Assertions: A personal perspective

——Kyoto Prize Lecture, 2000——

Charles Antony Richard Hoare

Computer Software (reprint)
Vol. 18, No. 4(2001), pp. 2-17

Japan Society for Software Science and Technology (JSSST)

(400)

R

Assertions:

Charles Antony Richard Hoare

Summary: An assertion is a Boolean formula
written in the text of a program, at a place where
its evaluation will always be true — or at least, that
is the intention of the programmer. In the absence
of jumps, it specifies the internal interface between
the part of the program that comes before it and the
part that comes after. The interface between a pro-
cedure declaration and its call is defined by asser-
tions known as preconditions and post-conditions.
If the assertions are strong enough, they express
everything that the programmers on either gide of
the interface need to know about the program on
the other side, even before the code is written. In-
deed, such strong assertions can serve as the basis
of a formal proof of the correctness of a complete
PTOram.

In this paper, I will describe how my early ex-
perience in industry triggered my interest in asser-
tions and their role in program proofs; and how
my subsequent research at university extended the
idea into a methodology for the specification and
design of programs. Now that I have refurned to
work in industry, I have had the opportunity to in-
vestigate the current role of assertions in industrial
program development. My personal perspective il-
lustrates the complementary roles of pure research,
aimed at academic ideals of excellence, and the un-

expected ways in which the results of such research

Senior Researcher, Microsoft Research Ltd., Cam~
bridge, England.

Tyt a—¥ Y7 bz 7, Vol.18, No.4(2001), pp.2-17.

(R 2001 42 5 1 25 HEAS.

a personal perspective

contribute to the gradual improvement of engineer-

ing practice.

Introduction.

My first job was as a programmer in the computer
industry. Preliminary experience in writing ma-
chine code programs introduced me abruptly to the
problem of program error. My first major assign-
ment was the implementation of a new high-level
programming language, ALGOL 60. Chomsky’s
contexi-free notation, used for defining the syntax
of the lapguage, helped greatly in forestalling er-
ror, both on the part of the implementers and of
its users; it triggered intense interest in similar for-
ma) notations for specification of programming lan-
guage semantics. 1 suggested an axiomatic method
for specifying the general intentions of the language
designer, while leaving the implementer free to fill
in the intricate details, choosing the most efficient
sohition for the benefit of users of a particular ma-
chine.

In the early seventies, I moved to a university ca-

reer, and encountered Floyd’s assertional method -

for proving program correctness. I extended his
method %o cover all the main constructions of a
sequential high-level programming language. Fol-
lowing Dijkstra, 1 always took a top-down view
of the task of software construction, with asser-
tions formulated as part of program specification,
and with proofs conducted as part of program de-

sign. 1 hoped that this research would help to re-

duee the high costs of programming error, and the

(401} Vol. 18 No

high risks of using computers in critical applica-
tions. But the real attraction for me was that the
axioms underlying program proofs would provide
at last an objective and scientific test of the quality
of a proposed programming language: T suggested
the principle that a language described by a small
collection of obvious rules, easily applied, would be
better demonstrably than one that required many
rules with complex side-conditions.

In scaling proof methods from small sequential al-
gorithms to large software systems: it was necessary
to extend the power of the assertion language. The
7 specification langnage was developed by Abrial
on the basis of Zermelo’s set theory, which Frankel
and others showed to be essentially adequate for ex-
pression of all concepts known to mathematics. It
should therefore be adequate to express all the ab-
stractions useful to computing, and for proof of the
correctness of their representation. Dijkstra showed
how to deal with non-determinism, by imagining
non-deterministic choice to be exercised maliciously
by a demon. Jones and his fellow-designers of VDM
included initial as well as final values of program
variables in the specification. The combination of
these ideas were successfully tested by IBM Devel-
opment Laboratories at Hursley in specifying some
of the internal interfaces of a large software prod-
uct, CICS.

The next challenge was to extend the technol-
ogy to concurrent programs. Milner suggested that
their meaning could be specified by the collection
of tests which they passed. Following Popper’s cri-
terion of falsifiability, Roscoe and Brookes concen-
trated on failures of a test, which led them to the
standard non-deterministic model for Comnunicat-
ing Sequential Processes. This was applied indus-
trially by the British start-up microchip Company
Inmos in the design of the programming language

occam, and in the architecture of the transputer

which implemented it. Finally, Hehner showed how

4 July 2001 3

a

the CSP model could be coded directly in the lan-
guage of specifications, so that any kind of program,
concurrent as well as sequential, can be interpreted
as the strongest assertion that describes all its pos-
sible behaviours. As a result, all claims of correct-
ness can be expressed and proved as mathematical
implications between the program and its specifi-
cation,

Assertions are widely used in the software indus-
try today, primarily to detect, diagnose and classify
programming errors during test. They are some-
times kept in product code to forestall the dan-
ger of crashes, and analyse them when they occur.
They are beginning to be used by compilers as hints
to improve optimisation. They are also beginning
to be recognised by program analysis tools, to in-
hibit false complaints of potential error. The one
purpose for which they are hardly ever used is for
proof of programs. Nevertheless, assertions provide
the fundamental tool for scientific investigation of
professional disciplines of programming; and they
show the direction for future advance in the de-
velopment both of programming fools and of pro-
gramming languages.: There are still many issues
that remain as a challenge for future research. And
there are encouraging signs that the research is be-
ginning to spread a beneficial influence on practices,
tools and languages coming into use; and that this
will lead to significant improvements in the quality
of software produéts, for the benefit of their rapidly

increasing numbers of users.

Experience in Industry, 1960-1968.

My first job was as a programmer for a small
British computer manufacturer, Elliott Brothers of
London at Borehamwood. My task was to write
library programs in decimal machine code 1] for
the company’s new 803 computer. After a prelimi-
nary exercise which gave my boss confidence in my

skill, I was entrusted with the task of implementing

YA —FVT LT xT (402)

a new sorting method recently invented and pub-
lished by Shell [2]. I really enjoyed optimizing the
inner loops of my program to take advantage of the
most ingenious instructions of the machine code. T
also enjoyed documenting the code according to the
standards laid down for programs to be delivered to
customers as part of our library. Even testing the
program was fun; tracing the errors was like solv-
ing mathematical puzzles, How wonderful that pro-
grammers get paid for that too! In fairness, surely
the programmers should pay the cost for removal
of their own mistakes.

But not such fun was the kind of error that caused
my test programs to run wild (crash); quite often,
they even over-wrote the data needed to diagnose
the cause of the error. Was the crash due perhaps
to a jump into the data space, or to an instruc-
tion over-written by a number? The only way to
find out was to add extra output instructions to the
program, tracing its behavicur up to the moment
of the crash. But the sheer volume of the output

only added to the confusion. Remember, in those

Sir Charles Antony Richard Hoare {photo/The Inamori Foundation}

s
ety
[e

days the lucky programmer was one who had ac-
cess to the computer just once a day.- Even forty
years later, the problem of crashing programs is not
altogether solved.

When I had been in miy job for six months, an
even more important task was given me, that of
designing a new high-level programming language
for the projected new and [faster members of the
Company’s range of computers. By great good for-
tune, there came into my hands a copy of Peter
Naur's Report on the Algorithmic Language AL-
QOT, 60 3], which had recently been designed by
an international committee of experts; we decided
to implement a subset of that language, which I
selected with the goal of efficient implementation
on the Flliott computers. In the end, I thought of
an efficient way of implementing nearly the whole
language. .

An outstanding merit of Peter Naur’s Report was

that it was only twenty-one pages long. Yet it gave
enough accurate infermation for an implermenter to

compile the language without any communication

(403) Vol. 18 No

with the language designers. Furthermore, a user
could program in the language without any commu-
nication either with the implementers or with the
designers. Even so the program worked on the very
first time it was submitted to the compiler. Apart
from a small error in the character codes, this is
what actually happened one day at an exhibition
of an Elliott 803 computer in Eastern Furope. Few
languages designed since then have matched such
an achievement.

Part of the eredit for this success was the very
compact yet precise notation for defining the gram-
mar or syntax of the language, the class of texts
that are worthy of consideration as meaningful pro-
grams. This notation was due originally to the
great linguist, psychologist and philosopher Noam
Chomsky [4]. It was first applied to programming
languages by John Backus [5], in a famous article
on the Symtax and the Semantics of the proposed
International Algorithinic Language of the Zurich
ACM-GAMM Conference, Paris, 1959. After deal-
ing with the syntax, the author looked forward to
a continuation article on the semantics. It never
appeared: in fact it laid down a challenge of find-
ing a precise and elegant formal definition of the
meaning of programs, which inspires good research
in Computer Scicnee right up to the present day.

The syntactic definition of the language served as
a pattern for the structure of the whole of our Al-
GOL compiler, which used a method now known
as recursive descent. As a result, it was logically
impossible (almost) for any error in the syntax of
a submitted program to escape detection by the
compiler. If_('«‘a successfully compiled program went
wrong, the programmer had complete confidence
that this was not the result of a misprint that made
the program meaningless. Chomsky’s syntactic def-
inition method was soon more widely applied to
carlier and to later programming languages, with

resuits that were rarely as attractive as for ALGOL

.4 July 2001 5

60. 1 thought that this failure reflected the intrin-
sic irregularity and ugliness of the syntax of these
other languages. One purpose of a good formal def-
inition method is to guide the designer to improve
the quality of the language it is used to define.

In designing the machine code to be output by the
Elliott ALGOI: compiler [6], 1 took it as an over-
riding principle that no program compiled from
the high level language could ever run wild. Our
customers had to accept a significant performance
penalty, because every subscripted array access had
to be checked at run time against both upper and
lower array bounds; they knew how often such a
check fails in a production run, and they told me
later that they did not want even the option to re-
move the check. As a result, programs written in
ALGOL would never run wild, and debugging was
relatively simple, because the effect of every pro-
gram could be inferred from the source text of the
program itself, without knowing anything about
the compiler or about the machine on which it was
running. If only we had a formal semantics to com-
plement the formal syntax of the language, perhaps
the compiler would be able to help in detecting and
averting other kinds of programming error as well

Interest in semantics was widespread. In 1964, a
conference took place in Vienna on Formal Lan-
guage Description Languages for Computer Pro-
gramming [7]. It was attended by 51 scientists from
12 nations. Omne of the papers was entitled ‘The
definition of programming languages by their com-
pilers’ [8], by Jan Garwick, piorieer of computing
science in Norway. The title appalled me, because
it suggested that the meaning of any program is de-
termined by selecting a standard implementation of
that language on a particular machine. So if you
wanted to know the meaning of a Fortran prograim,
for example, you would run it on an IBM 709, and
see what happened. Such a proposal seemed to me

grossty unfair to all computer manufacturers other

6 AVE 2=V T LT

than IBM, at that time the world-dominant com-
puting company. It would be impossibly expensive
and counter-productive on an Elliott 803, with a
word lehgth of thirty-pine bits, to give the same
nunerical answers as the IBM machine, which had
only thirty-six bits in a word — we could more effi-
ciently give greater accuracy and range. Fven more
anfair was the consequence that the IBM cornpiler
was by definition correct; but any other manufac-
turer would be compelled to reproduce all of its
errors — they would have to be called just anoma-
lies, because errors would be logically impossible.
Since then, I have always avoided operational ap-
proaches to programming language semantics. The
principle that ‘a program is what a program does’
is not a good basis for exploration of the concept
of program correctness

1 did not make a presentation at the Vienna con-
ference, but I did make one comment: I thought
that the most important attribute of a formal def-
inition of semantics should be to leave certain as-
pects of the language carefully undefined. As a re-
sult, each implementation would have carefully cir-
cumscribed freedom to make efficient choices in the
interests of its nsers and in the light of the charac-
teristics of a particular machine architecture. 1 was
very encouraged that this comment was applauded,
and even Garwick expressed his agreement. In fact,
1 had mis-interpreted his title: his paper called
for an abstract compiler for an abstract machine,
rather than selection of an actual commercial prod-
uct as standard.

The inspiration of my remark in Vienna dates
back to 1952, when I went to Oxford as an under-
graduate student. Some of my neighbours in Col-
lege were mathematicians, and I joined them in a
small unofficial night-time reading party to study
Mathematical Logic from the text book by Quine
[9]. Later, a course in the philosophy of mathemat-

ies pursued more deeply this interest in axioms and

(404)

proofs, as an explanation of the unreasonable de-

gree of certainty which accompanics the contempla-

tion of mathematical truth. It was this background

that led me to propose the axiomatic method for

defining the semantics of a programming language,

while preserving a carefully controlled vagueness in

certain aspects, 1 drew the analogy with the foun-

dations of the various branches of mathematics, like

projective geometry or group theory; each branch

is in effect defined hy the set of axioms that are
used without further justification in all proofs of
the theorems of that branch. The axioms are writ-

ten in the common notations of mathematics, but

they also contain a number of undefined terms, like
lines and points in projective geometry, or units
and products in group theory; these constitute the
conceptual framework of that branch. I was con-
vinced that an axiomatic presentation of the basic
concepts of programming would be much simpler
than any compiler of any language for any com-
puter, however abstract.

1 still helieve that axioms provide an excellent in-
terface between the roles of the pure mathematician
and the applied mathematician. The pure mathe-
matician deliberately gives no explicit meaning to
the undefined terms appearing in the axioms, theo-
rems and proofs, Tt is the task of the applied math-
ematician and the experimental scientist to find in
the real world a possible meaning for the terms, and
check by carefully designed experiment that this
meaning satisfies the axioms. The engineer is even
allowed to take the axioms as a specification which
must be met in the design of a prodﬁct, for example,
the compiler for a programming language. Then all
the theorems for that branch of pure mathematics
can be validly applied to the producet, or to the rele-
vant real-world domain. And surprisingly often, the
more abstract approach of the pure mathematician
is rewarded by the discovery that there are many

different applications of the same axiom set. By

(405) Vol. 18 No

analogy, there could be many different implemen-
tations of the axiom set which defines a standard
programming language. That was exactly the care-
fully circumscribed freedom that I wanted for the
compiler writer, who has to take normal engineer’s
responsibility that the implementation satisfies the
axioms, as well as efficiently running its users’ pro-
grams.

My first proposal for such an axiom set took the

form of equations, as encountered in school texts on
.

algebra, but with fragments of préogram on the left
and right hand sides of the equation instead of num-
bers and numeric expressions. The same idea was
explored earlier and more thoroughly in a doctoral
dissertation by Shigeru Igarashi at the University
of Tokyo [10]. 1 showed my first pencilied drafi of a
paper on the axiomatic approach to Peter Lucas; he
wag leading a project at the IBM Research Labora-
tory in Vienna to give a formal definition 1o IBM’s
new programming language, known as PL/I [11].
He was attracted by the proposal, but he rapidly
abandoned the attempt to apply it te PL/L The
designers of P1L/I had a very operational view of
what each construct of the language would do, and
they had no inclination to support a level of ab-
straction necessary for an attractive or helpful ax-
iomatic presentation of the semantics. 1 was not
disappointed: in the arrogance of idealism, I was
confirmed in my view that a good formal defini-
tion method would be one that clearly reveals the
quality of a programming language, whether bad
or good; and the axiomatic methbd had shown its
capability of at least of revealing badness. Other
evidence for the badness of PL /I was its propensity

for crashing programs.

. Research in Belfast, 1968;1977.

By 1968, it was evident that research into pro-
gramming language semantics was going to take a

long time before it found application in industry;

.4 July 2001 7

and in those days it was accepted that long-term
research should take place in universities. I there-
fore welcomed the opportunity to take up a post as
Professor of Computer Science at the Queen’s Uni-
versity in Belfast. By a happy coincidence, as T was
moving house, I came across a preprint of Robert
Floyd’s paper on Assigning Meanings to Programs
{12]. Floyd adopted the same philosophy as I had,
that the meaning of a programming language is de-
fined by the rules that can be used for reasoning
about programs in the language. These could in-
clude not only equations, but also rules of inference.
By this means, he presented an effective method
of proving the total correctness of programs, not
just their equality to other programs. 1 saw this
as the achievement of the ultimate goal of a good
formal semantics for a good programﬁ’aing language,
namely, the complete avoidance of programming er-
ror. Furthermore, the guality of the language was
now the subject of objective scientific assessment,
based on simplicity of the axioms and the guidance
they give for program construction. The axiomatic
method is a way to avoid the dogmatism and con-
troversy that so often accompanies programming
language design, particularly by committees.

For a general-purpose programming language,
correctness can be defined only relative to the in-
tention of a particular program. In many cases,
the intention can be expressed as a post-condition
of the program, that is an assertion about the val-
ues of the variables of the program that is intended
to be true when the program terminates. The proof
of this fact usually depends on annotating the pro-
gram with additional assertions in the micidle of the
program text; these are expected to be true when-
ever execution of the program reaches the point
where the assertion is written. At least one as-
sertion, called an invariant, is needed in each loop:
it is intended to be true before and after every ex-

ecution of the body of the loop. Often, the correct

g : Gy Ea—FV I a7

working of a program depends on the assumption of
some precondition, which must be true before the
program starts. Floyd gave the proof rules whose
application could guarantee the validity of all the
asgertions except the precondition, which had to
be assumed. He even looked forward to the day
when a verifying compilet could actualty check the
vaiidity of all the assertions automatically before
allowing the program to be run. This would be the
ultimate solution to the problem of programming
error, making it logically impossible in a running
program; though I correctly predicted 1bs achieve-
ment would be some time after I had retired from
academic life, which would be in thirty year's time.
9o | started my life-long project by frst extend-
ing the set of axioms and rules to cover all the
familiar constructions of a conventional high-level
programming language. These included iterations,
procedures and parameters, vecursion, functions,
and even jumps [13] [14] 115] [16] (17} (18] Eventu-
ally, there were enough proof rules to cover almost
all of a reasonable programming language, like Pas-
cal, for which T developed a preof calculus in col-
laboration with Niklaus Wirth 119]. Since then,
the axiomatic method has been explicitly used to
guide the design of languages like Fuclid and Eiffel
[20] [21]. These languages were prepared to accept
the restrictions on the generality of expression that
are necessary to make the axioms consistent with
efficient program execution. Tor example, the body
of an iteration (for statement) should not assign a
new value to the controlled variable; the parame-
ters of a procedure should all be distinct from each
other (no aliases); and all jumps should be forward
vather than backward. 1 recommended that these
restrictions should be incorporated in the design of
any future programming language; they were all of
a kind that could be enforced by a compiler, so as to
avert the risk of programming error. Restrictions

that contribute to provability, I claimed, are what

(406)

make a programming language good.

1 was even worried that my axiomatic method
was too powerful, because it could deal with jumps,
which Dijkstra had pointed out to be a bad feature
of the conventional programming of the day [22].
My consolation was that the proof rule for jumps
relies on a subsidiary fiypothesis, and is inherently
more complicated than the rules for structured pro-
gramming constructs. Subsequernt wide adoption of
structured programming confirmed my view that
simplicity of the relevant proof rule is an objective
measure of quality in & programmiing language fea-
ture. Further confirmation is now provided by pro-
gram analysis tools like Lint [23] and PREfx [24],
applied to less disciplined languages such as C; they
identify just those constructions that would inval-
idate the simple and obvious proof methods, and

warn against their use.

A common objection to Floyd’s method of pro-
gram proving was ihe need to supply additional as-
sertions at intermediate points in the program. It
is very difficuli to lock at an existing prograrm and
puess what these assertions should be. I thought

this was an entirely mistaken objection. It was not
sensible to try to prove the correciness of exist-
ing programs, partly becanse they were mostly go-
ing to be incortect anyway. I followed Dijkstra’s
constructive approach [25] to task of programiming:
the obligation of ultimate correctness should be the
driving force in designing programs that were go-
ing to be correct by construction. In this top-down
approach, the starting point for a software project
should always be the specification, and the proof
of the program should be developed along with the
program jiself. Thus the most effective proofs are
those constructed before the program is written.
This philosophy has been beantifully illustrated in
Dijkstra’s own hook on A Discipline of Program-
ming |26, and in many subsequent texthooks on

formal approaches to software engineering [27].

(407) Vol. 18 No

In all my work on the formalisation of proof meth-
ods for sequential programming languages, 1 knew
that I was only preparing the way for a much more
serious challenge, which was to extend the proof
technology into the realm of concurrent program
execution. 1 took as my first model of concurrency
a kind of guasi-parallel programming (co-routines),
which was introduced by Ole-Johan Dahl and Kris-
ten Nygaard into Simula {and later Simula 67) for

purposes of discrete event simulation [28] [29]. I

knew the Simula concept of an object as a replicable
structure of data, declared in a class together with
the methods which are allowed {0 update ifs at-
tributes. As an exercise in the application of these
ideas, I tock the structured implementation of a
paging system (virtual memory). [suddenly re-
alised that the purpose and criterion of correctness
of the program was to simulate the more abstract
concept of a single-level memory, with a much wider
addressing range than could be physically fitted
into the random access memory of the computer.
The concept had to be represented in a compli-
cated (but fortunately concealed) way, by storing
temporarily unused data on a disk [30]. The cor-
rectness of the code could be proved with the aid of
an invariant assertion, later known as the abstrac-
tion invariant, that connects the abstract variable
to its concrete representation [31]. The introdue-
tion of such abstractions into programming prac-
tice is one of the main achievements of still current
craze for chject-oriented programming.

The real insight that T derived from this exer-
cise was that exactly the same proof was valid, not
only for Se_qr"uential use of the virtual memory, but
also for its use by many processes running concur-

rently. As in the case of proof-driven program de-

velopment, it is the obligation of correctness that

should drive the design of a good programming lan-
gnage feature, Of course, efficiency of implementa-

tion is also important. A correct implementation

.4 July 2001 9

of the abstraction has to prevent more than one
process from updating the concretc representation
at the same time. This is efficiently done by use
of Dijkstra’s semaphores protecting critical regions
[32]; the resulting structure was called a monitor
{33] [34]. The idea was simultancously put forward
and successfully tested by Per Brinch Hansen in his
eflicient implementation of Concurrent PASCAL
[35]. The monitor has since been adopted for the
control of concurrency by the more recently fash-
ionable language Java [36], but with extensions that
prevent the use of the original simple proof rules.
To test the applicability of these ideas, I used
them to design the structure of a simple batch pro-
cessed operating system [37]. Jimm Welsh and Dave
Bustard implemented the system in an extended
version of Pascal, called Pascal PiuS, which they
also designed and implemented {38]. We made ex-
tensive uge on the inner statement of Simula 67,
which enables the code of a usér process to be em-
bedded deep inside an envelope of code which im-
plements the abstract resources that it uses. The
semantics of the inner statement is described like
that of the procedure call in ALGOL 60 (and in-
heritance in current object-oriented languages), in
terms of textual copying of portions-of the pro-
gram inside certain other portions. Dijkstra rightly
pointed out to me that such a copy rule completely
fails to explain or exploit the real merit of the lan-
guage feature, which is to raise the level of abstrac-
tion of the program. So we spent some time to-
gether at a Marktoberdorf Summer School, explor-
ing the underlying abstraction, and to design no-
tations that would maost clearly express‘ it, But it
took several more years of personal research, and I
was still not satisfied with my progress. Inspiration
eventually came from an unexpected direction.
That was the time at which the promise of very
large scale integration was beginning to be realised

in the form of low-cost microprocessors. In order to

10 AVEa—FV I =T

multiply their somewhat modest computing power,
it was an atiractive prospect to connect several such
machines by means of wires along which they could
communicate with each other during program ex-
ecution. To write programs for such an assembly
of machines, a programming langnage would have
to include input and output commands; these re-
moved the need for an explanation by textnal copy-
ing. The idea of sharing storage among micTopro-
cessors was ruled out by the expense, and without
shared store, monitors are unnecessary. An obvi-
ous requirement for a paralilel programming lan-
guage is a means of connecting two prograiu frag-
ments in parallel, rather than in series. Naturally
1 chose the structured parallel command (parbegin
... parend) suggested by Dijkstra [39], rather than
the jump-like forking primitive made popular by C
and UNTX. I also included a variant of Dijkstra’s
guarded command [39], to enable a program to re-
duce latency by waiting for the first of two (or more)
inputs to become available. The resulting program
structures were known as Clommunicating Seguen-
tial Privcesses [40]. To answer the question of the
sufficiency of these few features, 1 showed that they
could easily encode many other useful programming
language constructions, both sequential and paral-
tel. These included semaphores, subroutines, co-
routines, and of course monitors.

1 was very happy with the unification of program-
ming concepts that 1 had achieved, but very dissat-
isfied that I had no means of proving the corrett-
ness of the programs that used them. Furthermore,
there were a number of language design decisions
which T left open, and which I wanted to resolve by
investigating their impact on the ease of proving
programs correct. I hoped that a Communicating
Process could be understood in ferms of the trace
(or history) of all the communications in which it
could engage. On this basis, I found it was possi-

ble to get proofs of partial correctness, but only by

(408)

ignoring problems of non-termination and of non-
deterministic deadlock, which causes a computer
to stop when a cycle of processes are each waiting
for its neighbour. 1 was by then ashamed that 1
had ignored such problems in my early exposition
of Floyd’s proof method. Fortunately, Dijkstra had
shown in his Discipline of Programming [26] how to
deal safely with the problem of non-determinism.
He assumed that it would be resolved maliciously
by a demon, intent on frustrating our intentions,
whatever they might be. He also dealt correctly
with the problem of non-termination. MNow I re-

solved that any acceptable proof method for CSP

would have to incorporate Dijkstra’s solutions.

Move to Oxford, 19771999,

At that time an opportunity arose to move to Ox-
ford University, where I wanted to study the meth-
ods of denotational semantics that had been pio-
neeved by Christopher Strachey and Dana Scott,
and ably expounded in a more recent textbook by
Joe Stoy [41]. Among my first Tesearch students,
jointly supervised with Joe Stoy, were a couple
of brilliant mathematicians, Bill Roscoe and Steve
Brookes. We followed the suggestion of Robin Mil-
ner that the meaning of a concurrent program could
be determined by the colection of tests that could
be made on it. Following Karl Popper’s criterion
of falsification for the meaning of a scientific the-
ory, Roscoe and Brookes concentrated on failures
of these tests, with particular attention to the cir-
cumstances in which they could deadlock or fail to
terminate. This led to the now standard model of

CSP, with traces, refusals, and divergences [42] [43l.

This research found remarkably early application
in Industry. Iain Barron, who had earlier worked
for Elliott Brothers on the design of the 803 com-
puter, was inspired by the vision of a new computer

architecture, the transputer, which he defined as a

complete microprocessor, communicating with s

(409) Vol. 18 No

neighbours in a network by input and output along
simple wires [44]. He started up a Company called
Inmos to design and make the hardware, he hired
David May as its chief architect, and he hired me as
a consultant on the design of a progra,mming-la.nn
guage based on CSP to control it. The language
was named occamn [45] [46], after the medieval Ox-
ford philosopher, who proposed simplicity as the

ultimate touchstone of truth.

An important commercial goal of the Company

was to ensure that the same parallel program would
have logically the same effect when implemented by
multiprogramming on a single computer as when
distributed over multiple processors on a network.
The level of abstraction provided by CSP gave
just this assurance. For ten years or more, the
transputer enjoyed commercial success and the lan-
guage excited scientific interest; but today’s ad-
vances in microprocessor power, storage capacity,
and network communications technology favour a
more dynamic model of network configuration and
a buffered model of communication, which are more
directly represented in more recent process alge-
bras, like the pi-calculus [47].

Fundamental to the philosophy of top-down de-
velopment of programs from their specifications is
the ability of programmers to write the specifica-
tiong in the first place. Obviously, these specifi-
cations have to be at least an order of magnitude
simpler and more obviously correct than the even-
tual program is going to be. In the 1980s, it was ac-
cepted wisdom that the language for writing specifi-
cations should itself be executable, making it, in ef-
fect, just another more powerful programming lan-
guage. But I knew that in principle a language
lilee that of set theory, untrammelied by consider-
ations of execution (or of efliciency), could express
many important abstract concepts far more con-
cisely than any executable language; and I believed

that these concepts drawn [rorn mathematics would

.4 July 2001 "

malke it easier to reason about the correctness of the
program al the design stage. There is no conceiv-
able way of proving a specification correct (against
what specification would that be? Such a specifi-
cation would have been preferable to the originai}.
So the only hope is 1o make the original specifica-
tion so clear and so casily understandable that it
obviously describes what is wanted, and not some
other thing. It would be dangerous $o recommend
for specification anything less than the full language
of mathematics. Even if this view is impractical, it
represents the kind of extreme in expressive power
that makes it an appropriate topic for academic
research. Certainly, if the basic mathematical con-
cepts turn out to be inadequate to describe what
is wanted, there is little hope for help from mathe-
matics in making correct programs.
Mathematicians through the ages have developed
a greal many notations, and each branch of the sub-
ject uses the same notations for different purposes,
and unfortunately different notations for the same
purpose. What is needed for purposes of program-
ming is a uniform notational framework to match
the geperality of a general-purpose programming
langunage, and sufficiently powerful for the defini-
tion of all concepts of any particular branch of
mathematics that might be relevant to any com-
puter application in the future. Fortunately, this
was provided by abstract set theory, developed as
a foundation for mathematics by logicians at the
beginning of the last century. Set theory already
provides a range of concepts known to be relevant
in computing — Carteslan products, direct sums,
trees, sequences, bags, sets, functions and relations.
The same idea had inspired Jean-Raymond Abrial,
a successful French software engineer; and he came
to Oxford to continue his work on the 7 specifica-
tion language [48]. The power of the Z notation was
first tested by researchers at Oxford, working on

small tutorial examples; and many improvements

12

resulted, both in notation and style of usage. But
the crucial question was: would they provide any
practical benefit when applied to a large progran-
ming project in industry?

At that time, the IBM development laboratories
in Hursley were supporting our research in Oxford,
both financially and scientifically, in a project led
by Ib Sorensen and lan Hayes. One of their teams
was responsible for the development of the Cus-
tomer Information and Control System CICS, one
of their most successful commercial software prod-
ucts; and they were planning the next release of
this system, primarily devoted to the restructuring

of some of its basic components. For one of the

more tricky components, they bravely decided to
try our new recommended top-down development
method, starting with a specification in Z. This in-
volved more work in the early stages of the project,
but it gave go.od confidence in the soundness of the
design of the new structure; and the early rigorous
formalisation averted many errors that might have
been troublesome at later stages in the project. In
the end, the development costs, even on first use of
7, were less than on components developed in the
traditional way, and the quality as perceived by the
customer was greater [49].
The characteristic feature of Z is the schema, con-
sisting of a declaration of the names of certain free
variables and their types, together with a predicate
expressing a desired invariant relationship between
the values of those variables. The free variables play
the same role as in a scientific theory: they stand
for measurements like time and distance that can be
made in the real world, or (in our application) they
gtand for observations of the state or behaviour
of computer progrars. The meanings of the vari-
ables, and the justification for the invariants, must
be described informally in the extremely important
natural-language prose that accompanies the spec-

ification. As in science, there are many common

ayEa—FYy 7=’

(410)

conventions: so in a schema that specifics a frag-
ment of a sequential program, 2 dashed variable =’
always stands for the final value of a global pro-
gram variable whose initial value is denoted by =
As a more specific example, when it is necessary to
specify the timing properties of a program, just in-
troduce a Teal-value variable called time. So time’
would be the time at which a program terminates,
and time would be when it starts. T, was Cliff Jones,
a leader in the development of the Vienna Develop-
ment method VDM, who persuaded me of the need
to make explicit both initial and final values of all
the variables {50].

Like predicates in logic, 7 schemas can be con-
nected by any of the operators of the propositional
calculus: conjunction, digjunction, and even nega-
tion. But the schema calculus also uses sequen-
tial composition; which is defined in the same way
as the binary composition of relations in relational
caleulns. The final values of the variables of the
first program (before the semicolon) are identified
with the initial values of the gecond program (af-

ter the semicolon), and these intermediate values

are hidden by existential quantification. A careful
{reatment of non-termination ensures that the com-
position of two achemas accurately describes the re-
sult of sequential execution of any pair of programs
which satisfy those schemas. More formally, if P1
and P are programs, and if §1 and 57 are schemas,
then the axiomatic proof rule for cotrectness of se-
quential composition of programs can be elegantly
expressed
P, satisfies S1 P» satisfies S
(Py; ;) satisfies (S1; S2)

One day, Rick Hehner, on a sabbatical visit to
Oxford, came into my office and spent an embar-
rassingly long time persuading me that something
much simpler was possible [51] {52]. Just define the
gemantics of the programming, language directly in

terms of the schema calculus of 7. Fach program

(411) Vol. 18 No.

is interpreted as the strongest schema describing
its obgervable behaviour on all its possible execu-
tions. As a result, the concept of satisfaction of a
specification can be identified with the most per-
vasive concept in all mathematical reasoning, that
of logical implication. Furthermore, there is no
need any longer for an axiomatic semantics, be-
cauge all thc useful proof rules can themselves be
proved as theorems. All the operators of the pro-
gramming language are deflined simply as operators ,
on schemas. For example, the definition of semi-
colon in the programming language is identical to
its definition given above in the schema calculus.
The proof rule displayed above is no longer an ax-
iom; it is a proven theorem stating the simple fact
that relational composition is monotonic in both its
operands, with respect to implication ordering. For
the next ten years I travelled the world giving a se-
ries of keynote addresses with different illustrative
examples, but with the same message and the same
title: Programs are Predicates [53] [54] [55].

The first application of this wonderful insight was
to solve the long-standing problem of the speci-
fication and proof of correctness of Communicat-
ing Sequential Processes. All that is needed is to
introduce the observable attributes of a process,
its trace and its refusals, as free variables of a Z
schema. Then the various choice and parallel con-
structions of CSP are defined using predicate cal-
culus as operators on schemas. This insight has
inspired all my SubSequent research. In a continu-
ing collaboration with He Jifeng, we have devel-
oped a specification-oriented semantics for many
other computational paradigms, including hard-
ware and software, declarative and procedural, se-
quential and parallel. FEven within parallel pro-
gramming, there are many variations, some with
distributed processing some with shared store, with
dedicated channels or with shared buses, with syn-

¢ . .
hronised or with buffered commnmnication. It turns

4 July 2001 13

out that there is much in common between the
mathematical properties of all the paradigms; and
this led us to describe our activity as Unifying The-
ories of Programming [56]. This work brought to
fruition a strand of my research that was started by
Peter Lauer, my first successful doctoral student in
Belfast [57].
That concludes a brief account of my long re-
search association with assertions. They started
as simple Boolean expressions in a sequential pro-
gramming language, testing a property of a single
machine state at the point that control reaches the
assertion. By adding dashed variables to stand for
the values of variables at the termination of the
program, an assertion is generalised to a complete
specification of an arbitrary fragment of a sequen-
tial program. By adding variables that record the
history of interactions between a program and its
environment, assertions specify the interfaces be-
tween concurrent programs. By defining the se-
mantics of a program as the strongest assertion that
describes all its possible behaviours, we give a com-
plete method for proving the total correctness of
all programs expressed in the langnage. My inter-
est in assertions was triggered by problems that I
had encountered as a programmer in industry. The
evolution of the idea kept me occupied throughout
my academic career. Now on return to industrial
employment, 1 have the opportunity to see how the
idea has progreséed towards practical application,

and mayhbe help to progress it a bit further.

Back in Industry, 1999—

The contrast between my academic research and
current softwa.rg engineering préctice in’ industry
could not be more striking, A programmer working
on legacy code in industry rarely has the privilege
of starting again from seratch. If a specification is
provided, it is usually ne more than the instruction

3 ~ o
do something useful and attractive, making as lit-

(412)

14 :l?/l:nn._ﬁ"/?]*WIT

sting code base of as A new programimer in 1960. The other solution

tle change as possible in the exi
is the ubiguitous personal work-station, which re-

its behaviour’. The details of the design are largely

determined hy what turns out to be possible and duces the turp-round for program correction from

adequately efficient after exploration of the exist- days to minutes.

Assertions are usnally compiled differently for
test runs and for code that is ghipped to the cus-

the assertions are often omit-

ing code and testing a qumber of possible changes

by experiment. The only way of improving the cor-
debugging. The practice tomer. In ship code,

rectness of the yesult is by
ted, to avoid the run time penalty and the confu-

of specification of an interface even as simple as

a histogram graphics package is quite unattractive, gion that would tollow from an errol diagnostic or
able on existing a checkpoint dump in view of the customer. Tde-

and formal proof is clearly inconceiv
ally, the only agsertions to be omitted are those that

code bases, measured in millions of lines of code. So
haw can the results of theoretical research, inspired hawve been subjected to proof, But more practically,
hy purely academic ideals, be brought to bear on many teams leave the assertions in ship code to gen-
the pervasive problems of maintaining large-scale erate an exception when false; to continue execution
ntested circumstance

1. So instead, the

legacy code written in legacy languages? in such an unexpected and u

it is the concept of an assertion that links my would run a grave Tisk of cras

nt industrial software handler for the exception makes a recovery thab is

earlier research with curre
and provides the hasis for sensible b
Assertions are also used to advantage by prograimn

analysis tools like PRESix {23]; this is being devel-

oped within Microsoft, for application to the main-

The value of such tools is

engineering practice, o the customer in the environment of use.

hopes of future improvement. Assertions figure

very strongly in Microsoft code. A recent count dis-

covered aver quarter of a million of them in the code

for Office. The primary role of an assertion today — tenance of legacy code.

limited if they give so many warning messages that

is as o test oracle, defining the circumstances under

which a program under test is considered to fail. A the programmer cannot afford the time to examine

collection of aptly placed assertions is what permits them. Ideally, each warning should be accompanied
2 massive suite of test cases to be run overnight, in by an automatically genera,ted test case that would

the absence of human intervention. Failure of an reveal the bug; but that will depend on further ad-
agsertion triggers & dump of the program state, to ~ vances in model checking and theorem proving. As-

be analysed by the programmer ofl the following sertions and assumptions provide a means for the

fact of programmer to explal
oceur, O 18 jrvetevant, and the tool will suppress

or reports. This is an-

morning. Apart from merely indicating the n that a certain error cannot
failure, the place where the first assertion fails is

likely to give & good indication of where and why the corresponding sheaf of err

g. And this indication is other motivating factor for progr
stronger assertions in their code. Another

the program is going wron ammets to include
sh, so avolding the risk mmoere and

given in advance of any cra

that the necessary diagnostic information is over- acknowledged motbive is to inform PIOgrammers en-
written. So assertions have already found their ma- gaged in gubsequent program modificasion that cer-
jor application, not to the proof of the correctness tain properties of the prograin st be maintained.
of programs, but to the diagnosis of their errors. Microsoft is one of the few Companies in the
They are applied as a partial solution to the prob- world that has the motive, the skill, the resources

which 1 first encountered and the courage to embark on software tool devel-

lems of program crashes,

ik liaky 5
: le must be brought under control. To incorpo

‘rate t (5 i actical too
: the Iy Su}ts Of thlS research into p i] 15
1

- iul‘the 151 (8} t i {8}
: T au i
a dVanCCS are r ‘qulred 111 automa iC he e

413
({)p) L Vol. 18 No. 4 July 2001
ment on the requisite sc - i ;
AN, rz:;.' In.t other engineer- proving and in automatic test case generati
e SCientiﬁ(l}oinoolls ::imbody an The ideas that crystallise from the;a(;tliC) ni
e eﬂgincci); e 1{ge, math- search into correctness of programs are oft:j ﬁre_
e i }Illow-hmiv. subjected to practical evaluation in the conte trSt
o ad the wayl In an experimental programming language. .
e Zlnoiirogrammmg poses of experiment, such a language gm.ustolllh s
o :; ef:)‘;{ even to pure and simple semantics, achieved by excli‘s:f X
e yh e. Isug- of all extraneous features and complicating fact 01'1
e st c;ﬂd define To progress to the nexi stage of industriil uc .
e — pﬂndple; cated program | proposed language feature must be promul tS:'a
P 1,1 ;;foﬁgram anal- the form of a design pattern, so that it cajabe N
e e ICb-, and after ploited by users of existing programming la) ('ex_
increasingly diffi- The pattern will include adﬁce on the sgpecril:::f' o
ion

cult. ere ig
ult. There is the danger that programmers can

lea i
rn to write code that has all the characteristics

of '
good style as defined by the heuristics, and yet be

Of inter id,(£8, 8 yS! cmaiic (,Odltl t e(:] mniques and on
d H g H]
t he constr ncektion ()f test harneSSeS, includlng assel

full of bugs. The) tions to guard against err
. Only pmnci Tes . Eainst errors, The advi
this risk are those which ples that guard against port from program anatysis tool advice needs sup-
: ich are direct] s tools, which wi
ectly based on con- observance of the disciplines 7 hich il check
on which correctness

siderations of
s of program correctness. And that i
. at is why de
pends.

pPrograin correctness haS hee eTV. me red 1n ac ades th
A .
.) : | 13, and Stlﬂ remalns, a Fina,]ly, al, int a.ls A5 d i d ra L5
tOplC [OI dcademic rCSea.I'Ch than yeao, re ari H1 riux 1
. Is h i ¥
suitabl 3 ere S8 opport i i
o introduce

a .
new programming langnage onto the market-

Challenge

place. This will never be done by taking a recent

Ma-ny Chaﬂ T1, i 38 fe € ent e dborator i’]e
€Nges remaln. A 5 i i
. SeT lonal Chnlqu 3 eXperiIﬂ 311 a,l la.ngua.ge from th I' y
fOI correctness still Ileed to be extended from the Cha,l €nge o la guage d o] . -
g eSign iS t COmbine a
mul

siumple sequential lan,
guag
l l s hke I ASCAL to cover titude Ot features that haVe pIOVed Sllﬂi(:lel](¥ suc-

the complexities j
of object ori i i i
o rientation, including cessful that they have been tested and i
- - ation, fncl ' and in ;
S, (;d -pomt{al swinging ma- in all generally accepted research I i
patterns of usage need name of any language that e
¢ that aims at commercial
suc-

he f()T]IlallSCd to 1LY COTY t "Ca ng 55 W 1 o I ﬂ 1 ent -~
Sun hf C
to CCLNess reason. Ce be dEV Sed O rere:
4 CL currert buZZ OrdS
3

and LCN | lleS 3L d Y p \j C
be 01
P lCed 194 11 1m Ttax 11 b Cra\ft d
£e to b COx e-t € and s 5 t W1 e] to Iefiect tlle].ﬂ.-l CS5

i . " t f b craze
G CCkb. I he problems Of CONCUrrenn programming &Shi() 1
3 1a.nle .

race CO}}dlthIlS dedd lO(:;(and velock IleEd to be B ut t:hel e are G
3 now str Ong S1gNs 1 hil(h(! achug
| udl

analysed and solved
. Dynami i
¢ configuration and quality of the language is beginni
ginning to matter. A

; X - ‘ . 1 1 occurred so e Time ago
2 C atlo n
fecon. uration, mobile o] de, transactions a.nd even Simllar ransformat ‘
ﬁ bil - |
] asl - g

excepbions are essential
ial to modern systems software the market place f
or cars, where reliabilit
y and

PP 10118 h V Y P Y
&Hd a hCat 8} the errors to which t re most SﬂfeL once too. e Ond 1aCe to st (',hl() L]
) hl h hE & T1 k S
C hl]
£,
platlng, a.Ild a.CCClGIathIl. In t}13 progression i[CI!I
C e C++ ng B (= er
O &nd then to J&Vd., ea.cil la uage d S1E1

h . .
as given more explicit attention $o removing the

16 AYVCa =¥V T LT (414)

traps and insecurities of its predecessor. As with all
evolutionary processes, progress hag been exceed-
ingly slow. One day, I expect the new programming
language designer will learn how to use assertional
methods as a design tool, to evaluate and ;‘eﬁne the
objectively evaluated quality of familiar language
features, as well as averting the risks involved in
the introduction of new features. To bring that
day forward is surely still a worthy goal for aca-

demic research, both theoretical and experimental.

References

[1] Elliott 803 Programming Manual, Elliott Broth-
ers (London) Lid., Borehamwood, Herts {1960).
[2] Shell, D. : A high-speed sorting procedure,

Comm. ACM, Vol. 2, pp. 30-32 (1959).

[3] Naur, P. {ed.) : Report on the algorithmic Jan-
guage ALGOL 60, Comm. ACM, Vol. 3, No. b,
pp. 299-314 (1960).

[4] Chomsky, N.: Syntactic structures, Mouton &
Co, The Hague (1957).

[5} Backus, J. W.: The Syntax and the Semantics
of the proposed international algebraic language of
the Zurich ACM-GAMM Conference, ICIP Proceed-
ings, Paris, pp. 125-132 (1959).

[6] Hoare, C. A. R. : Report on the Elliott Al-
GOL translator, Cemp J., Vol. 5, No. 4, pp. 345-348
(1963).

[7] SteelJr., T.B.ed.: Kormal language description
languages for computer programming, North Hol-
land {1966).

[8] Garwick, Jan V. : The definttion of program-
ming languages by their compilers, ibid.

[9] Quine, W. V. Q. : Mathematical Logie, Revised
edition, Harvard University Press {1955).

[10] Igarashi, 8. : An aziomatic approack to equiv-
alence problems of algorithms with opplications,
PhD. Thesis, Tokyo University (1964).

[11] Lucas, P. et al. : Informal introduction to the
abstract syntax and interpretation of PL/I, ULD
version 1I, IBM TR 25.03 (1968).

[12] Floyd, R. W.: Assigning meanings to programs,
Proc. Am. Soc. Symp. Appl. Math., Vol. 19, pp. 19—
31 (1967).

[13] Hoare, C. A. R. : An axiomatic basis for com-
puter programming, Comm. ACM, Vol. 12, No. 10,
pp. G76-80, 583 (1969).

[14] Hoare, C. A. R. : Procedures and parameters:
an axiomatic approach, LNM 188, Springer Verlag
(1971).

[18] Hoare, C. A. R. and Foley, M. : Proof of a recur-
sive program: QUICKSORT, Comput. J., Vol. 14,
pp. 391-395 (1971).

[16] Hoare, C. A. R. : Towuards a theory of paral-
lel programming, in Operating Systems Techniques,
Academic Press (1972).

[17] Hoare, C. A. R. and Clint, M. : Program prov-
ing: jumps and functions, Acta Informatica, Vol. 1,
pp. 214-224. (1972).

{18] Hoare, C. A. R. : A note on the for statement,
BIT, Vol. 12, No. 3, pp. 334-341 (1972).

[19] Uoare, C. A, R. and Wirth, N. : An axiomatic
definition of the programming language PASCAL,
Aeta Imformatica, Vol. 2, No. 4, pp. 335355 (1973).

[20] London, R. L. et al. : Proof rules for' the
programming language EUCLID, Acta Informatica,
Vol. 10, pp. 1-26 (1978).

[21] Meyer, B. : Cbject-oriented soffware construc-
tion (2nd ed.), Prentice Ilalt PTR (1997).

[22] Dijkstra, I&. W. : go to statement considered
harmful, Comm. ACM, Vol. 11, pp. 147-148 (1968).

[23] Bush, W. R., Pincus, J. D. and Sielaff, D. I. :
A static analyser for finding dynamic programming
errors, Software Practice and Ezperience Vol 30,
pp. 775802 (2000},

[24] Johnson, 8. C.: Lint: a C program checker,
UNIX Prog. Man. 4.2 UC Berkeley (1984).

[25] Dijkstra, E. W. : A constructive approach to
the problem of program correciness. BIT, Vol. 8,
pp. 174-186 (1968).

[26] Dijkstra, E. W. : A discipline of programming,
Prentice Hall (1976).

[27] Morgan, C. : Programming from Specifications,
Prentice Hall Infernational (1990).

[28] Dahl, O-J. et al. : SIMULA 67 common base
language, Norwegian Computer Centre (1967).

[28] Dahl, O-J. and Hoare, C. A, R. : Hierarchi-
cal program stractures, in Structured Programming,
Academic Press, pp. 175-220 (1972).

[30] Heoare, C. A. R. : A structured paging system,
Comyp. J., Vol. 16, No. 3, pp. 209-215 (1973).

[31] Hoare, C. A. R. : Proof of correctness of data
representations, Acta Informatice, Vol 1, No. 4,
pp. 271-281 (1972).

[32] Dijkstra, . W. : Cooperating sequential pro-
cesses, in Programming Languages, Genuys, F., ed.,
Academic Press (1968).

[33] Hansen, P. B. : Structured multiprogramming,
Comm. ACM, Vol, 15, No. 7, pp. 574578 {1972).
[34] Hoare, C. A. R. : Monitors, an operating system
structuring concept, Comm. ACM, Vel. 17, No., 10,

pp. 549-557 {1974).

[35] Hansen, P. B. : The programming language Con-
current Pascal, IEEE Trans. Soft. Eng., Vol 1,
No. 2, pp. 199-207 (1975).

[36] Gosling, J., Joy, W. and Steel, G. : The Java
Language Speeification, Addison-Wesley (1996).
[37] Hoare, C. A. R. : The structure of an operating
system, in Springer LNCS 46, pp. 242-265 (1976).
[38] Welsh, J. and Bustard, D. : Cencurrent Program

Structures, Prentice Hall International.

{415) Vol. 18 No. 4 July 2001 17

[39] Dijkstra, E. W. : Guarded commands, nen-
determinacy, and the formal derivation of programs,
Comm. ACM, Vol. 18, pp. 463457 (1975).

[40] Hoare, C. A. R. : Communicating Sequential
Processcs, Comm. ACM, Vol. 21, No. 8, pp. 666—
777 (1978).

[41] Stoy, J. : Denotational semantics, the Scott-
Strachey approach to programming language theory.
MIT Pross, (1977).

[42] Brookes, S. and Roscoe, A. W. : An improved
failures model for CSP, in Springer LNCS 197
(1985).

[43] Hoare, C. A. R. : Communicating Sequential
Processes, Prentice Hall International (1985).

[44] INMOS Limited : Transputer yeference manual,
Prentice Hall International (1988).

{45] Hoare, C. A. R. : The transputer and occam: a.
personal story, Cone. Pract. and Exp., Vol. 3, No. 4,
pp. 249-264 (1991),

[46] Jones, G. and Geldsmith, M. ; Programming in
occam 2. Prentice Hall International. -

[47] Milner, R. : Communicating and mobile sys-
tems: the pi-calculus, Cambridge University Press
(1999).

{48] Abrial, J-R. : Assigning programs to mean-
ings, in Mathematical Logic and Programming Lan-
guages, Philosophical Transactions of the Royal So-

ciety, Series A, Vol, 31 (1984)

[48] Collins, B. P., Nicholls, J. E. and Sarensen, 1. H. :
Introducing formal methads, the CICS experience,
IBM TR 260, Hursley Park, Winchester (1989).

[50] Jones, C. B. : Software Development, A Rigor-
ous Approach, Prentice Hall International (1980).

{51] Hehner, E. C. R, : The logic of programming,
Prentice Hall International (1984)

[52] Hoare, C. A. R. and Hehner, B, C. R. : A more
complete model of communicating processes, Theor.
Comp. Sci., Vol, 26, Nos. 1-2., pp. 105-120 (1983).

[53] Hoare, C. A. R. and Roscoe, A. W. : Programs
as exccutable predicates, in 5th Gen. Comp. Sys.,
Tokyo, ICOT (1984).

[54] Hoare, C. A. R. : Programs are predicates, in
Muathematical Logic and Programming Lenguages,
Phil. Trans. Royal Soc, Ser. A, Vol. 31 {1984).

[58] Hoare, C. A. R. : Programs are predicates, New
Gen. Comp,, Vol 38, pp. 2-15 (1993).

[56] Hoare, C. A. R. and Jifeng, H. : Unifying the-
ories of programming, Prentice Hall International
(1998).

[67] Hoare, C. A. R. and Lauer, P. E. ;: Consistent
and complementary formal theories of the seman-
tics of programming languages, Acta Informatica,
Vol. 3, No. 2, pp. 135-153 {1974).

