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Abstract
Currently, mast robot programming is done either by man-

ual programming or by the "teach-by-showing "method using
a teach pendant. Both of these methods have been found to
have several drawbacks.

We have been developing a novel method for program-
ming a robot: the assembly-plan-from-observation (APO)
method. The APO method aims to build a system that has
threefold capabilities. It observes a human performing an
assembly task, it understands the task based on this observa-
tion, and it generates a robot program to achieve the same
task. This paper overviews our effort toward the realization
of this method.

1 Introduction
Several method for programming a robot have been pro-

posed. Such methods include the following: teach-by-
showing, teleoperation [4], textual programming, and au-
tomatic programming [8]. Among these four representative
methods, teleoperation and automatic programming are the
most promising. Yet, these methods are often inconvenient
and impractical.

We have been developing a novel method which com-
bines automatic programming and teleoperation. We intend
to add a vision capability, which can observe human opera-
tions, to an automatic programming system. We will refer to
this paradigm as Assembly-Plan-from-Observation (APO).
Several other researchers have also been developing systems
towards similar goals, such as those by Kuniyoshi et al. [7]
and Takahashi et al. [12].

In our APO approach, a human operator performs assem-
bly tasks in front of a video camera. The system obtains
a continuous sequence of images from the camera which
records the assembly tasks. In order for the system to recog-
nize assembly tasks from the sequence of images, the system
has to perform the following six operations:

¯ Temporal Segmentation - dividing the continuous se-
quence of images into meaningful segments which cor-
respond to separate human assembly tasks,

¯ Object Recognition - recognizing the objects and de-
termining the object configurations in a given image
segment.
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¯ Task Recognition - recognizing assembly tasks by using
the results of an object recognition system.

¯ Grasp Recognition - recognizing where and how the
human operator grasps an object for achieving the as-
sembly task.

¯ Global Path Recognition - recognizing the path along
which the human operator moves an object while avoid-
ing collision.

¯ Task lnstantiation - collecting necessary parameters
from the object recognition operation, grasp recognition
operation, and global path recognition operation allows
us to develop assembly plans to perform the same task
using a robot manipulator.

Section 2 designs the abstract task models used in the
task recognition process while section 3 discusses how to use
the models inthe task recognition system. Our recent work
on the temporal segmentation of the task sequence and the
subsequent grasp recognition is detailed in sections 4 and 5.

2 Defining Abstract Task Models
2.1 Assembly relations

In order to develop abstract task models, we have to define
representations to describe assembly tasks. This section will
define assembly relations for such representations.

The primal goal of an assembly task is to establish a new
surface contact relationship among objects. For example, the
goal of peg-insertion is to achieve surface contacts between
the side and bottom surfaces of the peg and the side and
bottom surfaces of the hole. Thus, it is effective to use surface
contact relations as the central representation for defining
assembly task models.

In each assembly task, at least one object is manipulated.
We will refer to that object as the manipulated object. The
manipulated object is attached to other stationary objects,
which we refer to as the environmental objects, so that the
manipulated object achieves a particular relationship with the
environmental objects.

We will define assembly relations as surface contact rela-
tions between a manipulated object and its stationary envi-
ronmental objects. Note that we do not exhaustively consider
all of the possible surface contact relations between all of the
objects; this would result in a combinatorial explosion of
possibilities. We can avoid the exponential complexity by
concentrating on a select group of surface contacts, namely,
those that occur between the manipulated object and the en-
vironmental objects.
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When considering possible contact relations, we mainly
take into account the kinds of translation operations that are
necessary for achieving these relations.
2.2 Taxonomy of assembly relation

Each assembly relation consists of several surface patches
of different orientations. Since each different orientation
provides a linear inequality, the resulting possible motion
directions of an assembly relation are constrained through
simultaneous linear inequalities. The possible motion direc-
tions are depicted as a region on the Gaussian sphere, which
we refer to as an admissible region of the assembly relation.

Admissible regions have various shapes on the Gaus-
sian sphere. By grouping admissible regions based on their
shapes, we can establish ten distinct patterns of admissible re-
gions, and thus ten representative assembly relations. These
ten relations consists of: entire sphere (3d-s), hemisphere
region (3d-a), crescent region (3d-c), m convex polygonal
region (3d-f), a whole arc of a great circle (3d-b), a half 
of a great circle (3d-d), a partial arc of a great circle (3d-g), 
pair of polar points (3d-e), one point (3d-h), and null region
(3d-i).

We can classify any nth directional assembly relation into
one of the ten representative assembly relations [5].
2.3 Abstract task model

An abstract task model associates an assembly relation
transition with an action which causes such a transition. We
will extract what kind of transition occurs within the assembly
relation taxonomy. We conduct this analysis by considering
possible disassembly operations [5]. By assigning an ap-
propriate motion template to each arc of the graph, we have
developed abstract task models as shown in Figure 1. Note
that the abstract task models also able to handle bolt-and-nut
mechanical relations. See [6] for more details.
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Figure 1: Abstract task models

3 Task recognition system
In order to illustrate how the system works, we will

demonstrate assembly operations using the following four

kinds of parts: head, body, bar, and nut. The system has the
geometric models of these objects. However, the system has
to decide in what order and how to assemble these parts into
a mechanical object from the observation.

3.1 Object model
Object models are described using our geometric modeler

Vantage [2]. Each part is modeled using a CSG represen-
tation. Vantage converts CSG trees into boundary represen-
tations. Each boundary representation of a part consists of
faces, edges, and vertices. Vantage is a frame-based geomet-
ric modeler; each geometric primitive such as a face, an edge,
and a vertices - as well as the object itself- is implemented
using frames. Topological relations among them are rep-
resented using winged-edge representations and are stored
at appropriate slots of edge frames. Geometric information
such as face equations and vertex coordinates are stored at
slots of face frames and vertex frames.

3.2 Image acquisition
An operator presents each assembly task one step at a

time to the system. Each assembly task is observed by two
different image acquisition systems: a B/W image acquisition
system and a range image acquisition system. The B/W
images are used to detect meaningful actions of the human
operator, while the range images are used to recognize objects
and hands in the scene. The system continuously observes
the scene using the B/W camera and monitors brightness
changes. If there is a brightness difference between two
consecutive images, the system invokes a range finder to
obtain a range image of the scene.

The system needs two range images at two different peri-
ods of assembly: before the task and after the task. Figure 2
shows the two images taken in one of the assembly steps.
During this assembly task, the bar is put across the two bod-
ies. The body on the table is the before-the-task image for
this step. The bar lying on the two bodies is the after-the-task
image for this step. The previous after-the-task image is used
as the current before-the-task image.

Figure 2: Two images

3.3 Object Recognition
The system creates a "difference" image by subtracting

a before-the-task image from an after-the-task image. By
applying a segmentation program to this "difference" image,
the system extracts the "difference" regions which correspond
to surfaces of the manipulated object. The object recognition
program recognizes the manipulated object, and determines
its current pose from the difference regions. The system only
analyzes the "difference" regions; it ignores the other regions
which correspond to stationary environmental objects. Thus,
even in a very cluttered scene, it is efficient and robust. Based
on the recognition result of the manipulated object, the system
generates the current world model. In Figure 3, a cylindrical
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bar is the manipulated object. It has just been placed across
the two bodies.

Figure 3: Model of the world

3.4 Task recognition
The system obtains two different kinds of information

from the current world model:
* surface contact relations (task recognition)
* motion parameters (task instantiation).
By comparing the surfaces of the manipulated objects

with those of the environmental objects in the updated world-
model, the system determines contact surface pairs. When
a pair of surfaces share common face equations, and the
vertices of the manipulated object project onto the surface
of the environmental object, the system decides that the pair
must contact each other. Note that since the system only
examines the surfaces of manipulated objects against those
of environmental objects, a combinatory explosion does not
occur in this pairing operation. This remains true even when
the system is handling a relatively large number of objects.

The Vantage geometric modeler represents curved sur-
faces, such as cylindrical or spherical surfaces, using two
levels of representation: approximate and global. Using the
approximate level representation, the system determines that
the assembly relation is 3d-d: the normal direction of the ap-
proximate environmental face contacts are coplanar and exist
at the great hemicircle of the Gaussian sphere. By consid-
ering the global representation of the environmental surface,
the system determines that this pair is a curved mating re-
lation. Thus, the system retrieves the s-to-d curved surface
task model.

3.5 Task instantiation
The s-to-d curved surface task model contains the mo-

tion parameters. Each slot of the motion parameters contains
a symbolic formula for obtaining the corresponding motion
parameter from the object’s current configuration. By re-
trieving the current configuration of the manipulated object
in the world model, the system fills the motion parameters
and performs the task as shown in Figure 4.

Thus far, we have described work on deducing the task
based on two different snapshots of the task, namely the
before- and after-the-task images. This would not be suffi-
cient to extract direct and detailed information on the human
grasping strategy, the type of motions involved in the task, as
well as the hand global motion that may be of use in planning
the robot execution of the task. We address this deficiency
by temporally segmenting the task sequence into meaningful
segments for further analyses, one of which is human grasp
recognition.

Figure 4: Robot performance

4 Temporal segmentation of tasks from hu-
man hand motion

We propose to analyze image sequences obtained during
the human assembly task to identify the grasping strategy as
well as the task actions from observation. The first step in
this direction is to determine the motion breakpoints based
on human hand configuration and pose throughout the task
sequence [ 16].

We can segment the entire task into meaningful subparts
(pregrasp, grasp, and manipulation phases) by analyzing both
the fingertip polygon area and the speed of the hand. The
fingertip polygon is the polygon formed by the fingertips
as its vertices. A very useful measure that can be used to
segment the task more effectively is called the volume sweep
rate [16], which is the product of the fingertip polygon area
and the hand speed. The volume sweep rate measures the rate
of change in both the fingertip polygon area and the speed of
the hand.

The algorithm to segment a task sequence into meaningful
subsections starts with a list of breakpoints comprising local
minima in the speed profile. The global segmentation proce-
dure basically makes use of the goodness of fit of the volume
sweep rate profiles in the pregrasp phases to parabolas (in-
verted U-shapes). The desired breakpoints are obtained by
minimizing the mean fit error of the parabolas subject to the
first three conditions.

Our experiments are conducted using a hand-tracking sys-
tem which comprises the CyberGlove [ 17] and Polhemus [ 18]
devices. The CyberGlove measures 18 hand joint angles
while the Polhemus device measures the pose (i.e., transla-
tion and orientation) of the human hand in 3D space. The
Ogis light-stripe rangefinder and a CCD camera provide the
range and intensity images, respectively.

An example task whose breakpoints have been correctly
identified are shown in Figure 5. The breakpoints have been
correctly identified despite the different types of manipulative
actions (pick-and-place, insertion, and screwing actions). 
can be seen in Figure 5, the volume sweep rate profiles have
highly accentuated peaks during the pregrasp phases, thus
facilitating the determination of the motion breakpoints.

Once the motion breakpoints have been determined,
recognition of the grasp employed can then be carried out
on the temporally located grasp frame/s.

5 Grasp classification and recognition
Grasp identification is central to the recognition of grasp-

ing tasks. In order to identify grasps, we need a suitable
grasp taxonomy. To this end, we use a grasp representation
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call the contact web [ 14]. The contact web spatially repre-
sents effective contact between segments of the hand and the
object; its notation is shown in Figure 6. Each effective con-
tact point is associated with contact position and force vector
(approximated by the object normal at the point of contact).

80.0

60.0

40.0

20.0

Figure 5: Identified breakpoints in task sequence

5.1 The proposed grasp taxonomy
The proposed grasp taxonomy based on the contact web.

The first level dichotomy is the volar/non-volar grasp branch;
a grasp is initially classified according to whether there is
direct object-palmar surface interaction or not (respectively).
The non-volar grasps are further classified as fingertip grasps
and composite non-volar grasps.

Intermediate-level grasp concepts, namely the virtualfin-
ger [20] and opposition space [21] are also used to comple-
ment the contact web. This enables the grasp to be hier-
archically represented [15]. We have described a mapping
function that groups real fingers into virtual fingers, i.e., col-
lections of "functionally" equivalent (in terms of similarity
of action against the object surface) fingers [14]. A result
of this mapping is an index called the grasp cohesive in-
dex, which indicates the degree to which the fingers that are
grouped into virtual fingers act in a similar manner against
the grasped object.
5.2 Procedure for grasp recognition

Using the results of a series of experiments conducted [22],
a grasp can be identified from the following general steps:

Finger 2
Finger 3 /’~

Fing~ ~

C41 / \ X" I/" 

Cp/ /

C13

?inger 1

~/Finger 0

~ _ Link 3

)~, Link 2

", Link 1

(Common to all fingers) Link 0 (palm)

Figure 6: Contact notation on the fight hand (palmar side)

1. Compute the real finger-to-virtual finger mapping which
yields the virtual finger compositions and the grasp co-
hesive index.

2. If the palm surface is not involved in the grasp, classify
it as a non-volar grasp.

3. Otherwise, by checking the grasp cohesive index and,
if necessary, the degree of thumb abduction, classify it
either as a spherical, cylindrical or coal-hammer (type 
or 2) power grasp.

Volar Grasps (Non-Planar Contact Web)
I

I I

NI(PH) = Nt(PH) < 
I

I I I

~dlanar/almost planar prismatic/ ... spherical
egenerate case) cylindrical

platform push

Figure 7: Discrimination graph for volar grasps

A grasp is initially classified as a volar grasp or a non-volar
grasp. If the the grasp is non-volar, its detailed identifica-
tion follows the non-volar taxonomy, i.e., according to the
number of finger and finger segments touching the object,
and the shape of the contact points [14]. However, if it is a
volar grasp, further identification follows the discrimination
procedure shown in Figure 7. The "coal-hammer" grasp is a
special case of the cylindrical power grasp, and is identified
by the high degree of thumb abduction. We define the type 1
"coal-hammer" grasp to be one in which the thumb does not
touch the held object, while the type 2 "coal-hammer" grasp
refers to one in which the thumb touches the object. The type
2 "coal-hammer" grasp is differentiated from the cylindrical
power grasp by its high degree of thumb abduction.
5.3 Experimental results

The results of two of the experiments using the Cyber-
Glove are shown in Figure 8. The grasps in Figure 8(a) and
(b) have been correctly identified as a type 2 "coal-hammer"
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cylindrical power grasp and a five-fingered disc precision
grasp respectively.

(a) (b)

Figure 8: Experiments using the CyberGlove: (a) a power
grasp, and (b) a precision grasp

6 Conclusion
We have described a method that enables a robotic sys-

tem to observe a human perform an assembly task, recognize
object relations and relation transitions, and map relation
transitions to assembly tasks to cause such transitions. This
system subsequently generates a program which instructs a
robot to reproduce the series of movements originally per-
formed by the human. In short, this method enables a robotic
system to recognize an assembly task performed by a human
and produce the corresponding operational sequences for a
robot. We have also reported on-going work on the temporal
segmentation of the entire task sequence and the recognition
of the human hand grasp.
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