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Assembly of uniaxially aligned rare-earth-free nanomagnets

B. Balamurugan,1,2 B. Das,1,2 V. R. Shah,1 R. Skomski,1,2 X. Z. Li,1 and D. J. Sellmyer1,2,a)
1Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, Nebraska-68588, USA
2Department of Physics and Astronomy, University of Nebraska, Lincoln, Nebraska-68588, USA

(Received 20 July 2012; accepted 4 September 2012; published online 19 September 2012)

We report HfCo7 nanoparticles with appreciable permanent-magnet properties (magnetocrystalline

anisotropy K1 � 10 Mergs/cm3, coercivity Hc � 4.4 kOe, and magnetic polarization Js � 10.9 kG

at 300K) deposited by a single-step cluster-deposition method. The direct crystalline-ordering of

nanoparticles during the gas-aggregation process, without the requirement of a high-temperature

thermal annealing, provides an unique opportunity to align their easy axes uniaxially by applying a

magnetic field of about 5 kOe prior to deposition, and subsequently to fabricate exchange-coupled

nanocomposites having Js as high as 16.6 kG by co-depositing soft magnetic Fe-Co. This study

suggests HfCo7 as a promising rare-earth-free permanent-magnet alloy, which is important for

mitigating the critical-materials aspects of rare-earth elements. VC 2012 American Institute of

Physics. [http://dx.doi.org/10.1063/1.4753950]

Magnetic nanoparticles of high magnetocrystalline ani-

sotropy K1� 10 Mergs/cm3 and magnetic polarization Js
above about 10 kG (Js¼ 4pMs, Ms is the saturation magnet-

ization) are of interest for permanent magnets, recording

media, and other significant applications.1–3 Such nanopar-

ticle building-blocks are promising for improving magnetic

properties by exploiting nanoscale effects and miniaturizing

devices to suit modern technological requirements.4,5 Rare-

earth alloys and L10-structure FePt and CoPt nanoparticles

have superior permanent-magnet properties,6–8 but an ever-

increasing demand of rare-earth elements and the high cost

of Pt intensify the search for rare-earth and Pt-free alloys.9,10

Another important problem is that generally nanoparticles

have low remanent magnetization Mr of only about 0.5 Ms

due to the random distribution of easy axes and this limits

potential use of nanoparticles in permanent magnets.2,11,12

However, the easy-axis alignment process for the improve-

ment of Mr/Ms using a magnetic field during the growth of

nanoparticles is strongly hindered by the requirement of for-

mation at high temperature (above 500 �C) for obtaining the

desired crystalline ordering.13,14

In the present study, we have overcome the above-

mentioned problems by producing rare-earth-free permanent-

magnet nanoparticles (HfCo7) using a single-step gas-

aggregation-type cluster-deposition method without the

requirement of a high-temperature thermal annealing and sub-

sequently aligned their easy axes via applying a magnetic field,

prior to deposition on substrates. Note that the HfCo7 interme-

tallic phase can play a key role in the ongoing search for alter-

native permanent-magnet alloys due to its high Tc of about

600K, Js of above 10 kG, and non-cubic crystal structure.15–19

The HfCo7 phase, however, forms only at a single composition

(12.5 at. % of Hf) and temperatures as high above 1000 �C

under thermal equilibrium conditions. These limitations are

major impediments in controlling the phase purity, crystalline

ordering, and microstructure of bulk alloys, which affect their

permanent-magnet properies.15,16 In this regard, the non-

equilibrium growth conditions of the cluster-deposition method

are advantageous for the stabilization of metastable phases, and

alloys requiring higher growth temperatures and with less sym-

metric crystal structures.6,20,21

The experimental setup used for depositing HfCo7 nano-

particles, as schematically shown in Fig. 1, consists of a

cluster-formation chamber having a direct current (DC) mag-

netron plasma-sputtering discharge with a water-cooled gas-

aggregation chamber and a deposition chamber, where the

substrate is kept at room temperature.6 The Co-Hf composite

target was sputtered at a high DC magnetron sputtering power

(Pdc¼ 200W) using a mixture of argon (Ar) and helium (He)

as sputtering gas to form HfCo7 nanoparticles in the gas-

aggregation chamber, which were extracted as a collimated

beam moving towards the substrate. Nanoparticles were de-

posited on single crystalline Si (001) substrates for supercon-

ducting quantum interference device (SQUID) magnetometer,

energy dispersive x-ray analysis (EDX, JEOL JSM 840A

scanning electron microscope), and x-ray diffraction (XRD,

Rigaku D/Max-B diffractometer) measurements. Carbon-

coated copper grids were used as substrates for transmission

electron microscopy (TEM, JEOL 2010 with an acceleration

voltage of 200 kV) studies. For the fabrication of HfCo7:Fe-

Co nanocomposites, HfCo7 nanoparticles were co-deposited

along with soft FexCo1�x phase (x¼ 0.65) produced using

another dc magnetron sputtering gun employed in the

FIG. 1. A schematic illustration of the gas-aggregation-type cluster-deposition

method used for the growth of HfCo7 nanoparticles.

a)Author to whom correspondence should be addressed. Electronic mail:

dsellmyer@unl.edu.

0003-6951/2012/101(12)/122407/5/$30.00 VC 2012 American Institute of Physics101, 122407-1

APPLIED PHYSICS LETTERS 101, 122407 (2012)

http://dx.doi.org/10.1063/1.4753950
http://dx.doi.org/10.1063/1.4753950


deposition chamber as shown in Fig. 1. During the deposition

of nanocomposites, the substrate holder was rotated by about

20� to face both cluster beam and Fe-Co flux. The volume

fraction of the soft phase was controlled by varying the depo-

sition rate of HfCo7 nanoparticles and Fe-Co. Nanoparticle

samples were coated with a protective cap layer (about 3 nm)

such as SiO2 immediately after deposition using a RF sputter-

ing gun employed in the deposition chamber.

We have deposited two types of nanoparticle samples: (i)

randomly oriented nanoparticles in the absence of a magnetic

field (labeled as unaligned nanoparticles) and oriented nano-

particles by applying a magnetic field to nanoparticles using a

set of permanent magnets before deposition (labeled as

aligned nanoparticles), which will be discussed later. We also

have prepared bulk HfCo7 alloys for comparing the structural

and magnetic properties of nanoparticles. For this, high-purity

Co and Hf of compositions corresponding to HfCo7 (12.5 at.

%. of Hf) were mixed homogeneously using a conventional

arc-melting method and subsequently melt spun to obtain bulk

HfCo7 ribbons. The rapid cooling during the melt spinning

process is advantageous to have good control over the phase

purity and microstructure in the bulk HfCo7 alloys.

XRD measurements were used to investigate the crystal

structure of HfCo7. Note that the bulk HfCo7 is reported to

form one of the following structures: tetragonal or ortho-

rhombic.15,17–19 In the present study, we first used TOPAS

(Total Pattern Analysis Solution, Bruker AXS) to index the

XRD pattern of the bulk HfCo7 alloys (curve (i) in Fig. 2(a))

by assuming the above-mentioned crystal structures. The

positions of the experimental XRD peaks (curve (i) in Fig.

2(a)) show good agreement with the XRD peak positions

using TOPAS (black-dotted vertical lines in Fig. 2(a)) for an

orthorhombic structure having lattice parameters of about

a¼ 4.7189 Å; b¼ 4.2783 Å, and c¼ 8.0705 Å. Similarly, the

XRD pattern of the unaligned HfCo7 nanoparticles (curve

(ii) in Fig. 2(a)) shows the most intense diffraction peaks

corresponding to (002), (200), and (202) as observed in the

case of bulk HfCo7 alloys.

Some of the low-intensity diffraction peaks are weak or

not visible in the XRD pattern of the unaligned HfCo7 nano-

particles (curve (ii) in Fig. 2(a)) due to comparatively low

absolute intensities. In addition, the diffraction peaks corre-

sponding to (202) and (004) separated only by a small angu-

lar position are indistinguishable due to their breadth

resulting from the nanoparticle size. Generally, the cluster-

deposition method produces assemblies of single-crystalline

nanoparticles of average particle size d� 15 nm with an rms

standard deviation of r/d� 0.20 and this depends on the gas

flow rates, gas-aggregation length, and Pdc.
6 The size d for

HfCo7 nanoparticles was varied from about 4.8 to 12 nm by

varying the flow rate of Ar (200 to 500 SCCM (standard

cubic centimeter per minute)) and/or gas aggregation length

(10 to 15 cm), while keeping Pdc (200W) and flow rate of

He (100 SCCM) as constants. For example, in the present

study, TEM image of HfCo7 nanoparticles (Fig. 2(b)) and

corresponding particle-size histogram (inset of Fig. 2(b))

reveal d¼ 8.3 nm and r/d¼ 0.19.

Magnetic properties of unaligned HfCo7 nanoparticles

were investigated by measuring the magnetization M as a

function of applied magnetic field H from �70 to 70 kOe

and also compared with that of bulk HfCo7 alloys. HfCo7
nanoparticles with d¼ 4.8 nm exhibit superparamagnetic

behavior by showing a coercivity Hc¼ 0 at 300K and block-

ing temperature of about 140K in the zero-field-cooled mag-

netization curve (not shown here) and those having d> 5 nm

always show ferromagnetic behavior. For example, M-H

curves of the unaligned HfCo7 nanoparticles having

d¼ 8.3 nm measured at 10K (blue curve) and 300K (red

curve) are shown along with the room-temperature M-H

curve of the bulk HfCo7 alloys (black curve) in Fig. 3(a).

These results provide two important observations. First, M of

both unaligned HfCo7 nanoparticles and bulk alloys in Fig.

3(a) does not attain complete saturation even at H¼ 70 kOe,

revealing a large value of magnetic anisotropy. The magnetic

anisotropy constant K1 was estimated by fitting the high field

region of M-H curves using the law of approach to saturation

method, widely used for randomly oriented nanopar-

ticles.12,22–24 This behavior is consistent with the observation

of Mr/Ms of about 0.5 and nearly identical room-temperature

in-plane and out-of-plane M-H curves of the unaligned

HfCo7 nanoparticles (not shown here).

The magnetization for random-anisotropy magnets near

saturation (Ms) can be estimated from

M ¼ Msð1� A=H2Þ þ vH: (1)

FIG. 2. (a) X-ray diffraction patterns of bulk HfCo7 and unaligned HfCo7
nanoparticles (NPs), where the estimated XRD peak positions corresponding

to the orthorhombic structure using TOPAS are shown as black-dotted verti-

cal lines. (b) Transmission electron microscope image of NPs. The corre-

sponding particle-size histogram is given as an inset, where r and d are the

standard deviation and average particle size, respectively.
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In Eq. (1), v is the high-field susceptibility and the constant

A depends on the anisotropy constant K1 as given by

A ¼
4

15

K2
1

M2
s

: (2)

The high-field region of M (H� 30 kOe) in Fig. 3(a) is fitted

using Eq. (1) to estimate K1 as shown in Fig. 3(b), where the

experimental and fitted data are represented by solid spheres

and lines, respectively. This evaluation shows that both

HfCo7 nanoparticles and bulk alloys have high anisotropies

of about 10 Mergs/cm3 as indicated in Fig. 3(b). HfCo7 nano-

particles have a lower K1 than bulk, presumably due to disor-

der and surface effects in nanoparticles.11 Second, HfCo7
nanoparticles exhibit Hc of 4.6 kOe at 10K and 2.9 kOe at

300K and Js of about 10.9 kG, which are comparable with

those of reported rare-earth alloy nanoparticles.7,25–29 In

addition, the room-temperature coercivity of HfCo7 nanopar-

ticles (2.9 kOe) is higher than that of bulk HfCo7 alloys (1.8

kOe). In contrast, Co nanoparticles and bulk metal exhibit

Hc less than 50Oe and a low K1 of about 5 Mergs/cm3 (not

shown here).

In the present study, HfCo7 nanoparticles gain sufficient

energy for crystallization from the collisions with the ions dur-

ing the gas-aggregation process20,21,30 and form the desired

high-anisotropy crystal structure without a subsequent high-

temperature annealing, which is normally required in the case

of permanent-magnet alloys and nanoparticles.7,8 Thus, it is

possible to fabricate exchange-coupled nanocomposites using

co-deposition method as discussed earlier without modifying

the crystal structure, phase purity, and particle size of HfCo7
nanoparticles. A Fe-Co target with Fe65Co35 composition

(which has a high Js of about 24 kG) was used to deposit Fe-

Co soft phase. XRD pattern and M-H curve of the soft Fe-Co

layer deposited in the absence of nanoparticle beam showed a

body-centered cubic structure and soft magnetic properties:

Hc¼ 52Oe, Js¼ 22.5 kG, and Mr/Ms¼ 0.79 at 300K, respec-

tively (not shown here).

The exchange coupling of hard magnetic nanoparticles

with soft magnetic phases is expected to improve Js.
31–36

XRD patterns and expanded room-temperature M-H curves

of unaligned HfCo7:Fe-Co nanocomposites having 0, 18, and

39 vol. % of soft Fe-Co phase are shown in Figs. 4(a) and

4(b), respectively. The variation of the Fe-Co soft phase in

these nanocomposite samples is clearly evident from the

changes in the relative intensities of XRD peaks correspond-

ing to Fe-Co and HfCo7 nanoparticles as shown in Fig. 3(a).

The position of diffraction peaks corresponding to (200) and

(202) of orthorhombic HfCo7 and (110) of bcc FeCo are

indicated by red and green-dotted vertical lines, respectively

in Fig. 4(a). As compared to (200) and (202) diffraction

peaks of HfCo7 nanoparticles, the XRD peak corresponding

to (110) of bcc Fe-Co is comparably intense for 18 vol. % of

Fe-Co (blue curve) and becomes dominant on increasing Fe-

Co content to 39 vol. % of Fe-Co (green curve) as shown in

Fig. 4(a). Higher-resolution TEM images clearly show that

8.3 nm HfCo7 nanoparticles are coated and surrounded by

Fe-Co phase (not shown here).

The room-temperature M-H curve of unaligned HfCo7
nanoparticles show Hc¼ 2.9 kOe and Js¼ 10.9 kG at 300K

(red curve in Fig. 4(b)). HfCo7:Fe-Co nanocomposites show

an increase in Js from 13.6 kG to as high as 16.6 kG on

increasing Fe-Co fractions from 18 to 39 vol. %, but they ex-

hibit decreasing Hc values of 1.4 and 0.32 kOe for 18 vol. %

and 39 vol. % of Fe-Co, respectively as shown in Fig. 4(b). In

ideal exchange-coupled nanocomposites, magnetic moments

in both hard and soft phases are expected to switch coherently

and the resultant Hc and Js will be some average of the consti-

tuent phases. Hc is, however, expected to reduce substantially

for nanocomposites having more than 20 vol. % of soft phase

due to the propagation of domain walls.31–36

Although unaligned HfCo7 nanoparticles and HfCo7:Fe-

Co nanocomposites have shown appreciable permanent-

magnet properties, they exhibit a low Mr/Ms of about 0.5 due

to the random distribution of easy axes. The isotropic nature

of the hard phase has been observed to affect the energy prod-

ucts of nanocomposite permanent magnets.31–33 For example,

FIG. 3. (a) M-H curves of the unaligned HfCo7 NPs measured at 10K and

300K and bulk alloy measured at 300K. (b) An estimation of magnetic ani-

sotropy constant K1 from the high-field region of M vs. H curves using the

law of approach to saturation method (see Refs. 12 and 22–24). The solid

spheres and lines represent the corresponding experimental data and fitting,

respectively.

FIG. 4. The unaligned exchanged-coupled HfCo7:Fe-Co nanocomposites

with different volume fractions (vol. %) of soft Fe-Co phase: (a) X-ray dif-

fraction patterns, where the red and green-dotted vertical lines represent the

standard positions of diffraction peaks corresponding to HfCo7 and Fe-Co,

respectively. (b) The expanded room-temperatureM-H curves.

122407-3 Balamurugan et al. Appl. Phys. Lett. 101, 122407 (2012)



the isotropic exchange-coupled Fe-Pt and Sm-Co—based

nanocomposite magnets show (BH)max of about 20 MGOe,

which is lower than the theoretical value of anisotropic

Nd2Fe14B—based magnets (58 MGOe) and preferentially tex-

tured FePt-based composite thin films deposited on MgO sub-

strates (54 MGOe).31–33,37 In the case of nanoparticles, the

requirement of high temperatures for obtaining the crystalline

ordering of the hard phase hinders the easy-axis alignment

process using a magnetic field. For example, thermal anneal-

ing of soft FePt nanoparticles having disordered face center

cubic structure in a very large magnetic field to produce hard

L10-ordering with aligned easy axes was unsuccessful, pre-

sumably due to the fact that the temperature required for

higher ordering is above Curie temperature Tc.
13,14

Since nanoparticle growth and crystallization of HfCo7
nanoparticles occur directly during the gas-aggregation pro-

cess in the present study, it is possible to align the easy axes

by applying a magnetic field to HfCo7 nanoparticles with a

set of permanent magnets before deposition as shown in Fig.

5(a). By considering the substrate as a reference plane as

shown in Fig. 5(b), HfCo7 nanoparticles travel for a distance

of 10mm under the influence of a magnetic field of about 5

kOe applied along the x-axis, before landing on the substrate.

In the present study, we have measured room-temperature

M-H curves of two types of magnetically aligned samples:

pure HfCo7 nanoparticles (Fig. 5(c)) and HfCo7:Fe-Co nano-

composites with 18 vol. % of Fe-Co (Fig. 5(d)). For compari-

son, M-H curves of the unaligned HfCo7 and HfCo7:Fe-Co

with 18 vol. % of Fe-Co are also shown in Figs. 5(c) and

5(d), respectively.

Hc and Mr/Ms estimated from Figs. 5(c) and 5(d) are

summarized in Table I. These results show an increase in Hc

and Mr/Ms along the easy axis (x-axis) and a substantial

reduction of those values along the hard axis (y-axis) in the

aligned samples. Note that M-H loop of the aligned samples

measured along the z-axis is identical to that measured along

y-axis (not shown here). These results reveal an effective

uniaxial alignment upon applying a magnetic field to HfCo7
nanoparticles prior to deposition. We also have estimated the

magnetic anisotropy constant by using the area under the

complete M-H curves (from 0 to 70 kOe) of the aligned

HfCo7 nanoparticles along the easy and hard axes,38 and this

analysis yields a value of 9.0 Mergs/cm3, in close agreement

with 8.0 Mergs/cm3 determined from the approach to satura-

tion method. As shown in Table I, Hc and Mr/Ms of the

aligned HfCo7 and HfCo7:Fe-Co samples measured along

the easy axis are also higher than that of the corresponding

unaligned samples.

In conclusion, we have succeeded in producing uniaxially

aligned HfCo7 nanoparticles and HfCo7:Fe-Co nanocompo-

sites at room temperature using a single-step cluster-deposi-

tion method. Structural analysis indicates that HfCo7 likely

crystallizes in the orthorhombic structure. HfCo7 nanoparticles

exhibit Hc (4.4 kOe), K1 (�10 Mergs/cm3), and Js (10.8 kG)

at 300K, which are comparable with the magnetic properties

of rare-earth alloy nanoparticles. An enhancement of Js to as

high as 16.6 kG was observed in HfCo7:Fe-Co nanocompo-

sites on varying Fe-Co concentration to 39 vol. %, although

the coercivity is reduced as compared to HfCo7 nanoparticles.

This methodology also can be adopted easily to produce

aligned nanoparticles of additional permanent-magnet alloys.

The direct crystalline-ordering, in situ easy-axis alignment,

and nanocomposite fabrication reported in the present study

are important processing steps towards fabricating nanopar-

ticle assemblies for next-generation nanocomposite magnets

with improved performance.

This work is supported by Advanced Research Projects

Agency-Energy (Grant No. DE-AR 0000046, B.B. and B.D.),

US Department of Energy (Grant No. DE-FG02-04ER46152,

D.J.S.), NSF-Materials Research Science and Engineering

Center (Grant No. DMR-0820521, R.S.), and Nebraska Center

for Materials and Nanoscience (V.R.S. and X.Z.L.). Thanks

are due to Jeff Shield, Damien LeRoy, Z. Sun, and P.K.

Sahota for helpful discussions.

FIG. 5. Easy-axis alignment of HfCo7 nanoparticles (NPs): (a) Schematic

illustration of the alignment method using a set of permanent magnets (NS),

prior to deposition on substrate, where the sputtering guns used for deposit-

ing Fe-Co soft phase and cap layer are not shown here. (b) Three dimen-

sional view of the substrate is also given—in order to show the direction of

the applied magnetic field (x-axis) used for alignment with respect to the

substrate plane. The expanded room-temperature M-H curves of the aligned

NPs measured along the easy (x-axis) and hard (y-axis) directions for (c)

HfCo7 NPS and (d) HfCo7:Fe-Co nanocomposites with 18 vol. % of Fe-Co,

whereas the M-H curves for the corresponding unaligned samples also are

given for comparison.

TABLE I. Comparison of Hc and Mr/Ms at 300K measured along easy

(x-axis) and hard (y-axis) directions of the magnetically aligned HfCo7
nanoparticles and HfCo7:Fe-Co nanocomposites.

Sample Hc (kOe) Mr/Ms

Aligned HfCo7 4.4 (easy) 0.78 (easy)

1.9 (hard) 0.21 (hard)

Unaligned HfCo7 2.9 0.57

Aligned HfCo7:Fe-Co 2.5 (easy) 0.87 (easy)

0.8 (hard) 0.21 (hard)

Unaligned HfCo7:FeCo 1.4 0.53
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