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Abstract. As projects for developing information systems are getting larger and more 
complicated, we need to have more advanced development methods suitable for every 
development situation. Method engineering is the discipline to construct new methods from 
parts of existing methods, called method fragments. To achieve this objective, we need to 
clarify how to model the existing methods and how to assemble method fragments into new 
project-specific methods, so-called situational methods. Especially, to produce meaningful 
methods, we should impose some constraints or rules on method assembly processes. In this 
paper, we propose a framework for hierarchical method modelling (meta-modelling) from three 
orthogonal dimensions: perspectives, abstraction and granularity. According to each dimension, 
methods and/or method fragments are hierarchically modelled and classified. Furthermore, we 
present a method assembly mechanism and its formalization as a set of rules. These rules are 
presented in first order predicate logic and play an important role in the assembly process of 
meaningful methods from existing method fragments. The benefit of our technique is illustrated 
by an example of method assembly, namely the integration of the Object Model and Harel's 
Statechart into Objectcharts. 

1 Introduction 

The size and complexity of projects for developing information systems are becoming 

larger and more complicated. Therefore, development methods and supporting tools 

turn one of the most significant key factors to achieve great success of development 

projects. Until now, many methods such as structured analysis/design [De Marco 78] 

and object-oriented analysis/design [Rumbaugh91] have been proposed and many 

textbooks have been published. The information-technology industry is putting the 

existing methods and corresponding supporting tools into practice in real 

development projects. However, much time and effort is spent on applying the 

methods effectively in these projects. One of the reasons is that contemporary 

methods are too general and includes some parts, which do not fit to the 

characteristics of real projects and their contexts. To enhance the effect of methods, 

for each of real projects, we need to adapt the methods or construct the new ones so 
that they can fit to the project. 

Method Engineering, in particular Situational Method Engineering [Harmsen 94, 

Brinkkemper 96] is the discipline to build project-specific methods, called situational 

methods, from parts of the existing methods, called method fragments. This technique 

is coined method assembly. In fact, many methods can be considered to be the result 
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of applying method assembly. For instance, OMT [Rumbaugh 91] has been built from 
the existing fragments Object Class Diagram (extended Entity Relationship Diagram), 
State Transition Diagram, Message Sequence Chart and Data Flow Diagram, all 
originating from other method sources. This example shows that method assembly 
produced a powerful new method that could model complicated systems from 
multiple viewpoints: object view, behavioural view and functional view. Therefore, 
method assembly is a significant technique to construct both situational methods and 
powerful methods with multiple viewpoints. 

To assemble method fragments into a meaningful method, we need a procedure and 
representation to model method fragments and impose some constraints or rules on 
method assembly processes. If we allow assembly arbitrary method fragments, we 

may get a meaningless method. For example, it makes no sense to assemble Entity 
Relationship Diagram and Object Class Diagram in the same level of abstraction. 
Thus, the modelling technique for method fragments, so called meta-modelling 
technique should be able to include the formalization of this kind of constraints or 
rules to avoid producing meaningless methods. 

Several researchers applied very adequate meta-modelling techniques based on Entity 
Relationship Model [Brinkkemper 91, Sorenson 88, Nuseibeh 95], Attribute 
Grammars [Katayama 89, Song 94], Predicate Logic [Brinkkemper 91, Saeki 94, 
Nuseibeh 95] and Quark Model [Ajisaka 96] for various method engineering purposes 
(see section 6). Some of these works discuss the inconsistency of products when we 

assemble several methods into one, however, none of them referred to method 
assembly function itself yet. Song investigated existing methods, such as OMT and 
Ward/Mellor's Real Time SDM [Ward 85], and classified the way various methods 
are put together [Song 95]. Guidelines or rules to assemble methods were not 
elaborated in this study. Furthermore, as discussed later in section 6, his classification 
is fully included in ours. 

In this paper, we propose a framework for hierarchical meta-modelling from three 
orthogonal dimensions: perspective, abstraction and granularity. According to each 
dimension, methods and method fragments are hierarchically modelled and classified. 
According to this classification of method fragments, we can provide the guideline for 

meaningful method assembly. That is to say, we can suggest that method fragments. 
which belong to a specific class can be meaningfully assembled. For example, we can 

sufficiently construct a meaningful method from method fragments with the same 
granularity level. In another example, it is not preferable to assemble the method 
fragments belonging to the same specific category such as Entity Relationship 
Diagram and Object Class Diagram, as the latter can be seen as an extension of the 
former. These kinds of guideline and constraints can be formalized as a set of rules 
based on our multiple hierarchical dimensions. These rules can be presented in first 
order predicate logic and play an important role on clarifying method assembly 
mechanism. 

This paper is organised as follows. In the next section, we begin with illustrating a 
simple example of the method fragment Statechart and introduce three orthogonal 
dimensions for classification of method fragments. Section 3 presents method 
assembly by using example of assembling Object Model and Statechart into the new 
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method fragment Objectchart. This example suggests to us what kind of guidelines or 
constraints are required to method assembly. We discuss these guidelines and 

constraints, and their formalization in section 4. Sections 5 and 6 summarize related 
work and our work respectively. 

2 A Classification Framework for Method Fragments 

2.1 Method Fragments 

We begin with an example of the description of the method fragment of Harel's 
Statechart. Statecharts can be seen an extension of finite state transition diagram to 
specify reactive systems [Harel 90]. To avoid the explosion of the number of states 
occurring when we specify complicated systems with usual state transition machines, 
it adopted two types of structuring techniques for states, i.e. hierarchically 
decomposition of states: one is called AND decomposition for concurrency, and the 
other one is OR decomposition for state-clustering. The description of the method 
fragment is illustrated in the meta-model in Fig. 1 in the notation of Entity 
Relationship Attribute Diagrams. (To avoid confusion, we use the terms concept, 
association and property in method fragments instead of entity, relationship and 
attribute.) 

The Statechart technique comprises four concepts: State, Transition, Event and Firing 
condition. If a firing condition associated with a transition holds, the transition can 
occur and the system can change a state (called source state) to a destination state. 
During transition, the system can output or send an event to the other Statecharts. 
Firing conditions can be specified with predicates and/or receipt of these events. So 
we can have four associations among the three concepts, and two associations on the 
state concept for expressing AND decomposition and OR decomposition. Note that 
the meta-model does not include representational information, e.g. a state is 

represented in a rounded box in a diagram, and events are denoted by arrows. We 
define this kind of information as another aspect of method modelling and discuss it 
in the next section. 

AND-decomposition 
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OR-decomposition 
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Fig. 1 Statechart Method Fragment 
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2.2 Classification of Method Fragments 

Method fragments are classified according to the dimensions perspective, abstraction 
level, and layer of granularity. 

First, the perspective dimension of the classification considers the product perspective 
and the process perspective on methods. Product fragments represent deliverables, 
milestone documents, models, diagrams, etc. Process fragments represent the stages, 
activities and tasks to be carried out. Fig. 1 is a description of the product perspective. 

The abstraction dimension constitutes of the conceptual level and the technical level. 
Method fragments on the conceptual level are descriptions of information systems 
development methods or part thereof. Technical method fragments are implementable 
specifications of the operational parts of a method, i.e. the tools. Some conceptual 
fragments are to be supported by tools, and must therefore be accompanied by 

corresponding technical fragments. One conceptual method fragment can be related to 
several external and technical method fragments. The conceptual method fragment is 
shown in Fig. 1, whereas the corresponding technical fragment is the STATEMATE 
tool for specifying Statecharts [Hare190]. 

One of the most important and main discriminating properties of method fragments is 
the granularity layer at which they reside. Such a layer can be compared with a 
decomposition level in a method. A method, from the process perspective, usually 
consists of stages, which are further partitioned into activities and individual steps. A 

similar decomposition can be made of product fragments, with the entire system at the 
top of the tree, which is subsequently decomposed into milestone deliverables, model, 
model components, and concepts. Research into several applications of method 
engineering [Brinkkemper 96] shows that methods can be projected on this 
classification. 

A method fragment can reside on one of five possible granularity layers: 

�9 Method, which addresses the complete method for developing the information 

system. For instance, the Information Engineering method resides on this 
granularity layer. 

�9 Stage, which addresses a segment of the life-cycle of the information system. 

An example of a method fragment residing on the Stage layer is a Technical 
Design Report. Another example of a Stage method fragment is a CASE tool 

supporting Information Engineering' s Business Area Analysis [Martin 90] 
stage. 

�9 Model, which addresses a perspective [Olle 91] of the information system. Such 
a perspective is an aspect system of an abstraction level. Examples of method 

fragments residing on this layer are the Data Model, and the User Interface 
Model. 

�9 Diagram, addressing the representation of a view of a Model layer method 

fragment. For instance, the Object Diagram and the Glass Hierarchy both 
address the data perspective, but in another representation. The $tatechart 
resides on this granularity layer, as well as the modelling procedure to produce it. 
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Concept, which addresses the concepts and associations of the method 
fragments on the Diagram layer, as well as the manipulations defined on them. 

Concepts are subsystems of Diagram layer method fragments. Examples are: 

Entity, Entity is involved in Relationship, and Identify entities 

3 Method Assembly Technique 

3.1 Method Assembly in the Product Perspective 

In this section, we introduce a simple example of method assembly - -  assembling 
Object Model in Object-Oriented Analysis/Design and Statechart to Objectchart. 
Objectchart, proposed in [Coleman 91], is an extension of Statechart to model 
reactive systems from an object-oriented view. Our framework of method assembly 
can explain how Objectchart was composed from the existing method fragments 

Object Model and Statechart. 

The Object Model specifies a system as a set of objects communicating with each 
other. Objects have their specific attributes and change their values through inter- 
object communication. By sending messages to the other objects (or itself) an object 
requires of them (or itself) to provide the service that they (or it) encapsulatedly have. 
The objects that are requested perform their service and may change their attribute 
values and/or return the computed results. Objects having the same attributes and 

services are modelled with a Class, which is a kind of template. Fig. 2 shows the 
method fragment description of the Object Model at Diagram layer from conceptual 

level and product perspective. 

f 

Class has 
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Attribute 
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Object 

Service 

Association 

Fig.2 Object Model Method Fragment 
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Suppose now we have to produce Objectchart by assembling these two method 

fragments i.e. the method models of Figs. i and 2. Fig. 3 shows the resulting method 

fragment of Objectchart in the same level, perspective and layer. As for this assembly 

process, we should note that the two method fragments belong to the same category in 

our three dimensional classification: conceptual level in abstraction, Diagram layer in 

granularity, and product in perspective. In addition we have product perspective of 

Objectchart in conceptual level and in Diagram Layer. Thus the method fragments 
with the same category can be assembled and we can get a new method with the same 

category. 

..Stat.ecl.~a.r.t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  .Obiect Mo..d.eL 

obi0ct / I I 
has Association 

! 
has Class , ~ has ' Attdbutc 

I ~ I 

............. S ................................................... "J[ 

i i 

to 

. . . . . . . . . . . . . . . . . . . . . . .  ~ .... ,-', ....... / re fers  to 

a n i ~ : ~ ~ : :  ~'S onrlot~ted ~.th " ~  

has 

t Firing Condition "l 

refers to 

Fig. 3 Objectchart : Method Assembly in the Product Perspective 

The Statechart and Object Model are amalgamated to Objectchart by the following 
constructions: 

1) A Class has a Statechart, which specifies its behaviour. 

2) Attributes of a Class may be annotated to States in its Statechart. This indicates 

which attribute values are meaningful or visible in a specific state. 

3) An Event issued during a Transition is a request of a Service to the other Object. 
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4) A Transition may change an Attribute value of an Object. 

The first three constructions allow us to introduce new associations "has" between 

Class and State, "is annotated with" between Attribute and State, and "consists 

of" . The concept Object participating in "consist of" stands for the object of 

which a service is required, i.e. a receiver of the event. Furthermore, we employ the 

new concept "Post condition" for specifying the change of attribute value when a 

transition occurs. Therefore, post conditions can define the effect of service-execution 

on attributes. 

Let's explore what manipulations were made and what kinds of constraints could be 

considered in this example. The basic manipulations that we applied here are: 

1) Addition of a new concept (Post condition), 

2) Addition of a new association (is_annotated_with, consists_of, has), 

3) Addition of a new property (is_hidden). 

First of all, when we assemble two method fragments, we should introduce at least 

one new concept or association. If  we did not introduce anything, it would mean that a 

method fragment was completely included in another one. This case might be 

meaningless because we could not find the effect of this method assembly and the 

result was the same as the containing method fragment. This applies for the 

meaningless example of assembling ERD and Object Class Diagram (the super class 

of ERD), which we mentioned in section 1. Furthermore, at least one connection 

between the two method fragments through newly introduced associations and/or 

concepts should be introduced, because the two method fragments are to be 

conceptually connected by the method assembly. Consequently, these constraints can 

be generalized as 

Rule 1) At least one concept, association or property should be newly introduced 

to each method fragment to be assembled, i.e. a method fragment to be 

assembled should not be a subset of another. 

Rule 2) We should have at least one concept and/or association that connects 

between two method fragments to be assembled. 

Rule 3) I f  we add new concepts, they should be connectors to both of the 

assembled method fragments. 

Rule 4) I f  we add new associations, the two method fragments to be assembled 

should participate in them. 

The following additional rules can easily be determined, whose explanation we omit. 

Rule 5) There are no isolated parts in the resulting method fragments. 

Rule 6) There are no concepts which have the same name and which have the 

different occurrences in a method description. 

These rules apply for method fragments in the conceptual level and diagram layer. If  

the method fragment to be assembled is related to the other levels or layers, the effect 
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of assembly propagates to the others. It means that we should have the other types of 

rules. For example, the different concepts on the conceptual level should have 

different representation forms (notation) on the technical level. We will discuss a 

more elaborated style of rules and their formalization in section 4. 

3.2 Method Assembly in the Process Perspective 

In the previous example, we illustrated product-perspective method assembly. Next, 

we turn to discuss the process-perspective method assembly also with the help of an 
example. Suppose we have the process descriptions for Object Model and for 

Statechart in Diagram layer at our disposal, e.g. for Object Model: 

Draw an Object Model 

O1) Identify objects and classes, 

02) Identify relationships, 

03)  Identify attributes and services. 

and for Statechart: 

Draw a Statechart 

$1) Identify states, 

$2) Identify state changes and their triggers, 

$3) Cluster states, and so on. 

According to [Coleman 92], the recommended procedure for modelling Objectcharts 

is as follows: 

Draw an Objectchart 

OCI) Draw an Object Model, 

OC2) For each significant class, Draw a Statechart, and 

OC3) Refine the Statechart to an Objectchart by adding post conditions and 
annotating states of the Statechart with attributes. 

This procedure is constructed from the two process method fragments, Object Model 

(step OC1)) and Statechart (step OC2)) and seems to be natural. In more detail, 
between steps OC1) and OC2), we find that we should perform the activity of 

identifying the relationship "has" between Class and State shown in the Fig. 3. The 

concept "Post condition" and its associations, say "refers to" , and the association 

"is annotated with" are identified while the step OC3) is being performed. It means 

that newly added concepts and associations to connect the product-perspective 

method fragments to be assembled should not be identified until the associated 

concepts are identified. In fact, it is difficult for us to identify the association "has" 

between classes and states before we have identified classes or identified states and 

we should avoid this execution order of the activities (see also Fig. 4). 
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Rule 7) The activity of identifying the added concepts and relationships that are 
newly introduced for method assembly should be performed after their 

associated concepts are identified. 

The rule mentioned above provides a criterion to make meaningful and useful 
procedures from manipulations on concepts and associations in Diagram Layer. 

Similarly, we can easily have the rule : we should not identify any associations until 
we identify their associated concepts in Diagram Layer. So the first step of method 
procedure should be identifying some concepts. This results from the natural 

execution order of human perception. 

I 

02: Identify Associations I 
I 

Diagram with/ 
lasses and/ 
ssociatio~fs 

OCt: Draw an Object Model (A) 

/ 

OC3: Refine Statecharts 

/ O b j e c t c h a ~  

~t 
I 

S 1: Identify States [ 
I 

$2: Identify State changes 
and Triggers 

tate Transitio/n / 
Diagram / 

$3: Clustering States ... 

S tatechart / 

OC2: Draw a Statechart (B) 

Draw an Objectchart (C) 

Fig. 4 Method Assembly in the Process Perspective 

Another type of rules relates to the input/output order of products to activities. For 
example, the activity step 02) in Object Model consumes the identified objects and 
classes as its inputs which are produced by the step O1). The point in method 
assembly processes is what input-output relationships are added and/or changed. In 

this example, as shown in Fig. 4, the step OC2) in Objectchart, which resulted from 
steps S1), $2) and $3) in Statechart, should consume the identified classes as its 
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inputs. They are the output of the step O1) in Object Model, i.e. another method 
fragment. Therefore we can have the following rule: 

Rule 8) Let A and B be the two method fragments to be assembled, and C the new 
method fragment. In C, we should have at least one product which is the 
output of A and which is the input of B, or the other way round. 

This rule means that either of the method fragments to be assembled, say A, should 
produce input to the activities of B in the new method C. More examples of method 
assembly rules in process perspective will be shown in section 4. 

3.3 Discussion of Method Assembly on Three Dimensions 

As we have shown in section 2, method fragments can be considered on three 
dimensions: perspective, abstraction level and granularity layer. These dimensions 

can be used to improve, speed up, and simplify the method assembly process. We 
illustrate this with the following example. Assembling Object Model and Statechart, 
which are product fragments at the Diagram layer and at the conceptual level, implies 
the assembly of method fragments addressing the other perspective, abstraction level, 
and granularity layers. Associated with the Statechart and Object Model product 
fragments are modeling procedures, i.e. process fragments. The assembled modeling 
procedure results from the components of each of these two process fragments. Some 
of the rules that apply are: 

Rule 9) Each product fragment should be produced by a "corresponding" process 

fragment. 

Rule 10) Suppose a product fragment has been assembled. The process fragment that 
produces this product fragment consists of the process fragments that 
produce the components of the product fragment. 

Also associated with the conceptual method fragments mentioned above are technical 
method fragments, such as Object Model and Statechart diagram editors, a repository 
to store object models and Statecharts, and a process manager to support the modeling 
procedures for object models and Statecharts. Similarly, the assembly of these 
technical method fragments results from the assembly of the corresponding 
conceptual method fragments: 

Rule 11) A technical method fragment should supports a conceptual method 

fragment. 

The assembly of fragments at the Diagram layer has also implications for the 
components of these fragments, which are at the Concept layer. In general, assembly 
of two method fragments results in the assembly of method fragments of lower 
granularity layers. As we have seen in section 3.1, the assembly of Object Model and 
Statechart results in the assembly of Service and Event, Class and State, and Attribute 
and Firing Condition. A rule that applies to this is: 

Rule 12) If an association exists between two product fragments, there should exist 
at least one association between their respective components 
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We have taken in the above example the assembly of conceptual product fragments at 

the Diagram layer as a starting point. However, the starting point can be at any 

combination of perspective, abstraction level, and granularity layer. Obviously, 

whatever starting point is used, the result of one assembly action is a cascade of other 

actions within the three-dimensional framework. 

4 Method Assembly : Guideline and Formalization 

4.1 Requirements for Method Assembly 

Method assembly should ensure that the selected method fragments are mutually 

adjusted, i.e. they have to be combined in such a way that the resulting situational 

method does not contain any defects or inconsistencies. Several types of defects can 

appear: 

�9 Internal incompleteness, which is the case if a method fragment requires another 

method fragment that is not present in the situational method. For instance, a data 

model has been selected without the corresponding modelling procedure and tool. 

�9 Inconsistency, which is the case if the selection of a method fragment contradicts 

the selection of another method fragment. For instance, two similar data modelling 

techniques have been selected without any additional reason. 

�9 Inapplicability, which is the case if method fragments cannot be applied by project 
members, due to insufficient capability. 

All these issues relate to the internal or situation-independent quality [Hoef 95] of a 

situational method, i.e. the quality of a method without taking into consideration the 

situation in which the method is applied. The two most important criteria are: 

�9 Completeness: the situational method contains all the method fragments that are 

referred to by other fragments in the situational method. 

�9 Consistency: all activities, products, tools and people plus their -mutual- 

relationships in a situational method do not contain any contradiction and are thus 
mutually consistent. 

Furthermore, we distinguish the following method internal quality criteria that are not 

treated in this paper for the sake of brevity and their details is in [Harmsen 97]: 

�9 Efficiency: the method can be performed at minimal cost and effort 

�9 Reliability: the method is semantically correct and meaningful 

�9 Applicability: the developers are able to apply the situational method 

The effort to achieve situation-independent quality of method fragments is 

considerable. Method fragments can be combined in a lot of ways, many of which are 

meaningless. Moreover, method fragments require other method fragments to be 

meaningful in a situational method, or require certain skills from the actors related to 

them. This is illustrated by the following small example. Suppose a process 
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perspective method fragment Draw an Object Model (shown in sect. 3.2) has been 
selected. The following should be at least verified ; 

1) No similar method fragment already exists in the situational method, 

2) The specification of the Object Model produced by the process fragment is selected, 

3) Actors have the expertise to deal with this process fragment, and 

4) The products required are produced by preceding selected process fragments (See 

also the examples in sect. 3.1 and sect. 3.2). 

Internal method quality can only be achieved by a set of guidelines on the Method 
Engineering level. These formalized guidelines are presented in the form of axioms, 
which can be considered an extension of the set of axioms, corollaries and theorems 
presented in section 4. The axioms are grouped by the various quality criteria. 

4.2 Classification of Method Assembly 

In this section, the general internal quality requirements completeness and consistency 
are further partitioned by means of the three-dimensional classification framework. 

Completeness is partitioned into: 

�9 Input/output completeness, stating that if a process fragment requiring or 
manipulating a product fragment is selected, then that product fragment should 
be available in the situational method. Input/output completeness applies to the 
interaction of the two perspectives. 

�9 Content completeness, stating that if a method fragment is selected, all of its 

contents have to be available too. Contents completeness applies to the 
relationship between granularity layers. 

�9 Process completeness, requiring that all product fragments have to be, in some 

way, produced. Process completeness is related to the interaction of the two 
perspectives. 

�9 Association completeness, requiring that product fragments on certain layers are 
always involved in an association, and that associations always involve product 

fragments. Association completeness relates to the product perspective. 

�9 Support completeness, requiring that technical method fragments support 
conceptual method fragments. Support completeness applies to the relationship 
between abstraction levels. 

Consistency is partitioned into: 

�9 Precedence consistency, requiring that product fragments and process fragments 
are placed in the right order in the situational method. This type of consistency 
applies to the interaction between perspectives. 

�9 Perspective consistency, requiring that the contents of product fragments is 
consistent with the contents of process fragments. Perspective consistency also 
applies to the interaction between perspectives. 
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�9 Support consistency, requiring that technical method fragments are mutually 

consistent. Support consistency relates to the relationships of technical method 

fragments. 

�9 Granularity consistency, which imposes that the granularity layers of related 

method fragments are similar, and that their contents are mutually consistent. 

This type of consistency applies to the interaction between granularity layers. 

�9 Concurrence consistency, which requires parallel activities to be properly 

synchronized. Concurrence consistency relates to the interaction of process 
fragments. 

Note that our concepts of "completeness" and "consistency" are syntactical 

constraints on descriptions of method fragments written in Entity Relationship Model. 

To formalize actual method assembly processes more rigorously and precisely, we 

should consider some aspects of the meaning of method fragments. In the example of 

Objectchart, we associated the concept "Attribute" with "State". The question is in 

whatever method assembly we can always do it. The answer depends on the 

semantics of these concepts in the method fragments. How to specify the semantics of 

method fragments for method assembly is one of the most important and interesting 
future topics. 

In the next sub-section, each of these categories will be elaborated by means of an 
example taken from the Objectchart case. 

4.3 Method AssemblyRules 

4.3.1 Some Definitions 

As noticed before, the natural language representation of method assembly rules 

creates some problems regarding ambiguity and implementability. Therefore we have 

formalized our theory regarding method fragments, and expressed the rules in that 

formalization. In this sub-section, we only show the part of the formalization required 

in the context of this paper. Moreover, we give examples of rules, some of which are 
formalized well. 

The formalization employs the following notions: 

Set, which represents a category of similar method fragments. 

Predicate, which represents a relationship between Method Base concepts. 

Function, which represents the assignment of the method fragment properties to 
method fragments 

The usual logical quantifiers and operators. 

The operators <, =, ~, c ,  u and c~. 

The following sets are defined: 
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M = C u T, the set of method fragments 

C = R u P, the set of conceptual method fragments: e.g. Draw an Object Model, 
Object Model, Statechart, Identify Clas~es and Objects, Class, Object, Service, 

Transition "has" Event, List of States. 

R the set of product fragments, e.g. Object Model, Statechart, List of States 

P the set of process fragments, e.g. Class, Object, Service, State, Event. 

CN c_ R ,  the set of concepts, e.g. Class, Object, Service, State, Event.of concepts are 

postulated 

A c R, the set of associations, e.g. Transition "has" Event, State "is annotated 

with" Attribute. 

T the set of technical method fragments. 

If a method fragment is selected for inclusion in a situational method, it is indexed 

with an "s" , for instance: Rs is the set of selected product fragments. 

The following predicates are used in this section: 

�9 contents and contents* c_ R X R u P X P to represent the non-transitive and 
transitive consists-of relationship between method fragments, e.g. contents(Class, 

Object Model); 

�9 manipulation c_ P X R ,  to represent the fact that a process fragment manipulates 
(i.e. produces, updates, etc.) a certain product fragment, e.g. manipulation(Draw 

an Objectchart, Objectchart); 

�9 involvement c A XR,  to represent the fact that an association involves a product 
fragment, e.g. involvement (is annotated with, Objectchart); 

�9 prerequisite c_ P X R, to represent the fact that a process fragment requires a 

product fragment for its execution, e.g. prerequisite(Identify Associations, List of 
Classes and Objects); 

�9 precedence c_ P X P, denote the precedence relationship between process 
fragments, e.g. precedence(Identify Associations, Identify Classes and Objects); 

�9 support ~ C • T, to represent that a technical method fragment supports a 

conceptual method fragment, e.g. support(Statechart, STATEMATE); 

�9 concurrence, to represent the fact that two process fragments can be performed in 
parallel, e.g. concurrence(Identify Associations(O2), Identify States(S1)) (see 
Fig.4). 

�9 layer." M ~ [Method, Stage, Model, Diagram, Concept],to return the layer of the 

method fragment (see sect. 2.2), e.g. layer(Objectchart)=Diagram, 

laye r( Class )=Concept. 
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Below, each type of completeness and consistency, as defined in sect. 4.1, is related to 
our Objectchart example. We assume that both Object Model, Statechart, and 

Objectchart should be part of a complete and consistent situational method, M s 

4.3.2 Completeness rules 

Input~output completeness 

Step 2 of the Objectchart modeling procedure requires an Object Model. The 
description of the Object Model should therefore exist in the situational method. In 
general, the rule is: 

Required product fragments should have been selected for the method assembly, i.e. 

Vp ~ Ps, r ~ R [prerequisite(p, r) --> r e R ] 
s 

Contents completeness 

Concepts (product fragments) such as Class, Object, State, Service, Transition etc. 
should always be part of another product fragment. Note that this is indeed the case, 
as they are all components of Statechart. In a formalized way, this rule is defined as 
follows: 

Vr 1 ~ Rs3r 2 ~ Rs[layer(r 1 ) = concept 

---> contents * (r 2 , r 1 ) A layer(r 2 ) ~ {Model, Diagram}] 

Process completeness 

Suppose the Objectchart is included in the situational method. Then it has to be 
produced by some process fragment that is also included. In general, selected product 
fragments at the lowest four granularity layers have to be produced by a selected 
process fragment, i.e. 

Vr ~ Rs3 p ~ Ps [layer(r) ~ Concept ---> manipulation(p, r)] 

Association completeness 

Suppose both the Object Model and State Chart have been selected for inclusion in 
the situational method. Then they should be connected by at least one association 
(note, again, that this is the case; they are connected by even more than one 
association). In general, if more than one diagram layer product fragment has been 
selected, diagram layer product fragments should be associated with at least one other 
diagram layer product fragment. (Rule 4)). 
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Vr 1 , r 2 ~ Rs3a  ~ A s [layer(r 1 ) = Diagram A layer(r 2) = Diagram A r 1 ~ r 2 

---> involvement(a, r 1 ) A involvement(a, r 2)] 

Also Rule 3) is an example of an association completeness rule: 

V r l , r  2 ~ RsBal  ,a 2 ~ As3c  ~ CN s[(layer(rl ) = Diagram^ layer(r2) = Diagram 

^ r 1 ~ r 2 ) --> involvement(a 1 , r 1 ) A involvement(a 2 , r 2 ) 

A involvement(c, r 1 ) A involvement(c, r 2 )] 

From these rules we can deduce, that Rule 2) is redundant. 

Support completeness 

Suppose the STATEMATE editor was selected for inclusion in our situational method. 

Then, the Statechart product fragment that is supported by this editor should also be 

included. In a formalized way, this rule, i.e.Rule 11) is defined as follows: 

Vt  ~ Ts ,r  ~ R[support(r , t )  --+ r e R] 

4.3.3 Consistency Rule 

Precedence consistency 

In the modeling procedure for Objectchart, step OC2 requires an Object Model. This 

Object Model should be produced by a step before step OC2. In general: a process 

fragment producing a required product fragment should be placed before the process 

fragment requiring the product fragment, i.e. 

'~Pl e P ,r e e P [prerequisite(P1, r) s Rs3P2 

---> manipulation(p 2 , r) ^ precedence(P1, P2 )] 

This rule is a part of Rule 7). This rule means that we should have at least one new 

process fragment and this new fragment should not be first in the order of the 
assembled process fragments. 

In the example of Fig. 4, we have a new process fragment "Refine Statechart 

(OC3)" , and it cannot be performed before Draw an Objectchart and Draw a 

Statechart. The above rule specifies the latter part. We can also formalize the former 

part. 

Perspective consistency 

Objectchart is produced by the modeling procedure presented in section 3.2. The 
components of Objectchart, its concepts, should be produced by components of this 

fragment. As a general rule: If a product fragment is produced by a certain process 

fragment, then all of its contents should be produced by the sub-processes of that 
process fragment, i.e. 
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V P l  ' P2  E P s , r  ~ R s , b  ~ B 3 r  2 ~ R s [ m a n i p u l a t i o n ( p  I , r  I ) A con ten t s (P l  , p2 ) 

---> conten ts ( r  1 , r 2 ) A man ipu la t ion (P2 ,  r 2 )] 

Granular i ty  consis tency 

An example of a granularity consistency rule is Rule 12) (section 3.4), stating that if 

two product fragments are associated, there should be at least an association at the 
Concept layer in their perspective contents as well, i.e.: 

V a  I ~ A s , r l , r  2 ~ R s , l l , l  2 ~ L 3 C l , C  2 ~ C N s , a  2 ~ A s 

[ involvement(  a 1 , r 1 ) ^ involvement(  a 1 , r 2 )  

contents  * ( r  1 , c 1 ) ^ contents  * (r 2 , c 2 ) A involvement (a  2 , c 1 ) ^ invo lvemnet (a  2 , c 2 )] 

Concurrence  consis tency 

Suppose the Objectchart process fragment consists, to speed up the process, of two 
steps that are concurrently executed. This may only be the case, if they do not require 
complete products from each other. So, for instance, steps OC1 and OC2 of the Draw 
an Objectchart fragment may not be concurrently executed, as step OC2 required 
some intermediate results produced by step OC1. However, within this fragment some 
steps can be performed concurrently, e.g. 02 and S1. The concurrence consistency 
rule is defined as follows: 

V P l '  P2  ~ Ps ,  r ~ R s [ concurrence (P l ,  P2  ) 

~ (  prerequis i te(  P l , r) A man ipu la t i on (P2 ,  r ) ) A 

~ (  prerequis i te (  P 2 , r)  A manipulat ion(  P l , r))] 

5 Related Work 

As mentioned before, several meta-modelling techniques were proposed, e.g. they 
were based on Entity Relationship Model, Attribute Grammar, Predicate Logic and 
Quark Model. Comparison of meta-modelling techniques and their languages was 

also discussed in [Harmsen 96]. We pick up a few representatives and discuss their 
relevance to our work. 

Almost all approaches to meta-modelling are using Entity Relationship Model (ER). 
Some applied Predicate Logic to describing the properties, which cannot be 
represented with just the ER notation. For instance, the Viewpoints approach 
[Nuseibeh 92] combines ER and Predicate Logic. It aims at constructing a method 
with multiple views from the existing methods. In other words, we can define the 
assembly mechanism of the products, which are produced by the different existing 
methods. The approach also provides the function for defining constraints to maintain 
consistency on the products that are produced by the existing methods. However, it 
discusses about the constraints on the assembled products but not constraints on 
method assembly processes themselves. 
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Software Quark Model [Ajisaka 96] tried to formalize a restricted set of atomic 

concepts, which can specify any kind of software products and it can be considered as 

a product perspective of meta-modelling. The aim of the model seems to be not 

method assembly in product level, but maintaining causality relationships among the 

software products produced in various stages of a software development cycle 

through atomic concepts. 

In his article, Song investigated the existing integrated methods, into which several 
different methods were integrated, and classified method integration from benefit- 

oriented view, i.e. classification criteria is based on what benefit we can get by the 

integration [Song 95]. He did not use the term "'assembly" but "'integration". 

According to his classification, we can have two categories: function-driven (a new 

function is added) and quality-driven (the quality of a method is improved). He also 

classified these two categories in detail based on which components of methods are 

integrated, e.g. Artifact Model Integration, Process Integration, Representation 

Integration and so on. His work is a pioneer of method assembly research. However, 

he did not discuss how to integrate (assemble) methods or what rules should hold for 

each category but just classified the existing integration patterns. And, all of his 

proposed classes are not necessary orthogonal, i.e. an integration is included in 

several classes. Our framework is completely orthogonal and we have shown some 
guidelines and rules to produce meaningful methods. Furthermore our classification 

includes Song's classification. Fig. 3 is an example of Song's Artifact Model 

Integration, i.e. method assembly in Conceptual Level, Product Perspective and 

Diagram Layer. 

6 Conclusion and Future Work 

This paper clarifies how to assemble method fragments into a situational method and 

formalize rules to construct meaningful methods. We have already extracted over 80 

rules thought real method assembly processes. Our rules are general ones which are 

applicable for arbitrary method assembly, and we may need some rules for specific 

kinds of method assembly. These rules probably include semantic information on 

method fragments and on systems to be developed. Our next goal is to assess our 

generic rules in more complicated and larger-scale assembly processes, e.g. whether 
our rules are sufficient and minimal to specify method assembly processes as general 
rules, and to look for specific rules as method assembly knowledge. 

Our rules are described with predicate logic, so we have a possibility to check method 

fragments automatically during the assembly processes. To get efficient support, we 

should consider how our rules can be efficiently executed in our method base system, 

which stores various kinds of method fragments. As reported elsewhere, we are 

currently developing the Computer Aided Method Engineering (CAME) tool, called 

Decamerone [Harmsen 95], which includes a comprehensive method base system. A 

support function for method assembly processes based on our assembly rules is 
currently under development. Functionality for adaptive repository generation and 

customisable process managers is being realised. Next to this, the Method 
Engineering Language (MEL) is under development [Harmsen 96]. This language 

allows us to describe method fragments from the various relevant dimensions. 
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Operators for the manipulation, storage and retrieval of method fragments in the 
method base have been defined. To clarify which method fragments are suitable and 
useful for a specific situation is one of the most important research issues and 
empirical studies are necessary such as [Slooten 96] and [Klooster 97]. 
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