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Abstract

Background: Heteromorphic sex chromosomes have evolved repeatedly across
diverse species. Suppression of recombination between X and Y chromosomes leads
to degeneration of the Y chromosome. The progression of degeneration is not well
understood, as complete sequence assemblies of heteromorphic Y chromosomes
have only been generated across a handful of taxa with highly degenerate sex
chromosomes. Here, we describe the assembly of the threespine stickleback
(Gasterosteus aculeatus) Y chromosome, which is less than 26 million years old and at
an intermediate stage of degeneration. Our previous work identified that the non-
recombining region between the X and the Y spans approximately 17.5 Mb on the X
chromosome.

Results: We combine long-read sequencing with a Hi-C-based proximity guided
assembly to generate a 15.87 Mb assembly of the Y chromosome. Our assembly is
concordant with cytogenetic maps and Sanger sequences of over 90 Y chromosome
BAC clones. We find three evolutionary strata on the Y chromosome, consistent with
the three inversions identified by our previous cytogenetic analyses. The threespine
stickleback Y shows convergence with more degenerate sex chromosomes in the
retention of haploinsufficient genes and the accumulation of genes with testis-
biased expression, many of which are recent duplicates. However, we find no
evidence for large amplicons identified in other sex chromosome systems. We also
report an excellent candidate for the master sex-determination gene: a translocated
copy of Amh (Amhy).

Conclusions: Together, our work shows that the evolutionary forces shaping sex
chromosomes can cause relatively rapid changes in the overall genetic architecture
of Y chromosomes.

Keywords: Threespine stickleback, Y chromosome, Gene duplication, Sex
determination
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Background

Heteromorphic and highly degenerate sex chromosome pairs (i.e., XY or ZW) can

ultimately evolve from autosomal ancestors when recombination is suppressed between

them (reviewed in [1]). Thus, sex chromosomes are an intriguing region of the genome

to understand how mutations and repetitive DNA accumulate in the absence of recom-

bination and how gene content evolves once a chromosome becomes sex-limited.

Although this degenerative process was originally assumed to occur at a constant rate,

recent work has revealed that the tempo and outcome of sex chromosome degener-

ation is highly variable and not always correlated with the age of the sex chromosome

[2, 3]. Thus, understanding the dynamics of sex chromosome evolution requires

characterizing systems at different stages of degeneration [1, 4]. At the early stages of

evolution, sex chromosomes are expected to be mostly homomorphic at the cytogenetic

level, with very few sequence differences between the proto-X and Y. At intermediate

stages, suppression of recombination spreads, possibly due to selection for linkage be-

tween the sex determination gene and additional sexually antagonistic mutations,

resulting in additional sequence divergence, loss of genes, accumulation of transposable

elements, and rearrangements like inversions. At this intermediate stage, visibly hetero-

morphic sex chromosomes can emerge [1, 4, 5]. The last stages of this degenerative

process, resulting in highly heteromorphic sex chromosomes, were once predicted to

be an evolutionary dead end, with the Y (and W) chromosomes inevitably losing func-

tional gene copies across the entire chromosome as deleterious mutations accumulate

[6]. Contrary to this expectation, assembly of multiple mammalian Y chromosome se-

quences [7–12], the chicken W chromosome [13], and invertebrate Y chromosomes

[14, 15] has revealed that the sequence of the sex-limited chromosome is much more

dynamic, punctuated by gene gains and losses, rather than becoming entirely

degenerated.

Although short-read sequencing of sex chromosomes has yielded insight into how

ancestral single-copy genes have evolved between X and Y chromosomes (e.g., [16–

18]), these approaches cannot be used to study how Y chromosomes have structurally

evolved once they become heteromorphic. Short-reads cannot span many of the

lengthy repeat units’ characteristic of Y chromosomes, leading to a collapse of these re-

gions during the assembly process. Because of the inherent difficulty in assembling

these highly repetitive regions of the genome, heteromorphic Y chromosomes have

been omitted from many reference genome assemblies. Most of these existing reference

Y chromosome assemblies were constructed through labor intensive, iterative Sanger

sequencing of large inserts from bacterial artificial chromosome (BAC) libraries [7–9,

11]. However, recent technological advances, such as Pacific Biosciences (PacBio) long-

read sequencing, chromatin interaction maps, and optical mapping, have enabled the

assembly of additional heteromorphic Y chromosomes [12, 14, 15].

Through these assemblies, two classes of genes have been identified on highly degen-

erate and relatively old sex chromosomes. The first are dosage-sensitive genes that were

present in the common ancestor of both chromosomes and have been maintained as

single copies on the Y chromosome across multiple mammalian lineages [10, 19] as

well as on the degenerating W chromosome of birds [13]. The second are genes that

exist in high copy number families on Y chromosomes and generally have gene

expression patterns restricted to the testes, suggesting roles in spermatogenesis [7, 8,
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11, 20–22]. It is clear that the genetic architecture of sex chromosomes can be shaped

by multiple processes over long evolutionary time scales. However, reference assemblies

of sex chromosomes that are already heteromorphic but at an earlier stage of degener-

ation are largely absent, with the exception of the young neo-Y chromosome assembly

of Drosophila miranda [14, 23], making it unclear whether the genetic architecture of

evolving sex chromosomes is shaped by these evolutionary forces at earlier stages.

The threespine stickleback fish (Gasterosteus aculeatus) is an excellent model system

to explore the structural evolution of sex chromosomes. Although the threespine

stickleback has a high-quality reference genome assembly [24] that has gone through

multiple iterations of refinement [25–27], the assembly was derived from a female fish,

precluding the Y chromosome from assembly. The threespine stickleback has a hetero-

morphic XY sex chromosome system that is shared across the Gasterosteus genus but

not with other species in the Gasterosteidae family and therefore evolved between 14

and 26 million years (14–26 million generations) ago [28–31]. This Y chromosome is

younger than the highly degenerate Y chromosome of mammals that evolved ~ 180

million years ago [10, 19] and appears to be at an earlier stage of degeneration.

Crossing over is suppressed between the X and Y chromosomes over a majority of their

length, resulting in an approximately 2.5 Mb pseudoautosomal region of the 20.6Mb X

chromosome [25]. The region of suppressed crossing over is coincident with three

pericentric inversions that differentiate the X and Y chromosomes [32]. Illumina-based

sequencing suggested the non-crossover region on the Y chromosome was composed

of two differently aged evolutionary strata, the oldest of which retained genes that were

predicted to be haploinsufficient [18]. However, all studies in threespine stickleback

have relied on mapping short-reads to the reference X chromosome, limiting our

understanding to regions conserved between the X and Y. It has not yet been possible

to explore how unique structure and sequence is evolving across this heteromorphic Y

chromosome.

Here, we report a high-quality reference assembly of a vertebrate Y chromosome

at an intermediate stage of degeneration. We combined high-coverage, long-read

PacBio sequencing with chromatin conformation capture sequencing (Hi-C) to

assemble a full scaffold of the threespine stickleback Y chromosome. Our assembly

is completely concordant with more than 90 Sanger-sequenced inserts from a

bacterial artificial chromosome (BAC) library and with a known cytogenetic map

[32]. Throughout the male-specific region, we have identified several novel

sequence and structural characteristics that parallel patterns observed on highly

degenerate sex chromosome systems. The sex chromosome of threespine stickle-

back is a useful model system to understand the step-wise evolution of the genetic

architecture on sex-limited chromosomes.

Results

De novo assembly of the threespine stickleback Y chromosome

We used high-coverage PacBio long-read sequencing to assemble a threespine stickle-

back genome from a male fish of the Paxton Lake Benthic population (British

Columbia, Canada). Raw read coverage was approximately 75.25x across the genome

(34.84 Gb total sequence) (Additional file 1: Table S1). The longest raw PacBio reads
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were assembled using the Canu pipeline, refined by Arrow, resulting in a primary

contig assembly of 622.30Mb across 3593 contigs (Additional file 1: Table S1). This

assembly size was considerably larger than the Hi-C revised threespine stickleback

female genome assembly (463.04Mb including autosomes and X chromosome) [24, 26,

27]. The increased assembly length was largely due to heterozygous loci being sepa-

rated into individual alleles (haplotigs). Of the total Canu assembly, 3134 contigs

(574.67Mb) aligned to 442.41Mb of autosomes in the reference assembly. Only 129

contigs partially aligned to the genome (less than 25% of the contig length aligned;

10.15Mb) and 148 contigs did not align at all to the genome (3.58Mb). We collapsed

118.89Mb of haplotigs, reducing the 574.67 Mb alignment to 455.78Mb of non-

redundant sequence across the autosomes, an estimate closer to the 442.41Mb of

autosomes in the female reference genome assembly.

We targeted Y-linked contigs in the Canu assembly by identifying contigs that shared

reduced sequence homology with the reference X chromosome or did not align to the

autosomes. In the youngest region of the threespine stickleback sex chromosomes (the

previously identified stratum two), the X and Y chromosomes still share considerable

sequence homology. However, within this stratum, heterozygosity is even higher than

what is observed across the autosomes [18]. Based on this divergence, Canu should sep-

arate X- and Y-linked contigs during the initial assembly process. Contigs aligned to

the X chromosome formed a distribution of sequence identity that was not unimodal,

reflecting the presence of both X- and Y-linked contigs (Additional file 2: Fig. S1). Set-

ting a sequence identity threshold of 96% resulted in a set of 114 X-linked contigs that

totaled 21.26Mb, compared to the previous 20.62 Mb X chromosome reference assem-

bly. There were 68 putative Y-linked contigs that had a sequence identity less than or

equal to 96%, totaling 12.64Mb. The oldest region of the Y chromosome (stratum 1)

contains many regions that have either been deleted or diverged to such an extent that

sequencing reads cannot be mapped to this region [18]. Consequently, there may be

contigs unique to the Y chromosome that cannot be captured through alignments to

the reference X chromosome. To account for these loci, we also included the contigs

that only partially aligned to the genome (less than 25% of the contig length aligned;

129 contigs; 10.15Mb) or did not align at all to the genome (148 contigs; 3.58Mb) in

the set of putative Y-linked contigs (345 total contigs).

Hi-C proximity-guided assembly yielded contiguous scaffolds of the sex chromosomes

We used chromosome conformation capture (Hi-C) sequencing and a proximity-

guided method to assemble the set of putative X- and Y-linked contigs into scaffolds.

Using the 3D-DNA assembler [33], 105 of the 114 X-linked contigs were combined

into three main scaffolds that totaled 20.78Mb. The scaffolds were largely colinear with

the reference X chromosome, with scaffolds one and two aligning to the pseudoautoso-

mal region and scaffold three mostly aligning to the remainder of the X chromosome

that does not recombine with the Y (Additional file 2: Fig. S2).

We assembled the putative Y-linked contigs using the same process. Of the 345 total

contigs, 115 were initially combined into a single primary scaffold that totaled 17.15

Mb. We visually inspected the Hi-C interaction map for any sign of misassembled

contigs. There was a clear mis-joining of contigs near one end of the primary scaffold,
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where there were fewer short-range Hi-C interactions at the diagonal combined with

an overall absence of long-range Hi-C interactions between all of the contigs in this

region and the remainder of the Y scaffold (Additional file 2: Fig. S3). We manually

removed this cluster of contigs from the primary scaffold (45 contigs; 1.86Mb),

resulting in an initial Y chromosome scaffold totaling 15.28Mb across 70 contigs

(Fig. 1a).

Bacterial artificial chromosome library sequences are concordant with the assembled Y

chromosome

To assess the overall accuracy of our assembly, we compared our assembly to Sanger

sequenced inserts from a bacterial artificial chromosome (BAC) library constructed

from males from the same population. Mean insert size among the 101 sequenced BAC

clones was 168.13 kb, similar in size to the average contig length within the Y chromo-

some scaffolds (217.85 kb). Using the BAC sequences, we were able to identify whether

any of the contigs within the scaffold contain collapsed haplotigs between the X and Y

Fig. 1 Hi-C chromosome conformation capture sequencing generated a single Y chromosome scaffold. a
The contact matrix shows an enrichment of interactions between contigs in close proximity along the
diagonal. Contig boundaries in the assembly are denoted by the black triangles along the diagonal. b
Sanger sequenced BAC inserts that align concordantly throughout the scaffold are shown, with BACs that
spanned gaps between contigs in orange, BACs that extended into, but did not span gaps in purple, and
BACs that were contained completely within an individual contig in green
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chromosomes (chimeric contigs should contain reduced sequence identity when

aligned to known Y chromosome BAC contigs). In addition, the contig ordering across

the scaffold was verified by BAC contig sequences that spanned gaps in the assembly.

We aligned all 101 sequenced BAC contigs to the Y chromosome scaffold and found

92 of the BAC contigs aligned concordantly with the assembly (Fig. 1b). These BACs

aligned to 40 of the 70 contigs in the assembly with a high sequence identity (7.72Mb

of non-overlapping sequence in the 15.28Mb assembly aligned concordantly to the

BAC contigs). The remaining 9 BAC contigs that did not align concordantly indicate

there are small-scale structural differences between the Canu Y chromosome assembly

and the BAC clones derived from a separate Paxton Lake male threespine stickleback,

either reflecting errors in the Y chromosome assembly, rearrangements in the BAC

clone sequences, or true polymorphisms segregating in the Paxton Lake benthic popu-

lation. Four of the discordant BACs aligned to regions of the reference Y that were

greater than the Sanger sequenced length of the BAC insert, suggesting possible indels.

The remaining five discordant BACs contained sub alignments with mixed orientations,

suggesting possible small-scale inversions not present in our assembly.

Among the aligned BAC contigs, many provided additional sequence information,

either spanning gaps between contigs in the Y chromosome assembly or extending

from contigs into gaps in the assembly. Of the 92 BAC contigs that aligned concor-

dantly, seven BAC contigs extended into five different gaps in the assembly and 35

BAC contigs spanned 18 different gaps in the assembly (26% of the total gaps in the as-

sembly) (Fig. 1b). The remainder of the aligned BAC contigs aligned completely within

an individual contig in the Y assembly. We merged this additional sequence into the

initial Y chromosome assembly, resulting in a merged Y chromosome scaffold that

contained 52 contigs, totaling 15.78Mb.

The Y chromosome assembly is concordant with known cytogenetic maps

The threespine stickleback Y chromosome has undergone at least three pericentric in-

versions relative to the X chromosome, forming a non-crossover region that spans a

majority of the chromosome [32]. These inversions were mapped by ordering a series

of cytogenetic markers along both the X and Y chromosomes (Fig. 2a). To determine

whether our Y chromosome assembly was consistent with the known cytogenetic

marker ordering, we used BLAST to locate the position of each marker within the

assembly. We were able to locate four of the five markers used from the male-specific

region in our assembly. The position of these cytogenetic markers was concordant with

our assembly (Fig 2b). The missing marker in the non-crossover region (STN235) likely

reflects a region of our Y reference that is not fully assembled or is a true deletion

within the Paxton Lake benthic population, relative to the Pacific Ocean marine popu-

lation used for the cytogenetic map [32].

The location of the oldest region within the Y chromosome (the previously identified

stratum one) had been ambiguous. Cytogenetic markers from this region could not be

hybridized to the Y chromosome [32], suggesting this region may be largely deleted or

highly degenerated. Subsequent work using Illumina short-read sequencing revealed

that some genes from this region were still present on the Y chromosome under strong

purifying selection, but the location of these genes within the Y could not be
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determined by mapping reads to the X chromosome [18]. The cytogenetic marker, Idh,

is located at the distal end of our Y chromosome assembly, remarkably consistent with

the placement of Idh in the cytogenetic map [32], indicating stratum one is no longer

located at the distal end of the Y chromosome as it is on the X chromosome. Instead,

we found a high density of stratum one alignments near the boundary of the pseudoau-

tosomal region at the opposite end of the chromosome (Fig. 2b). Within this stratum,

there was an overall lower density of alignments between the X and Y chromosomes,

consistent with previous patterns mapping Illumina short reads to the reference X

chromosome [18]. The placement of stratum one in the assembly was consistent with

the hybridization of a fluorescent in situ hybridization probe, designed from a stratum

one BAC insert. This probe clearly hybridized to the chromosome end opposite of Idh

(Additional file 2: Fig. S4).

Because we were primarily focused on sequences that were highly divergent from the

X chromosome or absent from the female reference genome entirely, our strategy did

not target the pseudoautosomal region for assembly into the Y chromosome. Neverthe-

less, our assembly did place a small fraction of the ~ 2.5Mb pseudoautosomal region

on the distal end of the male-specific Y chromosome, adjacent to stratum one. The

cytogenetic marker STN303 was included in this region, which is located on the oppos-

ite end of the pseudoautosomal region on the X chromosome (Fig. 2). This discordance

in marker placement within the pseudoautosomal region likely indicates a mis-

assembly of the region. The pseudoautosomal region contains repetitive sequence,

complicating overall assembly of the region (see transposable elements section). Indeed,

Fig. 2 The threespine stickleback Y chromosome assembly is concordant with cytogenetic maps. a The Y
chromosome has diverged from the X chromosome through a series of inversions determined through
ordering of cytogenetic markers (dashed lines indicate rearrangements of the linear order of markers [32]).
b Alignments of the assembled Y chromosome (left) to the X chromosome (right) reveal the same
inversions. A majority of the pseudoautosomal region is not included in the reference Y chromosome
assembly because this region was not targeted (see methods). The location of the candidate sex
determination gene (Amhy) is indicated by the black arrow. Centromeres are shown by black circles.
Positions are shown in megabases
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the contigs spanning this region and STN303 have a smaller size (five contigs; median,

88,098 bp) than the remaining contigs within the Y chromosome or X chromosome,

consistent with highly heterozygous, repetitive sequence.

Short-read sequencing correctly aligns to the X and Y chromosomes

We aligned Illumina short-read sequencing from males and females of three different

threespine stickleback populations in order to test whether the inclusion of a reference

Y chromosome allows correct alignment of X- and Y-linked short-reads or if there are

regions of the sex chromosomes where short-reads cross align. These regions could

indicate highly homologous sequence between the X and Y chromosomes or chimeric

assembly errors. At a fine-scale, we observed some variation in read depth across the X

and Y chromosomes, which may indicate some cross-aligning of short-reads between

the sex chromosomes (Additional file 2: Fig. S5 and Fig. S6). These small regions may

reflect chimeras in the assembly or may reflect accurately assembled regions that are

highly homologous between the X and Y chromosomes. Indeed, these small regions

were mostly located in the younger strata of the sex chromosomes (see below).

However, our assembly is highly accurate overall and can correctly align X- and Y-

linked reads. Male reads exhibited a median 0.5x coverage relative to autosomes on

both the X and Y chromosomes. In addition, female reads had median coverages of

0.0x on the Y chromosome and 1.0x on the X chromosome, relative to autosomes

(Additional file 2: Fig. S7).

The location of centromeric repeats are concordant with a metacentric chromosome

A 186 bp centromeric AT-rich alpha satellite repeat was previously identified in female

fish by chromatin immunoprecipitation followed by sequencing (ChIP-seq) [34].

Although this repeat hybridized strongly to autosomes and the X chromosome, there

was only weak hybridization of the probe to the Y chromosome, suggesting the Y

chromosome might have a divergent centromeric repeat and/or contain substantially

less satellite DNA than the autosomes [34]. We used ChIP-seq with the same antibody

against centromere protein A (CENP-A) in males to identify any Y chromosome

repeats. Relative to the input DNA, we found strong enrichment of reads from the

immunoprecipitation mapping to the center of the Y chromosome assembly, indicative

of CENP-A binding (Fig. 3a; Additional file 2: Fig. S8). The enrichment was located be-

tween cytogenetic markers STN187 and WT1A, consistent with the predicted location

of the centromere in the cytogenetic map and the metacentric chromosome morph-

ology in karyotypes [32]. These results further confirm the ordering of contigs within

our Y chromosome scaffold.

Underlying the CENP-A peak, we found a core centromere AT-rich repeat. We

identified 14 copies of the repeat in our Y chromosome assembly, which shared an

average pairwise sequence identity of 84.6% with the core repeat that hybridized to the

remainder of the genome [34] (Additional file 2: Fig. S9). The repeats fell at the edges

of a gap, indicating that a majority of the repeats were not assembled into our primary

scaffold. Uneven coverage signal in Hi-C libraries from repetitive DNA can trigger the

3D-DNA assembler to remove these regions from contigs during the editing step [33,

35]. Consistent with this, both contigs that flanked the centromere gap in the Y
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chromosome assembly had additional sequence that was removed by the 3D-DNA

pipeline as “debris.” The first contig that was adjacent to the gap (contig 11,894)

contained six copies of the repeat and had an additional 57,692 bp that was removed as

“debris.” The second contig on the opposite side of the gap (contig 11,839) had eight

copies of the repeat and an additional 29,308 bp of sequence that was removed as

“debris.” We used BLAST to search for additional repeats in the debris using the major-

ity consensus sequence of the 14 previously identified centromere repeats in the Y

assembly. There were an additional 304 repeats in the debris sequence from contig 11,

894, and 163 repeats in the debris sequence from contig 11,839. We added the debris

sequence back into the total Y chromosome assembly, increasing the assembled centro-

mere size by 87 kb (total Y chromosome length: 15.87Mb) (Fig. 3b). Average pairwise

percent sequence identity among all monomeric repeats in the Y chromosome assem-

bly was 89.5%. Compared to the core threespine stickleback centromere repeat

Fig. 3 Sequences immunoprecipitated with CENP-A are enriched at the center of the chromosome. a
Short-read sequences from a chromatin-immunoprecipitation (ChIP-seq) with CENP-A were aligned to the
reference Y chromosome assembly. There is a prominent peak between markers STN187 and WT1A where
the centromere is located. CENP-A enrichment from a second male fish is shown in (Additional file 2: Fig.
S8). b Alpha satellite monomeric repeats are organized into higher order repeats (HORs). Sequence identity
is shown in 100 bp windows across the centromere sequence of the Y chromosome. 87 kb of sequence
containing the monomeric repeat was rejoined (crosshatched) to contigs that were previously fragmented
in the scaffolding process (orange contig: 11,894; yellow contig: 11,839). The gap between the two contigs
is shown in gray
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previously identified, the Y chromosome centromere repeat was more divergent.

Average pairwise percent sequence identity between all the motifs in the Y

chromosome assembly and the centromere repeat identified from female fish was

only 86.8%.

Centromeres are often composed of highly similar blocks of monomeric repeats,

organized into higher order repeats (HORs) [36–38]. Previous characterization of the

monomeric centromere repeat in threespine stickleback did not reveal a HOR

organization; however, this analysis was limited by the identification of only a few short

stretches of the monomeric repeat on each autosome [34]. The ~ 87 kb of assembled

centromere on the Y shows a clear higher order patterning around the centromeric

region, consistent with complex HORs (Fig. 3b).

The Y chromosome has three evolutionary strata

Previous estimates of synonymous site divergence (dS) in coding regions have indicated

there are two evolutionary strata on the threespine stickleback sex chromosomes [18],

despite the presence of at least three major inversion events in the cytogenetic map of

the sex chromosomes [32]. Because these estimates relied on aligning short-read

Illumina sequences to the reference X chromosomes, overall divergence could have

been biased by mapping artifacts, especially in the oldest region of the Y chromosome.

We investigated whether our Y chromosome assembly supported the earlier model of

two evolutionary strata or whether there could be additional strata uncovered in the

current assembly. We aligned all Ensembl predicted X chromosome coding regions

outside of the pseudoautosomal region to the Y chromosome reference assembly to

estimate divergence. Of the 1184 annotated coding sequences, we were able to align

522 (44.1%) to the male-specific region of the Y chromosome (Table 1). We found a

clear signature of three evolutionary strata, consistent with inversion breakpoints within

the cytogenetic map as well as within our de novo reference assembly. The oldest

stratum (stratum one) encompassed the same region of the X chromosome as previ-

ously described in the Illumina-based study and had highly elevated dS (stratum one

median dS, 0.155). In contrast to the Illumina-based estimates, our new assembly

revealed that the remainder of coding regions across the X chromosome formed two

distinct strata, with different estimates of dS (Fig. 4; Table 1). We also investigated

whether the older strata had increased non-synonymous divergence (dN) consistent

with inefficient selection from the lack of crossing over between the chromosomes [39,

40]. As predicted, stratum one had a significantly higher dN than strata two and three

(Table 1). Stratum two had a significantly lower dN than the other strata. This was also

reflected by a significantly lower dN/dS ratio (Table 1), suggesting genes in stratum two

are under stronger purifying selection.

Table 1 Median nucleotide divergence between X and Y chromosome gametologs

X-linked Y-linked Percent remaining on Y dS dN dN/dS

Stratum 1 610 110 18.0% 0.155a 0.030a 0.287a

Stratum 2 242 183 75.6% 0.042b 0.009b 0.203b

Stratum 3 332 229 69.0% 0.033c 0.012c 0.341a

a,b,cGroups significantly different by a pairwise Mann-Whitney U test; P < 0.05
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We verified that the increased divergence we observed between the X and Y chromo-

somes was not driven by sequencing error in the long-read assembly. We aligned

short-read Illumina sequences from three populations of threespine stickleback fish,

including an independent male from the Paxton Lake benthic population from which

the reference Y chromosome assembly was assembled. In all cases, nucleotide

divergence was an order of magnitude lower on the Y chromosome compared to the X

chromosome or the autosomes (Additional file 1: Table S2). The lowest divergence we

observed (2.5 × 10−5 substitutions per site) was between the reference Y chromosome

and an Illumina-sequenced Y chromosome from the same population. Combined, these

results indicate our long-read PacBio assembly has a low sequencing error rate and

reveal that the Y chromosome has reduced sequence diversity within threespine stickle-

back fish, relative to the remainder of the genome.

The Y chromosome is evolving a unique genetic architecture

Haploinsufficient genes have been repeatedly retained on degenerating sex chromo-

somes of mammals and birds [10, 13] and may be enriched in stratum one of the

stickleback Y chromosome [18]. We explored whether our expanded set of annotated

genes exhibited signatures of haploinsufficiency by identifying orthologs between the

Fig. 4 The sex chromosomes have three distinct evolutionary strata. Synonymous divergence (dS) between
the X and Y chromosome was estimated for every annotated transcript on the X chromosome. Genes are
ordered by position on the X chromosome (Mb). Median divergence across each stratum is shown by the
red line; values are given in Table 1. Strata breakpoints are indicated by the vertical dashed lines. The
centromere is indicated by a black circle. The pseudoautosomal region (positions before 2.5 Mb) is not
shown. Genes with dS divergence above 0.5 are not shown
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X-annotated genes and human genes ranked for haploinsufficiency (Decipher Haploin-

sufficiency Predictions (DHP) v. 3) [41, 42]. Within strata one and two, we found genes

with a retained Y-linked gametolog had lower DHP scores than genes without a Y-

linked gametolog, indicating that retained genes were more likely to exhibit haploinsuf-

ficiency (Fig. 5; Mann-Whitney U test; stratum one P < 0.001; stratum two P = 0.035).

We found a similar trend for genes retained on the Y chromosome in stratum three,

but this result was not significant (Fig. 5; Mann-Whitney U test; P = 0.085). Neverthe-

less, this lower score suggests enrichment for haploinsufficient genes may already be

underway within the youngest region of the Y chromosome.

Genes can be acquired on the Y chromosome through duplications from autosomes

(reviewed in [43]), a process that has had a prominent impact on the overall gene

content of highly degenerate sex chromosomes [7, 44–49], but the overall influence of

this process on the genetic architecture of sex chromosomes at earlier stages of degen-

eration has not been documented. To identify whether the stickleback Y chromosome

also contained genes shared with autosomes, but not the X chromosome, we first used

the MAKER gene annotation pipeline [50, 51] to assemble a complete set of coding

regions across the Y chromosome reference sequence. We identified a total of 626

genes across the male-specific region of the Y chromosome, 33 of which had paralogs

Fig. 5 Genes retained on the Y chromosome in strata one and two are more likely to exhibit
haploinsufficiency. Human proteins with predicted haploinsufficiency indexes were matched to one-to-one
human-threespine stickleback fish orthologs from the X chromosome. Haploinsufficiency indexes were
significantly lower for genes retained on both the X and Y chromosomes than for genes present only on
the X chromosome (i.e., lost from the Y chromosome) in both strata one and two. A lower index indicates
that a gene is more likely to be haploinsufficient. The total number of genes in each category is shown. The
median is indicated by the solid black line. Whiskers denote 1.5x the interquartile range. Outliers are not
shown. Asterisks indicate P < 0.05 (Mann-Whitney U test)
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on autosomes, but not on the X chromosome (5.3%) (Table 2). A majority of these

genes (25 of 33; 75.8%) appeared to have undergone duplications within the Y chromo-

some following translocation from the autosomes (genes had copy numbers ranging

from two to six). Gene translocation onto sex chromosomes can occur through RNA-

mediated mechanisms (retrogenes) or through DNA-based translocations (reviewed in

[52]). Of the stickleback genes that had multiple introns within the autosomal paralog

(31 of 33 genes), we did not detect a single paralog on the Y chromosome that had a

complete loss of introns.

Genes that accumulate on Y chromosomes are predicted to have male beneficial

functions. On many highly degenerate sex chromosomes, genes that have translo-

cated to the Y chromosome from autosomes exhibit testis-biased expression [7, 44,

45], suggesting important roles in spermatogenesis. To determine whether the

translocated genes on the threespine stickleback Y chromosome have testis-biased

gene expression relative to the single-copy ancestral genes, we compared expression

between testis tissue and three other tissues (liver, brain, and larvae). Compared

with all tissues, we found stronger testis-biased expression among the genes that

translocated to the Y chromosome, compared to the single-copy genes with a

gametolog on the X chromosome (Fig. 6; Mann-Whitney U test; P < 0.05). Because

DNA-based translocations of genes often contain their native regulatory elements,

we examined whether the autosomal paralogs also exhibited testis-biased expression

to a similar degree as the Y-linked paralogs. Consistent with this pattern, we ob-

served a similar degree of testis-biased expression between testis and liver tissue

among the ancestral paralogs on the autosomes (median translocated genes Log2

fold change: − 0.867; median ancestral autosomal paralog Log2 fold change: − 1.558;

Mann-Whitney U test, P = 0.818). This pattern did not hold for comparisons

between testis and larvae (median translocated genes Log2 fold change, − 5.178;

median ancestral autosomal paralog Log2 fold change, − 1.371; Mann-Whitney U

test P < 0.001) and testis and brain (median translocated genes Log2 fold change, −

3.548; median ancestral autosomal paralog Log2 fold change, − 1.601; Mann-

Whitney U test P = 0.036). Combined, our results indicate that the genes which

translocated to the Y chromosome and were retained often had testis-biased

expression ancestrally.

Duplicated genes on the Y chromosome can also be derived from ancestral genes

shared between the X and Y. Of the 626 genes annotated across the male-specific

region of the Y chromosome, 47 (7.5%) had greater than one copy on the Y

chromosome and also had an X-linked gametolog (Table 2). None of these genes

Table 2 Origin of genes in each stratum on the Y chromosome

X ancestral, Y
single copy

X ancestral,
Y duplicated

Autosomal, Y
single copy

Autosomal,
Y duplicated

Unknown
origin, Y single
copy

Unknown
origin, Y
duplicated

Total

Stratum
1

114 (72.6%) 14 (9.0%) 3 (1.9%) 6 (3.8%) 19 (12.1%) 1 (0.6%) 157

Stratum
2

154 (80.6%) 11 (5.8%) 2 (1.0%) 11 (5.8%) 11 (5.8%) 2 (1.0%) 191

Stratum
3

233 (83.8%) 22 (7.9%) 3 (1.1%) 8 (2.9%) 11 (4.0%) 1 (0.3%) 278
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were structured within large amplicons, which are characteristic of many mamma-

lian Y chromosomes [7–9, 11, 22, 53–55]. Instead, copy number ranged from two

to seven copies total. We explored if this duplicated class of genes also exhibited

testis-biased expression similar to what we observed with the autosome translo-

cated genes. Consistent with the previous patterns, we found strong testis-biased

expression between testis and all other tissues among duplicated genes that have

an X-linked gametolog (Fig. 6; Mann-Whitney U test; P < 0.001, all comparisons).

Similar to the ancestral autosomal paralogs, we found that genes often exhibited

testis-biased expression ancestrally on the X chromosome before duplicating on the

Y (Additional file 1: Table S3). However, this pattern did not hold in all tissue

comparisons. In some cases, genes exhibited stronger testis-biased expression after

duplicating on the Y chromosome.

Fig. 6 Genes on the Y chromosome that have been translocated from the autosomes or genes on the Y
chromosome that have been duplicated show testis-biased gene expression. Log2 fold change between
testis tissue and three other tissues (brain, larvae, and liver) is shown. The median is indicated by the solid
line. Whiskers denote 1.5x the interquartile range. Outliers are not shown. For each tissue comparison,
asterisks denote groups with significantly different expression from single-copy genes on the Y
chromosome that have an X-linked gametolog (Sex ancestral; Mann-Whitney U test; P < 0.05)

Peichel et al. Genome Biology          (2020) 21:177 Page 14 of 31



Transposable elements have accumulated throughout the Y chromosome

Transposable elements also rapidly accumulate on sex chromosomes once recombin-

ation is suppressed (reviewed in [1]). The threespine stickleback Y chromosome has a

higher density of transposable elements throughout the male-specific region of the Y

chromosome, compared to the X chromosome (Additional file 2: Fig. S10 and Fig.

S11). We found the highest densities within stratum one, consistent with recombin-

ation being suppressed in this region for the greatest amount of time. We also found a

slightly higher density of transposable elements within the pseudoautosomal region,

compared to the remainder of the X chromosome (Additional file 2: Fig. S10 and Fig.

S11). In order to determine whether the density of transposable elements within the

pseudoautosomal region was greater than what was observed in other recombining re-

gions of the genome, we randomly selected 2.5Mb windows (the size of the pseudoau-

tosomal region) from the autosomes to generate a null distribution of transposable

element density (measured as the proportion of nucleotides occupied by a transposable

element in each window). Although transposable elements have accumulated in the

pseudoautosomal region, the density we observed is not outside of what is observed

across the autosomes (10,000 permutations; P = 0.135).

Stratum one contains a candidate sex determination gene

The master sex determination gene has not been identified in the threespine stickle-

back. Although master sex determination genes can be highly variable among species

[2, 56], many species of fish share some common genes that have been co-opted into

this role during the independent evolution of Y chromosomes. For instance, orthologs

of both the anti-Müllerian hormone (Amhy) [57–59] as well as the anti-Müllerian hor-

mone receptor (Amhr2) [60] have been used as the master sex determination gene. We

searched for evidence of these genes among the annotated transcripts on the Y

chromosome. We found the complete coding sequence of anti-Müllerian hormone on

the Y chromosome (hereafter referred to as Amhy), located within the oldest stratum

adjacent to the pseudoautosomal region boundary (positions 817,433–821,230). We did

not locate a gametolog on the X chromosome, suggesting Amhy is an ancient duplica-

tion and translocation from autosome eight. Synonymous divergence between Amhy

and its autosomal paralog exhibited synonymous divergence in range of other genes

within stratum one, supporting the hypothesis that a translocation was coincident with

the origin of stratum one (ds of Amh/Amhy, 0.423; dS interquartile range of stratum

one, 0.081–0.611; dS interquartile range of stratum two, 0.027–0.075; dS interquartile

range of stratum three, 0.026–0.052).

We explored whether Amhy had divergence patterns and expression patterns consist-

ent with a functional role in sex determination. We aligned the protein coding se-

quence of AMHY to the threespine stickleback AMH paralog on autosome eight as

well as to other vertebrate AMH proteins. We observed conservation of amino acids in

the AMH and TGF-β domains of the protein sequence on the Y chromosome paralog

that are conserved across vertebrates (Additional file 2: Fig. S12), suggesting the Y

chromosome paralog is under selection in these regions to preserve function. We sur-

veyed expression patterns of Amhy across the six tissues used in the gene annotations,

including a larval tissue collected around the time sex determination is believed to
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occur (stages 22–26 [61, 62]). Amhy expression was significantly higher in larval tissue

compared to that in the brain (Log2 fold change, − 2.031; FDR = 0.012), but expression

was statistically indistinguishable when compared to testis (Log2 fold change, − 0.284;

FDR = 0.918) or liver (Log2 fold change, − 2.054; FDR = 0.052). Additional functional

genetics work is currently underway to test if this gene is necessary and sufficient for

initiating male development.

Discussion

Evolution of the threespine stickleback Y chromosome

Using a combination of long-read sequencing and chromosome conformation capture

(Hi-C) sequencing for scaffolding, we were able to assemble a highly accurate Y

chromosome reference assembly for the threespine stickleback, concordant with se-

quenced BAC inserts and known cytogenetic markers [32]. Our new reference assembly

revealed several patterns of sequence evolution that were not accurately resolved using

short-read sequencing [18]. First, synonymous divergence was underestimated through-

out the Y chromosome by relying on single-nucleotide polymorphisms ascertained

through short-read sequencing. This effect was greatest in the oldest region of the Y

chromosome (stratum one). Median dS was approximately 8.7-fold greater within

stratum one when long-read sequences were used. Synonymous divergence was

approximately 2.8-fold greater across the younger strata in the new reference assembly

compared to the dS estimates from short-read sequencing. The short-read sequencing

was also unable to distinguish two independent strata within this region, likely from a

bias against aligning reads in divergent regions, leading to an under estimation of the

true number of SNPs. Our results argue for caution in using short-read sequencing

technologies to characterize sex-specific regions of Y or W chromosomes.

With the presence of both an X and Y chromosome reference, we were able to show

that this mapping bias is alleviated, and short-read sequences can be correctly

partitioned between the two chromosomes in males and females. When we analyzed

nucleotide divergence between the reference Y chromosome and the short-read

sequenced Y chromosomes from various populations, we found divergence was an

order of magnitude lower than what was observed on the autosomes or X chromosome.

Thus, threespine stickleback fish also exhibit reduced Y chromosome diversity as

observed in other species [63–69]. However, there is some evidence for population

divergence on the Y chromosome, as read depth was slightly lower when mapping

reads from males of different populations to the Y chromosome assembly than when

reads from a male of the same population were used. Additional work will be necessary

to understand whether patterns of Y chromosome diversity are consistent with neutral

expectations or whether nucleotide diversity is being reduced through strong selection

on linked sites [63–65].

Divergence times for each of the strata can be approximated based on divergence

rates between the threespine stickleback fish and the ninespine stickleback fish (Pungi-

tius pungitius), which last shared a common ancestor as many as 26 million years ago

[28, 30, 31]. Combined with a mean genome-wide estimate of synonymous divergence

between the two species (0.184 [70]), we determined stratum one likely arose less than

21.9 million years (i.e., generations) ago, close to when the two species diverged. Using
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the same calibration, stratum two formed less than 5.9 million years ago and stratum

three formed less than 4.7 million years ago.

Y chromosome centromere evolution

Due to their highly repetitive nature, centromeric arrays have been challenging to se-

quence and assemble using traditional approaches. However, long-read technologies

have shown recent promise in traversing these inaccessible regions [14, 71, 72]. Using

long-read sequencing, we were also able to recover two contigs in our assembly that

contained arrays of an alpha satellite monomeric repeat that had sequence similarity to

a monomeric repeat isolated from the remainder of the genome [34]. Centromeres

across species are highly variable both at the level of the individual monomer and how

monomers are organized at a higher level [37, 38, 73–76]. This incredible variability

can even occur within species. For example, in humans, centromeric HORs are not

identical between nonhomologous chromosomes [77, 78], and the Y chromosomes of

mouse and humans contain divergent or novel centromeric repeats relative to the auto-

somes [79–81]. Consistent with these patterns, we observed a decrease in sequence

similarity between the Y chromosome monomeric repeat and the consensus repeat

identified from the remainder of the threespine stickleback genome [34]. We found the

Y chromosome was also ordered into a complex HOR; however, we cannot determine

if the structure of the Y chromosome HOR is similar or dissimilar from other three-

spine stickleback chromosomes. The centromere sequence from other chromosomes is

currently limited to short tracts of monomeric repeats [34].

Cytogenetic work has shown the threespine stickleback Y chromosome centromere

may contain a divergent satellite repeat relative to the X chromosome and autosomes

[34, 82]. This hypothesis was based on a weak fluorescent in situ hybridization signal

on the Y chromosome from DNA probes designed from the consensus repeat. Our Y

chromosome assembly indicates a mechanism driving this pattern may be the reduced

sequence identity shared between the Y chromosome monomeric repeat and the

consensus monomeric repeat. An alternative explanation is that the weak hybridization

signal is not due to the differences in monomeric repeat sequence, but it is actually

caused by a reduction in overall size of the Y chromosome centromere. Although we

isolated ~ 87 kb of centromere sequence, we did not identify a contig that spans the

complete centromere, leaving the actual size of the centromere unknown. Additional

sequencing work is necessary to test this alternative model.

The genetic architecture of the threespine stickleback Y chromosome is rapidly evolving

The threespine stickleback Y chromosome is at an intermediate stage of degeneration,

with the retention of a total of 44.1% of the genes present on the X chromosome,

compared to the highly degenerate Y chromosomes of mammals in which only ~ 1–5%

of ancestral X-linked genes remain [10, 11]. The rate of gene loss on the oldest stratum

of the threespine stickleback Y, in which 82% of genes have been lost, is approximately

3.7% per million generations. This is similar to the rate of gene loss per million genera-

tions estimated for other heteromorphic sex chromosomes with similarly aged strata,

such as Rumex hastatulus (1.1–2%) [83], Silene latifolia (4–8%) [17, 84], and the

Drosophila miranda neo-Y (1.7–3.4%) [1, 84, 85]. A somewhat higher rate of gene loss
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(8.4–11.5%) is found on the Rumex rothschildianus Y [83], but none of these systems

have experienced rates of gene loss as rapid as on the similarly aged strata 4 and 5 of

the primate Y chromosome (60% per million generations) [84, 86], possibly due to a

lower effective population size in primates. The consistent estimates of rate of gene loss

in the other plant and animal systems suggest that haploid selection in pollen is

unlikely to play a major role in rates of degeneration in the plant systems examined so

far (Rumex and Silene), although there is evidence that haploid-expressed genes are

maintained on plant Y chromosome, just as dosage-sensitive genes are retained on ani-

mal Y chromosomes, including the threespine stickleback [10, 13, 18, 19, 83, 84, 87].

In addition to this extensive gene loss, we found acquisition of novel genes through-

out all strata of the threespine stickleback Y chromosome. Although we did not detect

massive amplification of gene families as observed on mammalian sex chromosomes [7,

8, 11, 20–22], many genes that had translocated from the autosomes or were present in

the common ancestor of the sex chromosomes had multiple copies on the Y chromo-

some. The copy numbers we observed are on the same order as the duplicated genes

on the sex chromosomes of multiple species of Drosophila [23, 49]. The gene duplica-

tions on the threespine stickleback sex chromosomes may reflect selection on the early

amplification of genes important for male fertility [43] or to prevent degradation by

providing a repair template through gene conversion [7, 11, 49, 54, 88–96]. Alterna-

tively, the duplications we observe on the threespine stickleback Y chromosome may

simply reflect recent translocations and duplications that have yet to degenerate and

pseudogenize.

Gene expression patterns of duplicated and translocated genes suggest this process is

not entirely neutral. We observed strong testis-biased expression among genes that had

duplicated and translocated to the Y chromosome, similar to patterns observed on

other Y chromosomes [7, 8, 11, 20–22, 46, 47, 97]. Interestingly, we observed multiple

ways that testis-biased genes can accumulate on the Y chromosome. For one, many

genes exhibit ancestral testis-biased expression. Genes that have translocated from the

autosomes to the Y chromosome had a similar degree of testis-biased expression as the

ancestral autosomal paralog. The X-linked gametologs of genes that are duplicating on

the Y chromosome also had testis-biased expression ancestrally. This suggests genes

can be selected to be retained on the Y chromosome because of existing male-biased

expression patterns. Our observations mirror translocations on the ancient human Y

chromosome; the amplified DAZ genes arose from an autosomal paralog that was

expressed in the testis [44]. Examples of autosome-derived translocations to the Y

chromosome also exist in Drosophila and can have ancestral testis-biased functions

[46]. On the other hand, we also found that autosome-derived translocated genes

evolved stronger testis-biased expression in a tissue-specific context compared to an-

cestral expression. The variation in testis-biased expression observed among tissue

comparisons suggests the acquisition of testis functions for many genes is incomplete.

This makes the threespine stickleback Y chromosome a useful system to understand

the regulatory changes required for genes to evolve novel functions in the testis.

Genes that translocate to the Y chromosome either arise through RNA-mediated

mechanisms or through DNA-based translocations (reviewed in [52]). Of the transloca-

tions we observed, we only detected DNA-based translocations. Work in other species

has shown that DNA-based duplications occur more frequently than RNA-mediated

Peichel et al. Genome Biology          (2020) 21:177 Page 18 of 31



mechanisms [49, 52, 98, 99]. Our results support this bias on younger sex chromo-

somes. It is possible that the frequency of DNA-based duplications is even higher on

young sex chromosomes compared to ancient sex chromosomes. DNA-based duplica-

tions are driven by erroneous double-strand break repair. On the ancient sex chromo-

somes of rodents, double-strand break initiation is suppressed on the sex chromosomes

of males [100, 101]. This would limit the opportunity for DNA-based translocations to

occur due to aberrant double-strand break repair during meiosis. However, on younger

sex chromosomes, double-strand break frequencies may still be occurring at an appre-

ciable frequency. Coupling a diverging Y chromosome with accumulating repetitive

DNA would create additional opportunities for double-strand break repair through

non-allelic processes, increasing the number of duplications and translocations [102].

Amhy is a candidate sex determination gene

We identified the Amhy gene as a candidate for male sex determination in the three-

spine stickleback. Amh has been co-opted as a male sex determination gene in multiple

species of fish [57–59]. The master sex determination gene is one of the primary genes

that initiate evolution of a proto-Y chromosome (reviewed in [1]). Consistent with this,

Amhy is located in the oldest region of the stickleback Y chromosome (stratum one),

adjacent to the pseudoautosomal region, and synonymous divergence with its paralog is

within the range of other genes in the oldest stratum. Amhy is expressed in developing

stickleback larvae, consistent with a role in early sex determination. Finally, the amino

acids that are highly conserved across vertebrates in the functional domains of the pro-

tein are also conserved on the Y chromosome paralog in stickleback fish, suggesting

Amhy is functional. Based on the known role of AMH signaling in sex determination in

other fish, and the location, expression, and sequence of the Y chromosome paralog in

stickleback fish, we propose that Amhy is the threespine stickleback master sex deter-

mination gene. Additional functional genetics work is underway to test this hypothesis.

Conclusions

Our threespine stickleback Y chromosome assembly highlights the feasibility of

combining PacBio long-read sequencing with Hi-C chromatin conformation scaffolding

to generate a high-quality reference Y chromosome assembly. With the reduction in

per base pair cost associated with the newest generation of sequencers, the comparative

genomics of sex chromosomes will be more accessible. This will be especially useful for

taxa like stickleback fish that have multiple independently derived sex chromosome

systems among closely related species [30]. This provides a unique opportunity to

understand the convergent evolution of sex chromosome structure as well as the diver-

sity of sex determination mechanisms.

Materials and methods

DNA isolation and PacBio sequencing

Total DNA was isolated from a single adult male threespine stickleback that was the

laboratory-reared offspring of wild-caught fish collected from the Paxton Lake benthic

population (Texada Island, British Columbia). Nucleated erythrocytes were isolated

from blood (extracted by repeated pipetting in bisected tissue with 0.85x SSC buffer).
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High molecular weight DNA was isolated by centrifuging blood for 2 min at 2000×g,

followed by resuspension of cells in 5 ml of 0.85x SSC and 27 μl of 20 μg/ml proteinase

K. Cells were lysed by adding 5 mL of 2x SDS buffer (80 mM EDTA, 100 mM Tris pH

8.0, 1% SDS), followed by incubation at 55 °C for 2 min. DNA was isolated from the lys-

ate by adding 10 mL of buffered phenol/chloroform/isoamyl-alcohol, rotating slowly at

room temperature for 30 min, followed by centrifuging at 4 °C for 1 min at 2000×g.

Two further extractions were performed by adding 10mL of chloroform, rotating

slowly at room temperature for 1 h, followed by centrifuging at 4 °C for 1 min at

2000×g. DNA was precipitated using 1mL of 3M sodium-acetate (pH 6.0) and 10mL

of cold 100% ethanol. The pellet was washed with cold 70% ethanol and resuspended

in 100 μl of 10 mM Tris (pH 8.0). DNA quality was assessed on a FEMTO Pulse

(Agilent, Santa Clara, CA, USA); the peak size was 132,945 bp. Size selection, library

preparation, and sequencing on a PacBio Sequel platform were conducted at the Next

Generation Sequencing Platform at the University of Bern (Bern, Switzerland). 37.69

Gb was sequenced across seven SMRT cells, resulting in approximately 75.25x coverage

across the genome.

PacBio assembly

Canu (v 1.7.1) [103] was used to error correct, trim, and assemble the raw PacBio reads

into contigs. Default parameters were used except corOutCoverage was increased to 50

(from the default of 40) to target a larger number of reads for assembly of the sex

chromosomes (the X and Y chromosomes in males have only half the available read

coverage, relative to the autosomes). Increasing corOutCoverage did not substantially

decrease the N50 read size for the assembly (default 40x coverage N50, 31,494 bp; 50x

coverage N50, 22,133 bp). The Canu assembly was polished using Arrow (v. 2.2.2). Raw

PacBio reads were first aligned to the assembled Canu contigs using pbalign (v. 0.3.1)

with default parameters. Arrow was run on the subsequent alignment also using default

parameters. We identified redundancy between haplotigs of the autosomal contigs by

aligning all the contigs to each other using nucmer [104] and filtering for alignments

between contigs that were at least 1 kb in length and had at least 98% sequence identity

(to account for the elevated heterozygosity).

Hi-C proximity guided scaffolding

The X and Y chromosomes of threespine stickleback share a considerable amount of

sequence homology [18]. Hi-C proximity guided scaffolding could not accurately

scaffold the X and Y chromosomes from a combined set of contigs. To simplify the

scaffolding process, we separated putative X- and Y-linked contigs from the genome-

wide set of contigs. Putative Y-Iinked contigs were identified as (1) contigs that aligned

to the reference X chromosome, but with higher sequence divergence, and (2) contigs

that only partially aligned or did not align at all to the revised female reference genome

[27]. We aligned the contigs to the reference genome using nucmer in the MUMmer

package (v. 4.0) [104]. Putative X- and Y-linked contigs were separated by overall se-

quence identity. Putative X-linked contigs were defined as having more than 25% of the

contig length aligned to the reference X chromosome with a sequence identity greater

than 96%, whereas putative Y-linked contigs were defined as having a sequence identity
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with the reference X chromosome of less than 96%. Contigs which had less than 25%

of the length aligning to the reference genome or did not align at all were retained as

putative Y-linked unique sequence. Selection of the sequence identity threshold was

guided by our overall ability to re-assemble the known X chromosome sequence from

the set of putative X-linked PacBio Canu contigs. We tested thresholds from 92% se-

quence identity to 98% sequence identity and chose the threshold that resulted in the

smallest size difference between the PacBio assembly and the X chromosome sequence

from the reference assembly [27] (Additional file 1: Table S4). We used custom Perl

scripts to separate the X- and Y-linked contigs.

Hi-C sequencing was previously conducted from a lab-reared adult male also

from the Paxton Lake benthic population (Texada Island, British Columbia) (NCBI

SRA database: PRJNA336561) [27]. Hi-C reads were aligned to the complete set of

contigs from the Canu assembly using Juicer (v. 1.5.6) [105]. 3D-DNA (v. 180114)

was used to scaffold the putative X- and Y-linked contigs separately [33, 35]. De-

fault parameters were used except for --editor-repeat-coverage, which controls the

threshold for repeat coverage during the misjoin detector step. Because Y chromo-

somes often have more repetitive sequence than the remainder of the genome, we

scaffolded the X- and Y-linked contigs using --editor-repeat-coverage thresholds

that ranged from 8 to 18. We chose the minimum threshold that resulted in a Y

chromosome scaffold that maximized the total number of Y chromosome Sanger

sequenced BACs that either aligned concordantly within contigs included in the

scaffold or correctly spanned gaps between contigs in the scaffold (--editor-repeat-

coverage 11; Additional file 1: Table S5) (see the “Alignment of BAC sequences

and merging assemblies” section).

BAC isolation and Sanger sequencing

Y-chromosome specific BACs were isolated from the CHORI-215 library [106], which

was made from two wild-caught males from the same Paxton Lake benthic population

(Texada Island, British Columbia, Canada) used for the PacBio and Hi-C sequencing.

The Y-chromosome-specific BACs were identified using a variety of approaches. Ini-

tially, sequences surrounding known polymorphic markers (Idh, Stn188, Stn194) on

linkage group 19 were used as probes to screen the CHORI-215 BAC library filters,

and putative Y-specific BACs were identified by the presence of a Y-specific allele at

that marker [32, 107]. In addition, all CHORI-215 BAC end sequences [108] were used

in a BLAST (blastn) search of the threespine stickleback genome assembly, which was

generated from a female [24]. All BACs for which neither end mapped to the genome

or had ends that aligned to the X chromosome with elevated sequence divergence were

considered as candidate Y-chromosome BACs. These candidate BACs were verified to

be Y-specific using fluorescent in situ hybridization (FISH) on male metaphase spreads,

following previously described protocols [32, 109]. The hybridizations were performed

with CHORI-213 BAC 101E08 (Idh), which clearly distinguishes the X and Y chromo-

somes [32] labeled with ChromaTide Alexa Fluor 488-5-dUTP and the putative Y-

specific BAC labeled with ChromaTide Alexa Fluor 568-5-dUTP (Invitrogen, Carlsbad,

CA, USA). Starting with these verified Y-specific BACs, we then used the CHORI-215

BAC end sequences to iteratively perform an in silico chromosome walk. At each stage
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of the walk, BACs were verified as Y-specific using FISH. In total, 102 BACs were

sequenced.

BAC DNA was isolated from a single bacterial colony and purified on a Qiagen

MaxiPrep column. DNA was sheared to 3–4 kb using Adaptive Focused Acoustics tech-

nology (Covaris, Woburn, MA, USA) and cloned into the plasmid vector pIK96 as pre-

viously described [110]. Universal primers and BigDye Terminator Chemistry (Applied

Biosystems) were used for Sanger sequencing randomly selected plasmid subclones to a

depth of 10x. The Phred/Phrap/Consed suite of programs was then used for assembling

and editing the sequence [111–113]. After manual inspection of the assembled

sequences, finishing was performed both by resequencing plasmid subclones and by

walking on plasmid subclones or the BAC clone using custom primers. All finishing

reactions were performed using dGTP BigDye Terminator Chemistry (Applied Biosys-

tems, USA). Finished clones contain no gaps and are estimated to contain less than one

error per 10,000 bp.

Alignment of BAC sequences and merging assemblies

Sequenced BAC inserts were aligned to the scaffolded Y chromosome using nucmer (v.

4.0) [104]. A BAC was considered fully concordant with the PacBio Y chromosome

scaffold if the following conditions were met: both ends of the alignment were within 1

kb of the actual end of the Sanger sequenced BAC, the full length of the alignment was

within 10 kb of the actual length of the Sanger sequenced BAC, and the total alignment

shared a sequence identity with the PacBio Y chromosome scaffold of at least 99%.

BAC alignments were also identified that spanned gaps between contigs in the scaffold.

An alignment that spanned gaps was considered valid if the following conditions were

met: both ends of the alignment were within 1 kb of the actual end of the Sanger se-

quenced BAC, the total alignment length was not greater than the actual length of the

Sanger sequenced BAC, and the total alignment shared a sequence identity with the

PacBio Y chromosome scaffold of at least 99%. Finally, BACs were identified that ex-

tended from contigs into gaps within the scaffold but did not completely bridge the

gaps. BACs that extended into gaps were identified if one end of the alignment was

within 1 kb of the actual end of the Sanger sequenced BAC, the alignment extended

completely to the end of a contig in the scaffold, and the total alignment shared a se-

quence identity with the PacBio Y chromosome scaffold of at least 99%. We used a cus-

tom Perl script to identify concordant BACs, BACs that spanned gaps in the scaffold,

and BACs that extended into gaps within the scaffold.

Sanger sequenced BACs that spanned gaps and extended into gaps provided

additional sequence that was not originally present in the PacBio scaffolded Y chromo-

some. We merged this additional sequence into the PacBio scaffold using a custom Perl

script. If multiple Sanger sequenced BACs spanned a gap or extended into a gap, the

BAC with the highest percent sequence identity was used.

Alignment of whole-genome short-read sequencing

We verified PacBio sequencing accuracy by comparing it to aligned Illumina paired-

end short-read sequencing from male and female fish from multiple populations: one

male and one female from a Puget Sound population (Washington State, USA; NCBI
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SRA database accessions: SRR6954368 and SRR6954353 [114]), one male and one

female from a Lake Washington population (Washington State, USA; NCBI SRA data-

base accession: SRR6954338 and SRR6954339 [114]), one female from the Paxton Lake

limnetic population (Texada Island, British Columbia, Canada; NCBI SRA database

accession: SRR5626528), and a different male from the same Paxton Lake benthic

population used to sequence the reference Y chromosome (NCBI SRA database acces-

sion: SRR5626529). Reads were quality trimmed with Trimmomatic (v. 0.36) [115]

using a sliding window of 4 bases, trimming the remainder of the read when the aver-

age quality within a window dropped below 15. Reads were only retained if they were

at least 75 nucleotides long after trimming. Trimmed paired-end reads were aligned to

the revised threespine stickleback reference assembly [27] and the newly assembled

reference Y chromosome with Bowtie2 (v. 2.3.5.1) [116], using default parameters. PCR

duplicates were identified and removed using MarkDuplicates of Picard Tools (default

parameters v. 2.21.6) [117]. Only reads with a mapping quality score of 20 or greater

were retained. Genome coverage was quantified at every base across the genome using

the genomecov tool of bedtools (default parameters; v. 2.29.2) [118]. Median read depth

was calculated in 1 kb non-overlapping windows across the genome.

Single-nucleotide polymorphisms were genotyped in the three male samples using

the Genome Analysis Toolkit (GATK; v. 4.1.2), following the best practices for variant

discovery [119]. Variants were called using HaplotypeCaller (-ERC GVCF), and joint

genotyping was conducted using GenotypeGVCFs (default parameters). Indels and het-

erozygous sites were removed using bcftools (v. 1.9). Heterozygous sites were not con-

sidered when calculating pairwise sequence divergence because these genotypes likely

reflect collapsed paralogs on the Y chromosome reference relative to the aligned popu-

lation or may reflect incorrectly aligned X-linked reads to some regions on the Y

chromosome. We filtered heterozygous sites throughout the genome.

Identification of the Y centromere

The Y chromosome centromere was localized using chromatin immunoprecipitation

targeting centromere protein A (CENP-A) as previously described [34]. The threespine

stickleback-specific antibody against CENP-A is readily available from the authors.

Immunoprecipitated and input DNA from two males from the Japanese Pacific Ocean

population (Akkeshi, Japan) were 150-bp paired-end sequenced using an Illumina

HiSeq 2500. Reads were quality trimmed with Trimmomatic (v. 0.36) [115] using a slid-

ing window of 4 bases, trimming the remainder of the read when the average quality

within a window dropped below 15. Trimmed paired-end reads were aligned to the

scaffolded Y chromosome assembly with Bowtie2 (v. 2.3.4.1) [116], using default pa-

rameters. This resulted in an overall alignment rate of 83.9% (chromatin only input)

and 81.0% (immunoprecipitation) for the first male and 82.3% (chromatin only input)

and 79.8% (immunoprecipitation) for the second male. We quantified the read depth of

aligned reads at every position across the Y chromosome using the genomecov package

of bedtools (v. 2.28.0) [118]. We calculated fold-enrichment of reads in the immuno-

precipitation versus the input DNA at every position across the Y chromosome. Each

position was normalized by the total number of reads in the respective sample before

calculating the immunoprecipitation to input DNA ratio. The mean fold-enrichment
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was calculated every 1 kb across the Y chromosome. Fold-enrichment was quantified

using a custom Perl script.

The autosomal core centromere repeat (GenBank accession KT321856) [34] was

aligned to the Y centromere region using BLAST (blastn) [120]. Only hits that had

an alignment length ± 10 bp of the core 187 bp repeat were retained. Average

percent identity was calculated among the remaining BLAST hits. We determined

a majority consensus sequence from the core 14 centromere repeat units from the

initial Y chromosome assembly. The majority consensus was used to identify

additional repeats in the “debris” fragments that flanked the gap in the scaffold

where the Y centromere was originally identified. The majority consensus was

aligned to the debris fragments using BLAST (blastn), retaining alignments that

had an alignment length ± 10 bp of the core 187 bp repeat. Pairwise alignments

between all repeats within the Y chromosome were conducted using BLAST

(blastn). Average percent identity among all pairwise alignments was calculated

using a custom Perl script.

Molecular evolution of genes on the Y chromosome

To characterize divergence between ancestral genes shared by the X and Y chromo-

somes, we aligned the coding sequence of each Ensembl predicted gene to the Y

chromosome using Exonerate (v. 2.4.0) [121] using the parameters --model est2genome

--bestn 15. Only coding sequences for which at least 95% of its sequence length aligned

to the Y chromosome were retained for further analysis. dS and dN were quantified for

each pairwise alignment using the codeml module of PAML (phylogenetic analysis by

maximum likelihood) (runmode = 2) [122]. If an X coding sequence aligned to multiple

locations on the Y chromosome, only the alignment with the lowest dS was retained. In

addition, all alignments with dS greater than two were removed. These stringent filter-

ing steps aimed to limit alignments to the true gametolog, rather than to paralogs of

genes that are present in greater than one copy on the sex chromosomes. For estimat-

ing dN/dS, transcripts with a value of 99 were omitted. Strata breakpoints were broadly

based upon the inversion breakpoints in the cytogenetic map [32], adjusted at a fine-

scale by the inversion breakpoints in the alignments between the assembled Y chromo-

some and the reference X chromosome (breakpoints on the Y chromosome: PAR/

stratum one, 0.34Mb; stratum one/stratum two, 4.67Mb; stratum two/stratum three,

9.67Mb; breakpoints on the X chromosome: PAR/stratum two, 2.5Mb; stratum two/

stratum three, 6.89Mb; stratum three/stratum one, 12.5 Mb). The pseudoautosomal

region boundary was set at 2.5Mb on the X chromosome, as previously defined by

patterns of molecular divergence between the X and Y chromosome [18] and through

genetic linkage maps [25, 107, 123].

Identification of haploinsufficient genes

One-to-one human-threespine stickleback fish orthologs were identified from the

Ensembl species comparison database. Orthologs were restricted to those with a human

orthology confidence of 1. The high confidence orthologs were matched to the human

haploinsufficiency predictions from the DECIPHER database (v. 3) [41, 42].
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Gene annotation across the PacBio assembled Y chromosome

Genes were annotated on the repeat masked Y chromosome scaffold using the MAKER

genome annotation pipeline (v. 3.01.02) [50, 51] using evidence from multiple RNA-seq

transcriptomes, all predicted protein sequences from Ensembl (release 95), and ab initio

gene predictions from SNAP [124] and Augustus [125]. RNA-seq was conducted on

multiple tissue samples. RNA from adult male whole brains was previously extracted

and sequenced from wild-caught fish from the Japanese Pacific Ocean population,

Akkeshi, Japan (NCBI BioProject accession: PRJNA277770) [18]. Male larval tissue was

collected from stages 22–26 [61] when sex determination is believed to occur [62].

Larvae were collected from laboratory-reared progeny of wild-caught fish from the Lake

Washington population (Seattle, Washington). Larvae were pooled into two samples,

one consisting of five males and the other consisting of six males. Total RNA was ex-

tracted using TRIzol reagent (Invitrogen, USA) following standard protocols. Library

preparation and sequencing was conducted by the Fred Hutchinson Cancer Research

Center Genomics Shared Resource. Single-end sequencing was carried out on a

Genome Analyzer II for 72 cycles. Liver and testis tissues were also collected from adult

and juvenile fish from laboratory-reared progeny of wild-caught fish from the Japanese

Pacific Ocean population (Akkeshi, Japan). Livers and testes were collected from two

males and pooled. Three juvenile samples and three adult samples were collected. Total

RNA was extracted using TRIzol reagent (Invitrogen, USA) following standard proto-

cols. Library preparation and sequencing was conducted by the Georgia Genomics and

Bioinformatics Core at the University of Georgia. Paired-end sequencing was carried

out on a NextSeq 500 for 150 cycles. All reads were quality trimmed with Trimmomatic

(v. 0.36) [115] using a sliding window of 4 bases, trimming the remainder of the read

when the average quality within a window dropped below 15.

We aligned sequences to the masked revised whole-genome reference assembly [27]

using Tophat (v. 2.3.4.1) [126]. Default parameters were used except for the liver and

testis tissues. For these tissues, we used --read-mismatches 4 and --read-edit-dist 4 to

account for the greater number of SNPs in the 150 bp reads. These alignment parame-

ters produced an overall alignment rate to the masked genome of 80.4% for the brain

tissue, 68.0% in the adult liver tissue, 64.5% in the juvenile liver tissue, 64.7% for adult

testis tissue, 65.5% for the juvenile testis tissue, and 68.9% for the larval tissue. Aligned

reads from all samples within a tissue were pooled to construct a single tissue-specific

set of transcripts using Cufflinks (v. 2.2.1) [127] with default parameters. Exons from

the GTF file were converted to FASTA sequences with gffread.

MAKER was run over three rounds. For the first round of MAKER, we only used evi-

dence from the RNA-seq transcripts and all annotated protein sequences from Ensembl

(release 95) using default parameters and est2genome=1, protein2genome=1 to infer

gene predictions directly from the transcripts and protein sequences. We used these

gene models to train SNAP. In addition, Augustus was trained using gene models from

BUSCO conserved orthologs found on the PacBio scaffolded Y chromosome and the

revised reference assembly [26, 27] with the Actinopterygii dataset and default BUSCO

(v. 3.0.2) parameters [128, 129]. MAKER was run using the new SNAP and Augustus

models with est2genome=0 and protein2genome=0. For the third round of MAKER,

SNAP was retrained with the updated gene models and MAKER was run again with

the updated SNAP model, the previous Augustus model, and est2genome=0 and
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protein2genome=0. The threespine stickleback repeat library derived using RepeatMo-

deler was used during the annotation pipeline using the rmlib option.

To characterize whether there were any novel genes acquired by the Y chromosome

as well as any duplicated genes, we aligned each MAKER annotated gene on the PacBio

assembled Y chromosome to the whole genome as well as back to the Y chromosome,

following the same exonerate procedure. If a paralog was identified on an autosome,

we only retained the paralog if dS was lower than the median dS across the oldest re-

gion of the Y chromosome (stratum one: 0.101). Using this stringent filter avoids incor-

rectly assigning more ancient paralogs on the autosomes as the most recent common

ancestor. If multiple alignments were identified on the X chromosome, only the align-

ment with the lowest dS was retained. If multiple overlapping paralogs from a single

gene were identified on the Y chromosome, only the paralog with the lowest dS was

retained. Alignments to the unassigned contigs (ChrUn) were ignored because these

contigs could not be unambiguously assigned to the X chromosome or to the

autosomes.

Differential expression of genes on the Y chromosome

For each tissue used in the gene annotations, the total number of RNA reads that mapped

to the reference Y chromosome were counted using htseq-count (HTSeq software pack-

age; v. 0.9.1) [130]. Read counts were obtained across all 626 MAKER identified genes

across the male-specific region of the Y chromosome plus all additional paralogs (132

paralogs). Default parameters were used with the addition of --stranded=no and --non-

unique all. Ambiguous reads were included in the counts because of the large number of

paralogs on the Y chromosome with high sequence identity. In case a read could not be

unambiguously mapped, it was assigned to all features to which it matched. Genes were

removed from the analysis if they had a read count of zero in all samples. Scaling factors

for normalization were calculated using the trimmed mean of M-values (TMM) method

in the Bioconductor package, edgeR [131]. The TMM method minimizes the log-fold

changes between samples for most genes. This approach may not be appropriate for a Y

chromosome, which may be enriched for male-biased gene expression. Therefore, we cal-

culated scaling factors for all autosomal transcripts and normalized the Y chromosome

transcripts using these scaling factors. Ensembl annotated transcripts were used for the

autosomes. Replicates were grouped based on tissue (testis: six samples; liver: six samples;

brain: three samples; larvae: two samples). Log2 fold-change was calculated for each gene

in each tissue comparison using edgeR.

Repetitive element annotation

Repetitive elements were first modeled together on the PacBio scaffolded X and Y

chromosomes using RepeatModeler (v. 1.0.11) [132] with default parameters. Repeats

were masked across both scaffolds using RepeatMasker (v. 4.0.7) [133] with default pa-

rameters and the custom database created by RepeatModeler.

Characterization of Amhy

The protein sequence of AMHY was aligned to AMH sequences from human

(GenBank AAH49194.1), mouse (GenBank NP_031471.2), chicken (GenBank NP_
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990361.1), zebrafish (GenBank AAX81416.1), and the paralog of AMH on threespine

stickleback chromosome eight (ENSGACP00000016697) using CLUSTALW with

default parameters in Geneious Prime (v. 2019.1.1) [134]. Synonymous divergence was

estimated between Amhy and the paralog on autosome eight (ENSG

ACT00000016731.1) using the codeml module of PAML (runmode = 2) [122]. Gene

expression level was quantified for Amhy in the six different tissues used for gene

annotation. Read counts per million (CPM) for each tissue was calculated from the

TMM-scaled samples from the differential expression analysis.
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