
Assembly of Puzzles Using a Genetic Algorithm

Fubito Toyama, Yukihiro Fujiki, Kenji Shoji, and Juichi Miyamichi
Faculty of Engineering, Utsunomiya University
7-1-2, Yoto, Utsunomiya-shi, 321–8585 JAPAN

fubito@is.utsunomiya-u.ac.jp

Abstract

In this paper, we proposed a method for solving the rect-
angle piece jigsaw puzzle assembly problem. A shape of a
piece is a rectangle, and a picture of a puzzle is only painted
in black and white, i.e., puzzles are processed as binary im-
ages. The assembly of the puzzle is performed only using in-
formation of the pixel value on the border line of the pieces.
This problem cannot be solved by the simple local piece
matching because there are many similar pieces. Global
matching is required. The proposed method utilizes a ge-
netic algorithm (GA) to search the optimum piece arrange-
ment because GA has the ability to find the global solution
in the large optimization space. The proposed method cor-
rectly assembled all pieces in the 8 × 8 -piece puzzle.

1. Introduction
Solving puzzles by computer is typical pattern recog-

nition problem. When a shape of a piece is a rectangle,
this problem is especially difficult and contains a number of
problems endemic to applications such as the optimum lo-
cation problem and image mosaicking. A shape of a piece is
a rectangle and a picture of a puzzle is only painted in black
and white, i.e., puzzles are processed as binary images. We
assume that a piece does not rotate. Thus, the piece di-
rections are fixed. But the puzzle problem is very difficult
on this condition. We proposed a method for solving this
rectangle piece jigsaw puzzle assembly problem. Figure 1
shows an example of puzzles used in this paper.

The previous works in jigsaw puzzle assembly can be
found in [1][2][3][4]. Only shape information is utilized in
these methods. Pictorial information is not a factor.

In this method, the assembly of the puzzle is performed
only using information of the pixel values (1 or 0) on the
border line of the pieces which are processed as binary im-
ages. This puzzle problem can be considered the problem
for searching piece arrangement such that the total differ-
ence of the pixel values on the border line of all neighboring
pieces becomes smallest. This problem cannot be solved

Figure 1. Example of the puzzle used in this
paper (8× 8-piece puzzle).

by the simple local piece matching. Global matching is re-
quired. The proposed method utilizes a genetic algorithm
(GA) to search the optimum piece arrangement because GA
has the ability to find a global solution in a large optimiza-
tion space. The proposed method correctly assembled all
pieces in the 8 × 8-piece puzzle.

2. Assembly of puzzles using a GA
A rectangle puzzle consists of N×M pieces. We call n×

m puzzle piece arrangement “partial piece arrangement”,
(1 ≤ n ≤ N) and (1 ≤ m ≤ M).

The puzzles used in this paper have a unique solution in
which fitness function F (this function is described in Sec-
tion 2.2) has the maximum value. The assembly of the puz-
zle is performed only using the pixel values on the border
line of the pieces. Thus, only information which is shown
as figure 2 is actually used in the assembly of the puzzle.
Figure 2 shows only information on the border line of the
pieces of figure 1. We treat the piece arrangement problem
in which global matching is required. Therefore, only pixel
values on the border line of the pieces are used in this paper.
This approach cannot handle extra and missing pieces.

In the puzzle problem, there is the constraint that every

Proceedings of the 16 th International Conference on Pattern Recognition (ICPR’02)
1051-4651/02 $17.00 © 2002 IEEE
Proceedings of the 16 th International Conference on Pattern Recognition (ICPR’02)
1051-4651/02 $17.00 © 2002 IEEE

Figure 2. Information on the border line of the
pieces of figure 1.

piece must be used exactly once. Thus, the definition of
chromosomes and genetic operators which satisfy this con-
straint are required. In this method, partial piece arrange-
ment and N × M piece arrangement are defined as an in-
dividual and a population, respectively. Not only the indi-
vidual but the population evolves under some conditions.
Optimum piece arrangement is searched without destroying
the constraint of the puzzle.

Figure 3 shows the flow of GA. First, initial populations
are generated by randomly assembling N×M pieces. Opti-
mum piece arrangement is searched efficiently by evolving
multiple populations. Second, offsprings are generated by
exchanging two partial piece arrangements. Multiple off-
springs are generated from a population. Third, fitness val-
ues for each generated population (N × M -piece puzzle)
are calculated, and populations for next generation are se-
lected. Offsprings are generated again from those surviving
populations. This process is repeated for a given number of
generations.

2.1. Definition of individual and population
We define the population as N × M piece arrangement.

Multiple populations are used in a GA. In a population,
n×M and N ×m partial piece arrangements are defined as
row individual and column individual, respectively. Individ-
uals include row individual and column individual. Figure
4 shows these definitions.

2.2. Fitness function
Fitness functions of two different types are calculated

from one population in this method. One is the fitness func-
tion which is defined as difference values of the pixel values
(binary data) on the border line of all neighboring pieces.
The other is the fitness function which is calculated from
ranking between neighboring pieces. Two fitness functions
are calculated using pixel values of the border line of pieces.
Two measures are used to keep variety of populations.

initial populations

fitness calculation

generation of offsprings by crossover

selection of populations of next generation

M

N

........

........

........

........

Figure 3. Optimization procedure using a GA.

2.2.1 Fitness function by using difference values of pix-
els

Distance between two pieces is defined as average absolute
difference between every adjacent pixel pair on the touch-
ing border line of two pieces. Let d1(p, q) be the right di-
rection distance between two pieces, where p is left piece, q
is right piece. Let d2(p, q) be the bottom direction distance
between two pieces, where p is top piece, q is bottom piece.
Similarly, let d3(p, q), d4(p, q) be left direction distance and
top direction distance, respectively. These distances do not
satisfy distance axiom.

Fitness function F by using difference values of pixels is
defined as

F = 1 − 1
2NM − N − M

N∑
i=1

M−1∑
j=1

d1(pi,j , pi,j+1)

+
N−1∑
i=1

M∑
j=1

d2(pi,j , pi+1,j)

 (1)

where pi,j is a piece of i-th row and j-th column.

Proceedings of the 16 th International Conference on Pattern Recognition (ICPR’02)
1051-4651/02 $17.00 © 2002 IEEE
Proceedings of the 16 th International Conference on Pattern Recognition (ICPR’02)
1051-4651/02 $17.00 © 2002 IEEE

multiple populations

.....................

population

(row) individual

(column) individual

M

N

Figure 4. Definition of individual and popula-
tion.

2.2.2 Fitness function by using ranking
Let a peace be p, let a set of the remaining pieces except
piece p be Q. Right direction distance d1(p, q) are calcu-
lated, where q ∈ Q. q ∈ Q is given ranking points in in-
creasing order of distance values d1(p, q). Ranking point
r1(p, q) is given in the following manner: first place, 10
point; second place, 9 point; third place 8 point; ... and 10th
place, 1 point. Similarly, let r2(p, q), r3(p, q) and r4(p, q)
be ranking points using bottom, left and top direction dis-
tance, respectively.

Fitness function R by using ranking is defined as

R =
1

2(2NM − N − M)

×

N∑
i=1

M−1∑
j=1

(r1(pi,j , pi,j+1) + r3(pi,j+1, pi,j))

+
N−1∑
i=1

M∑
j=1

(r2(pi,j , pi+1,j) + r4(pi+1,j , pi,j))

 (2)

where pi,j is a piece of i-th row and j-th column.

2.3. Crossover

There are two types of crossover methods in this method.
One is the 2-point crossover which is typically used in GAs.
The other is self-crossover in which an offspring is gener-
ated from one parent. A type of crossover is selected ran-
domly. Figure 5 shows examples of exchange of pieces by
crossover.

2.3.1 2-point crossover
First, two row individuals or two column individuals are se-
lected randomly. Then, the same piece does not have to be
selected in two individuals. Selected two row (or column)
individuals are of the same size, m×N(orM×n). Next, the
two crossover points are selected randomly, and chromo-
somes between the crossover points are exchanged. Then,
the number of piece between the crossover points is same.
Figure 5 (a) and (b) show examples of 2-point crossover.

2.3.2 Self-crossover
First, a row individual or a column individual is selected
randomly. Next, two crossover points are selected ran-

(d) Rotation in a row individual.
(self-crossover)

(c) Rotation in a row individuals.
(self-crossover)

(a) Piece exchange between
 two row individuals.
(2-point crossover)

(b) Piece exchange between
 two column individuals.

(2-point crossover)

(e) Rotation in a column
individual.

(self-crossover)

(f) Rotation in a column
individual.

(self-crossover)

Figure 5. Examples of exchange of pieces by
crossover.

domly. As shown in figure 5(c),(d),(e) and (f), pieces are
exchanged by the right (top) or left (bottom) direction piece
rotation. The directions are decided randomly.

2.4. Selection

Child populations are generated from one parent pop-
ulation. The number of children which are generated by
crossover is 100 in the experiments. Populations of next
generation are selected from these child and parent popula-
tions. The half populations of the number of next generation
populations are selected in decreasing order of the value F
of equation 1. The remaining half populations are selected
in decreasing order of the value R of equation 2. The dupli-
cation of populations between the two is avoided.

The number of offsprings generated from same parent
before k generation is limited to z. In the experiments, let
k and z be 5 and 10, respectively. All individuals cannot
survive over 5 generation. The above limitations are utilized
to keep variety of populations.

3. Experiments

We made N × M -piece puzzles by dividing binary im-
ages which were captured by the scanner. 8 × 8-piece puz-

Proceedings of the 16 th International Conference on Pattern Recognition (ICPR’02)
1051-4651/02 $17.00 © 2002 IEEE
Proceedings of the 16 th International Conference on Pattern Recognition (ICPR’02)
1051-4651/02 $17.00 © 2002 IEEE

(a) dormouse (b) squirrel (c) coffee

Figure 6. Input images (input puzzles).

zles were made by dividing input images (496×496 pixels).
Let the number of populations be 200. The number of chil-
dren which are generated from one parent is 100. Thus, a
total number of children is 200 × 100. The highest popu-
lation of the fitness function F is the optimum solution for
1,500 generations. We have done simulations using three
types of 8× 8-piece puzzles as shown in figure 6(a),(b) and
(c). Correct piece arrangements was found in all the puz-
zles.

Table 1 shows the correct rate for 7× 7, 8× 8 and 9 × 9
piece puzzles which were made by dividing input images
(figure 6(a),(b) and (c)). The number of successful trials
and all ones is shown in parentheses of Table 1. The num-
ber of trials was 50 in each case. Input image sizes of 7×7,
9 × 9 piece puzzles are 497 × 497 and 495 × 495 pixels,
respectively. Generation sizes are 1,000, 1,500 and 3,000
for 7× 7, 8× 8 and 9× 9 piece puzzles, respectively. Thus,
the total numbers of calculations of fitness function F are
20, 30 and 60 millions for 1,000, 1,500 and 3,000 genera-
tions, respectively. In case of 9 × 9 piece puzzle of figure
6(b), the correct piece arrangement was not found, but the
correct piece arrangements was found in other cases. The
number of piece exchanges is shown in figure 7. This num-
ber is average values of ten trials. When the correct piece
arrangement was found, the process was finished. If the op-
timum solution could not be found in a given generation,
the solution is searched from the beginning once more. The
number of piece exchanges increases exponentially, see fig-
ure 7.

We have compared this method with the local search
method. In this paper, local search method is that (1)
N × M pieces are assembled randomly, (2) the pieces are
exchanged when the fitness values F have increased at time
of two pieces being exchanged, (3) the pieces are repeat-
edly exchanged until the fitness values F do not increase
whatever piece may be changed, (4) and then the local so-
lution is found. The above process is done repeatedly, and
the optimum solution can be searched. The total numbers of
piece exchanges was 5 billions in the local search method.
In cases of all puzzles (7×7, 8×8 and 9×9 piece puzzles),
the correct piece arrangements was not found.

As is known from the above, the propose method shows

Table 1. Correct rates

No. of correct (%) correct (%) correct (%)
divisions (dormouse) (squirrel) (coffee)

7×7 100 (50/50) 100 (50/50) 100 (50/50)
8×8 94 (47/50) 72 (36/50) 92 (46/50)
9×9 62 (31/50) 0 (0/50) 44 (22/50)

0

5 x 10 7

10 x 107

20 x 107

15 x 107

36
(6x6)

49
(7x7)

64
(8x8)

81
(9x9)

number of pieces

number of piece exchanges

dormouse
squirrel
coffee

Figure 7. Computational complexity.

the capability of searching the optimum solution.

4. Conclusion

We have proposed the method for solving the rectangle
piece puzzle assembly problem using a GA. Only binary
data on the border line of the pieces were used in the puzzle
assembly. We have defined the individual and the popula-
tion as partial piece arrangement and total piece arrange-
ment. By these definitions, the optimum piece arrangement
is efficiently searched without destroying the constraint of
puzzle. In this method, we have been able to assemble
8 × 8-piece puzzles, and have shown how our method is an
efficient one. This approach can be applied to image mo-
saicking by modifying this method which can handle lack-
ing pieces.

References

[1] R. W. Webster, P. S. LaFollette, and R. L. Stafford. Isthmus
critical points for solving jigsaw puzzles in computer vision.
IEEE Trans. Syst., Man, Cybern., vol. 21, no. 5, pp. 1271-
1278, 1991.

[2] K. Nagura, K. Sato, H. Maekawa, T. morita, and K. Fujii.
Partial contour processing using curvature function – Assem-
bly of jigsaw puzzle and recognition of moving figures. Syst.
Computing., vol.2, pp. 30-39, 1986.

[3] G. C. Burdea, and H. J. Wolfson. Solving jigsaw puzzles by
a robot. IEEE Trans. on Robotics and Automation, vol. 5, no.
6, pp. 752-764, 1989.

[4] H. Freeman and L. Garder. Apictorial jigsaw puzzles: The
computer solution of a problem in pattern recognition. IEEE
Trans. Electronic Comp., vol. EC-13, pp. 118-127, 1964.

Proceedings of the 16 th International Conference on Pattern Recognition (ICPR’02)
1051-4651/02 $17.00 © 2002 IEEE
Proceedings of the 16 th International Conference on Pattern Recognition (ICPR’02)
1051-4651/02 $17.00 © 2002 IEEE

