA-1. Tonge's

(1961) problem is a real life application that comes

from the electronics industry. Since 1965, numerous

attempts have been made to solve the Tonge (1961)

problem for 13 different cycle times ranging from 83

to 364.

We solve Tonge's (1961) problem for the 13 cycle

times with the proposed GA. Our algorithm have ®ve

parameters, i.e., DPC, number of iterations, cooling

rate, mutation rate, and population size, that need to

be optimized for each problem. First, we experi-

mented the effect of each parameter on the

performance for minimum cycle time and ®xed the

number of iterations factor to 500 because we did not

observe any signi®cant improvement at higher levels.

We observed that the best performing level of DPC is

0.05, hence we eliminated all other levels except the 0

level, which we kept to observe the GAwithout DPA

performance. The mutation parameter's levels are

0.01, 0.03, 0.05, 0.10, 0.20, and the cooling rate

parameter takes 0, 0.95, 0.97, 0.99, 1 values for all

versions. Hence, we solved the problem 500 times for

each of the 13 cycle times, i.e., 5 (mutation)6 5

(cooling rate)6 2 (DPC)6 10 (seeds or replications)

� 500. We took the best solution, i.e., the minimum

number of stations, among these 500 solutions as our

solution to the problem in Table 8. The optimal

solutions to these problems as well as the results of

previous studies that have attempted to solve this

problem are also given in Table 8.

It can be observed from Table 8 that the proposed

GA performs better than all heuristics except Nevins'

(1972) and Baybars' (1986). However, there is no

signi®cant difference between the performance of

Nevins' (1972) or Baybars' (1986) heuristics and the

proposed GA. The proposed GA solutions match

those of Baybars except for four cases in which we

exceed the optimal solution by only one and for one

case in which we ®nd the optimal solution while

Baybars' LBHA-1 does not. Considering that the

proposed GA ®nds ®ve of the thirteen optimal

solutions and ®nds solutions to the other cases with

only one extra station than the optimum, it performs

quite well on the Tonge's (1961) problem.

Although GAs are applicable to any kind of ALB

problem regardless of the F-Ratio, we observe that

they perform worse in problems with high F-Ratio, as

in Tonge's (1961) problem with 59.42% F-Ratio. If

the number of precedence relations increases, the

possibility of generating offsprings that are better than

their parents decreases. In such a case, another

crossover operator that provides more substantial

changes on the parents' genes may be used instead of

a moderate crossover operator like ours. The purpose

of the two point crossover, used in our algorithm, is to

conduct a neighborhood search by keeping the head

and the tail of each offspring the same as its parent.

The offspring should be close in ®tness to its parent

since only its middle genes change. Conversely, a one

Table 8. Comparison of seven methods on the 70-task problem of Tonge (1961) in terms of number of stations

Cycle Optimal Moodie and Tonge (1965) Nevins Baybars Proposed

time solution Young (1965)

MIF

RC

BPC

(1972) (1986) GA

83 47 48 50 50 49 47 47 48

86 46 47 47 48 47 46 46 46

89 43 44 45 46 44 43 43 44

92 ? 43 43 44 43 42 42 43

95 40 42 43 43 41 40 40 41

170 22 24 24 24 23 23 23 23

173 22 24 24 24 23 22 23 23

176 22 22 24 23 22 22 23 22

179 21 22 23 23 21 21 22 22

182 21 22 23 22 21 21 22 22

346 11 11 11 12 11 11 11 11

349 11 11 11 11 11 11 11 11

364 11 11 11 11 11 11 11 11

308 Sabuncuoglu, Erel and Tanyer

point crossover would change, on the average, half of

the entire chromosome of each offspring, and such a

change could be too drastic and might move the

offspring out of the local search neighborhood.

Similarly, more-than-two-point crossover could

result in changes in ®tness that are either too small

or too large depending on how the swapping is done.

Hence, a one point crossover might achieve better

results compared to our two point crossover operator

for problems with high F-Ratios.

Note also that Baybars' LBHA-1 consists of

reduction phases that reduce the problem size by

eliminating tasks, determining mutually exclusive

task sets, and decomposing the network, while no

reduction phases are applied to the problem prior to

our GAs. It has been shown by Leu et al. (1994) that
starting the GA with a better initial population

signi®cantly improves the solution quality.

8. Discussion

In this paper, we developed a new GA to solve the

deterministic and single-model ALB problem by

utilizing the intrinsic characteristics of the problem.

We showed that the chromosome structure of GAs can

be changed dynamically to provide an ef®cient search

in the ALB solution space. In particular, we reduced

the chromosome size during the search procedure that

led to improvements both in the solution quality and

computation times. By the same token, this new

dynamic chromosome structure is novel concept that

can be applied to other GA applications. Furthermore,

we constructed a new elitism structure adopted from

the concept of SA. We observed that this new elitism

structure contributes signi®cantly to the performance

of the GA. In fact, the results of extensive

computational experiments indicated that the pro-

posed GA approach outperforms the well-known

heuristics in the literature.

ALB problem is a frequently-addressed problem

both during the design and life-cycle of the product, it

is solved in several stages due to product model

changes and unbalancing caused by uncontrollable

factors such as learning phenomenon. Considering the

signi®cant monetary consequences of having a poor

design, it is extremely important to utilize an ef®cient

and practical approach for managers responsible for

the design and control of assembly lines. In this paper,

we developed such a novel and ef®cient GA approach

to solve the real size ALB problems.

There are several future research directions that can

originate from this study. First, a static partitioning

procedure developed in this study can be applied to

divide large ALB problems (more than 100 tasks) into

smaller subproblems to improve the solution time.

Secondly, the proposed DPA approach can be

extended to freeze not only the tasks of the stations

at the beginning or at the end of the line but also of the

other stations. One can expect that such a revision

would improve the performance of the GA especially

for large size problems. Thirdly, in this study we

considered only the single model and deterministic

ALB problem, however the scope of the study can be

extended to multi/mixed model and/or stochastic

cases as well. An immediate extension would be

done to the U-type assembly line systems which are

often encountered in practice. Finally, the DPA and

elitism structure proposed in this study can be

enhanced with different crossover and mutation

operators, and coding representations.

References

Anderson, E. J. and Ferris, M. C. (1994) Genetic algorithms

for combinatorial optimization: the assembly line

balancing problem. ORSA Journal on Computing, 6,
161±173.

Baybars, I. (1986) An ef®cient heuristic method for the

simple assembly line balancing problem. International

Journal of Production Research, 24, 149±166.
Bowman, E. H. (1960) Assembly line balancing by linear

programming. Operations Research, 8, 385±389.
Chang, Y.- L. and Sullivan, R. S. (1991) QS Quant Systems,

version 2, Englewood Cliffs, NJ.

Dar-El, E. M. (1973) MALB Ð A heuristic technique for

balancing large scale single-model assembly lines.

AIIE Transactions, 5, 343±356.
Dar-El, E. M. and Rubinovitch, Y. (1979) MUST Ð A

multiple solutions technique for balancing single

model assembly lines. Management Science, 25,
1105±1114.

Davis, L. (1985) Applying algorithms to epistatic domains.

In Proceedings International Joint Conference on

Arti®cial Intelligence.

Ghosh, S. and Gagnon, R. J. (1989) A comprehensive

literature review and analysis of the design, balancing

and scheduling of assembly systems. International

Journal of Production Research, 27, 637±670.
Goldberg, D. E. (1989) Genetic algorithms in search,

Assembly line balancing using genetic algorithms 309

optimization and machine learning, Addison-Wesley

Publishing Company Inc., Reading, MA.

Held, M., Karp, R. M. and Shareshian, R. (1963) Assembly

line balancing Ð dynamic programming with prece-

dence constraints. Operations Research, 11, 442±459.
Helgeson, W. B., Salveson, M. E. and Smith, W. W. (1954)

How to balance an assembly line, Technical Report,

Carr Press, New Caraan, Conn.

Holland, J. H. (1975) Adaptation in natural and arti®cal

systems, The University of Michigan Press, Ann Arbor,

MI.

Jackson, J. R. (1956) A computing procedure for a line

balancing problem. Management Science, 2, 261±271.
Johnson, D. S., Aragon, C. R., McGeoch, L. A. and

Scheuon, C. (1989) Optimization by simulated

annealing: an experimental evaluation; part I, graph

partitioning. Operations Research, 37, 865±892.
Johnson, D. S., Aragon, C. R., McGeoch, L. A. and

Scheuon, C. (1991) Optimization by simulated

annealing: an experimental evaluation; part II, graph

coloring and number partitioning. Operations

Research, 39, 378±406.
Johnson, R. V. (1981) Assembly line balancing algorithms:

computational comparisons. International Journal of

Production Research, 19, 277±287.
Kilbridge, M. D. and Wester, L. (1961) A heuristic method

of assembly line balancing. The Journal of Industrial

Engineering, 12, 292±298.
Klein, M. (1963) On assembly line balancing. Operations

Research, 11, 274±281.
Leu, Y. Y., Matheson, L. A. and Rees, L. P. (1994) Assembly

line balancing using genetic algorithms with heuristic-

generated initial populations and multiple evaluation

criteria. Decision Sciences, 25, 581±606.

Moodie, C. L. and Young, H. H. (1965) A heuristic method

of assembly line balancing for assumptions of constant

or variable work element times. Journal of Industrial

Engineering, 16, 23±29.
Nevins, A. J. (1972) Assembly line balancing using best bud

search. Management Science, 18, 529±539.
Patterson, J. H. and Albracht, J. J. (1975) Assembly-line

balancing: zero-one programming with ®bonacci

search. Operations Research, 23, 166±172.
Schrage, L. and Baker, K. R. (1978) Dynamic programming

solution of sequencing problems with precedence

constraints. Operations Research, 26, 444±449.
Suresh, G., Vinod, V. V. and Sahu, S. (1996) A genetic

algorithm for assembly line balancing. Production

Planning and Control, 7, 38±46.
Talbot, F. B. and Patterson, J. H. (1984) An integer

programming algorithm with network cuts for solving

the assembly line balancing problem. Management

Science, 30, 85±99.
Talbot, F. B., Patterson, J. H. and Gehrlein, W. V. (1986) A

comparative evaluation of heuristic line balancing

techniques. Management Science, 32, 430±454.
Tonge, F. M. (1961) A heuristic program of assembly line

balancing, Englewood Cliffs, NJ.

Tonge, F. M. (1965) Assembly line balancing using

probabilistic combinations of heuristics. Management

Science, 11, 727±735.
Wee, T. S. and Magazine, M. (1981) An ef®cient branch and

bound algorithm for an assembly line balancing

problem Ð part I: minimize the number of work

stations, University of Waterloo, Ontario, Canada.

Whitely, D. and Kauth, J. (1988) GENITOR A different

genetic algorithm. In Rocky Mountain Conference on

Arti®cial Intelligence.

310 Sabuncuoglu, Erel and Tanyer

