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We used a deeply sequenced dataset of 910 individuals, all of 
African descent, to construct a set of DNA sequences that is 
present in these individuals but missing from the reference 
human genome. We aligned 1.19 trillion reads from the 910 
individuals to the reference genome (GRCh38), collected all 
reads that failed to align, and assembled these reads into con-
tiguous sequences (contigs). We then compared all contigs 
to one another to identify a set of unique sequences repre-
senting regions of the African pan-genome missing from the 
reference genome. Our analysis revealed 296,485,284 bp in 
125,715 distinct contigs present in the populations of African 
descent, demonstrating that the African pan-genome con-
tains ~10% more DNA than the current human reference 
genome. Although the functional significance of nearly all of 
this sequence is unknown, 387 of the novel contigs fall within 
315 distinct protein-coding genes, and the rest appear to  
be intergenic.

Since its initial publication1,2, the human genome sequence has 
undergone continual improvements aimed at filling gaps and cor-
recting errors. The latest release, GRCh38, spans 3.1 gigabases 
(Gb), with just 875 remaining gaps3. The ongoing effort to improve 
the human reference genome, led by the Genome Reference 
Consortium, has in recent years added alternate loci for genomic 
regions where variation cannot be captured by SNPs or small inser-
tions and deletions (indels). These alternate loci, which comprise 
261 scaffolds in GRCh38, capture a small amount of population 
variation and improve read mapping for some data sets.

Despite these efforts, the current human reference genome 
derives primarily from a single individual4, thus limiting its use-
fulness for genetic studies, especially among admixed populations, 
such as those representing the African diaspora. In recent years,  
a growing number of researchers have emphasized the importance 
of capturing and representing sequencing data from diverse popu-
lations and incorporating these data into the reference genome 
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and genomics studies in general5–7. The alternate loci in GRCh38 
offer one possible way to add such diversity, although it is unclear 
whether such a solution is sustainable as more populations are 
sequenced. Among other problems, the addition of alternate loci as 
separate contigs can mislead sequence alignment programs, which 
were designed under the assumptions that each read has a single 
true point of origin and that the genome is represented as a linear 
haploid sequence8.

The lack of diversity in the reference genome poses many chal-
lenges when analyzing individuals whose genetic background does 
not match the reference. This problem may be addressed by using 
large databases of known SNPs (for example, dbSNP9), but this solu-
tion only addresses single-base differences and small indels and is 
not adequate for larger variants. Findings from the 1000 Genomes 
Project indicate that differences between populations are quite 
large; examination of 26 populations across five continents revealed 
that 86% of discovered variants were present in only one continental 
group. In that study, the five African populations examined had the 
highest number of variant sites compared with the remaining 21 
populations10.

One way to address the limitations of a single reference genome 
is to sequence and assemble reference genomes for other human 
subpopulations. The 1000 Genomes Project, Genome in a Bottle, 
and other projects have assembled draft genomes from various 
populations, including Chinese, Korean, and Ashkenazi individu-
als11–15. Other groups have used highly homogenous populations 
(for example, Danish, Dutch, or Icelandic individuals) together with 
assembly-based approaches to discover SNPs and structural variants 
(SVs), including up to several megabases of non-reference sequence 
common to these populations16–19. Although these variant analyses 
are a step in the right direction, to date, none have produced a refer-
ence-quality genome that can replace GRCh38 (ref. 3); however, this 
is an explicit goal of the Danish Genome Project (URLs).

While efforts to produce new reference genomes are worthwhile, 
attempts to create a pan-genome of a human population, a collec-
tion of sequences representing all of the DNA in that population, are 
rare. Although multiple pan-genomes have been created for bacte-
rial species20–22, as of yet, there are no pan-genomes for any other 
animal or plant species. The lack of pan-genomes is due in part 
to the technical challenges of assembling many deeply sequenced 
genomes de novo and combining them into one genome. Whereas 
the Danish Genome Project focused on 50 trios of non-admixed 
individuals (removing admixed samples from their study17), our 
study focuses on a highly heterogeneous group of admixed individ-
uals. Because the human reference genome is largely complete (the 
sequence has very few gaps), our strategy for creating a pan-genome 
focused on finding large insertions. This approach, although com-
putationally demanding, made the African pan-genome assembly 
process described here feasible.

A 2010 study that sequenced one Asian and one African indi-
vidual used the novel sequences identified to estimate that a full 
human pan-genome would contain an additional 19–40 megabases 
(Mb) that are not in the current reference genome11. Recent efforts 
to sequence a Dutch population and a set of 10,000 individuals 
have supported this estimate, reporting 4.3 and 3.3 Mb of non-
reference sequences, respectively18,23; however, neither study was 
designed with the primary goal of discovering long, non-reference 
sequences. A 2017 study in which two haploid human genomes 
(hydatidiform moles) were sequenced using long reads estimated 
that a single diploid genome may differ by as much as 16 Mb from 
the reference genome24. As we describe here, our analysis of 910 
deeply sequenced individuals, all from the Consortium on Asthma 
among African-Ancestry Populations in the Americas (CAAPA)25, 
produced a much larger amount of novel sequence (sequence absent 
from GRCh38) in the African pan-genome, spanning 296.5 Mb. We 
describe the methods used to identify and validate these sequences 

along with comparisons to other human sequences. The African 
pan-genome (APG) contigs have been deposited at NCBI under 
accession PDBU01000000 to provide a better foundation for future 
analyses of individuals of African ancestry.

In total, we discovered 296.5 Mb of novel DNA distributed 
across 125,715 sequences assembled from 910 individuals of 
African descent (Table 1 and Supplementary Fig. 1). We took steps 
to ensure contaminants and redundant contigs were removed, 
resulting in a non-redundant set of human contigs representa-
tive of the entire study group (Fig. 1). After discovery, we called 
presence/absence for all APG sequences in each CAAPA sample.  
A total of 33,599 contigs with a combined length of 81,096,662 
bases represented sequences present in at least two individuals in 
the CAAPA cohort. When alignments above 80% coverage and 
90% identity to Chinese and Korean genome assemblies were also 
considered shared, the number of non-private insertions increased 
to 61,410, totaling 160,475,353 bases and leaving 64,305 singleton 
contigs, a ~51% singleton rate. Of the 125,715 APG sequences, 
1,548 (total length 4.4 Mb) were anchored to a specific location 
in the primary GRCh38 assembly. On average, each individual 
contained 859 of these inserted sequences, with a single sequence 
being shared among six individuals (Table 2). Placed contigs 
were shared among more individuals, 196 on average, as shared 
sequences were more likely to meet the placement criterion in at 
least one individual.

We fully resolved the location for 302 of these sequences and 
resolved the breakpoint of one end of the insertion for the remain-
ing 1,246 (Supplementary Table 1). Placement locations were deter-
mined by complementing our methods with results from the PopIns 
program16, which corroborated many placements and resolved place-
ments for some insertions for which our method was ambiguous 
(Supplementary Note 1). The remaining sequences (Supplementary 
Table 2) could not be fully localized; however, mate-linking infor-
mation pointed to a consistent location for at least one end for an 
additional 57,655 sequences (Supplementary Table 3). The longest 
placed sequence was 79,938 bp and appeared in 197 samples, and 
the longest unplaced sequence was 152,806 bp, which appeared in 
11 samples (Table 1). Among all placed sequences, 387 intersected 
known genes, with placements within exons in 48 distinct genes and 
placements within introns in an additional 267 genes (some genes 
contained more than one insertion). Of the 315 genes containing 
insertions, 292 were named (had names other than ‘hypothetical’ or 
a non-meaningful identifier). An additional 133 placed insertions 
and 46 that already intersected a protein-coding gene intersected 
142 distinct lncRNAs, 21 of which were named (Supplementary 
Table 4). A translated BLAST26 search on unplaced sequences 
against NCBI’s nr database yielded an additional 10,667 contigs hit-
ting a chordate protein with ≥ 70% identity and an e value less than 

Table 1 | Novel sequences in the African pan-genome

Number of 
sequence 
contigs

Total length 
(bp)

Bases with no 
alignment to 
GRCh38 (< 80% 
identity)

Longest 
contig 
(bp)

Two ends placed 302 667,668 431,656 20,732

One end placed 1,246 3,687,028 1,866,699 79,938

Unplaced 124,167 292,130,588 202,629,979 152,806

Total 125,715 296,485,284 204,928,334 152,806

Non-private only 33,599 80,098,092 50,044,650 152,806

Number and length of novel sequences in the African pan-genome. Bases with no alignment 

to GRCh38 were calculated by subtracting the lengths of all subsequences that aligned with at 

least 80% identity. The remainder represents truly novel sequence. Non-private insertions were 

insertions shared by at least two CAAPA cohort individuals.
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1 ×  10–10. Placement locations and gene intersections were dispersed 
throughout the genome, and placed pan-genome elements were 
found on every chromosome (Fig. 2), in addition to 115 insertions 
in chromosome-specific ‘random’ sequences and 103 more in ‘unlo-
calized’ sequences included in the primary assembly of GRCh38.

Of our APG contigs, 31,354,079 bases aligned to a GRCh38 
‘patch’ or alternate (ALT) locus as part of an alignment with an 
identity of ≥ 80%. An additional 60,202,871 bases aligned to the pri-
mary assembly at ≥ 80% identity; however, most of these alignments 
covered a small portion of an APG contig and can be explained by 

the presence of extra copies of small repetitive elements. Data in 
Supplementary Tables 1 and 2 report alignments to ALT, patch, or 
primary assembly sequences covering at least 50% of the contig 
length with ≥ 80% identity. Requiring that at least 50% of a contig be 
aligned to any single location in GRCh38 produced a much smaller 
subset: of the 125,715 contigs, only 17,140 aligned to any part of 
GRCh38.p10 with a single alignment at ≥ 80% identity covering  
≥ 50% of the contig length. These 17,140 contigs contain 22,420,979 
aligned bases, with 13,770,950 bases being alignments to a refer-
ence chromosome. Although very few ALT loci in GRCh38.p10 
are tagged with population-specific information, alignments of the 
CAAPA-specific sequences to these loci suggest an African source 
for some of these ALT sequences.

In addition to calling presence/absence of our APG insertions 
in the CAAPA individuals, we performed a similar analysis of 12 
European and 12 African individuals from the Simons Genome 
Diversity Project (SGDP)27. The SGDP individuals varied in the 
number of APG sequences they contained (Supplementary Table 5), 
though analyzing the European- versus African-only contigs dem-
onstrated that the APG insertions tend to be more representative of 
African than European assemblies, despite the admixed nature of 
the data (Supplementary Note 2).

We additionally aligned all 125,715 pan-genome contigs to recent 
human assemblies of Chinese (HX1)14 and Korean (KOREF1.0)15 
individuals using bwa-mem28. We detected 42,207 contigs totaling 
120.7 Mb aligning to either the Korean or Chinese assembly’s with  
≥ 90% identity and ≥ 80% contig coverage, and matching the 
Chinese or Korean assembly better than GRCh38. A vast majority 
of these contigs (32,955) had no alignment at ≥ 80% identity and  

Table 2 | African pan-genome contig presence/absence 
statistics

Number of 
contigs

Mean number 
of insertions per 
individual

Mean number 
individuals per 
insertion

Two ends placed 302 120 (39.7%) 363 (of 910)

One end placed 1,246 212 (17.0%) 155 (of 910)

Unplaced 124,167 527 (0.4%) 4 (of 910)

Total 125,715 859 (0.7%) 6 (of 910)

Non-private only 33,599 758 (2.2%) 21 (of 910)

Statistics on the presence or absence of the African pan-genome contigs. Presence/absence 

was determined by aligning all raw contigs for each individual to the final set of APG contigs. 

Alignments of one or more contigs yielded a presence call if the alignments covered at least 80% 

of an APG contig at at least 90% identity. Additional presence calls were made for the placed 

contigs if the individual had a similar contig placed in the same location, even if the alignment 

thresholds were not met.
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≥ 50% coverage to GRCh38.p10, indicating that these sequences 
were not simply divergent from GRCh38, but rather were not pres-
ent at all (Table 3); an example of such a sequence and its alignments 
to GRCh38 and HX1 are shown in Fig. 3. This finding suggests 
these sequences have been lost in the small number of individuals 
used to create GRCh38, although some of them may reside in the 
few remaining gaps in the genome.

While Shi et al. reported 12.8 Mb of novel DNA in the HX1 
genome14, we found a total of 68.1 Mb shared by HX1 and the 
unique sequences in the APG contigs (Table 3). This discrepancy is 
methodological: the Chinese genome assembly has relatively large 
scaffolds that were considered unique only if a large proportion of 
the scaffold failed to align to GRCh38 (Supplementary Note 3).

As an additional check to ensure the APG sequences were not 
contaminants, we examined what portion of contigs had some 
match, even just a partial match, to the GRCh38, Korean, or 
Chinese assemblies. After filtering to retain only query-consistent 
alignments, 98% of the contigs (123,600) had some portion align-
ing to either the Chinese, Korean, or GRCh38 assemblies. The 
Korean assembly had the most alignment, with 123,585 contigs 
containing an alignment totaling 247.2 Mb of aligned length, or 
83% of the total APG sequence, although only 31,033 contigs, 
totaling 80.9 Mb of alignment, aligned with over ≥ 90% identity 
and ≥ 80% coverage.

Our findings here demonstrate that the standard human refer-
ence genome lacks a substantial amount of DNA sequence com-
pared with other human populations. The APG sequences contain 
296.5 Mb, equal to 10% of the genome, regions that will necessarily be 
missed by any efforts relying only on GRCh38 to study human varia-
tion, as nearly all studies do at present. Of these 296.5 Mb, 120.7 Mb 
were shared by the Korean or Chinese populations, suggesting  
those regions may have been lost more recently or may be rare in the 
specific populations represented in GRCh38. Overall these results 
suggest that a single reference genome is not adequate for popula-
tion-based studies of human genetics. Instead, a better approach may 

be to create reference genomes for all distinct human populations,  
which over time will eventually yield a comprehensive pan-genome 
capturing all of the DNA present in humans.

URL. http://www.genomedenmark.dk/english/about/referencege-
nome/.
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well to the Korean assembly (not shown).
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Methods
We used whole-genome shotgun sequence data from 910 individuals whose 
genomes were sequenced as part of the CAAPA project, available from dbGaP as 
accession phs001123.v1.p1. The total data set contains 1.19 trillion (1.19 ×  1012) 
100-bp paired end reads, representing an average of 30–40×  coverage for each 
individual’s genome. Sequencing was performed on an Illumina HiSeq 2000. 
The subjects in the study were all of African ancestry and were selected from 
19 populations across the Americas, the Caribbean, and continental Africa25 
(Supplementary Table 6).

Assembly of novel contigs. For each sample, we aligned all reads to GRCh38.
p0 using Bowtie2 (ref. 29) and extracted unaligned reads and their mates using 
Samtools30 (Fig. 1). GRCh38 alternate loci were excluded from the reference index, 
but were considered later in the process. We then assembled all unaligned reads 
with the MaSuRCA assembler31; if neither mate in a pair aligned to GRCh38, 
MaSuRCA treated the reads as paired ends with a fragment size of 300 bp, and if 
only one mate was unaligned, MaSuRCA treated it as an unpaired read.

We filtered the resulting assemblies to exclude contigs shorter than 1000 bp 
(Fig. 1) and evaluated all remaining contigs with the Centrifuge metagenomics 
program32, scanning against the comprehensive NCBI nucleotide database to 
obtain a taxonomic classification of each contig. We considered any contigs labeled 
by Centrifuge as non-chordates (for example, bacterial or viral contigs) to be 
contaminants and removed them from further consideration.

Positioning contigs within GRCh38. We attempted to place the assembled contigs 
in a precise location in the human genome using mapping information from 
paired reads (“mates”). We masked contigs with RepeatMasker33 with the low-
complexity option off (–nolow) and used Bowtie2 to realign all unaligned reads 
from read pairs in which only one mate had aligned originally. For each read R 
aligning within 500 bases of the end of a contig, we examined the alignment of R’s 
mate to GRCh38 to determine whether the contig had a unique placement in the 
reference genome. The fragment length for all paired-end libraries was 300 bp; by 
considering reads within 500 bp of the end of a contig, we reduced the likelihood 
that one or both of the alignments was a spurious match. Additional details of the 
sequencing protocols for the CAAPA genomes are described elsewhere25. This 
process resulted in a pool of linking mates corresponding to the beginning and end 
of each contig.

We then separated contigs into several groups based on their linking 
information:

 1. No linking mates existed on either end of the contig; the reads mates did not 
align to GRCh38.

 2. Placement was unambiguous (or unique) for at least one end of the contig. 
We de�ne ‘chromosome unambiguous’ to mean > 95% of the linking mates 
linked to the same chromosome. We de�ne ‘region unambiguous’ to mean 
that of the > 95% of mates aligned to the same chromosome, all mates aligned 
within 2 kb of each other. When both conditions hold, we say placement is 
unambiguous. �ese contigs were further divided into two subgroups:

 a. Both ends of the contig were placed unambiguously, or

 b. Only one end was placed unambiguously.

 3. At least one end of the contig was chromosome unambiguous, but neither 
end was region unambiguous.

 4. Neither end was chromosome unambiguous.

For all contigs in the second group, we used NUCmer34 to align them to the 
region determined by the linking mates (Fig. 1). If a contig end had one or more 
consistent exact matches of at least 15 bases (and no inconsistent alignments), 
we then determined the contig end’s exact insertion location based on alignment 
coordinates (Supplementary Methods). We permitted an exact two-ended 
placement only if both ends aligned to the same reference region with the same 
orientation. The insertion position was either a single breakpoint, if both ends 
of the contig were placed identically, or a range, if the insertion location of the 
two ends was not identical. For contigs with only a single end exactly placed, we 
recorded their exact single-end insertion position and the number of overlapping 
bases (bases to be trimmed off the end of the contig).

Insertion discovery with PopIns. To supplement the list of placed contigs 
determined by the procedure above, we ran the PopIns program16, which was used 
previously for a set of genomes from Icelandic individuals, and was designed to find 
insertions from a relatively genetically homogenous population. We ran PopIns 
beginning with the popins merge step, using the cleaned MaSuRCA contig 
assemblies described above. We ran subsequent PopIns steps as recommended in 
the PopIns documentation, through the popins place-finish step. PopIns 
output was converted into a comparable format, and verifiable placements were 
added to our sets of insertions (Supplementary Methods).

Clustering of placed contigs. Once contig locations were determined for each 
individual sample, we aligned all insertions to one another and clustered them to 
determine which contigs represented the same insertion across individuals (Fig. 1).

Clustering two-ended placements. For contigs with both ends placed, we ran 
BEDtools merge35 to group contigs placed at approximately the same location. 
We used the -d option with a distance of 10 to allow placements within 10 bases 
of each other to be combined. We also ran the merge using -d 100, which 
produced identical results. For each resulting region and contig cluster, we chose 
the longest contig in the cluster as the cluster’s representative (R), and these 
representatives formed the initial set of two-end placed contigs, 2EP. Two-ended 
placement clusters from PopIns were then added to 2EP. We verified clusters by 
aligning all contigs in each cluster to its representative, R, with default nucmer 
parameters and removing from the cluster any contigs that did not have any 
alignments to R. To find the complete set of samples containing each insertion, 
we then aligned all remaining contigs (including unplaced contigs) to the 
contigs in the clusters. Any contig aligning with > 99% identity that was fully 
contained within a contig in a cluster C and covered ≥ 80% of the contig in C 
was included in C as part of the final set. Contained, 99–100% identical contigs 
aligning with < 80% coverage were also included if they had at least five linking 
mates and at least 25% of those mates linked to within 5 kb of the placement 
location. The longest representative contig in each cluster was used as the 
final insertion sequence for the African Pan-Genome (APG) contig collection 
(Supplementary Tables 1 and 2).

Clustering one-ended placements. We separated contigs with only one end 
placed into two groups: (1) contigs where the “left” end aligned to the reference, 
so that the contig extends into a gap to the right of the placement location; and (2) 
contigs with their “right” end placed, so the contig extends into a gap to the left of 
the placement location (Fig. 1). Left and right were determined by the orientation 
of the chromosomes in GRCh38. We then created clusters separately for the two 
groups using BEDtools merge (-d 100) as described above, identifying the 
longest representative R for each group. This formed the initial set of one-end 
placed contigs, 1EP. Any placements within 100 bases of a two-ended cluster  
(in the set 2EP) were then removed from 1EP, and each contig in these 1EP  
clusters was aligned to the representative of the 2EP cluster(s) within 100 bases.  
If any 1EP contig in the cluster aligned with ≥ 80% coverage and ≥ 90% identity to 
the 2EP contig, the 1EP contig was added to the 2EP cluster.

We then added PopIns one-ended placement clusters to the right and left 
placements in 1EP (Supplementary Methods). Then for all clusters, we used 
NUCmer with default parameters to align contigs within each cluster to the 
representative R. If no alignment was found between a contig and R, the contig was 
removed from the cluster. We then realigned all other contigs to those in each of 
these filtered clusters, excluding contigs already determined to be part of a two-
ended insertion. Contigs > 99% identical over their whole length to any member of 
a cluster C and covering at least 80% of the contig in C were added to C. Contained, 
99–100% identical contigs aligning with less than 80% coverage, were also included 
if they had at least five linking mates and at least 25% of those mates linked to 
within 5 kb of the placement location.

We then evaluated the one-ended placements to determine whether two 
contigs might belong to the same longer insertion, where one contig would ‘fill’ 
the left side of a gap and the other would fill the right side, possibly meeting in the 
middle. In some of these cases, the contigs might overlap, allowing us to merge 
them and create a single, longer insertion sequence. If placement positions were 
within 500 bases of one another, the sequences were aligned with NUCmer and 
merged if they were determined to be part of the same insertion (Supplementary 
Methods). Resultant merged sequences and their clusters were moved to the  
2EP set (Fig. 1).

Finally, to remove any potential redundancy from placed clusters, we aligned 
all representatives from both one- and two-end placed clusters to one another 
(using nucmer –maxmatch –nosimplify) regardless of placement distance. 
If two representatives aligned with ≥ 98% identity, covering ≥ 95% of one of the 
contigs, and were placed within 5 kb of one another, these clusters were merged. 
To determine the representative (and therefore reported placement) of the 
merged clusters, two-ended placed representatives were favored over one-ended 
representatives, then our placements were preferred over PopIns, then longer 
contigs were favored over shorter contigs. By merging only placements within 5 kb, 
we avoided merging contigs that were similar solely due to repetitive sequences but 
were unambiguously linked to different locations.

Unplaced contigs. For all unplaced contigs, we ran nucmer –maxmatch –
nosimplify with a minimum seed length of 31 (-1 31) and a minimum cluster 
size of 100 (-c 100) to align all contigs against one another. Contigs contained 
within another contig and aligning with > 95% identity were removed, and if 
contigs were annotated as identical by show-coords with > 97% identity, 
the smaller of the two was removed. If the ends of two contigs overlapped by at 
least 100 bases and a third contig was contained within the joined contigs, the 
contained contig was also removed. Trimming of up to 100 bases was permitted 
for finding overlaps. Finally, we aligned all resulting unplaced contigs to the placed 
representatives pre-trimming. If an unplaced contig aligned with ≥ 80% coverage 
and ≥ 90% identity, it was removed from the unplaced set, though it was not added 
into the placed cluster, as it did not meet the stricter placement or containment 
criteria used to create the clusters.
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In an additional attempt to place more contigs in the reference genome, we 
repeated the placement procedure described above, this time considering only the 
subset of linking mates that mapped to GRCh38 with a mapping quality > 10, and 
only attempting to place a contig if the contig end had a minimum of five such 
linking mates. This mapping quality criterion decreased the overall ambiguity of 
the putative locations for unplaced contigs (Supplementary Fig. 2); however, this 
additional placement effort only placed 150 additional contigs. We produced a file 
of putative linking locations for unplaced contigs by examining separately for each 
end the linking mates with a mapping quality > 10. If > 50% of these high-quality 
linking mates for a given end pointed to the same region, where a region was 
defined by grouping mates within 2 kb of each other, we reported that region as the 
putative placement location for that end of the contig, as well as the total number 
of high-quality mates and the percentage of those mates linking to that location. 
For this report, the two contig ends were allowed to putatively link to different 
locations; in such cases both the start and end regions identified are provided, as 
these are the two most likely placement regions for the contig (Supplementary 
Table 3). The putative locations include high-copy repetitive sequences that may 
be underrepresented in GRCh38, and thus are overrepresented as linking locations 
(Supplementary Note 4 and Supplementary Fig. 3).

Additional screening and analyses. To screen for contaminants missed by 
Centrifuge, we used the Kraken metagenomics classifier36 on our final set of 
representative contigs to compare them to a database containing all complete 
bacterial and archaeal genomes, all viral genomes, selected fungi and protists, 
human, mouse, and known contaminant sequences. Any unclassified contig 
or contig hitting something other than mouse or human was further examined 
by running the blastn program26 to align the contig to NCBI’s nonredundant 
nucleotide database. We removed all contigs (as likely contaminants) that had 
alignments to a non-chordate covering > 50% of the contig with a BLAST e-value 
< 10–10. We additionally removed a single contig, also an apparent contaminant, 
hitting Canis familiaris at 90% identity over the entire contig, but lacking any 
strong matches to primates. As expected, all of these contaminant contigs were 
found in the set of unplaced contigs. Deleted contaminants were examined for 
infections of interest, resulting in the incidental discovery of 29 individuals with 
malaria infections and 1 with human betaherpesvirus (Supplementary Note 5 and 
Supplementary Table 7).

To ensure the final set of contigs were truly absent from the human reference 
genome, we realigned all APG contigs to GRCh38.p10 using bwa-mem28 with 
default parameters. Two separate alignments were performed, one to the 
primary sequence and one to all patches and alternate loci. We removed any 
APG contigs with alignments to the primary assembly sequences at or above 
90% identity over at least 80% of the contig’s length, regardless of whether they 
had a better alignment to some alternate locus (Supplementary Methods). In 
Supplementary Tables 1 and 2, we report the best alignment location for each 
contig that had at least 50% of the contig aligned to GRCh38.p10 at ≥ 80% identity. 
All placed locations were intersected with the NCBI-provided gene annotations, 
GCF_000001405.36, which is the union of GenBank and RefSeq annotations 
for GRCh38.p10, and a translated BLAST search (blastx) was run against the 
comprehensive NCBI protein database to identify potential protein-coding regions 
in the APG sequences.

Calling presence/absence per sample. Raw contigs from the MaSuRCA assemblies 
(including contigs under 1 kb) of all 910 individuals were aligned to the final 
set of APG contigs with bwa-mem using default parameters. Alignments to an 
APG contig aligning within 300 bp of one another were chained to create longer 
alignments where possible. Identity of the chained alignment was taken to be the 
identity of these alignments weighted by length, and coverage was taken to be the 
total aligned bases over the total APG contig length. If an individual’s raw contig 
alignments produced an alignment with ≥ 90% identity and ≥ 80% coverage to an 
APG contig, that APG contig was called as present, and a “1” was included in the 
matrix (Supplementary Data Set 1).

Additionally, for the placed contigs, because we had already determined which 
individuals contained these sequences, the genotype matrix was supplemented by 
adding a presence call (“1”) if we had determined that an individual had a contig 
in the placement cluster. This additional calling allowed increased sensitivity 
for individuals who had mate placement information available for the insertion, 
even when the contigs did not meet the identity/coverage criteria used for this 
presence/absence genotyping. The “genotype” matrix entries indicate presence/
absence calls represented as 1 or 0; heterozygous and homozygous genotypes are 
not differentiated.

To estimate whether the pan-genome would continue to grow as more 
individuals were sequenced, we randomly sampled varying numbers of individuals 
within our dataset and used the genotype matrix to determine, in each subset, 
how much of the APG sequence was present. Each data point was an average of 
ten random samplings, each with the same number of individuals. The amount 
of DNA added to the pan-genome appears to increase approximately linearly as 
the sample size grows, and has not reached an asymptote with 910 individuals 
(Supplementary Fig. 4).

We additionally called presence/absence of the APG insertions in 12 
individuals from six European populations and 12 individuals from six African 
populations from the Simons Genome Diversity Project (Supplementary Table 5). 
We assembled these individual’s contigs from raw read data via the same assembly 
pipeline used for the CAAPA data and then used the resulting MaSuRCA assembly 
contigs to make the presence/absence calls.

Comparisons to other genomes. We aligned all APG contigs to two additional 
genome assemblies: a Chinese genome assembly14 and a Korean genome 
assembly15. All alignments were performed using bwa-mem with default 
parameters. Because bwa-mem sometimes found multiple distinct alignments for 
a contig, the best query-consistent set of alignments for each contig was retained, 
so no part of an APG contig aligned to more than one location in the reference. 
The best query-consistent set was determined by comparing the sums of alignment 
length weighted by percent identity. We then filtered these alignments to these 
genomes, retaining alignments with an overall identity ≥ 90% that covered ≥  80% 
of the contig.

We compared each APG contig’s alignment(s) to the Chinese and Korean 
genomes to all alignments of the same contig to GRCh38.p10, including patches 
and alternate loci, obtained as previously described. Among the contigs aligning 
to the Chinese or Korean genomes, we examined further those with a better 
alignment (higher identity ×  coverage) to the Chinese or Korean genome than to 
GRCh38.p10. We separated these further into two categories, those contigs with 
a ‘reasonably good’ alignment to GRCh38.p10 (≥ 50% contig coverage and ≥ 80% 
identity for query-consistent sets of alignments within 1 kb of one another), and 
those lacking reasonably good alignments to GRCh38.p10.

Code availability. Commands and parameters are included in Supplementary  
Note 6. Custom scripts used are available upon reasonable request.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Raw sequence data used for this study are available from dbGaP with accession 
code phs001123.v1.p1. The African pan-genome contigs have been deposited at 
GenBank with accession code PDBU00000000. The version described in this paper 
is version PDBU01000000.
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Describe whether the investigators were blinded to 

group allocation during data collection and/or analysis.

N/A

Note: all studies involving animals and/or human research participants must disclose whether blinding and randomization were used.

6.   Statistical parameters 

For all figures and tables that use statistical methods, confirm that the following items are present in relevant figure legends (or in the 

Methods section if additional space is needed). 

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement (animals, litters, cultures, etc.)

A description of how samples were collected, noting whether measurements were taken from distinct samples or whether the same 

sample was measured repeatedly

A statement indicating how many times each experiment was replicated

The statistical test(s) used and whether they are one- or two-sided (note: only common tests should be described solely by name; more 

complex techniques should be described in the Methods section)

A description of any assumptions or corrections, such as an adjustment for multiple comparisons

The test results (e.g. P values) given as exact values whenever possible and with confidence intervals noted

A clear description of statistics including central tendency (e.g. median, mean) and variation (e.g. standard deviation, interquartile range)

Clearly defined error bars

See the web collection on statistics for biologists for further resources and guidance.

   Software

Policy information about availability of computer code

7. Software

Describe the software used to analyze the data in this Software used: Bowtie2, MaSuRCA, RepeatMasker, bwa, SAMtools, BEDtools, 
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study. MUMmer, PopIns, BLAST, Centrifuge, Kraken, IGV. All software listed has been 

cited in the manuscript.

For manuscripts utilizing custom algorithms or software that are central to the paper but not yet described in the published literature, software must be made 

available to editors and reviewers upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). Nature Methods guidance for 

providing algorithms and software for publication provides further information on this topic.

   Materials and reagents

Policy information about availability of materials

8.   Materials availability

Indicate whether there are restrictions on availability of 

unique materials or if these materials are only available 

for distribution by a for-profit company.

N/A

9.   Antibodies

Describe the antibodies used and how they were validated 

for use in the system under study (i.e. assay and species).

N/A

10. Eukaryotic cell lines

a.  State the source of each eukaryotic cell line used. N/A

b.  Describe the method of cell line authentication used. N/A

c.  Report whether the cell lines were tested for 

mycoplasma contamination.
N/A

d.  If any of the cell lines used are listed in the database 

of commonly misidentified cell lines maintained by 

ICLAC, provide a scientific rationale for their use.

N/A

    Animals and human research participants

Policy information about studies involving animals; when reporting animal research, follow the ARRIVE guidelines

11. Description of research animals

Provide details on animals and/or animal-derived 

materials used in the study.

N/A

Policy information about studies involving human research participants

12. Description of human research participants

Describe the covariate-relevant population 

characteristics of the human research participants.

N/A
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